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Abstract

Managers wish to verify that a particular engineering design meets their require-
ments. This design�s future environment will di¤er from the environment assumed
during the design. Therefore it is crucial to determine which variations in the envi-
ronment may make this design unacceptable. The proposed methodology estimates
which uncertain environmental parameters are important (so managers can become
pro-active) and which parameter combinations (scenarios) make the design unac-
ceptable. The methodology combines simulation, bootstrapping, and metamodeling.
The methodology is illustrated through a simulated manufacturing system, includ-
ing fourteen uncertain parameters of the input distributions for the various arrival
and service times. These parameters are investigated through sixteen scenarios,
selected through a two-level fractional-factorial design. The resulting simulation In-
put/Output (I/O) data are analyzed through a �rst-order polynomial metamodel
and bootstrapping. A second experiment gives some outputs that are indeed un-
acceptable. Polynomials �tted to the I/O data estimate the border line (frontier)
between acceptable and unacceptable environments.

Key words: Uncertainty modeling; Risk analysis; Robustness and sensitivity
analysis; Simulation; Bootstrap



1 Introduction

In the design of complex systems (e.g., manufacturing plants, supply chains,
hospitals, harbours), it is common that a team of designers works on de�ning
the speci�cations of the future system. Once these speci�cations are provided,
managers are often interested in verifying� through a simulation analysis�
that these speci�cations are acceptable with regard to the performance re-
quired for this system (e.g., annual production quantities, minimum waiting
times in the emergency room of a hospital). In practice, this type of study
is common, but the literature neglects the question of the acceptability of a
proposed design. Answering this question raises several theoretical issues.

The simulation literature includes many publications on �nding the most im-
portant design factors (so-called �sensitivity analysis�) and �nding the optimal
design; see Kleijnen (2008). However, determining whether the proposed de-
sign is acceptable is a di¤erent type of question. Now the crucial question
becomes: will the proposed design meet the decision makers�performance re-
quirements? This question raises methodological issues caused by two types of
randomness (also see the general discussion of these types by De Rocquigny
et al. (2008, pp. 199-211)):

(1) Aleatory uncertainty caused by the inherent randomness of the system
(e.g., arrival and processing times in the example summarized in Table 1
below).

(2) Epistemic uncertainty caused by the imperfect knowledge of the design-
ers about the statistical distributions that cause the aleatory uncertainty
(e.g., the parameter values of the exponential and normal distributions
assumed in Table 1 may be unrealistic). In the design stage, many para-
meters are not known so they may turn out to di¤er from their assumed
values, see Pierreval and Durieux (2007). Therefore, it is prudent to con-
sider these parameter uncertainties and determine under which conditions
the given design will still be acceptable.

A related yet di¤erent issue is robustness. The literature on simulation and
especially Mathematical Programming presents methods that account for the
uncertainty in the input data when searching for �optimal�solutions; see Kleij-
nen (2008) and Dellino, et al. (2008). These approaches aim at deriving �robust�
solutions that are less sensitive than classic optimal solutions to uncertainties.
We, however, try to identify the conditions under which the proposed design
still satis�es the managerial requirements when the environment becomes un-
certain. This problem is of major practical relevance, because organizations
must operate in environments that have become volatile so the future has
become very uncertain.
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To solve this problem, we propose a methodology that combines random (sto-
chastic) simulation models, metamodels (namely �rst-order polynomials) that
approximate the underlying simulation models, Design Of Experiments (DOE),
and bootstrapping (a statistical computer technique). A statistical complica-
tion is that we consider simulation responses that are not averages but quan-
tiles (or percentiles, as some people call them).

We organize our article as follows. Section 2 formalizes the problem. Section
3 details our methodology. Section 4 presents a manufacturing example taken
from Feyzioglu et al. (2005), which includes aleatory uncertainty. Section 5
gives a 214�10 design and �ts a �rst-order polynomial regression metamodel to
the data of a pilot experiment; because the classic regression assumptions do
not hold, bootstrapping and cross-validation are applied. Section 6 presents a
second experiment, which gives some simulation responses that are acceptable
and some that are not. Section 7 summarizes our conclusions and topics for
future research. (Hasty readers may skip paragraphs that start with the word
�Note�.)

2 Problem formulation

In most publications, the simulation analysts are interested in studying deci-
sion variables that characterize the possible design solutions. In manufacturing
systems, typical examples include the number of operators, number of pallets,
etc. In our study, the design has already been suggested by the designer team,
so we emphasize those parameters that are used in the simulation model when
evaluating system performance but are actually uncertain. We therefore con-
sider these parameters as variables, and study the e¤ects of their changes.
Let x = (x1; :::; xi; : : : ; xk)0 be the k-dimensional vector of variables that may
change due to epistemic uncertainty. Examples are the breakdown rate of a
machine, and the mean customer demand for a particular product; we shall
present other examples in the manufacturing simulation of Section 4. We as-
sume that each xi may have values within an interval Ii = [Li;Hi] (in robust-
ness analysis, xi is sampled from an interval with possibly Li = �1 or Hi =
1; we, however, assume �nite intervals).

Obviously, these uncertain variables xi can have an important e¤ect on system
performance, and hence on the acceptability of the future system. Following
Feyzioglu et al. (2005), we assume that the production requirements are ex-
pressed as the probability of the future system producing at least a given
number of products bj (to meet forecasted demand). If the system produces
(say) s types of products (or product families), then the acceptability of the
system can be quanti�ed as its capability of producing more than bj prod-
ucts of type j (j = 1; : : : ; s), where bj represents the threshold for product
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j given by management (using the demand forecast). The random number
of manufactured products of type j (say) qj may be expressed as a function
of the uncertain variables x, so qj = fj(x). Because of the system�s aleatory
and epistemic uncertainties, the requirement for each product will be satis�ed
only with a probability that in general is lower than 100%; of course, man-
agers would like that this requirement be satis�ed with a probability that is
su¢ ciently high. Let qj;p denote the pth quantile (e.g., the 5% quantile) of the
jth output (say) qj:

P (qj < qj;p) = pq (j = 1; : : : ; s); (1)

i.e., there is only a pq chance that output j is lower than qj;p. Hence, the
managerial requirement can be expressed as

q1;p � b1; : : : ; qs;p � bs (2)

where b = (b1; : : : ; bs)0is given by management. If all s constraints hold, then
we say that the system gives acceptable output. Consequently, determining the
acceptability of a given design solution consists in determining which combi-
nations of xi lead to an x that meet the threshold values in (2). Assuming
that these combinations form a closed set, we wish to �nd the frontier (say)
G(x) that separates acceptable and unacceptable solutions; (2) implies that
acceptable solutions x satisfy the constraints f(x) � b. We shall see that in
our example, our estimate of this frontier is a hyperplane in the k-dimensional
space formed by xi (i = 1; : : : ; k).

In summary, our problem is to �nd the frontier G(x) between acceptable
and unacceptable design solutions. We select a manufacturing system as an
example, but our methodology also applies to other areas, such as the design
of a new hospital with uncertain expected values for the number of patients,
their examination times, etc. In the next section, we present our methodology
for estimating the frontier G.

3 Methodology

To solve the problem formulated in the previous section, we start with simula-
tion to estimate the performance of the given design for various environments.
Next we compare the simulation outputs with the thresholds bj in (2), to de-
termine whether these outputs satisfy the performance requirements. If some
environments do not satisfy these requirements, then we try to estimate the
frontier between acceptable and unacceptable environments.

To estimate the I/O behavior of this simulation model, we select simulation
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experiments through the statistical methods of DOE: see Kleijnen (2008). To
estimate the acceptability frontier, we use regression metamodels estimated
from these simulation I/O data. Because Feyzioglu et al. (2005) express the
company�s requirements though quantiles instead of expected values of the
outputs, we use bootstrapping to validate the regression metamodels and to
determine Con�dence Intervals (CIs) for the regression parameters. The details
of the methodology now follow.

3.1 Simulation estimate of quantile

To estimate quantiles, we select the number of replicated simulation runs (say)
m, as follows. To simplify our notation, we suppress the product index j in
(1). We sort the m replicated simulation responses from low to high, which
gives the �order statistics�q(1); : : : ; q(m) (so q(1) =minr q(r) and q(m) =maxr q(r)
with r = 1; : : : ;m; see Kleijnen (1987, p. 38). A classic point estimate bqp of
the quantile qp is bqp = q(dpqme) (3)

where de denotes the integer resulting from rounding upwards (e.g., d2:1e =
d2:9e = 3; see Chen (2008). A (1� �) CI follows from Conover (1999):

P (q(L) � qp � q(H)) = 1� � (4)

with the �Low�value L and the �High�value H given by

L = dpqm�z1��=2
q
pq � (1� pq)�mc, H = dpqm+z1��=2

q
pq � (1� pq)�mc

(5)
where z1��=2 denotes the 1 � �=2 quantile of the standard normal variable z
(analogous to qp).

3.2 Metamodel estimated from simulation I/O data

To approximate the I/O behavior of the underlying simulation model, we use
a metamodel (also called response surface, emulator, etc.). We start with a
�rst-order polynomial to predict the quantile as a function of the uncertain
environmental factors xi (i = 1; : : : ; k):

yj = �0;j + �1;jx1 + : : :+ �k;jxk + "j (6)

where yj denotes the metamodel�s predictor of the simulated quantile qj;p,
�0;j denotes its intercept (�grand mean�, �overall mean�), �i;j denotes its �rst-
order (�main�) e¤ect of input (or environmental variable), and "j denotes its
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�residual�. It is important to distinguish between the �original�and the �stan-
dardized�(coded) inputs; the latter are scaled such that they vary between -1
and +1. This standardization implies that the e¤ects �k measure the relative
importance of the inputs; see Kleijnen (2008, p. 31). Because we focus on the
relative importance of the various inputs, we standardize the inputs.

To estimate the e¤ects �j = (�0;j; �1;j; : : : ; �k;j)0 in (6), we simulate a number
of scenarios� combinations of values for the environmental variables. To select
these scenarios, we use a Resolution-III (R-3) n � k design matrix (say) D,
which (by de�nition) enables the computation of the estimated regression
parameters c�j = (d�0;j;d�1;j; : : : ;d�k;j)0; see Kleijnen (2008). R-3 designs are often
used as screening designs in the literature; i.e., these designs estimate which
factors are really important (if there were hundreds of factors, then other
design types would be needed; see Kleijnen 2008). After this screening or pilot
stage, we shall examine the e¤ect of these important environmental factors on
the acceptability of the given combination of decision factors.

To further reduce the variances of the estimated e¤ects, we use Common Ran-
dom Numbers (CRN) when simulating the same replicate r for each scenario;
we use a di¤erent sequence of Pseudo-Random Numbers (PRNs) for a di¤erent
replicate r0 (r; r0 = 1; : : : ;m; r 6= r0; see Section 3.1).

We estimate the regression parameters �j from the simulation I/O data (X; bq)
where X = (1;D)denotes the n� (1 + k) matrix of regression variables based
on the R-3 design and cqj the ns estimated quantiles de�ned in (3). The Least
Squares (LS) estimate is

c�j = (X0X)�1X0cqj (j = 1; : : : ; s). (7)

To test these e¤ects, we need their CIs. Actually, LS assumes white noise;
i.e., the residual "j in (6) is Normally Independently Identically Distributed
(NIID) (moreover, "j and "j0 are also correlated, but LS is not a¤ected by this
characteristic; see Rao 1959). Unfortunately, these assumptions do not hold
in practice:

(1) The estimated quantiles cqj are only asymptotically normally distributed;
see Chen (2008).

(2) To reduce the variance of the estimated factor e¤ects c�j, we use CRN
and assume that CRN creates positive correlations among the simulation
outputs of di¤erent scenarios; i.e., the outputs are not independent.

(3) The estimated quantiles have variances (say) �2i that vary with the sce-
narios (so �2i 6= �2; i = 1; : : : ; n).

If the white-noise assumption does not hold, the OLS estimator is still unbiased
but their CIs should not use the classic t statistic. We solve this problem
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through bootstrapping.

Note: A complication (not discussed in Kleijnen 2008) is that we estimate a
quantile� not a mean. We have m IID observations q1; : : : ; qm, which give the
point estimate bq = q(dpqme) (see equation 3) for the pq quantile; for the mean
the point estimate would be q =

P
i qi=m. The latter estimator has estimated

variance s2(q) =
P
i(qi � q)2=f(m� 1)mg. We can de�ne an average quantile

estimator, partitioning the m observations qi into groups of equal size; e.g.,
partition the m observations on q into four groups of size m=4. From these
groups we can compute the average bq = P

l bql=4 where bql is based on the m=4
observations in group l, and s2(bq) = P

l(bql � bq)2=f(4 � 1)4g. However, the
variance of bql does not equal the variance of bq.
To estimate the variances of c�j (LS estimates of factor e¤ects; see equation 7),
we apply bootstrapping. General bootstrap principles are presented by Kleijnen
(2008), including references. First we explain bootstrapping for obtaining a
CI for the estimated quantile (next, we shall explain bootstrapping for the
resulting estimated factor e¤ects). Because we use CRN, we resample the m
n-dimensional vectors� each vector has n correlated simulation outputs qr;i
(r = 1; : : : ;m; i = 1; : : : ; n); i.e., we have m IID multivariate observations qr.
We formalize our bootstrap through the following pseudo-code:

(1) Initialize the replicate number: r = 1.
(2) Resample� with replacement� a replicate number r� from the uniform

distribution de�ned on the integers 1; : : : ;m; i.e., the uniform density
function is p(r�) = 1=m with r� = 1; : : : ;m.

(3) Replace the rth �original�vector qr by q�r = qr�.
(4) If r � m then r = r + 1 and return to Step 2; else proceed to the next

step.
(5) Sort the bootstrapped q�r per scenario i (i = 1; : : : ; n), which gives q

�
(r).

(6) Compute the bootstrapped pq quantile cq�i = q�(dpqme) per scenario; see (3).
(7) Repeat Steps 1 through 6 (say) B = 1000 times (we select a high B value,

because cq�i may �very well�be the same value in some bootstrap samples).
To obtain CIs for the estimated factor e¤ects, we proceed as follows. We use cq�b
(n-dimensional vector with the bootstrapped quantiles cq�i in bootstrap sample
b with b = 1; : : : ; B), to calculate the bootstrapped factor e¤ects:

c�b� = (X0X)�1X0cq�b (b = 1; : : : ; B): (8)

To estimate a (say) 95% CI per factor e¤ect i, we sort the B values of b��i;b and
�nd the order statistics b��(d0:025Be);i and b��(d0:975Be);i, which are the lower and
upper bound for the CI.
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3.3 Validation of metamodel and testing of factors e¤ects

Before we use the CIs derived in Section 3.2 to test the individual estimated
factor e¤ects, we validate the estimated metamodel as a whole. This meta-
model is based on (6):

cyj = d�0;j + d�1;jx1 + : : :+ d�k;jxk: (9)

There are several ways to check whether this �tted metamodel is an adequate
approximation of the true I/O function implied by the underlying simulation
model; see Kleijnen (2008, pp. 54-63, 97-99). We apply measures that are also
used by Feyzioglu et al. (2005, p. 257, 260). We do not apply the classic F
lack-of-�t test because that test assumes white noise, which does not hold in
our simulation experiment.

First, we compute the Absolute Relative Error (ARE):

AREj;i =
jdyj;i � qj;ij

qj;i
(j = 1; : : : ; s; i = 1; : : : ; n): (10)

Per product type j, we may compute the ARE averaged over the n scenarios,
the maximum ARE, and the number of scenarios with AREs exceeding a given
threshold (say) 0:10.

Next, we perform leave-one-out cross-validation: For each product j we delete
I/O combination i from the complete set of n combinations, which gives the
I/O data set (X�i; dqj;�i). We recompute the original OLS estimator de�ned
in (7): d�j;�i = (X0

�iX�i)
�1X0

�i dqj;�i. (11)

We use this recomputed estimator d�j;�i to compute the regression predictor
for the scenario of the deleted combination: dyj;�i = x0i

d�j;�i. We repeat this
procedure, until we have processed all n scenarios. Analogous to (10, we may
then compute

AREj;�i =
jdyj;�i � qj;ij

qj;i
: (12)

We may also determine scatterplots with the pairs (dyj;�i; qj;i). Scatterplots,
however, may have misleading scales, so we also compute the normalized pre-
diction errors:

zj;i =
qj;i � byj;�iq

\var(qj;i) + \var(byj;�i) (13)

where \var(qj;i) is estimated through the bootstrapped estimator \var(dq�j;i), and
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\var(byj;�i) = x0i \cov( b�j;�i)xi where (11) implies
\cov( b�j;�i) = (X0

�iX�i)
�1X0

�i
\cov( dq�j;�i)X�i(X

0
�iX�i)

�1 (14)

where the matrix \cov( dq�j;�i) results from eliminating row i and column i from
the n� n matrix \cov(cq�j), which has the elements

\cov(dq�j;i;dq�j;i0) =
PB
b=1(

dq�j;i;b �dq�j;i)([q�j;i0;b � dq�j;i0)
B � 1 : (15)

Note: The correlation coe¢ cients �j;i;i0 =
\cov(dq�j;i;dq�j;i0)=q \var(dqj;i) \var(dqj;i0) quan-

tify the e¤ects of CRN. Furthermore, Kleijnen (2008, p. 61) uses tm�1 instead
of z, but we study a quantile instead of an average. Finally, we cannot use the
shortcut in Kleijnen (2008, p.61)� which uses H = X(X0X)�1X0� because it
assumes white noise.

Because (13) gives n values for each product, we reject the regression meta-
model for product j if

max
i
jzj;ij > z1�[�=(2n)] (16)

where the right-hand side follows from Bonferroni�s inequality, which implies
that the classic type-I error rate (in this case �=2) is replaced by the same
value divided by the number of tests (namely, n).

After we have validated the s �rst-order polynomials, we test the individ-
ual factor e¤ects. As point estimators we use the OLS estimates using all n
scenarios. To obtain CIs for these e¤ects, we should not use the classic for-
mulas that assume white noise, namely cov(c�j) = (X0X)�1var(qj). Instead we
use the bootstrapped quantiles dq�j;i that we have already generated to obtain
\cov(dq�j;i;dq�j;i0); see again (15). These bootstrapped quantiles cq�j give the boot-

strapped factor e¤ects using (8). We reject the null-hypothesis of an unimpor-
tant e¤ect for a given input and product if its CI interval [ b��(d0:025Be), b��(0:975B)]
does not contain the value 0; this gives the (say) h signi�cant factors among
the k potential e¤ects per product.

3.4 Estimate acceptable factors combinations

Once the �tted metamodels are validated, substituting these metamodels into
(2) gives d�0;j + d�1;jx1 + : : :+ d�h;jxh � bj (j = 1; :::; s): (17)
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Replacing the � sign by the = sign in (17) gives the estimated frontier per
product j. It is easy to give a geometric representation of the acceptability
frontier if we focus on the two most important factors (highest

���d�h;j���).

4 Example: a manufacturing system

4.1 The Feyzioglu et al. (2005) example

Feyzioglu et al. (2005) consider a company that wished to build a manufac-
turing system so they asked some engineers to make a design for their factory.
Now that the factory is designed, the company realizes that the future may
di¤er from the future that was assumed during the design. Therefore the com-
pany now asks whether the design will turn out to be �acceptable�. Feyzioglu
et al. (2005) focus on the 0.05 quantiles qj;0:05 (called the �0.05-percentiles�by
Feyzioglu et al. 2005, p. 260), and assume that the production requirements
are

q1;0:05 � 15000 and q2;0:05 � 17000 (18)

where 15000 and 17000 are the threshold values given by the company.

In this example, the factory consists of four workstations. Each workstation
has identical machines. In our article, we assume that the number of ma-
chines per workstation is given by the �optimal�solution derived by Feyzioglu
et al. (2005). (Because we re-programmed the simulation model, our model
and Feyzioglu et al.�s model may di¤er; anyhow, we use their solution as the
solution that management wishes us to evaluate.)

The factory produces two types of product, called prod1 and prod2. These
product types have di¤erent routings. If we denote WorkStation i by WSi
with i = 1; : : : ; 4, then prod1 has routing WS1, WS3, WS4 and prod 2 has
WS2, WS3, WS4. There may be a queue� denoted by Q� after WS1, WS2,
and WS3; also see Figure 2 in Feyzioglu et al. (2005, p. 259). Denoting the
exponential distribution with mean � by E(�) and the normal distribution
with mean � and standard deviation � by N(�; �) gives the base scenario in
Table 1, reproduced from Feyzioglu et al. (2005, p. 259).

The outputs of the simulated factory are the two production volumes produced
during a thirty-day period, after a warm-up period of 10 days. These responses
(say) q1 and q2 must satisfy given �threshold�values. These values are minimum
values for the 5% quantiles of the distributions of q1 and q2 respectively; these
thresholds are 15000 and 17000; see (18).
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Product Interarrival time a Processing time p

WS1 WS2 WS3 WS4

prod1 E(2) N(5; 0:1) - N(3; 0:05) N(2; 0:2)

prod2 E(1:4) - N(5:5; 0:1) N(3; 0:05) N(2:5; 0:1)

Table 1
Base scenario: interarrival and processing time distributions (parameters in minutes)

4.2 Example revisited

In practice, the distributions in Table 1 are uncertain; e.g., the interarrival
times of product 1 may indeed be exponentially distributed but with a para-
meter not equal to 2. In this article, we therefore focus on these epistemically
uncertain factors; i.e., if the distributions in Table 1 change, will the �optimal�
design still satisfy the requirements in (18)? We allow all fourteen parameters
(�1, �2, �1;1, ...., �2;4.) to di¤er from the base-scenario values in Table 1.

Like Feyzioglu et al., we estimate the production volumes qj through discrete-
event simulation. We program the simulation model in Arena (whereas they
use Promodel 4.2); see Kelton et al. (2007). Feyzioglu et al. use 25 replicates to
obtain the estimates (say) bqj of the two quantiles qj;0:05 de�ned in (1), where
we simplify the notation, suppressing the subscript 0:05 in bqj. We, however,
derive the number of replicates using (3) through (5); e.g., m = 100 gives L
= 1 and H=10, m = 25 gives L = 0 and H = 4 (so the lower bound of the
CI is not de�ned), and m = 80 makes L becomes1. We decide to select m
= 100, because this choice gives a reasonably accurate estimate for the �base
scenario�de�ned by Table 1 (other scenarios de�ned below may require other
m values, but we ignore this complication).

5 Pilot experiment

5.1 Design and metamodel

We select a 214�10 design, which implies 16 scenarios that enable estimation of
the fourteen e¤ects � in (6). (This design for fourteen noise factors happens to
have the same size as the 24 design for the four decision factors in Feyzioglu et
al., p. 260.) We use the following �generators�, where (e.g.) 5 = 1:2 denotes xi;5
= xi;1xi;2 (i = 1; : : : ; n = 214�10): 5 = 1:2, 6 = 1:3, 7 = 1:4, 8 = 2:3, 9 = 2:4,
10 = 3:4, 11 = 1:2:3, 12 = 1:2:4, 13 = 1:3:4, and 14 = 2:3:4. (We could use
a di¤erent design; e.g., we could replace 14 = 2:3:4 by 14 = 1:2:3:4; i.e., there
are alternative 214�10 designs that all require 16 runs.) These generators imply
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that the 16 � 14 design matrix D has a �rst row d01 with only plus ones (so
d1;j = 1) and a last row d016 = (�1;�1;�1;�1; 1; 1; 1; 1; 1; 1;�1;�1;�1;�1)�.
In the �rst-order polynomial metamodel, the matrix of explanatory regression
variables X adds a column with 16 ones to D so X = (1;D):

In our pilot experiment we choose as lower and upper factor values 90% and
110% of the values in Table 1; e.g., x16;1 = -1 means that the original variable
�1 has the value 0:90� 2 = 1.8.

Note: A smaller change (say, 5%) has a higher probability of resulting in sce-
narios with acceptable simulation responses, because they di¤er less from the
Pareto optimal solution derived by Feyzioglu et al.; actually, we are interested
in �nding the border line between acceptable and unacceptable scenarios so
we like to see both types in our simulation. A statistical argument in favor
of the 10% instead of the 5% change is that the larger change decreases the
variances of the estimated factor e¤ects; see Kleijnen (2008, p. 28). Moreover,
a larger change decreases the probability of extrapolation when estimating the
acceptability frontier; extrapolation increases the prediction error; see Kleij-
nen (2008, p.110). The mathematical Taylor series argument, however, favors
small changes in the factors, because it increases the probability of a valid
�rst-order polynomial approximation. In the design that follows after the pi-
lot design we shall return to this issue.

Simulation of these 16 scenarios� each replicated m = 100 times� gives bqj,
the estimated 5% quantiles for the two products de�ned in (3), and the 95%
CI de�ned in (4) where L = 1 and H =10 so this CI is (q(10)� q(1)); see Table
2. We analyze this table as follows.

First we compare bq1 and bq2 (simulation estimates of two quantiles) with their
thresholds 15000 and 17000; see (18). Only scenario 2 gives an unacceptable
result (14724 < 15000). Next we examine the CIs. Only scenario 2 gives a
signi�cantly low output. Even if we are risk-averse pessimists, we conclude
that the other 15 scenarios do not give signi�cantly low outputs: bq1 > 15000
in 15 scenarios and bq2 >17000 in all 16 scenarios.
Note: The CIs (q(10) � q(1)) are very short. The cause is the low variability in
the simulation responses (because of the long simulation runs); e.g., the base
scenario gives simulation outputs for product 1 that vary only between 17,272
and 17,286. Nevertheless, we need as many as 100 responses to estimate a
small quantile like a 5% quantile.

To examine whether the variability of the simulation output varies with the
scenarios, we compute the ratio (say) rj of the maximum and minimum CI
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Scenario bq1 con�dence interval bq2 con�dence interval

1 15705 (15704; 15706) 21415 (21413; 21417)

2 14724 (14723; 14725) 24541 (24538; 24541)

3 19194 (19181; 19196) 21416 (21415; 21417)

4 18558 (18553; 18559) 25308 (25306; 25308)

5 15706 (15703; 15707) 21417 (21414; 21417)

6 15705 (15702; 15706) 26176 (26173; 26178)

7 19196 (19189; 19197) 21417 (21415; 21419)

8 19195 (19189; 19196) 26175 (26172; 26177)

9 15704 (15701; 15705) 21416 (21415; 21418)

10 15705 (15703; 15705) 26178 (26175; 26178)

11 19193 (19191; 19195) 21418 (21417; 21418)

12 17995 (17993; 17996) 24540 (24536; 24541)

13 15706 (15705; 15707) 21416 (21414; 21417)

14 15705 (15704; 15706) 26176 (26174; 26178)

15 18558 (18557; 18559) 20705 (20704; 20706)

16 16611 (16610; 16612) 20705 (20704; 20706)

Table 2
Estimated quantiles and their CIs from 16 scenarios

lengths for product j:

rj =
maxi[q(10);i;j � q(1);i;j]
mini[q(10);i;j � q(1);i;j]

(j = 1; 2): (19)

If q were a sample average (not an order statistic), then r2 would be the ratio
of two sample variances and we could apply the test mentioned in Kleijnen
(2008, p. 88). We do not know a statistical test for (19) (we could derive a
bootstrap test). Anyhow, the observed rj values 7:5 and 5 suggest that the
assumption of constant variances in classic regression analysis may not hold;
we shall return to this issue.

It is easy to check that the 214�10 design gives an orthogonalX, so (7) simpli�es
to

d�h;j =
16P
i=1
xi;hdqi;j
16

(h = 0; 1; : : : ; 14) (j = 1; 2): (20)

This gives the LS estimates displayed in Table 3. We interpret this table,
assuming that the �rst-order polynomial is an adequate approximation (valid

13



LS estimate product 1 product 2d�0;j 17072:50 23151:19d�1;j 175:38 331:94d�2;j �24:75 127:81d�3;j �1490:00 440:69d�4;j 297:75 �1823:69d�5;j �227:38 �440:94d�6;j �297:88 �536:56d�7;j �95:38 �243:19d�8;j �147:75 �332:19d�9;j 54:00 �39:06d�10;j �175:00 �352:20d�11;j 104:88 236:06d�12;j 147:88 351:44d�13;j 218:13 447:81d�14;j 68:25 242:94

Table 3
LS estimates of e¤ects in �rst-order polynomial, for products 1 and 2

metamodel) and the estimated factor e¤ects are signi�cant (we shall return to
these assumptions). We focus on product 1, to save space.

(1) The estimated e¤ect of factor 1 (�1) has a plus sign, whereas we expect a
minus sign because higher mean interarrival time implies fewer products
arriving into the system so the output decreases. However, workstations
1 and 3 may reach saturation points, i.e. the number of products arriving
exceeds the workstations�capacities.

(2) Factor 3 (�1;1) is the most important factor (d�3;1 = �1490). Its minus sign
implies that a higher mean processing time at work station 1 decreases
the output of product 1.

(3) Factor 9 (�1;1)�s plus sign means that a higher standard deviation in-
creases the output number, which is hard to explain.

(4) Factors 5 (�1;3), 7 (�1;4), 11 (�1;3) and 13(�1;4) have the same signs as
factors 3 and 9, because their in�uences are similar.

(5) Factor 4 (�2;2) and factor 10 (�2;2) do not direct in�uence the output of
product 1, but a higher processing time at workstation 2 for product 2
obviously gives fewer arrivals of product 2 before workstation 3. Because
workstation 3 serves FIFO, fewer products 2 in its queue implies smaller

14



waiting time for product 1.
(6) Factors 6 (�2;3) and 8 (�2;4) have the same in�uence on product 1; their

minus signs are explained by the fact that products 1 and 2 share work-
stations 3 and 4. If the processing times for product 2 increase at work-
stations 3 or 4, then the output of product 1 reduces.

Some factors may have non-signi�cant e¤ects; e.g. d�2;1= �24:75 ; its sign may
actually be positive.

After bootstrapping as described in Subsection 3.2, we get \var(dq�i;j) displayed
in Table 4. We see that these variances are small� which agrees with our
comment on the lengths of the distribution-free CI in Table 2. We shall use
these variances below.

Note: This table further show thatmaxi(
\var(dq�i;1))=mini( \var(dq�i;1)= 7:739=1:233

= 6:3, whereas the ratio of the ranges of the distribution-free CIs was 7.5;

see (19). Product 2 gives maxi(
\var(dq�i;2))=mini( \var(dq�i;2) = 5:312=1:659 = 3:2,

whereas the distribution-free CIs gives 5.

5.2 Validation of the �tted polynomial metamodel

We apply measures that are also used by Feyzioglu et al. (2005, p.257, 260).
First, we compute the classic coe¢ cient of determination R2 and the adjusted
coe¢ cient R2adjusted. We �nd that these two measures are 0:9998 and 0:997 for
product 1, and 0:9956 and 0:934 for product 2. We �nd these values excel-
lent (statistical tests of these values are rather complicated; see Kleijnen and
De�andre 2006).

Next we compute the AREj;i de�ned in (10) For product 1 our experiment
gives an average ARE of 0.0015 and a maximum of 0.0017, so no ARE exceeds
the threshold of 0.10. For product 2 these values are 0.006 and 0.007, so again
no ARE exceeds the threshold. Besides these AREj;i for the 16 �extreme�sce-
narios i = 1; : : : ; 16, we compute the ARE for the base scenario (say) AREj;0,
which gives 0.0117 and 0.0173. Altogether we �nd the AREs excellent.

We also make a classic scatterplot with the 16 quantiles estimated from the
simulated outputs versus the quantiles predicted through the �tted �rst-order
polynomial (9) for product 1; see Figure 1. For product 2 we obtain a similar
scatterplot; see the online appendix.

Finally, we compute the normalized prediction errors zi;j de�ned in (13). We
�nd that the corresponding test statistic maxi;j jzi;jj de�ned in (16) is ex-
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Scenario \
var(cq�i;1) \

var(cq�i;2)
1 3:626 2:945

2 1:834 3:019

3 3:393 2:510

4 1:986 5:312

5 1:516 2:218

6 2:185 4:046

7 1:947 1:659

8 2:466 4:159

9 4:306 3:863

10 2:959 4:602

11 7:739 2:307

12 4:701 2:972

13 2:606 3:340

14 2:960 3:885

15 1:233 2:927

16 2:255 2:927

Table 4
Bootstrapped variances of estimated outputs for sixteen scenarios

tremely signi�cant, namely -192 in scenario 16 for product 1 and -1347 in sce-
nario 7 for product 2. Our explanation is that the simulation outputs show very
little variability, as we have already pointed out. This result illustrates that
statistically signi�cant results are not always important; see Kleijnen (2008,
p.31) for a general discussion. In our case the normalized prediction errors are
very signi�cant, but the AREs are acceptable for our purpose, namely vali-
dating �rst-order polynomials and identifying the important factors in these
polynomials. (Nevertheless, the test in (16) may be useful in other simulation
models with more variability.)

Note; The online appendix also gives d�j;�i where d�j;�i denotes the vector with
the 15 estimated e¤ects (including the intercept) for i = 0; 1; : : : ; 16 where
i = 0 means that no combination is deleted; j corresponds with product 1 and
product 2 respectively. Furthermore, this appendix gives the n predictionsdqj;�i (i = 1; :::; n) based on d�j;�i, and the corresponding ARE based on (10).
Finally, this appendix gives scatterplots.

Once, the metamodel-as-a-whole is validated, we �nd the signi�cant factors
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Fig. 1. Quantiles simulated versus quantiles predicted through �rst-order polynomial
for product 1

through the CI based on the bootstrapped e¤ects (8). This gives Table 5,
which implies that all e¤ects are signi�cantly di¤erent from zero (which can
be explained by the low variability of the simulated quantiles).

Note: If we were interested in the mean of the simulation response instead
of its quantile, then we would not need to bootstrap; i.e., Kleijnen (2008, p.
95) explains how to derive a CI from the m replicates assuming m � 2. Each
replicate gives an unbiased estimator of the mean, whereas we need many
replicates to get a single estimate of the quantile.

We conclude that �rst-order polynomials give adequate approximations, and
that all fourteen factors are signi�cant. These preliminary conclusions guide
our next experiment.

6 Follow-up experiment

In our pilot experiment, we changed all factors by -10% or +10% of their
base values and found that nearly all scenarios gave acceptable responses;
see again Table 2. In our next experiment, we select the lower and upper
values per factor such that we may expect that only (approximately) half of
the simulation responses will be acceptable; i.e., because we wish to estimate
the acceptability frontier, we do not wish (nearly) all our responses to be
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LS estimate b��(2:5);1 b��(97:5);1 b��(2:5);2 b��(97:5);2
0 17076:97 17083:50 23156:56 23162:81

1 174:13 175:31 331:94 332:31

2 25:06 26:13 127:31 127:81

3 �1491:06 �1490:56 440:63 441:31

4 297:81 298:25 �1824:44 �1823:66

5 �228:13 �227:50 �441:06 �440:63

6 �298:16 �297:81 �537:06 �536:50

7 �95:72 �95:31 �243:63 �243:13

8 �148:25 �147:81 �332:38 �331:94

9 54:56 55:63 �38:75 �38:50

10 �175:44 �175:00 �351:81 �351:50

11 104:69 105:63 235:94 236:44

12 147:75 148:06 351:75 352:13

13 218:13 218:38 447:63 448:19

14 68:00 68:31 243:13 243:44

Table 5
CIs for intercept and 14 factor e¤ects, computed from 100 bootstrapped quantiles,
for products 1 and 2

acceptable. The DOE literature does not pay much attention to the selection of
an appropriate area of experimentation or area of interest; Zeigler, Praehofer,
and Kim (2000) call this area the experimental frame.

In the new experiment, the standardized factor x = �1means that the original
factor changes by +10% and x = +1 means that the original factor changes
by +30%; e.g., a 10% increase of the mean interarrival time implies fewer ar-
rivals, so the production volume decreases. We use the same 214�10 design in
the standardized factors (see Section 5.1), and the same number of replicates,
namely 100. This results in Table 6, which shows that nine of the sixteen sce-
narios give unacceptably low responses for product 1 (see bq1 and the threshold
15000 in equation 18); no scenario gives unacceptable responses for product
2 (see bq2 and the threshold 17000). The predictions cy1 and cy2 based on �rst-
order polynomials give AREs de�ned in (10), which result in maxima of 0.002
for both product 1 and product 2; R2adjusted is 0.99 for both products. So we
conclude that the two metamodels are adequate.

Given the adequacy of the �tted metamodel, we next display the OLS esti-
mates of the factor e¤ects in the second experiment; see Table 7.
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Scenario bq1 by1 bq2 by2
1 13289 13314:31 18123 18152:88

2 12721 12695:69 20502 20472:13

3 15705 15679:69 18123 18093:13

4 15425 15450:31 21034 21063:88

5 13289 13263:69 18123 18093:13

6 13289 13314:31 21418 21447:88

7 15705 15730:31 18123 18152:88

8 15704 15678:69 21418 21388:13

9 13289 13263:69 18123 18093:13

10 13290 13315:31 21417 21446:88

11 15705 15730:31 18123 18152:88

12 15033 15007:69 20502 20472:13

13 13290 13315:31 18123 18152:88

14 13288 13262:69 21417 21387:13

15 15425 15399:69 17798 17768:13

16 14056 14081:31 19167 19196:88

Table 6
Follow-up experiment: quantiles simulated and predicted through metamodel

Next we replace the quantiles q1;0:05 and q2;0:05 in the managerial production
requirement (18) by their metamodel estimates cyj based on the �rst-order
polynomial (6) with the estimated factor e¤ects of Table 7. This substitution
enables us to estimate whether the thresholds are satis�ed for future scenarios;
i.e., two hyperplanes in the 14-dimensional input space form the frontier of
the region of acceptable scenarios:

d�0;1 + d�1;1x1 + : : :+[�14;1:x14 = 15000 (21)d�0;2 + d�1;2x1 + : : :+[�14;2:x14 = 17000:
We illustrate this 14-dimensional frontier as follows.

First we assume that all 14 factors are at their base values; i.e., x0 = (x1; : : : ; x14)
= 00 = (0; : : : ; 0). Then (21) implies

E(cy1 j x = 0) = d�0;1 and E(cy2 j x = 0) = d�0;2: (22)

Initially we assume that a single factor (say) xh deviates from its base value
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LS estimate product 1 product 2d�0;j 14281:44 19470:88d�1;j 109:44 137:13d�2;j 25:69 22:50d�3;j �1063:31 184:88d�4;j 180:69 �1388:50d�5;j �131:56 �185:00d�6;j �180:56 �251:38d�7;j �74:56 �96:50d�8;j �96:56 �137:00d�9;j 9:19 18:13d�10;j �109:56 �144:25d�11;j 60:44 70:50d�12;j 96:69 144:38d�13;j 145:44 210:75d�14;j 61:44 96:38

Table 7
LS estimates of �rst-order polynomial for products 1 and 2 in follow-up experiment

while all other factors remain at their base values: x�h= 0. Then (21) implies

E(cy1 j xh;x�h= 0) = d�0;1 + d�h;1xh and E(cy2 j xh;x�h= 0) = d�0;2 + d�h;2xh:
(23)

Then (22) and (23) give Figure 2, assuming that d�h;1 > d�h;2 > 0; the in-
tersection of the two (�rst-order polynomial) response curves with the two
corresponding thresholds gives the acceptable (�green�) variations and the un-
acceptable (�red�) variations in (coded) factor xh; actually, the threshold for
product 1 gives the truly acceptable variations, because product 2 gives more
acceptable variations than product 1 but both thresholds must be satis�ed.
The acceptability of a change in xh is also determined by the change in the
other factors xh0� even though the �rst-order polynomials imply that there
are no factor interactions.

Next we assume that two factors (say) xh and xh0 deviate from their base values
while all other factors remain at their base values; we denote this scenario by
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Fig. 2. Acceptable and unacceptable factor variations

Fig. 3. Acceptability frontier for product 1, when factors 1 and 2 change

xh; xh0 ;x�(h;h0)= 0. Then (21) implies

E(cy1 j xh; xh0 ;x�(h;h0)= 0) = d�0;1 + d�h;1xh + d�h0;1xh0 (24)

E(cy2 j xh; xh0 ;x�(h;h0)= 0) = d�0;2 + d�h;2xh + d�h0;2x0h:
21



To illustrate (24), we plot the e¤ects of the two most important factors for
product 1� namely x1 corresponding with the original factor �1;1 and x2 or
�2;2 (see Table 7)� and the threshold 15000:

14281:44� 1063:31x1 + 180:6875x2 = 15000:

This equation gives Figure 3, which shows that low values for �1;1 give ac-
ceptable production volumes. For product 2, all combinations of its two most
important factors� namely �2;2 and �2;3� give acceptable production volumes;
we do not display this �gure.

In practice, all factors may deviate from their base values, so the two preceding
�gures are simpli�cations (meant to illustrate the issue); we recommend the
analytical representation (21) instead of the geometric representation.

Note: Our estimate of the frontier is very accurate, because the 100 IID simu-
lation observations on the production volumes q1 and q2 show little variation
so the bootstrapped quantiles dq�i;1 and dq�i;2 show little variation (see Table 4),
which implies little variation in the bootstrapped factor e¤ects c�j�(see Table
5). We do not present the plot with the bootstrapped planes because these
planes seem to coincide� unless we zoom-in on the plot.

In conclusion, the simulated system is sensitive to the changes in the environ-
mental factors. A 30% change of the interarrival rate for product 1 makes the
system�s performance unacceptable. The acceptability depends primarily on
product 1, because the output volume for product 2 exceeds its threshold, for
every simulated scenario. For product 1, the most important factors are the
mean processing time of product 1 at workstation 1 and the mean process-
ing time of product 2 at workstation 2; these two factors should be closely
monitored.

7 Conclusions and future research

In the engineering design of various types of system, it is common that the fu-
ture system speci�cation is the result of a preliminary study. It is also common
that a simulation study is required, to verify that the proposed speci�cations
are indeed acceptable; i.e., the suggested system design satis�es the perfor-
mance requirements. Unfortunately, most classical simulation studies carried
out in such a context do not properly take account for the uncertainty of the
data used in the simulation model during the design phase. Consequently, the
conclusions about the ability of the system to satisfy the requirements may
be wrong whenever the environmental conditions di¤er from those initially
expected.
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To avoid such dangerous situations, we consider two types of �uncertainty�that
are typically encountered in practice� namely aleatory and epistemic� and we
formulate the problem of the acceptability of a given design accordingly. We
show how this problem can be solved through a methodology that combines
simulation, bootstrapping, and DOE.

Our example highlights that� though a design solution may be considered ac-
ceptable for the environment initially assumed by the decision makers and the
analysts� speci�c changes in the uncertain input data may make this solution
unacceptable. Knowledge of the conditions� in other words, the frontier� that
make the solution unacceptable, provides precious information for the deci-
sions makers. We therefore expect that our methodology will be bene�cial in
various real-world applications.

We based our DOE on �rst-order polynomial regression analysis, but other
metamodeling approaches (e.g., Kriging) may also help to determine the ac-
ceptability regions; see Kleijnen (2008). To improve the identi�cation of the
frontier between acceptable and unacceptable zones, other relevant research
approaches may be signal processing and reliability analysis.
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