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Abstract. In this paper we present and estimate a model of short-term interest rate volatility that
encompasses both the level effect of Chan, Karolyi, Longstaff and Sanders (1992) and the conditional
heteroskedasticity effect of the GARCH class of models. This flexible specification allows different
effects to dominate as the level of the interest rate varies. We also investigate implications for the
pricing of bond options. Our findings indicate that the inclusion of a volatility effect reduces the
estimate of the level effect, and has option implications that differ significantly from the Chan,
Karolyi, Longstaff and Sanders (1992) model.

1. Introduction

Chan, Karolyi, Longstaff and Sanders (1992, CKLS) compare a number of widely
used continuous-time models of the short-term interest rate. They estimate various
models and compare the models in terms of their ability to capture the actual
behavior of the short-term riskless rate. The issue of how these models compare
is important because the models differ in their implications for valuing contingent
claims and hedging interest rate risk.1 The testing approach of CKLS exploits the
fact that many term structure models imply dynamics for the short-term riskless
rate that can be nested in one stochastic differential equation. With respect to the
most successful models they conclude: “The results for the tests of the one-month
Treasury Bill indicate that it is critical to model volatility correctly. The models
that best describe the dynamics of the interest rates over time are those that allow
the conditiorial volatility of interest rate changes to be highly dependent on the
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level of the interest rate”. With regard to the parameter that measures the sensitivity
of interest rate volatility to the level of the interest rate itself () they report an
unconstrained estimate of about 1.5.2

A different class of models to capture volatility dynamics in interest rates
is the family of autoregressive conditional heteroskedasticity (ARCH) models,
introduced by Engle (1982) and generalized (GARCH) by Bollerslev (1986). Key
ingredients in these models are volatility clustering and volatility persistence. These
effects are usually reliably present in estimated GARCH models of interest rate
time series.3

In the current paper we present and estimate a model of short-term interest rate
volatility, which encompasses both the level effect of CKLS and the conditional
heteroskedasticity effect of the GARCH class of models. Our model – the KNSW
model – exhibits a superior empirical fit relative to both pure GARCH models as
well as pure single factor models as considered in CKLS. This feature results from
a relatively flexible specification which allows different effects to dominate as the
level of the interest rate varies.

It has long been recognized in the finance literature that the specification of
volatility is one of the most important features for derivative security pricing. We
investigate implications for the pricing of bond options. Specifically, we investigate
the implications from different models of the short-term interest rate for the pricing
of discount bond options. Our findings indicate that the inclusion of a volatility
effect in the model specification, in addition to a level effect, is particularly relevant
for the pricing of shorter-term options on long term bonds. The magnitude of the
implied price differences is strongly dependent on the level of the interest rate.

The plan of the paper is as follows. In Section 2 we briefly review previous
studies that model short-term interest rates, and introduce our new specification
which nests both the level effect of CKLS and the volatility effect of the GARCH
class of models. Section 3 describes our data and contains the empirical results.
Section 4 considers the implications for the pricing of contingent claims. Finally,
Section 5 offers some concluding remarks.

2. GARCH and Level Effects

Most of the theoretical models of the short-term interest rate which are used in
finance have been developed in a continuous time setting. CKLS review a number
of widely used stochastic processes that are nested within the following stochastic
differential equation:

drt = �(�� rt) dt+ �r

t dWt; (1)

where rt represents the short-term interest rate and Wt is a standard Brownian
motion. The interest rate process is mean reverting for � > 0. The parameter 
determines the sensitivity of the variance with respect to the level of the spot rate;
we will refer to  as the interest rate elasticity. This parameter turns out to be crucial
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in applications to option valuation. CKLS approximate this stochastic differential
equation by the following discrete approximation:

rt � rt�1 = �0 + �1rt�1 + �r

t�1�t; �t � D(0; 1); (2)

which they estimate for the one-month US Treasury bill rate. The bill yield was
obtained from the Fama files within the CRSP database. The data are monthly
quotations for the period 1964.06–1989.12. They used the Generalized Method of
Moments to estimate the model, and report that  is 1.5 and highly significant,
which means that the conditional variance of the short-term interest rate is highly
sensitive to changes in the level of the interest rate. For comparison, the Cox,
Ingersoll and Ross (1985) (CIR) square root term structure model implies  = 1

2 . In
fact, the estimated elasticity is so large that stationarity of the interest rate process
is not guaranteed (see Broze, Scaillet and Zakoian (1995)).

Alternatively, Longstaff and Schwartz (1993) (LS) present a two factor model
for the term structure. The first factor is the short-term interest rate. The second
factor is the conditional variance of changes of the short-term interest rate, which
is assumed to be generated by a GARCH-class process. In their application LS
estimate the following model:

rt � rt�1 = �0 + �1rt�1 + �2h
2
t�1 + et; (3)

h2
t = �1 + �2e

2
t�1 + �3h

2
t�1 + �4rt�1; (4)

where et = ht�t is the prediction error of the interest rate and h2
t is the conditional

variance. The error term �t is normalized to have unit variance. This specification
differs from the standard GARCH-M model by the inclusion of the lagged spot
rate in the volatility equation.4 Note that, if �2 = 0 and �3 = 0, the specification
corresponds to a model with  = 1

2 .5 The level effect in the volatility proves
significant, but the restriction that the interest sensitivity is equal to  = 1

2 might
well be overly restrictive given the unrestricted estimate of  reported in CKLS.
We therefore would like to generalize the Longstaff and Schwartz specification
such that it can accommodate different interest rate sensitivities in the volatility.
Stated differently, we search for a specification that combines the high interest rate
sensitivity of CKLS with GARCH-type volatility clustering. This motivates the
specification presented below. We assume conditional volatility of the form:

ht = �tr

t�1; (5)

which differs from CKLS by the time varying nature of �t, which is assumed to be
generated by the GARCH(1,1) process:

�2
t = �1 + �2(�t�1�t�1)

2 + �3�
2
t�1: (6)
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Substituting Equation (6) in Equation (5) and solving for�2
t , the proposed volatility

process can be rewritten as:

h2
t = �1r

2
t�1 +

�
rt�1

rt�2

�2

(�2e
2
t�1 + �3h

2
t�1): (7)

We will refer to this specification as the KNSW model.6 The CKLS model is a
special case of this model; for �2 = �3 = 0. Another special case is the GARCH
model, which obtains if  = 0. A restricted version of LS obtains, i.e. with �2 = 0,
if  = 1

2 . An interesting feature of the above specification is the time varying
persistence of shocks which depends on the interest rate level.

The unconditional distribution of the spot rate is not available in closed form. It
can however be easily computed numerically by simulation for different values of
the parameters. In the discrete time process negative interest rates are possible, but
this is simply an artefact of the discrete time approximation of a continuous time
process. The probability that the short-term interest rate will ever attain negative
values is extremely small when the unconditional mean and the drift are sufficiently
large relative to h2

t .
The interest rate process of CIR is stationary. Broze, Scaillet and Zakoian (1995)

show that the Euler discretization of Equation (1) is only (second-order) stationary
if  < 1. If on the other hand,  � 1 the volatility at high interest rates makes
it possible for interest rates to increase even further. To allow for higher variance
elasticities it is necessary to introduce nonlinearities in the drift (see Aı̈t-Sahalia
(1996b)). Conley, Hansen, Luttmer and Scheinkman (1995) consider extensions
of the drift in (1) by including the nonlinear terms r�1 and r2. We augment the
conditional mean in the discrete time model with a quadratic term:

rt � rt�1 = �0 + �1rt�1 + �2r
2
t�1 + et: (8)

For �2 < 0 the stronger mean-reverting drift is now able to pull back the interest
rate to the unconditional mean from a high interest rate level in the presence of a
larger variance. At the low end we assume a reflecting barrier at r = 0, which has
no consequences for the estimation.

An exact continuous time limit of the discrete time process in Equation (7) is
not available. One could consider the process as a simple approximation to the
following process, which is closely related to the LS model:

drt = �(�� rt) dt+ �r

t dW1t; (9)

d�2
t = �(w � �2

t ) dt+  �t dW2t; (10)

The scale parameter �t is not a constant as in the models considered by CKLS but
follows a diffusion process as in Nelson (1990). A major difference, however, is
that  is not restricted to  = 1

2 in Equation (9).
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Figure 1. One-month Treasury bill.

3. Empirical Results

3.1. DATA

The one-month Treasury bill rate is chosen as the short-term interest rate. Monthly
and weekly yields were obtained from the Federal Reserve Bank for the period Jan-
uary 1968–July 1996. The monthly data are last Friday of the month observations
and the weekly data are recorded at the last trading-day of the week.

The yield is expressed in annualized form. Figure 1 plots the level and the change
of the one-month Treasury bill rate. The interest rate is more variable in the period
subsequent to the 1979 change in Federal Reserve Bank operating procedures.
Table I provides summary statistics for the two data series. The distribution of�rt
is skewed to the left and exhibits excess kurtosis.

3.2. PARAMETER ESTIMATES

In this section we provide estimation and test results for the four different models
for the behavior of short-term interest rate volatility: the GARCH(1,1), CKLS, LS
and KNSW. We consider the specification for the conditional mean in Equation (8)
and the following volatility specification that nests the models of interest:

h2
t = �0 + �1r

2
t�1 +

�
rt

rt�1

�2

(�2e
2
t�1 + �3h

2
t�1) + �4rt�1: (11)
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Table I. Summary statistics

Levels First Differences
Monthly Weekly Monthly Weekly

Number of observations 343 1440 342 1439
Mean 6.56 6.56 0.00 0.00
Standard deviation 2.62 2.62 0.68 0.33
Minimum 2.61 2.48 �6.10 �2.86
Maximum 15.85 16.69 3.40 2.31
Skewness 1.24 1.26 �1.73 �0.63
Excess kurtosis 1.82 2.00 22.77 14.04

Notes: Skewness is defined as m3=s
3, with m3 the centred third moment

of the data and s the sample standard deviation. Kurtosis is defined as
(m4=s

4) � 3, with m4 the centred fourth moment of the data. Units are
percent per annum.

The models are estimated by the method of quasi-maximum likelihood (QML).
The QML estimator is consistent and asymptotically normal for any distribution of
et providing some regularity conditions are satisfied (see Wooldridge (1994)). The
asymptotic distribution for the QML estimator �̂ is then:

p
T (�0 � �̂)! N(0;A�1BA�1); (12)

where A denotes the information matrix, and B denotes the outer product of the
gradient vector evaluated at the optimal parameter vector. The standard errors are
estimated using the robust covariance matrix A�1BA�1.

Because of severe multicollinearity problems we are unable to estimate the
general specification nesting all the specific models. It turns out that the extra
constant term (�0) of the LS model cannot be estimated if  is a free parameter.

Panel A of Table II reports empirical results for the four models using monthly
observations. The first column contains the estimates of the standard GARCH(1,1)
model.7 The GARCH parameters are highly significant even on the relatively low
monthly frequency, and indicate strong persistence of variance shocks. The second
and third columns report our estimates of the CKLS model in which the interest rate
elasticity  is included. The estimates of  move from 1.40 to 2.51 when a constant
term is added.8;9 The LS model in the fourth column adds the lagged level of rt
to the GARCH specification, which appears an important improvement in terms of
the likelihood function.10 The inclusion of rt�1 also lowers the persistence of the
variance shocks. The proposed KNSW specification is reported in the last column
of Table II. It attains the highest value for the log-likelihood function. The GARCH
and CKLS models are both nested within this specification, and can both be rejected
at the 5% level. As in the LS model, the inclusion of the lagged interest rate lowers
the persistence of the volatility shocks. Similar to the CKLS model we also find a
large value for .
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Figure 2. The figure contains the drift of the unrestricted (nonlinear) KNSW model and the
(restricted) linear KNSW model. Se denotes the one-standard-error band for the nonlinear
model. Table V contains the parameter estimates for the conditional mean of the linear KNSW
model.

It has been illustrated by Drost and Nijman (1993) that GARCH effects are
particulary dominant for high frequency data. We replicate, therefore, the estimates
of Panel A using weekly observations. The parameter estimates for the weekly data
are reported in Panel B. The higher frequency of the observation shows up in the
parameters of the GARCH(1,1) model, where the point estimates �2 and �3 even
add up to 1.03, although we can never reject the hypothesis that they add up to
a number smaller than one. The interest rate sensitivity  of the CKLS model
is identical to the estimate from monthly data. Inclusion of the nonlinearity term
�2 has no influence on the estimated values of the parameters in the volatility
specification. But the negative point estimates ensure stationarity even if  > 1.

Figure 2 plots the lagged interest rate level against the drift, Et�1[�rt], for the
nonlinear KNSW model as well as for the linear KNSW model with �2 = 0. For
moderate interest rate levels there is very slight mean reversion, however at interest
rates higher than 15% the drift sharply decreases. Note however that the standard
error of the drift term is quite large. Aı̈t-Sahalia (1996a,b), Andersen and Lund
(1996b), Conley, Hansen, Luttmer and Scheinkman (1995), Pfann, Schotman and
Tschernig (1996), Stanton (1995) and Tauchen (1996) report similar nonlinearities
in the dynamics of the short-term interest rate.
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Table II. Unrestricted parameter estimates

rt � rt�1 = �0 + �1rt�1 + �2r
2
t�1 + et

h
2
t = �0 + �1r

2
t�1 +

�
rt

rt�1

�2

(�2e
2
t�1 + �3h

2
t�1) + �4rt�1:

GARCH CKLS1 CKLS2 LS KNSW

A: Monthly:
�0 � 10 �0.25 0.01 0.45 �0.26 �0.30

(0.15) (0.07) (0.73) (0.09) (0.30)
�1 � 10 0.37 0.20 0.00 0.34 0.36

(0.53) (0.71) (0.01) (0.25) (0.81)
�2 � 102 �0.58 �0.26 �0.10 �0.42 �0.44

(0.78) (0.88) (0.20) (0.34) (0.94)
�0 � 10 – – 0.70 – –

– – (3.49) – –
�1 � 102 0.77 0.13 0.001 – 0.02

(0.96) (2.18) (0.53) – (1.15)
�2 0.26 – – 0.25 0.18

(3.89) – – (2.31) (3.08)
�3 0.75 – – 0.70 0.74

(12.03) – – (5.11) (8.90)
�4 � 102 – – – 0.31 –

– – – (1.70) –
 – 1.40 2.51 – 1.24

– (10.13) (5.25) – (4.90)
Loglik �214 �217 �209 �208 �198

B: Weekly:
�0 � 10 0.12 0.10 0.11 0.07 0.11

(0.26) (0.26) (0.26) (0.12) (0.32)
�1 � 10 0.01 0.01 0.01 0.03 0.01

(0.04) (0.28) (0.18) (0.13) (0.09)
�2 � 102 �0.01 �0.01 �0.01 �0.07 �0.03

(0.26) (0.62) (0.48) (0.30) (0.25)
�0 � 10 – – 0.10 – –

– – (1.83) – –
�1 � 102 0.01 0.08 0.01 – 0.01

(1.62) (2.82) (0.78) – (1.81)
�2 0.22 – – 0.23 0.31

(2.96) – – (3.70) (3.40)
�3 0.81 – – 0.77 0.60

(14.05) – – (13.79) (3.81)
�4 � 102 – – – 0.04 –

– – – (2.29) –
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Table II. Continued

GARCH CKLS1 CKLS2 LS KNSW

B: Weekly:
 – 1.21 1.67 – 1.31

– (13.59) (6.03) – (6.33)
Loglik 83 �76 �71 94 101

Notes: Loglik denotes the log-likelihood value. Robust t-values are
given in parentheses. CKLS, LS and KNSW denote Chan, Karolyi,
Longstaff and Sanders (1992), Longstaff and Schwartz (1992) and
Koedijk, Nissen, Schotman and Wolff respectively.

3.3. DIAGNOSTIC TESTS

In order to investigate the adequacy of the conditional variance model we employ
a series of Lagrange multiplier (LM) tests as suggested by Bollerslev, Engle and
Nelson (1994). With the LM tests we search for directions in which the model
could be improved. Let zt be a vector of explanatory variables that we like to test
for inclusion in the volatility equation:

h2
t = f(xt; �) + �zt; (13)

where f(xt; �) is the volatility specification under the null hypothesis. Given the
fat-tailedness of the data the conventional LM tests, described in Engle (1984)
are no longer applicable. However, from Wooldridge (1994) and Bollerslev and
Wooldridge (1992) a robust LM test may be computed from a simple set of auxiliary
regressions. First, run the regression from

@ ln h2
t

@�
on

@ lnh2
t

@�
= zt=ĥ

2
t

both evaluated at the QML estimates under the null hypothesis. Next, calculate
the score that is orthogonal to the scores under the null hypothesis as s�t =
(ê2

t=ĥ
2
t � 1)�̂�t where êt, the prediction errors, and ĥ2

t are evaluated at the QML
estimates under the null hypothesis and �̂�t are the residuals of the first regression.
An asymptotically valid LM statistic is then calculated as theTR2 from a regression
of a vector of ones on s�t with T the number of observations andR2 the uncentered
multiple correlation coefficient. The test statistic is asymptotically distributed as
�2(k), with k the number of elements in zt. The directions of misspecification that
we consider are:

1. Additional level effects: zt = rt�1.
2. Outliers between 79:10 and 81:12: zt = D1t a dummy variable that takes the

value one in the period 79:10–81:12 and is zero elsewhere.
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3. A permanent variance shift after 79:10: zt = D2t, a dummy variable that takes
the value one after 79:10, and zero elsewhere. This test can be interpreted as a
test for the stability of the model over subperiods.

4. Sign bias (see Engle and Ng (1993)): zt = S+t , a dummy variable that takes
the value one if et�1 > 0 and zero elsewhere.

5. Size bias (see Engle and Ng (1993)): z1t = S+t et�1, z2t = S+t e
2
t�1, z3t =

S�t et�1 and z4t = S�t e
2
t�1 where S�t = 1� S+t .

All these tests indicate directions in which to search for improved specifications.
Some of the tests have been proposed with specific alternatives in mind. The last two
tests were suggested by Engle and Ng (1993) as powerful diagnostics for possible
asymmetries in the conditional variance. The negative size bias for example would
suggest the leverage effect of Nelson’s (1991) Exponential-GARCH model. Tests
2 and 3 would point at instability of the parameter estimates.

Table III shows the diagnostics for the different volatility specifications. The
diagnostics for the monthly and weekly data show that the pure GARCH model
fails on the level test and the 79–82 dummy. The CKLS model has severe problems
on the ARCH test. The KNSW and LS models both capture the level effect as
well as the GARCH effects. The difference between the LS model and the KNSW
specification is in the interest rate elasticity of volatility. This elasticity is restricted
to  = 1

2 in the LS model, while it is estimated as 1.24 in the monthly KNSW
model.

The diagnostics indicate that none of the models can cope with the 79–82 high
volatility episode. To see the impact of this period on the parameter estimates of the
volatility equation, we re-estimate the KNSW model where we exclude the high
volatility period. The estimate of  now drops to 0.88 for the monthly frequency.
This result shows that the high sensitivity of volatility with respect to the level can
partially be explained by this period.11

Normality is strongly rejected for all models. While this implies that we must be
cautious in interpreting distributional implications of the models, it does not inval-
idate the parameter estimates, since QML is robust to departures from normality.
Following Bollerslev (1987) we also considered the standardized t-distribution.
The estimated degrees of freedom parameter ranges from three to five, thereby
reflecting substantial fat-tailedness. However, the adjustment for fat-tailedness has
no significant impact on the other parameters.12

3.4. UNCONDITIONAL DISTRIBUTION

The parameter estimates have implications for the unconditional moments of the
interest rate. The unconditional moments also provide a test of the specification
of the model, when the implied moments are compared to the sample moments of
the interest rate level. For the unconditional distributions we would also have to
take into account possible nonlinearities in the conditional mean (see Section 2).
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Table III. Diagnostics

GARCH CKLS2 LS KNSW

A: Monthly
Skewness 0.10 �0.03 0.01 �0.08
Excess Kurtosis 2.13��� 0.89��� 2.05��� 1.08���

Jarque-Bera 65.27��� 11.54��� 60.05��� 17.15���

LM(level) 11.21��� 0.78 0.01 0.10
LM(level2) 13.94��� 0.44 6.85��� 0.85
LM(ARCH(4)) 0.56 42.20��� 2.00 1.54
LM(79:10) 4.23�� 3.11�� 4.99�� 1.19
LM(79:10–81:12) 7.97��� 9.69��� 17.23��� 5.36��

LM(sign) 0.06 7.22��� 2.78� 2.19
LM(size) 0.83 30.74��� 2.89 7.90�

B: Weekly
Skewness �0.10� 0.25 �0.13�� �0.14��

Excess Kurtosis 4.79��� 7.13��� 4.92��� 4.40���

Jarque-Bera 1379.73��� 3062.00��� 1465.03��� 1168.17���

LM(level) 11.27��� 1.41 1.99 0.22
LM(level2) 14.09��� 0.24 8.85��� 2.12
LM(ARCH(16)) 6.75 176.97��� 5.58 6.54
LM(79:10) 0.01 10.69��� 0.17 0.67
LM(79:10–81:12) 4.85�� 54.79��� 9.87��� 5.77��

LM(sign) 0.01 0.01 0.79 0.22
LM(size) 9.71�� 143.74��� 4.45 9.13��

Notes: Skewness is defined as m3=s
3, with m3 the centred third moment of the

data and s the sample standard deviation. Kurtosis is defined as m4=s
4 � 3, with

m4 the centred fourth moment of the data. Both are computed on the scaled resid-
uals êt=ĥt. LM(level), LM(ARCH(p)), LM(79:10), LM(79:10–81:12), LM(sign),
denote LM test statistics for the squared interest rate level, ARCH effects with p
lags, a shift dummy after October 1979, a shift dummy for 79:10–81:12, a sign
effect, and a combined size effect respectively. The size effect combines: a posi-
tive size effect, a negative size effect, a positive size square effect and a negative
size square effect. � (��) [���] denote rejection at the 10% (5%) [1%] level.

To focus on the implications of the volatility dynamics, however, we compare the
interest models under the restriction that they have a linear conditional mean.

In Section 3 we discussed that this linear specification defines a nonstationary
process if  > 1. For the KNSW and the CKLS model we, therefore, impose
the restriction  = 1 to obtain stationary distributions. Furthermore we consider
the KNSW model with  = 1

2 . Finally we investigate the GARCH model. For
the GARCH specification it follows from panel B of Table II that the sum of
the parameter estimates �2 and �3 is larger than unity. This restriction implies
that the interest rate is not a covariance stationary process. We therefore impose
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Table IV. Period 79–82 excluded

rt � rt�1 = �0 + �1rt�1 + �2r
2
t�1 + et;

h
2
t = �1r

2
t�1 +

�
rt

rt�1

�2

(�2e
2
t�1 + �3h

2
t�1):

�0 � 10 �1 � 10 �2 � 102 �1 � 102 �2 �3 

Monthly 0.20 0.13 �0.21 0.18 0.16 0.56 0.88
(0.20) (0.32) (0.50) (0.14) (0.47) (0.30) (2.06)

Notes: Loglik denotes the log-likelihood value. Robust t-values, are given in parentheses.

Table V. Parameter estimates of restricted models

rt � rt�1 = �0 + �1rt�1 + et;

h
2
t = �1r

2
t�1 +

�
rt

rt�1

�2

(�2e
2
t�1 + �3h

2
t�1):

GARCH CKLS KNSW1 KNSW2

�0 0.03 0.03 0.02 0.02
(1.62) (1.77) (1.55) (1.63)

�1 �0.01 �0.01 �0.01 �0.01
(1.27) (1.31) (0.95) (1.12)

�1 � 102 0.01 0.17 0.01 0.03
(2.05) (2.05) (2.59) (2.14)

�2 0.17 – 0.26 0.23
(3.43) – (4.62) (3.36)

�3 0.82 – 0.68 0.76
(15.97) – (9.37) (11.99)

 0 1 1 0.5
Loglik 83 �92 100 94

Notes: Loglik denotes the log-likelihood value. Robust t-
values, conditional on  are given in parentheses. The
GARCH model is restricted to �2 + �3 = 0:99; the CKLS
model has the restriction  = 1; the two KNSW models
have been estimated under the restriction  = 1 and  = 1

2
respectively. No restrictions on �2 or �3 were needed in the
KNSW models.

the restriction �2 + �3 < 1. Table V contains weekly parameter estimates of the
restricted models.
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Figure 3. Unconditional distributions. The shaded area is the sample histogram at the weekly
frequency.

Appendix A describes an algorithm to compute the implied unconditional dis-
tributions for the GARCH model, the CKLS model and the KNSW model for the
parameter estimates of the restricted models in Table V. Figure 3 shows the uncon-
ditional distribution of the weekly data together with a histogram of the actual
distribution of the one-month spot rate. The implied distribution of the KNSW
model captures much of the skewness of the actual data. The skewness of the
CKLS model is small and the GARCH model is symmetric. Note that we obtain
this reasonable good fit despite the nonnormality of the errors. It appears that the
rejection of the normality test is mainly due to a few large outliers in the 79–82
period, which have little impact on the unconditional distribution.

3.5. NEWS IMPACT CURVES

An insightful way to graphically illustrate the differences between the various
volatility specifications is the news impact curve introduced in Engle and Ng
(1993). The news impact curve shows the effect of the last shock, et, on the
conditional volatility h2

t . Writing rt explicitly as a function of et and rt�1, the
general volatility specification Equation (7) becomes a function of et given values
of the other state variables (rt�1; ht�1):

h2
t =

~f(et j rt�1 = r; h2
t�1 = h2): (14)
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Figure 4. News impact curves.

Since the mean reversion is negligible over a one period horizon, we approximate
rt � rt�1 + et and thus obtain h2

t as a function of et and the other state variables.
We write the function as:

~f(e j r; h2) = �1(r + e)2 +

�
1 +

e

r

�2

(�2e
2 + �2h

2): (15)

Equation (15) is quadratic for the GARCH specification ( = 0), but can be very
asymmetric for the KNSW specification. For example, in the special case  = 1

2
the news impact curve is a cubic polynomial in e. The shape is also very different
for different levels of the interest rate. A negative shock has two effects on the
volatility. The first, the GARCH type volatility clustering, increases the volatility;
the second effect is the decrease of the level and decreases the volatility. Eventually,
for very large negative shocks, the level effect dominates.

The news impact curve of the KNSW model depends on the interest rate level,
the last period’s innovation and the last period’s conditional variance. The news
impact curve of the GARCH model depends on both last period’s innovation and
last period’s conditional variance. The news impact curve of the CKLS model only
depends on last period’s interest rate level.

We will construct the news impact curves at different levels: the low level
(r = 4%), the moderate level (r = 8%), and the high level (r = 12%).13 Figure 4
contains the news impact curves at three interest rate levels based on the parameter
estimates in Table V. In the first panel a negative shock does not have large impact
on volatility for the KNSW model, while it increases volatility for the GARCH
model. The curve for the low level clearly displays the asymmetry of the KNSW
model. At the intermediate level the GARCH and KNSW models are very close
with respect to upward shocks.

Again, for a negative shock the level effect and the GARCH effect almost cancel
in the KNSW model so that volatility is not affected by downward shocks in the
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interest rate, while the CKLS model remains very asymmetric with a negative
shock lowering volatility. The figures show the flexibility of the KNSW model:
GARCH effects dominate at ‘normal’ levels while the asymmetry implied by the
level effect is very strong at low levels. The KNSW model thus combines the
features of the CKLS and GARCH models, shifting smoothly from one to the other
as the level of interest rate varies. At high levels the three models diverge most
in their volatility estimates. The CKLS model, which has the highest interest rate
elasticity implies the highest conditional variance. The GARCH model which has
no level dependence in the volatility does not show any big increase after a positive
or negative shock. The figure is the same as the previous panels. The KNSW model
is less asymmetric at high levels. Figure 5 combines the news impact curves of the
previous figures. The surface gives the news impact curves of the KNSW model.

4. Bond Option Implications

The economic differences between the various volatility specifications can best
be illustrated by considering the valuation of bond options under each of the
models of the conditional heteroskedasticity. The models will have different option
implications, because they imply different conditional densities for future spot rates.
Figure 3 already highlighted the different unconditional densities of the short-term
interest rate. These densities have similar unconditional first and second moments,
but very different higher order moments. The higher the value of , the more
right-tail skewness is introduced. The stronger the ARCH effects, the higher the
fourth moments of the conditional densities. These distributional properties carry
over to option prices. Options that pay off if interest rates are high, will be more
valuable, ceteris paribus, the fatter the right hand tail. In this section we consider
the differences in short horizon predictive densities.

We consider option implications, because option values will be much more
sensitive to the distributional assumption than prices of long term bonds, which
depend predominantly on conditional first and second moments. We will concen-
trate on options on long term bonds, but with a short expiration period. Over longer
expiration horizons the option value will depend on both the volatility dynamics as
well as the degree of mean reversion of the short-term interest rate. It will then be
impossible to identify the sources of the differences between the various models.

Since the volatility specifications have been developed in discrete time, we will
also develop the option implications in discrete time. Let P (n)

0 be the price of an
n-period discount bond at the time t = 0. A European call option on this bond with
strike price K and expiration date t = m is defined as the risk neutral expected
present value of the payoff at the expiration date:

C0(m;n;K) = E0[Xm[P
(n�m)

m �K]+]; (16)

where Xm = exp(�Pm�1
i=0 ri) is the discount factor, and the operator [Z]+ is

defined as max(Z; 0).
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Figure 5. News Impact Surface. The surface are the news impact curves of the KNSW model.
The parabola is the news impact curve of the GARCH model. The other two curves are the
news impact curves of the CKLS model at the low level (4%) and at the high level (12%).

4.1. THE PRICE OF RISK

The expectation in Equation (16) has to be taken with respect to the risk neutral
probability measure associated with the interest rate process, and not the actual
interest rate process that we have estimated from the time series data. We therefore
need an assumption about the price of risk. We assume that the risk adjustment
takes the form of a change of the conditional mean of the interest rate process to:

Et[rt+1] = �+ �(rt � �) + �ht+1; (17)

where� is a constant parameter, representing the price of risk. If  = 1 the volatility
specification is ht+1 = �t+1rt and Equation (17) can now be written as:

Et[rt+1] = ~�t + ~�t(rt � ~�t): (18)

Equation (17) defines the risk neutral conditional mean parameters: ~�t = �+��t+1,
and ~�t = (1��)=(1� ~�t)�. Since� > 0, the adjustment has the effect of increasing
the mean of the interest rate (~�t > �), and reducing the amount of mean reversion
(~�t > �) thereby increasing the unconditional variance.
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The CKLS model belongs to the class of one factor models, with the spot rate
as the only state variable. The KNSW model is a two factor model with volatility
as a second factor. For comparability across models we assume that the price of
volatility risk is equal to zero, so that we use a single risk price �.

4.2. THE TERM STRUCTURE

The main obstacle in computing the option values is that the payoff at the expiration
date t = m depends on the value of a discount bond with maturity (n�m), which
is itself a function of all state variables, and not available in closed form. The value
of a bond with some maturity k is a function of all state variables. In the KNSW
model there are three state variables: the level of the short-term rate r, the volatility
h, and the latest shock e:

P
(k)
t = p(rt; ht; et): (19)

In simulating the payoff of the option we must be able to compute the bond at
any value that the state variables can attain at time m. Since the function p(�) is
not known analytically it must be computed numerically. Using a naive Monte
Carlo method this would require a simulation for each particular combination of
state variables. This naive simulation procedure is illustrated in Figure 6. To obtain
the distribution of the state variables at time m, (rm; em; hm), conditional on the
starting values, (r0; e0; h0), we have to sampleLm paths of lengthm. To obtain the
payoff at time t = m, we have to sample Ln paths of length (n �m) to compute
the bond price P (n�m)

m at each value (rm; em; hm).
In practice, one could define a three dimensional grid for the state variables,

compute the bond price only at the grid points and use interpolation for points
in between. This is still computationally very costly. We therefore opted for a
different approach based on the same sampling idea as for the computation of the
unconditional density described in Appendix A. Figure 7 shows how this simulation
reduces the number of sample paths. Again we first have to obtain the distribution
of the state variables, (rm; em; hm), at the expiration date of the option.

Let rs, (s = 1; : : :; N ) be a single long realization from the risk neutral interest
rate process. At each period s we store the state variables rs, hs and es, and also
the quantities

I(k)s = exp

 
�

k�1X
i=0

rs+i

!
; (20)

for different values of k. We approximate the bond price function by a polynomial
correction to the expectations hypothesis:

P (k) = � exp

 
�k~�� 1� ~�k

1� ~�
(r � ~�)

!
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Figure 6. Native simulation.m,n,Lm,Ln denote the maturity of the option, the maturity of the
bond, the number of combinations (rm; em; hm) and the number of combinations (rn; en; hn)
respectively. Ln simulations are used to compute P (n�m)

m at each of Lm possible states at
time m.

Figure 7. Efficient simulation. m, n, Lm, N denote the maturity of the option, the maturity of
the bond, the number of combinations (rm; em; hm) and the length of a single long realization.
The bond price is computed as a time invariant function p(r; e; h).

+a0 +
3X

i=1

aixi +
3X

i=1

iX
j=1

aijxixj +
3X

i=1

iX
j=1

jX
`=1

aij`xixjx`; (21)

where xi, (i = 1; : : :; 3), are the state variables (r; e; h), and �, ai, aij and aij`
are parameters. The leading term in Equation (21) is an approximation to the bond
price according to the linearized expectations hypothesis under the risk neutral
conditional mean in Equation (17), which would set the price at time t equal to
exp(�Et[

Pk�1
i=0 rt+i]). The constant parameters ~� and ~� are fixed at the time series

average of ~�t and ~�t from the simulation. The other parameters are estimated by
OLS from the linear regression:
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I(k)s = � exp

 
�k~�� 1� ~�k

1� ~�
(rs � ~�)

!

+a0 +
3X

i=1

aixis +
3X

i=1

iX
j=1

aijxisxjs

+
3X

i=1

iX
j=1

jX
`=1

aij`xisxjsx`s + us: (22)

If the simulated sample size N ! 1 the regression function converges to an
approximation of the true bond price function.14 We now use the regression function
to calculate the bond price for each combination of (rm; em; hm).

In the discrete time process negative interest rates can occur during the simula-
tions. We handle negative interest rates by introducing a reflecting barrier at r = 0.
This means that negative draws of r are rejected (see Black (1995) for a motivation
introducing such a reflecting barrier).

In the application we consider four week options on a ten year discount bond,
i.e. m = 4 weeks, and n = 520 weeks. For the different specifications the risk price
� was calibrated such that the estimated ten year discount bond price implies an
average yield equal to the average ten year yield observed in the data. Using CRSP
data for the period 1970–1995 the ten year discount yield is 8.5%. For example, for
the model with  = 1 this gives  = 0.05. The average autocorrelation parameter
of the risk neutral process then comes out at ~� = � + �~� = 0.990 + 0.05 � 0.052
= 0.993.15 Figure 8 shows the unconditional density of the short rate and the risk
neutral density of the short rate. The mean of the risk neutral density is about
8.5% and the standard deviation is larger than that of its empirical counterpart. We
checked whether the approximation in Equation (21) gives admissible bond prices
0 < P (k)(r; e; h) < 1 for k = m;n; n�m. This appears true at all points realized
in the simulation.

4.3. OPTION SIMULATION

Although all three specifications are univariate time series models, the conditional
distribution of next period’s spot rate for the KNSW model depends on three state
variables: the spot rate, the innovation to the spot rate and the conditional variance.
For a full comparison of the different models, we must compare the implications
at different levels of all the state variables. In order to keep things manageable we
present our results in a two-way table, distinguishing three different levels of the
spot rate (r0 = 4%, 8%, and 12%), and three different shocks.
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Figure 8. Risk neutral unconditional distribution. The risk neutral density assumes that the
price of risk � = 0:05.

The size of the typical shock at these different interest rates is calculated from
the simulated data as:

je0j =
PN

s=1wsjesjPN
s=1ws

; (23)

with ws a weight function based on a simple normal kernel:

ws = exp
�
� 1

2�V 2
r

(rs � r0)
2
�
; (24)

where � is a bandwidth parameter and V 2
r is the unconditional variance of the

simulated interest rate.16 Typical shocks we consider for each initial interest rate r0

are �e0, 0, and e0. At each of these initial conditions we set the initial conditions
of the third state variable h2 at its conditional expectation given the other state
variables:

h2
0 = E[h

2 j r0 = r; e0 = e]: (25)

The conditional expectation is computed from the same simulated as used for the
construction of the yield curve:

ĥ2
0 =

PN
s=1wsh

2
sPN

s=1ws

; (26)
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where ws is obtained from the multivariate kernel:

ws = exp
�
� 1

2�
(xs � x0)

0
�1(xs � x0)

�
; (27)

where xs is redefined as the subvector of state variables (rs; es) and 
 is the
unconditional covariance matrix of xs from the simulation of length N .

The future bond price P (n�m)

m in Equation (16) is replaced by its approximate
functional form p(rm; em; hm) in Equation (21). With this approximation we use
a conventional Monte Carlo simulation to estimate the option value for various
initial conditions (r0; e0; ĥ

2
0) and strike pricesK . The option prices in Table VI are

computed for at-the-money options. The strike price for an at-the-money option is
defined as the initial forward price:

K = P
(n)

0 =P
(m)

0 ; (28)

where the bond prices are consistent with the implied term structure, i.e.:

P
(k)

0 =

PN
s=1wsI

(k)
sPN

s=1ws

; (29)

for k = m, n and where ws is the same as in Equation (27). Each sample path for
the spot rate depends on m drawings for the random variables �s, (s = 1; : : :;m).
Using the sequence �s a sample path for rt+s (s = 0; : : :;m) is constructed based on
the parameter estimates. The option value C0(m;n;K) is estimated by averaging
overLm simulated paths. For the tables below we have setN = 100,000 and Lm =
5000.

4.4. RESULTS

In Table VI we report option values as a percentage of the underlying long-term
discount bond, i.e. C0(m;n;K)=P

(n)

0 . The table consists of seven rows and three
columns. The columns refer to the three different levels of the spot rate; the rows
represent the three different values for last period’s shock to the spot rate. The upper
panel and the middle panel report option values according to the KNSW model,
with different restrictions on the parameters. The option values in the lower panel,
only depend on the level of the spot rate. Appendix B describes how standard errors
are computed.

From the table we draw several conclusions. The standard errors of the option
values of the KNSW model are small, meaning that small differences with other
models will lead to statistically significant differences in option valuation. Parame-
ter uncertainty is not a big issue here.

Both dimensions, level and shock, are important for valuing options in the
KNSW model. The effect of a shock is to increase volatility which will lead to
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Table VI. Percentage option value

4% 8% 12%

KNSW1 �2 = 0,  = 1
Zero shock 0.42 0.47 0.60

(0.01) (0.01) (0.02)
Positive shock 0.59 0.63 0.79

(0.01) (0.02) (0.03)
Negative shock 0.56 0.61 1.03

(0.01) (0.02) (0.04)

KNSW2 �2 = 0,  = 1
2

Zero shock 0.40 0.40 0.42
(0.01) (0.01) (0.01)

Positive shock 0.53 0.49 0.55
(0.01) (0.01) (0.01)

Negative shock 0.52 0.50 0.76
(0.01) (0.01) (0.02)

CKLS �2 = 0, �2 = �3 = 0
0.42 0.55 0.70

(0.01) (0.01) (0.02)

Notes: Results pertain to an at-the-money Euro-
pean call option on a ten year discount bond
with four weeks to expiration. Option prices are
based on the weekly parameter estimates. Stan-
dard errors reflecting parameter uncertainty are
in parentheses. The size of the shocks at the
4%, 8% and 12% interest rate level are (�0.2%,
0%, 0.2%), (�0.3%, 0%, 0.3%) and (�0.6%, 0%
0.6%) respectively.

higher option values. At low and moderate interest rates the effect of a positive
shock on the option value is larger than the effect of a negative shock. At high
interest rates, however, the effect of a negative shock is higher.

For all specifications differences along a column in the table depend on the
value of . At low and moderate values of r the option values when  = 1 are close
to the option values when  = 1

2 . At the high level the implied option value is
positively related to the interest rate elasticity of the model.

5. Conclusions

In this paper we presented and estimated a model for the short-term interest rate
volatility, that encompasses both the level effect in the CKLS model and the con-
ditional heteroskedasticity effect of the GARCH class of models. The flexible
specification of the conditional variance equation allows different effects to domi-
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nate as the level of the interest rate varies. The different models were estimated for
monthly as well as for weekly data. We find that both GARCH effects and level
effect are important determinants of interest volatility.

The parameter that measures the sensitivity of interest rate volatility with respect
to the interest rate level, , is highly significant. The important empirical difference
of the KNSW model and the CKLS type specifications is the smaller estimate of .
For the estimation of the interest rate sensitivity in the variance specification one
cannot ignore the strong GARCH effects in monthly and weekly data. Ignoring
GARCH creates an omitted variables problem for the estimate of the level effect
in the volatility.

The most precise estimates of the volatility specification are obtained at the
weekly frequency. The estimated value of  ranges from 1.40 for the CKLS model
for the monthly frequency to 1.21 for the CKLS model for the weekly frequency.
The parameter estimate of  is not significantly different from unity for the CKLS
and KNSW models.

As the volatility of the short-term interest rate is one of the determinants for
the pricing of interest rate contingent claims, we investigate the implications of
the dynamics of short-term interest rate volatility for the pricing of discount bond
options. Our results suggest that the inclusion of a GARCH effect in addition to
a level effect in the model specification is relevant for the pricing of short-term
discount bond options. This result is related to the lower estimated value of  when
volatility effects are included. We show that at interest rate levels of 12% a change
in the value of  results in a large change of the relative option value.

Notes
1 The research of CKLS has generated a lot of discussion in the finance literature. Recent contribu-
tions to the debate on the interest rate volatility dynamics include Aı̈t-Sahalia (1996a,b), Andersen
and Lund (1996a,b), Brenner, Harjes and Kroner (1995), Conley, Hansen, Luttmer and Scheinkman
(1995), Tauchen (1996) and Torous and Ball (1995).
2 Sensitivity is defined as @ lnh=@ ln r, where r is the interest rate level andh is the standard deviation.
3 Bollerslev, Chou and Kroner (1992) provide a survey of empirical studies in this vein.
4 Bomhoff and Schotman (1988) estimate the same model for monthly data for Germany, Japan and
the United States and find that the level effect improves the specification of the volatility equation.
The GARCH-M effect turns out to be insignificant.
5 The constant term �1 also enters the conditional variance equation under exact aggregation of the
continuous time process of CKLS. See also Section 4 below.
6 Brenner, Harjes and Kroner (1995) propose a different approach. In Equation (6) they use the
unscaled prediction error et instead of the scaled prediction error �t�t. The stationarity conditions of
their specification are hard to establish.
7 The initial condition for h0 is the unconditional variance.
8 For example, in the CIR model ( = 1

2 ) the exactly aggregated conditional volatility takes the form
h2
t = �0 + �4rt�1, with �0 > 0 and �4 6= 1 (see DeMunnik and Schotman (1994)). Pagan, Hall and

Martin (1994) focus on temporal aggregation problems of the CKLS model.
9 The estimate of  is lower than in CKLS. We have not been able to exactly replicate their results due
to some differences between their data and ours. For the overlapping sample period we have some
different data points in 1987.
10 In order to ensure that estimates are comparable across models we set the GARCH-M parameter
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in LS to zero. If this parameter is included it is not significantly different from zero. When �1 is a
free parameter it attains a negative value. Therefore we also impose �1 = 0.
11 These results also hold for the CKLS model. Aı̈t-Sahalia (1996a,b) shows that the value of the 
parameter is a nonlinear function of the interest rate level. The value of  decreases for high interest
rate levels.
12 The tables for the Student-t results are not included in this paper.
13 The conditional variance is specified as h2 =

�
1
T

PT

t=1 e
2
t=r

2
t�1

�
r2 .

14 A consistent estimator of the true, instead of an approximate, implied bond price can be obtained
through a nonparametric kernel method using the output of the simulation. But it would be compu-
tationally expensive to run the kernel estimator for every iteration in the subsequent Monte Carlo
simulation of the option price.
15 The parameter estimates � and �� are based on the results in Table V. The autocorrelation parameter
is calculated as: � = 1� �1 = 1� 0:010 = 0:990 and the average volatility is calculated as

�� =

�
�1

1� �2 � �3

�1=2

=

�
0:14� 10�2

1� 0:23 � 0:76

�1=2

= 0:052:

16 The bandwidth parameter � is chosen as � = 1:06VrN�0:2 (see Silverman (1986)).

Appendix A: Marginal Distribution of Spot Rate

To compute the unconditional density we follow Geweke (1994). Let f(x j y)
denote the conditional density of rt given rt�1. The unconditional density of the
spot rate is the solution, if it exists, to the integral equation:

g(x) =

Z
1

0
f(x j y)g(y) dy: (30)

Since the spot rates are highly correlated, a Monte Carlo simulation is very inef-
ficient for obtaining the unconditional density. The accuracy can be improved by
drawing a sequence of conditional densities and averaging the densities. Define
a grid of points (i = 1; : : :; N ) at which to estimate the density g(y). Now draw
a time series sample of spot rates rt (t = 1; : : :; T ), and for each rt evaluate the
conditional density f(yi j rt) at each of the grid points. The unconditional density
at a point yi is finally estimated as:

g(yi) =
1
T

TX
t=1

f(yi j rt) (i = 1; : : :; N): (31)

Whenever a negative value of rt is drawn, the draw is rejected and the value of
rt is set to zero, this way truncating the distribution to positive interest rates. The
number of Monte Carlo draws was set to 1�106 and the number of negative interest
rate drawings was zero for the weekly data. The starting value for the Monte Carlo
runs was set to the sample mean.
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Appendix B: Computation of Standard Errors

The standard errors of the implied option values reflect the uncertainty about
the parameter estimates but are conditional on an exogenously given initial term
structure. Option standard errors are computed using the asymptotic formula:

V (C(�̂)) =

 
@C(�̂)

@�

!
0

V (�̂)

 
@C(�̂)

@�

!
; (32)

whereV (�̂) denotes the covariance matrix of the parameter estimates, and@C(�̂)=@�
denotes the partial derivatives of the option price with respect to the parameters
of the volatility process evaluated at � = �̂, where �̂ are the parameters of the
restricted volatility specification in Table V.

We calculate derivatives numerically. Using the same sequence �t as for the
estimation of the option value a new sample path rt (t = 1; : : :;m) is constructed
with parameter vector �j = �̂ + `j , where `j is a vector with zeros apart from a
small number �j at position j corresponding with the jth element of �. The new
value for � is used to compute a new option value at the expiration date. Using the
same random numbers the procedure is repeated using �j = �̂+ `j . The numerical
central derivative of the option with respect to �j is then estimated as the average
overN simulations:

@C(�̂)

@�j
=

1
N

NX
k=1

C(�j)k � C(�j)k

2�j
: (33)
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