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Abstract. Let I-I be a k-net of order n with line-point incidence matrix N and let A be the adjacency matrix of 
its collinearity graph. In this paper we study the p-ranks (that is, the rank over ]Fp) of the matrix A + kl with p 
a prime dividing n. Since A + kI = NTN these p-ranks are closely related to the p-ranks of N. Using results 
of Moorhouse on the p-ranks of N, we can determine rp (A + kl) if FI is a 3-net (latin square) or a desarguesian 
net of prime order. On the other hand we show how results for the p-ranks of A + kl can be used to get results 
for the p-ranks of N, especially in connection with the Moorhouse conjecture. Finally we generalize the result of 
Moorhouse on the p-rank of N for desarguesian nets of order p a bit to special subnets of the desarguesian affine 
plane of order pe. 

1. Introduct ion 

A graph is called strongly regular (See for instance [4]) i f  there exist integers p,  )~ a n d / z  

such that 

1. the graph is regular with valency p, 

2. the number  of  vertices adjacent  to two adjacent  vertices is 3, 

3. the number  of  vertices adjacent  to two non-adjacent  vertices is /z .  

I f  F is a strongly regular graph with parameters (v, p,  ~.,/z), then its complemen t  ~ is also 

strongly regular with parameters (~, ~,  ~, ~ )  = (v, v - p - 1, v - 2p + / z  - 2, v - 2p q- 
)0. A strongly regular graph has 3 eigenvalues p ,  r and s with multiplici t ies 1, f and g 

respectively, satisfying 

) ~ - # = r + s ,  t z - p = r s  

f + g = v - 1 ,  p +  f r + g s = O  

Let A be the adjacency matrix of a strongly regular graph F and let p be a pr ime number.  
The p - ranks  of  the matrices A + c l  for integral c (notation: rp(A + c l ) )  were studied in 
[1]. It  turns out that if  F has integral eigenvalues rp(A + c l )  is completely  de termined by 
the parameters of  F, except maybe  for re(A - s I )  with p dividing r - s in which case 
m i n { f  + 1, g + 1 } is an upper bound.  We will refer to these p- ranks  as the relevant  p - ranks  
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of P. In this paper we will study these p-ranks for a special class of strongly regular graphs: 
net graphs, i.e., the collinearity graphs of nets. 

A k-net of order n is an incidence structure consisting of n 2 points and nk distinguished 
subsets called lines, such that 

1. every line has exactly n points, 

2. parallelism (the property of being either equal or disjoint) is an equivalence relation on 
the lines, 

3. there are k parallel classes, each consisting of n lines, 

4. any two non-parallel lines meet exactly once. 

Thus an (n + 1)-net of order n is an affine plane of order n and a k-net of order n is equivalent 
to k - 2 Mutually Orthogonal Latin Squares (MOLS), that is a set of k - 2 latin squares 
every pair being orthogonal (cf. [5]). 

Given a k-net of order n, its net graph is defined as the graph with the points of  the net 
as its vertices, two vertices being adjacent if there is a line through the two corresponding 
points. Net graphs are strongly regular with parameters 

v = n  2 ) ~ = ( n - 2 ) + ( k - 1 ) ( k - 2 )  r = n - k  f = k ( n - 1 )  
p = k ( n - 1 )  / z = k ( k - 1 )  s = - k  g = ( n - k + l ) ( n - 1 )  

In case of a 3-net (so we have only one latin square), these are called latin square graphs. 
Strongly regular graphs with the same parameters as net graphs (latin square graphs) are 
called pseudo net graphs (pseudo latin square graphs). The complement of a net graph has 
parameters 

= n  2 ~ = ( n - 2 ) + ( n - k ) ( n - k - 1 )  F = k - 1  f = g  
~ = ( n - k + l ) ( n - 1 )  ~ = ( n - k + l ) ( n - k )  ~ = - ( n - k + l )  ~ = f  

which are the same as those of the net graph of an (n - k + 1)-net, so it is a pseudo net 
graph. If for a k-net of order n the complement of its net graph is again a net graph, so 
it is the collinearity graph of an (n - k + 1)-net of order n, then these two nets together 
form an affine plane of 6rder n. The graphs with the same parameters as a net graph of a 
2-net are unique (These are the lattice graphs L2(n)), except for the case n = 4, where the 
Shrikhande graph is the only exception (see for instance [4]). This means that an (n - 1)-net 
can  always be completed to an affine plane unless we have the 3-net of order 4 corresponding 
with the multiplication table of the cyclic group of order 4, whose latin square graph is the 
complement of the Shrikhande graph. See [3] for more details about the completion of nets. 

We denote the row space of a matrix A over Fp by {A)p. Vectors will be row vectors and 
1 and 0 denote the all-one vector and the zero vector respectively. We denote the all-one 
matrix by J.  For a matrix A we denote by kerp(A) the vector space over ~p consisting of 
all vectors x__ satisfying xA = 0. 

From the (integral) eigenvalues of a (pseudo) net graph we derive that the only p-ranks 
of A + cI, where A is the adjacency matrix of the graph and c is integral, that are not 
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determined by the parameters of  the graph are the p-ranks of  A + k I  with p dividing n. Let 
N be the line-point incidence matrix of  a k-net, then we have for the adjacency matrix of  its 
collinearity graph A + k l  = N V N .  So in case of a net graph we have rp(A + k l )  < rp(N)  
for all prime numbers p. More precisely we have that rp(A + k l )  = kn - dimkerp(N)  
- dim(kerp(N) N (NT)p),  so using some elementary linear algebra we get: 

rp(A § k I )  = kn - dimkerp(N)  - dim(kerp(N) n kerp(N) • (1) 

If  G is the Gram matrix of a basis of kerp(N), that is the matrix with entries the inner 
products of the basis vectors, then an equivalent formula is: 

rp(A + k l )  = kn - 2d imkerp (N)  + rp(G) (2) 

These relations turn out to be very useful because in some cases we can find an explicit basis 
for kerp(N) and can compute the p-rank of its Gram matrix or can prove that kerp(N) _c 
kerp (N) • . 

It is easy to see that the relevant p-ranks for (pseudo) net graphs with the same parameters 
as the collinearity graph of a 0-net, 1-net or 2-net of  order n are 0, n and 2n - 2 respectively. 
So the first interesting case is that of  a (pseudo) latin square graph. In the following section 
we determine the relevant p-ranks for latin square graphs, that is re(A + 31) for p dividing 
n, where A is the adjacency matrix of the collinearity graph of a 3-net of  order n. In the 
last section we study the relevant p-ranks of net graphs in general. By equations (1) and 
(2) these ranks are closely related to the ranks of  the incidence matrices of the nets which 
were studied by Moorhouse [14] and Dougherty [6]. Moorhouse completely determined 
the p-ranks of  the incidence matrices of  latin squares (3-nets) of order n for p dividing n. 
Using his results we can determine the relevant p-ranks of  latin square graphs. In the last 
section we show that the relevant p-ranks of  net graphs can be used to get results for the 
p-rank of the incidence matrix of  the net. 

2. Latin Square Graphs 

Let L be a latin square of  order n. Its latin square graph has as vertex set the n 2 cells of the 
latin square, two cells being adjacent if they appear in the same row or column or have the 
same symbol. Because permuting rows and columns of a latin square does not influence its 
latin square graph, we may assume that the latin square is in standard fon'n, which means 
that the elements of  its first row and column are in the same order. In this case the latin 
square can be seen as the multiplication table of  a loop. Moorhouse [14] determined all 
p-ranks of the incidence matrix N for 3-nets using loop theory. We will use his results 
to determine the relevant p-ranks of  latin square graphs. First we will discuss some loop 
theory. For more details we refer to [2]. 

A loop is a set G together with a binary operation �9 : G x G -+ G such that 

1. for all a,  c ~ G the equation a * x = c has a unique solution x ~ G, 

2. for all b, c c G the equation x �9 b = c has a unique solution x 6 G, 
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3. G contains a two-sided identity element, i.e. there exists 1 �9 G such that 1 �9 x = 
x *  1 = x for a l lx  �9 G. 

A loop is a group if and only if it obeys the associative law (a �9 b) �9 c = a �9 (b �9 c) for all 
a,  b, c �9 G. Subloops and homomorphisms of a loop upon an other loop are defined in the 
obvious way. A subloop H of G is called a normal subloop of G if for all x, y �9 G 

x H  = Hx, 
(Hx)y  = H(xy),  
y ( x n )  = (yx )n .  

So also x (Hy) = (xH)y.  If  we define (Hx)(Hy)  := H(xy),  it follows in a straightforward 
manner that G / H is a loop: the quotient loop of G modulo H. 

LEMMA 1 (cf [2]) If O is a homomorphism from a loop G upon a loop H, then ker0  is a 
normal subloop of G and 

G/kerO ~- H. 

A loop homomorphism 0 : G --+ Fp, i.e. a map 0 : G -+ Fp, such that O(g * h) = 
O(g) + O(h) for all g, h �9 G is called a p-character of G. These p-characters form a 
vector space over Fp which will be denoted with Horn(G, Fp). Clearly G~ ker 0 ------ Cp if 
0 ~ 0, which means that the multiplication table of G as a latin square can be obtained 
from the multplication table of  the cyclic group of  order p by replacing its entries by 
latin squares of  order IGJ/p. Such a latin square is called a non-uniform product of  the 
multiplication table of  the cyclic group of order p and latin squares of order I GI/p (cf. [5]) 
(The reviewer suggested to mention at this point the extensive work done by K. W. Johnson 
and J. D. H. Smith on characters of  finite quasigroups ([7], [8], [9], [ 10], [11], [12]). The p-  
characters used here are just additive versions of  the ordinary characters of  loops. Actually, 
they lie only in the largest elementary abelian p-quotient of the ordinary linear characters 
(written additively).) 

THEOREM 2 (cf Moorhouse [14]) Let G be a loop of order n and let p be a prime such 
that pe divides n but pe+l does not. Then 

d i m H o m ( G ,  Fp) = s < e 

where pS = [G : K] and K is the unique minimal normal subloop of G such that G / K  is 
an elementary abelian p-group. 

Let L be a latin square that is in standard form and let G be the loop with the latin square as 
multiplication table. As in Moorhouse [ 14], we use G x G = { (x, y) Ix, y �9 G } as point set 
of  the corresponding 3-net. The 3n lines of  the net are denoted with fig, i = 1, 2, 3; g �9 G. 
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The characteristic functions X 1 g, X2g, X3g of these lines are the rows of  the incidence matrix 
N. So 

Xlg(X, y) = ~g,x I 
X2g(X, y) ~--- ~g,y J for all x, y, g e G. 
X3g (X, y) = ~g,x,y 

THEOREM 3 (cf Moorhouse [14]) Let p be any prime number and N and G as above. I f  
~bl, ~2 . . . . .  qbsform a basis ofHom(G, Fp), then 

kerp(N) = ((1 . . . . .  110 . . . . .  0 1 -  1 . . . . .  - 1 ) ,  (0 . . . . .  0Jl . . . . .  I I -  1 . . . . .  - 1 ) ,  

(~bl (g)kbi (g)J - q31 (g)) . . . . .  (qbs (g)l(as (g)] - ~bs (g))), 

where the 3 parts of the vectors correspond with the 3 parallel classes and thus 

rp(N) = 3n - 2 - d imHom(G,  Fp) 

This explicit description of  the kernel of N enables us to determine all p-ranks of  the 
matrix A + 31 = N r N  (where A is the adjacency matrix of  a latin square graph), but we 
will restrict ourselves to the case where p divides n. 

THEOREM 4 Let G be a loop and A the adjacency matrix of the latin square graph corre- 
sponding to the multiplication table of G, then for p dividing n: 

r p ( A + 3 l )  = 3 n - 5  
/ f p  = 2, d imHom(G,  Fp) = 1, and4 does not divide n, 

= 3 n - 6  
/ f p  = 2, d imHom(G,  Fp) = 2, and8 does notdivide n, 

= 3n - 4 - 2d imHom(G,  Fp) 
otherwise. 

Proof Let N be the line-point incidence matrix of  the corresponding 3-net, then by (1) 
we still have to determine dim(kerp(N) N kerp(N)• If  0 ( 5  0) E Horn(G, F?), then 
G~ ker 0 ~ Cp, so 

p - I  

2 E O ( g ) = 2 n E i  
g~G P i=0 

and 

= n ( p  - 1 )  - O (modp) 

p-1 

3 70 g)2 = 3._ Z2i2 1 g~O P i=0 = ~n(p - 1)(2p - l) --= 0 

unless p = 2 and 4 does not divide n. 

(rood p), 
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If~b, 0 6 Horn(G, Fp) are linearly independent, then G / ( k e r  0 A ker~b) ~ Cp • Cp, so 

n p -1  p -1  3 
3 Z r  ) = 3-~7 Z Z i j  = - ~ n ( p -  1) 2 --  0 (mod p) ,  

gcG i=0 j =0  

unless p = 2 and 8 does not divide n. 

Theorem 3 and the three relations above imply that kerp(N)  __. kerp(N)  • except for the 
two special cases mentioned in the theorem for which d im(kerp(N)  C/kerp(N) • = 2. 

[ ]  

So in general we have for the adjacency matrix A of any latin square graph: 

rp(A + 31) < 3n - 4, 

which, for n > 4, is a better bound than the one we get from the eigenvalues: 

rp(A + 31) < min{3n - 2, n 2 - 3n + 3}. 

We can generalize this result to net graphs using the following lemma (see also [6]): 

LEMMA 5 Let Nk be the incidence matrix o f  a k-net I-Ik o f  order n, let p be a prime dividing n 
and let (xll . . . . .  Xl. [x21 . . . . .  x2. [ . . . . . .  [Xkl . . . . .  xkn) ~ kerp(Nk). Then for  some s ~ Fp: 

n 

Z xq = s  , i  = 1 ,2  . . . . .  k 
j = l  

with s = 0 / f  k ~ 1 (mod p) or i f  Hk can be extended by at least one more line (that 
means there exists a set o f  n points that meets every line in precisely one point). 

Proof  L e t  x__. = (Xll . . . . .  Xln Ix21 . . . . .  x2n ] . . . . . .  ]xkl . . . . .  xkn) ~ kerp (Nk) and define 
si : =  y~nj=lxq for i = 1,2, . . . , k ,  then we will prove first that sl = s2 = . . .  = sk 

( i n F p ) .  S i n c e x N k  = 0, a l s o x N k N ~  = 0; but NkN~ = ( J k -  I k ) |  Jn (mod p),  
k 

so (sl ,s2 . . . . .  sk)(J  - I )  = 0, so si = ~'~j=lsJ for i = 1 ,2  . . . . .  k and thus si = s 
(i = 1 ,2  . . . . .  k) f o r s o m e s  E F p w i t h ( k - 1 ) s  = 0  ( m o d p ) . H e n c e s  = 0 i f k ~  1 

(mod p).  Now suppose Ilk can be extended by a single additional line with characteristic 
n vector X, then NkX r = 1 r ,  so s = Y~=I Zj=I Xi j  = x l T  = x--NkL r = OX__ r = O. 

[]  

COROLLARY 6 Let A be the adjacency matrix o f  a net graph corresponding to a k-net o f  
order n with incidence matrix Nk and let p be a prime number dividing n, then: 

rp(A + k I )  < rp(Nk) -- (k - 1) < kn - 2(k - 1) 

Proof  The result follows by relation (1) and the fact that the k - 1 vectors (1] - 1]01 . . .  ]0), 
( l[0l  - ll01 �9  10) . . . . . .  (110[. . .  10] - 1) (The vectors are divided in k parts o fn  coefficients 
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corresponding to the k parallel classes of n lines.) are in kerp(Nk) 71 kerp(Nk) • Trivially 
they are in ker e (Ark), since for each parallel class the sum of the characteristic functions of 
their lines is the all-one vector and by Lemma 5 they are in kerp (Nk) • [] 

COROLLARY 7 (cf Dougherty [6]) Let Nk be the incidence matrix of  a k-net FIk of  order 
n, let Nk-1 be the incidence matrix of  some (k - 1)-subnet thereof and let p be a prime 
dividing n, then 

rp(Nk) >_ rp(Nk-l) -}- 1 

unless k -= 1 (rood p) and FIk cannot be extended by an additional line. 

In fact if N,,+I, Nn and Nn-1 are the incidence matrices of  an affine plane of order n and 
some n- and (n - 1)-subnet thereof then for p dividing n 

rp(Nn+l) = rp(Nn) = rp(N,,_l) q- 1. 

These equalities follow from the observation that for the affine plane the sum (mod p) of  
the characteristic vectors of  all n + 1 lines incident with some fixed point is the all-one 
vector. 

3. Net Graphs 

In this section we give some results for the relevant p-ranks of (pseudo) net graphs. In 
general it turns out to be hard to find an expression for these ranks, but for the special case 
of  the collinearity graph of a desarguesian net of  prime order the relevant p-rank can be 
determined. 

3.1. General Results 

We start with some relations between the relevant p-ranks of a (pseudo) net graph and its 
complement. 

LEMMA 8 Let F be a (pseudo) net graph with the same paralneters as the collinearity 
graph of  a k-net of  order n and let A be its adjacency matrix. Let F be its complement with 
adjacency matrix -A = J - A - I and let p be a prime dividing n, then." 

(i) 
m 

Irp(A + k l )  - rp(A + (n + 1 - k) l )[  < 1 

(ii) I fF  is the colIinearity graph of some k-net of  order n with k ~ O, then we have 

rp(A + k l )  = rp(A + (n + 1 - k)I )  
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unless p divides k - 1 and Y has no coclique (independent set) o f  size n, so the net 
cannot be extended by a single additional line. 

Proof  The first result follows directly from the identity A + (n + 1 - k ) I  - J - (A + k I )  
(rood p). Let I" be the collinearity graph of  a k-net of order n with k # 0. Adding up 

the n rows of  A + k I  corresponding to the points of  some line of  the net yields (k - 1)1, 
so 1 ~ (A + kI)p  if p does not divide k - 1. If  we add up the corresponding rows of  
J - (A + k I )  we get (n + 1 - k)l ,  so if p does not divide k - 1 also 1 6 (A + (n + 1 - k)I Ip .  

If  furthermore I ~ has a coclique of size n, this coclique corresponds to n points of  the net, 
no two collinear. This means that for each parallel class the n lines of  this class contain 
one point of  the coclique each. Adding up the n rows of A + k I  and its complement 
corresponding to the points of  a coclique of size n yields k l  and (n - k ) l  respectively. 
Hence k l  - (k - 1)1 = 1 ~ (A + k l )p  and similar 1 E (A + (n + 1 - k)I)p .  [] 

This lemma implies for instance that the relevant p-ranks of  the collinearity graphs of  a 
k-net of  order n and a (n + 1 - k)-net of order n that together form an affine plane of order 
n are the same unless k = 0 or k = n + 1. 

LEMMA 9 Let I-I~+1 be an affine plane of  order n with incidence matrix N,+I and let p be 
a prime dividing n precisely once. Let Flk be a k-subnet o f  Fln+l with incidence matrix Ark, 
then 

kere(Nk) __c kere(Nk) • i f  1 < k < n 

dim(kerp(N~+l) N kere(N,+l)  • = dimkerp(Nn+l) - 1 

Proof. For an incidence matrix Ark of a k-net of order n we denote the Gram matrix 
of  a basis of  kerp(Nk) by Gt. Let Fit and ITk be an / -ne t  and a k-net of  the same order 
respectively with I-It a subnet of 1-Ik and let Nt and Ark be their incidence matrices. Now 
kerp (NI) can be identified with the subspace of  kerp (Ark) consisting of  all vectors that have 
zero entries for all positions corresponding with the lines of  Flk that are not contained in Fit. 
So, by taking an appropriate basis for kerp (Nk) -such that a subset of  the basis vectors can 
be identified with a basis of kerp (N t ) -  the Gram matrix of  this basis of  kerp (Nt) appears as 
a submatrix of  the Gram matrix of  the basis of kerp(Nk) and thus it cannot have a bigger 

rank. So rp(Gl) <_ rp(Gk). 
It is well known (see for instance Lander [13], p. 57) that rp(N~+l) = �89 + 1), so 

dimkerp(Nn+l)  = �89 + 1). Since N~+INn+I = J we get by relation (2) thatrp(Gn+~) = 
1 which is equivalent to the second result. Now by the observation above rp(G~) is equal 
to either 0 or 1. By Lemma 8(ii) we have r p ( N f  Nn) = rp(A1 + I)  = rp(J~ | In) = n, 
where A1 is the adjacency matrix of  the collinearity graph of a 1-net, so by (2): n z - 
2 dim kerp (Am) + r e (Gn) = n. So rp (G, )  is even and thus it must be zero which means that 
kerp(Nn) c kerp(Nn) • Since rp(Gk) < rp(Gn) = 0 and hence kerp(Nk) ___ kerp(Nk) • 
for the incidence matrix Ark of  any k-subnet of  the affine plane with 1 < k < n the result 
follows. []  
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Lemma 8 and Lemma 9 together imply the following: 

THEOREM 10 Given an affine plane o f  order n and a prime p dividing n precisely once. 
Let 1 < k < n. Partition the affine plane into a k-net and a (n + 1 - k)-net with incidence 
matrices N~ and Nn+l-k respectively, then: 

1 
rp(N,,+~_k) -- rp(Nk) = -~n(n 6- 1 -- 2k) 

Proof  By Lemma 8(ii) we have that 

rp(NT Nk) = rp(N•+l_kNn+l_k ), 

SO by Lemma 9 and (1) 

nk - 2dimkerp(Nk)  = n(n + 1 - k) - 2 dim kerp(Nn+l-k) 

which yields 

l 
nk - dimkerp(Nk) = n(n + 1 - k) - dimkerp(Nn+l_k) - -~n(n + 1 - 2k) 

from which the result follows. [] 

The main conjecture of the paper by Moorhouse [14] is as follows: 

Conjecture (Moorhouse). Given a k-net of order n and a (k - 1)-subnet thereof with 
incidence matrices Nk and Nk-i respectively. If p is a prime that divides n precisely once, 
then 

rp(Nk) -- rp(Nk-i)  > n -- k 6- 1. 

In connection with this conjecture we mention the following corollary of Theorem 10: 

COROLLARY 11 Let Fin-1 be an (n - 1)-net o f  order n with an (n - 2)-subnet Fin-2 and let 
Nn-1 and Nn-z be their incidence matrices. I f  p is a prime dividing n precisely once, then 

rp(Nn-l)  - rp(Nn-2) = 1 + dimHom(G, Fp), 

where G is a loop corresponding with the 3-net with parallel classes the class that is in 

FIn_l but not in FI,~-2 and the two parallel classes that complete I-I n_ 1 to an affine plane o f  
order n. 

3.2. Desarguesian Nets 

In his paper [14] Moorhouse determined the p-rank of the line-point incidence matrices 
of desarguesian nets of (prime) order p. (A desarguesian net is by definition a subnet 
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of a desarguesian affine plane.) He proved that for a desarguesian k-net of order p with 
incidence matrix Ark: 

1 
rp(Nk) = pk - ~(k - 1)k. (3) 

Using this result we can prove that: 

THEOREM 12 Let Ak be the adjacency matrix of the collinearity graph of a desarguesian 
k-net of order p, then 

Ik(p+l-k) f o r O < _ k < p + l ,  
rp(Ak + kl) 

I 1 f o r k = p + l .  

Proof. The statement follows straightforward from (1), (3) and Lemma 9. [] 

By (3) and Theorem 12 we see that if Ark is a desarguesian k-net of prime order p then 
rp(Nk) and rp(NTNk) depend only on p and k and not on which k-subset of the p + 1 
parallel classes of the affine plane is chosen. This is in general not the case for desarguesian 
nets of order q = pe with e > 1. Table 1 gives all possible p-ranks for desarguesian nets 
of order q with q c {4, 8, 9, 16} and p dividing q obtained by computer. For larger values 
of q, the variety in the occuring values for the p-ranks increases which suggests there is no 
simple general formula for these p-ranks. However, if we regard some special subnets we 
might get some results, such as: 

THEOREM 13 Let Nk be the incidence matrix of a desarguesian k-net Flk of order pe for 
which the k points at infinity corresponding with the k parallel classes lie in the same 
(projective) subplane of order p (So k < p + 1). Then 

rp(Nk) < kp e \ e + l  " (4) 

If equality holds then: 

rp(N~Nk) = kp e - 2 ( e + k - 1 )  
e + 1 + E (5) 

where 

= 1 if e =  l a n d k = p + l  

= p  i f e = 2 a n d k = p + l  

= 0 otherwise. 

Remark. By Moorhouse's result ((3)), (4) holds with equality if e = 1 and by Theorem's 3 
and 4 also if k < 3. Computer results suggest that that (4) holds with equality in general, 
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Table 1. All possible/)-ranks of desarguesian nets of order 4,8,9 or 16. 

q = 4 ,  p = 2  q = 8 ,  p = 2  q = 9 ,  p = 3  q = 1 6 ,  p = 2  

k rpNk r, NfN~ rpNk rpNrNk rpNt rpNTN~: r p N k  rpNkrNk 

17 81 1 
16 81 16 
15 80 30 
14 79 36 
13 78 38,42 
12 77 36,40,42 
11 76 34,36,38,42 
10 36 1 75 30,36,40,42 
9 27 1 36 9 74 30,36,40,42 
8 27 8 35 16 73 30,36,40,42 
7 26 14 34 19 68 30,36,40,42 
6 25 14 33 18,19 63 34,36,38,42 
5 9 1 24 t4 30 16,20 56;58 36;40,42 
4 9 4 23 14 26;27 19;18 51;53 38;42 
3 8 6 19 14 23 19 42 36 
2 7 6 15 14 17 16 31 30 
1 4 4 8 8 9 9 16 16 
0 0 0 0 0 0 0 0 0 

but we couldn' t  prove this. As the theorem states, we can only prove that dimkerp(Nk) > 

(e+k-l~ and that if equality holds also the second statement holds. The first part of  the proof  e+l 7 
is a generalization of the method used by Moorhouse [ 14] to derive relation (3). 

Proof Let q = pe and take as point set 7 9 = Fq • ]Fq. Let Fip+l be the (p  + 1)-net with 
lines: 

lrs ~--- {(X, rx + S) I X e Fq}, 1~, = {(s, y) [ Y e Fq}, S E Fq, r e Fp 

Let X,.s, X~s  (r  e Fp,  s e ~gq) be the characteristic functions of these lines. Without loss 
of  generality we may assume that Fit is a subnet of rlp+l. Now let 1-Ik_l C 1-Ik be (any) 
(k - 1)- and k-subnets of 1-Ie+l. Since the automorphism group of 1-Ip+l acts transitively 
on the p + 1 parallel classes, we may suppose that the lines of l-Ik-i are 

{1,s I r e E ,  s e Fq}, E c IFp, [El = k - 1 

and that I7 k has the additional parallel class {los I s e ]Fq}. Define 

Vk = {(as : S c ~q) E ]~q l Z asx~s e Cp(Fik_1) ~- Z Z ~'pxrs} 
Se~q rEE s~Fq 

We will show that dim l;k > (e+k-2) 
- -  \ e 7 "  

Let k > 2. Since Fq is a vector space of dimension e over Fp we may represent every 
element x e lFq by a vector (xo, Xl . . . . .  Xe-1) e IFep. We will first show that the vector 
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e--I al x-~e--1 a" = k -- 2 is in Vk. Note  that (a~ : s 6 Fq) where a~ = VIi=o s i , with c~i 6 N and z..~i=o , 
there are (e+k_]-3) of  these vectors. 

Consider the unique solution (fir " r ~ E)  to the linear system 

X-"rJ~r= ] 0 , 0 < j < k - 3  
Z...~ v" I 1 j = k - 2  
r6E 

(There exists precisely one solution since the coeff icient matrix o f  this system is a (k - 1) • 
(k - 1) Vandermonde matrix) and let do, oq . . . . .  ~e-1 be non-negative  integers satisfying 

e - 1  
~ i = o  oti = k - 2. Def ine 

as : =  I-IT=-o 1S i S : (S O . . . . .  Se-1) E ~q 

FI ]'-[e-l {_s.'~c~i brs :=  h'r 1 1 i = 0  t 'J  r ~ E,  s = (so . . . . .  Se-1) E ~q 

then 

Z asX~s  = E E brsXrs (6) 
SEFq rEE SCFq 

For verification evaluate this relation at an arbitrary point (x,  y)  6 7 ~. I fx  = (Xo . . . . .  Xe-O 
and y = (Yo . . . . .  Y e - 0  the left side of  (6) yields 

e-1 

1-lx;i 
i=0 

and the right side yie lds  

e - 1  

Z f l r  l--I(rxi - yi)  ~' 
r~E i=0 

) : Z t~r ~ I  F j x / ( - y i )  a'- j  
roE i=0 

? 

k - 2  

r~E ]o,...,Je-1 
jo+'"+je-I =J 

Ji <--~ 

k--2 

=I2 E 
j=0 J0,...,b-t 

Jo+":+Je l=J  
Ji <-~ 

e-1 

= I - I 4 '  
i=0 

 j _lj 

. . . . .  Xe_ 1 (--y0) ~~176 �9 �9 �9 rJ flr jo \ Je -1 . /  
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Thus (as : s ~ ~'q) �9 ]')k with as = I-Iie-~ sial, Ot i �9 I~ and Y~4=0~-1 o~i = k - 2. 
For 0 < t < k - 2, choose a subset Et c E of size t § 1 corresponding to a (t + 1)-subnet 

17t+1 ___ Hk-1. Replacing E by Et in the above argument gives 

Thus 

e-1 e-1 
1-I ~ E (as : s �9 IFq) �9 k with as = s i ,oq � 9  ~ i = t  
i=0 i=0 

12k _ {(f(s0 . . . .  , Se-1) : S E ]~q) [ f ( X o  . . . . .  Xe-1) 

E ~ p [ X  0 . . . .  , Xe-1] , deg f ~ k - 2} 

and since for each f ( X o  . . . . .  Xe-1) �9 Yq[Xo . . . . .  Xe-1] with deg f ~ k - 2 (<  p - 1) we 
e have f (xo  . . . . .  Xe-1) = 0 for all (xo . . . . .  Xe-l) �9 tFp if and only if f = 0, the dimension 

of Vk is at least the dimension of the vector space of polynomials f �9 [Xo . . . . .  Xe-1 ] with 
{t+e-l] = (e+~-2). Hence if  Nk is an incidence matrix deg f < k - 2, so dimp Vk > z t k T \  e - l ]  

of a k-subnet of  rlp+l then 

k ( e + l - - 2 )  ( e + k - 1 )  
dimkerp(Nk) > ~ = . (7) 

z=2 e e +  1 

I f  e = 1 then FIp+l is a desarguesian affine plane of (prime) order p and hence 

dim kerp(Np+l) = (p+l), so we found all vectors in kerp(Np+~) and hence (7) holds with 
equality for all k 6 {0, 1 . . . . .  p + 1 } which yields (3). If  however e > 1 a similar argument 
is still missing. 

Now suppose that indeed (7) holds with equality so we have an explicit basis for kerp (Ark) 
for every k-subnet of  FIp+l. We prove that in this case the Gram matrix of  a basis of 
kerp (Nt) has p-rank equal to 1 if e = 1 A k = p + 1, equal to p if e = 2 A k = p + 1 and 
equal to 0 otherwise. 

The case e = 1 is already proved, so we may assume that e > 1. Let Ilk consist of  
the lines {loos I s �9 ]?q} and {l~s [ r �9 E, s ~ Fq} for some E __c Fp, IEI = k - 1. Let 

e-1 
~1 5 k El ,  E2 __C E, let ai ,  Yi 6 N (i = 0, 1 . . . . .  e - 1) such that ~ i = o  0~i = [Eli -- I and 

~ i e ~  gi = [E21 - 1, and let fir, 3r �9 ]Fp, (r �9 I~p) be defined by f~ = 0 i f r  r El ,  3r = 0 if 
r r E2, and ( f r  : r �9 El)  and (Sr : r �9 E2) are the unique solutions of  the linear systems 

E F J / ~ " =  { 01 0 < j < I E 1 1 - 2 j  , E , I -  
r-cE~ 

and 

rEE2 

respectively. Now calculate the inner product of  the vectors 

( e--i_ ~ e--i_ j e--lFi t _vl : =  - s~ ' l  ( - s i ) ~ ' f o l . . . [  (-si)'~fp_l 
i=0 i=0 i=0 / 
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and 

e-1 e-1 ~ ) e - - l  

I) 2 ;=  - - U S y I I H ( - - S i ) Y ' 8 0 [ . . . I  (--Si)?'~Sp_l 
i=0 i=0 

e where for every component (so, S1 . . . . .  Se_l) runs through Fp. This yields c1( )( ) 
i=0 s i ~Fp i cFp 

Since 

S - " x  ~ = / - 1  i f c t = i ( p - - 1 )  w i t h i # 0  
/ 0 otherwise 

x EFp 

/)lt) T = 0 unless for all i c {0, 1 . . . . .  e - 1}: ~i + Yi 6 {P - 1, 2(p - 1)}. (Notice that 
e--1 e-I 

Y~i=o oti < p - 1 and Y]i=o Yi < P - 1.) So the only cases in which the inner product 
could be non-zero are: 

(ia) e = l a n d o t 0 = Y 0 = p - l ( s o k = p + l ) ,  

(ib) e = l a n d o t 0 + Y 0 = p - 1 ,  

(ii) e = 2 a n d o t o = F 1  =o~;oq  = F 0 = p - - l - - o t f o r s o m e c l  6 {0,1 . . . . .  p - - 1 } ( s o  
k = p -  1). 

Since we wouldn' t  consider the case e = 1 here we just mention that the inner product is -1 
in case (ia) and 0 in case (ib). Now suppose we are in case (ii) and let (/30,/31 . . . . .  /3p-1) = 
(80, 81 . . . . .  8p-1) = :  /5 and let S be the coefficient matrix of the system defining/5, so 

Sj.r = r j (r ~ Fp, j = 0 ,1  . . . . .  p -  1) andS t i  r = (0,0 . . . . .  0 ,1)  ~r. Then_.vlv ~" = 

(_1)2(1 + f l f l r )  = 1 + (0 . . . . .  O, 1 ) ( S S T ) - I ( O  . . . . .  0, 1) 7" = 1. (Indeed, (SS~) i j  = 

)-~r~Fp ri+j which is equal to - 1  if i + j = p - 1 or i = j = p - 1 and equal to 0 

otherwise. So the (i, j )-entry of  ( S S r )  -1 is equal to - 1  if i + j = p - 1, equal to 1 if 
i = j = 0 and equal to 0 otherwise, so in particular the (p - 1, p - 1)-entry is equal to 0.) 

If  we take vectors of the same type as v I and 1)2 as basis vectors for kerp (Np+I) all except 
for p entries of  the corresponding Gram matrix are zero and no two of these non-zero entries 
occur in the same row or column. []  

Note Added in Proof  

The author recently proved that in Theorem 13, (4) holds with equality if 1 < k < p. 
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