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Testing Affine Term Structure Models in case of
Transaction Costs

Abstract
We empirically analyze the impact of transaction costs on the performance of essentialy
affine interest rate models. We test the implied Euler restrictions and calculate the
specification error bound of Hansen and Jagannathan to measure model misspecification.
Using both short-maturity and long-maturity bond return datawefind, under the assumption
of frictionless markets, strong evidence of misspecification of affine yield models with up
tothreefactors. Next, weincorporate transaction costsin our tests. Theresults show that the
evidenceof misspecification of essentially affineyield model sdisappearsin case of monthly

holding periods at market size transaction costs.
JEL Codes: G12, E43.
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1 Introduction

Nowadaysterm structure model s are used extensively for many purposes, including risk management of
portfolioscontai ningbondsandtheval uation of interest-rate derivatives. Empirical testsof termstructure
models have therefore attracted considerable attention in the literature. In line with a large part of the
empirical asset pricing literature, thetests are based on the assumption of trading in frictionless markets.
In particular, the large literature on affine term structure models' tests these models using data on
Treasury bills and bonds under the assumption of trading in frictionless markets. However, market
frictions such as transaction costs are an important fact of life for investors. The implicit assumption
when ignoring transaction costs is that these costs are sufficiently small, so that they do not seriously
affect theempirical results. In this paper we explicitly take transaction costsinto account in the empirical
testing of affine term structure models, and show that including market size transaction costs can
considerably affect the results of the tests.

Our approach isto test whether the stochasti ¢ discount factor of agiven term structure model satisfies
the Euler restrictions. These Euler restrictions are implied by the no-arbitrage assumption, and can be
derived in both frictionless markets and marketswith frictions. Based on these Euler restrictions, we use
two approachesto analyze and test the models. First, we use Wald-typeteststo test the Eul er restrictions.
For the frictionless case, the analysis of Euler restrictions using Wald tests is extensively discussed by
Cochrane (1996, 2001). In case of transaction costs, we use tests of inequality restrictions adopting the
approach developed by Kodde and Palm (1986). A disadvantage of this approachisthat, if one rejects

amodel, thereisno clear indication of the direction of misspecification, for example, which individual

YFor example, Stambaugh (1988), Chen and Scott (1993), Gibbons and Ramaswamy (1993), Backus and
Zin (1994), Brown and Schaefer (1994), Pearson and Sun (1994), Babbs and Nowman (1999), De Jong (2000),
Backuset a. (20013, b), Dai and Singleton (2001), and Duffee (2002). In addition, thereisby now alargeliterature
that studiesmodelsoutsidetheaffineclass, including Boudhouk, Richardson, Stanton, and Whitelaw (1998), Bansal
and Zhou (2001), Ahn, Dittmar, and Gallant (2002), Ahn, Dittmar, Gallant, and Gao (2002), Duarte (2003), and
Leippold and Wu (2003). Dai and Singleton (2003) provide an extensive survey of thisliterature.
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assets are possibly mispriced by the model and which are not. Also, the Wald test does not allow for a
comparison of the degree of misspecification of two non-nested models that are both rejected. To
overcome these problems we also consider the specification error bound (SEB) developed by Hansen,
Heaton and Luttmer (1995) and Hansen and Jagannathan (1997). This bound measures the extent to
which amodel mispricesagiven set of assets. Hansen and Jagannathan (1997) show that this bound can
be interpreted as the maximum pricing error for all portfolios that can be constructed from the assets
under consideration. This specification error bound allows for direct comparison across (non-nested)
models and the method indicates which (portfolios of) assets contribute most to the misspecification.
Hansen, Heaton and Luttmer (1995) extend the setup of Hansen and Jagannathan (1997) to allow for
market frictions. We apply their approach to affine term structure models and compare the results with
standard tests using the Euler restrictions.

Our work isrelated to Luttmer (1996) and He and M odest (1995), who both analyze the influence of
transaction costs and other market frictions on the size of the volatility bounds of Hansen and
Jagannathan (1991), that give a lower bound on the variability of valid stochastic discount factors.
Luttmer (1996) finds that small transaction costs greatly influence the size of the volatility bounds;
especialy thevolatility bounds based on T-bill returns are very sensitive to the size of transaction costs.
The results of Luttmer (1996) imply that the conclusion of rejection of several asset pricing modelsin
Hansen and Jagannathan (1991), based on the volatility bounds, changesif transaction costs are taken
into account. Our work extendsthework of Luttmer (1996), becausethevolatility bound isaspecial case
of the specification error bound, and because L uttmer (1996) focuseson consumption-based asset pricing
models, whereas we analyze bond pricing models and bond returns.

The bond pricing models that we consider are discrete-time versions of the affine yield models of
Duffieand Kan (1996) and the extension to essentially affine models due to Duffee (2002). These latter
models deviate from the Duffie and Kan (1996) models -referred to as completely affine yield models
in this context- by allowing the market price of risk to depend in anon-affine way on the factors. In our

investigation we follow the classification of these models as proposed by Dai and Singleton (2000),
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consisting of a partitioning into subclasses ~for each given number of factors- depending on the way
the factors affect the volatility of the process generating the uncertainty. We consider two and three
factor models, since these are commonly studied in the literature mentioned above. Given the number
of factors, we comparethe various subclasses, and select amost preferred subclass, for which we present
our results.

Torelate our testsof Euler restrictionsto existing empirica work on affine models, we show that the
Euler restrictions can berewritten into restrictions on unconditional and conditional expected returnson
bonds of different maturities. In linewith theliterature on tests of the expectation hypothesis (Famaand
Bliss (1987) and Campbell and Shiller (1991)), which shows that the spread between along-term and
short-terminterest rate predictsfuture bond returns, we choose as conditioning variabl e thisyield spread.
This way, our test restrictions on conditional expected bond returns are related to Dai and Singleton
(2001) and Duffee (2002), who analyze to what extent essentialy affine models can reproduce the
predictability of bond returns by the yield spread.? However, compared to these two articles, our set of
test restrictionsislarger sinceweal soincluderestrictionson theterm structure of unconditional expected
bond returnsin our tests.

Before discussing the empirical results, we perform asimul ation analysisto analyze the power of the
Wald-test on the Euler restrictions. We simulate a three-factor affine model, adding transaction costs,
and then test atwo-factor affine model (both for the case with frictionless markets and for the case with
transaction costs). Although the power of the testsweakens somewhat if thetest incorporatestransaction
costs, we find that the test does have reasonable power to reject the two-factor model in this setup.

Our empirical resultsindicate that, assuming no market frictions, the term structure of average bond
returnsisless smooth than predicted by the affine models: both the completely affine yield models and
the essentially affine yield models significantly misprice the returns on portfolios that contain both

extreme long and short positions in near-maturity bonds. In particular, we find that two-factor models

Ahn, Dittmar, and Gallant (2002), Duarte (2003), and L eippold and Wu (2003) analyze the predictability
of bond returns (or yield changes) from the perspective of models outside the affine class of term structure models.
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are clearly rejected, in line with the existing literature. Furthermore, even the more general essentially
affine three-factor models are statistically rejected if wetest the Euler restrictions under the assumption
of frictionless markets. Dai and Singleton (2001) and Duffee (2002) show that some essentially-affine
models are capable of fitting the observed predictability of bond returns. Our results show that, if both
restrictions on unconditional and conditional expected returns on bonds with different maturities are
tested, all essentially affine models are rejected.

Instead of extending the essentially affine three-factor model further, we allow for transaction costs
in our tests. We find that, when transaction costs are of market size, the conclusions above need amore
carefully balanced appraisal. In case of amonthly holding period, the evidence of misspecification of the
consi dered model sdisappearswhen thesetransaction costsareincluded. Because of thetransaction costs,
the portfolios with both long and short positions in T-bills and bonds are no longer mispriced. For
quarterly holding periods and market size transaction costs, the results are mixed: the models are not
rejected on the basis of data on long-maturity bond returns, but these models do misprice the short-
maturity T-bills. However, Duffee (1996) providesevidencethat T-bill returnswith very short maturities
contain a large idiosyncratic component, possibly due to market segmentation. This might partially
explain the difficulty the models have in pricing short-maturity T-bills.

We supplement our empirical analysiswith asecond simulation study in order to gain further insights
into our findings. We simulate a two-factor affine model with transaction costs, and test three-factor
affine models without allowing for transaction costs. The results show that the three-factor models are
clearly rejected inthiscase. Thisisin linewith the empirical resultswhere we also find that three-factor
models are rejected in frictionless markets. These results support our conclusion that the presence of
transaction costs can lead to a rejection of appropriate models if one tests under the assumption of
frictionless markets.

The remainder of this paper is organized asfollows. In section 2, we briefly review the literature on
affine term structure models. In section 3, we first summarize the literature on asset pricing in markets

with frictions, then we describe aWald-test of the Euler restrictionsin such amarket with frictions, and
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we discuss the specification error bound. In section 4, after describing our dataset and estimation
procedures, we present the empirical test results and results from the simulation studies. In section 5 we

summarize and conclude.

2 Affine Term Structure Models

Let the n-dimensional vector R,; = (R,.;,--R,,,,)" contain the gross returns fromtime t to time t+1
of n assets (in our case bonds of n different maturities). In the empirical analysis, we analyze both
monthly and quarterly holding periods, so that the returns R, ; are either monthly returns or quarterly
returns. Also, let Y,,; denote a stochastic discount factor (SDF), such that, in case of no arbitrage

opportunities in terms of the n assets and no market frictions,

E[R:1Y.d =1 i=L.n, (1)

with Y, , strictly positive, and where the expectation is conditional on theinformation set at timet (see,
for example, Campbell, Lo and MacKinlay (1997), Chapter 11).

Duffieand Kan (DK, 1996) describe the class of continuous-time multi-factor term structure models,
that imply an affine relationship between interest rates and a vector of state variables. As reported by
Duffee (2002), these‘ completely’ affine model s might produce poor forecasts of future Treasury yields,
attributed to the fact that the risk compensation cannot vary independently of theinterest rate volatility.
For this reason Duffee (2002) proposes the class of ‘essentialy affine models, as extension of the
‘completely’ affine models of Duffie and Kan (1996). In both the completely and essentially affine
models the conditional means and covariances of the factors are affine functions of the current factor
values. However, to avoid the drawback of the completely affine models, the market prices of risk are

not affine anymore for essentially affine models.



Our setup is in discrete time. We will use discrete-time versions of these models, as described by
Backuset al. (20014, b), see d'so Campbell, Lo and MacKinley (1997). Although various discrete-time
versions of the continuous-time models are possibl e, the one proposed by Backus et al. (2000a, b) seems
to be the most natural one. This approach assumes a conditionally normal distribution for an N-
dimensional vector of state variables a,, . We extend this discrete-time setup to include the essentially
affine specification, by transforming the continuous-time model of Duffee to our discrete-time
framework. Denoting thelog-SDF, y,,, = log(Y,,,), the N-factor essentially affine discrete-time model

can be written as®

Yoy = P+ 0,3+C@) +yE, +a T V(@) ., (2

with

C(a) = aT'V(a) Ta/2
a,, = H*A(a M) + Z&
&pl I It - N(O,V(at))

3)

V(a) = diag(e, + B, a,....ay + By'a)-

Here &, represents an N-dimensional conditionally normally distributed random vector with zero
conditional mean and conditional variance matrix v(a), A, T', and Z are NxN-matrices containing
unknown parameters, @, is a one-dimensional parameter, ¢, 00=(0tg,-04) s ByeByys M, @nd y are N-
dimensional unknown parameter vectors, and |, representstheinformation set of timet. If I'=0, equation

(2) reducesto thecompletely affinemodelsof DK. Inthiscase, theterm y’¢,, capturesthe market prices

3Noticeasmall differencewith Campbell, Lo and MacKinley (1997), whose specification of thelog-SDF
also contains anormally distributed variable that isindependent from &. This variable only influences the mean of
the yield curve in away that is very similar to the way the mean of the state-variable influences the mean yield
curve. Following Backus et al. (20004, b) we do not include this variable in our analysis (also in line with Backus
and Zin (1994), and Bansal (1997)), dlowing us in a straightforward way to calculate the SDF in terms of
observables.
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of risk, as it measures the sensitivity of the SDF (and, thus, bond returns) for the underlying factors.* If
I+0, theterm y’¢,,,+aT'V(a) *€,., capturesthe market price of risk®.

In the application we consider two and three factor models. We follow the classification according
to Dai and Singleton (2000), indicated by A (N), where N denotes the number of factors, and m the
number of factors affecting the volatility. For instance, in case of two-factor completely affine models,

this means that we can distinguish between the following three models

- A,(2) model: Factors with constant volatility, i.e., aVasicek (1977)-type model.
- A,(2) model: One factor with constant volatility and one factor with square root volatility.

- A,(2) model: Two factors with square root volatility, i.e., a Cox, Ingersoll, Ross (1985)-type model.

Not all parametersin these affine models areidentified. We follow Dai and Singleton (2000) to impose
appropriate normalizations. We refer to the appendix A for further details.

As a comparison to the completely affine models we also analyze the essentially affine three-factor
models, using the classification by Duffee (2002), EA(3), EA,(3), and EA,(3). The EA,(3) model isthe
same as the A,(3) model. Here EA (N) means an N-factor essentialy affine model, where m factors
affect the conditional volatility. We follow Duffee (2002) in the normalization, see appendix A for
further details.

Using equations (1)-(3), one can derive that bond prices are exponential -affine functions of the state

variable a,,

/
-logP, = nr, = A +Ba, (4)

“Notice that, since €., follows anormal distribution with mean zero and covariance matrix V(a,), it
would make sense to define V(a[)” 2y asthe vector containing as components the market prices of risk.

*The term C(a,) appears since the discrete time approximation is based on log-s.
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where P, isthe price of an n-period zero-coupon bond at timet, and r, isthe corresponding interest rate.
The factor loadings A, and B, are functions of the underlying parameters, and do not depend on time.
Thisequation also holdsfor the essentially affinemodels, so that the anal ytical tractability ismaintained.

When estimating the affine yield models, we allow for ameasurement error in the yields, following,
for example, the approach of Duan and Simonato (1999) or De Jong (2000), meaning that, instead of (4),

we use

Mot =

A8 3 ®)
where ¢, represents the measurement error. Asdiscussed in the data section, we use ‘ smoothed' interest
ratesfor estimation, which motivatesthefact that we allow for measurement error. Based on (2), (3), and
(5), together with appropriate distributional assumptions, we estimate the unknown parameters by
Maximum Likelihood using the Kalman filter. The estimation procedure is described in detail in
appendix B.

Besides parameter estimates, the Kalman filter provides estimatesfor the factor valuesat all datesin
the data set, which can be used to obtain estimated values for the SDF at all dates, which isrequired for

the empirical testing procedure. We rewrite the innovation in equation (3) as

&1 = 2, ARW) (6)

We then substitute this into equation (2) to obtain an estimate for the SDF. For instance, in case of a
completely affine yield model, we see that the SDF is given by

Y1 T (Po*Y/ZilAU + ((Pl/*Y/ZilA)at * y/zilanl (7)
A similar expression holds for the essentially affine models.

In the next section we describe how we test these affine term structure modelsin case of transaction

costs. These tests will be based on Euler restrictions (as in equation (1) for frictionless markets). Most
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empirical work on term structure model s has tested these models using the price restrictionsin equation
(4).5 In this section we have shown that these price restrictions are derived from the Euler restrictions,
so that thereisadirect link between the Euler restrictions and the price restrictions. One would therefore

not expect important differences between tests based on equation (4) versus equation (1).

3 Testing the Modelsin case of Transaction Costs

3.1 Priceimplicationsin case of transaction cost

Without transaction costs the models can easily be tested by verifying whether moment restrictions
implied by (1) are satisfied. However, transaction costs are a fact of life. With transaction costs, the
moment restrictions implied by (1) are too strong, so that rejection of these moment restriction is no
longer an indication of model misspecification. To seethis, consider first short-selling constraintson the
assets. In this case, absence of arbitrage opportunities requires the existence of a strictly positive SDF

satisfying (instead of (1))

E[R 1Y <1 i=1..n, (8)

see, for example, Jouini and Kallal (1995) or Luttmer (1996).
When considering transaction costs, we restrict ourselves to the case of a proportional spread s that
is equal at the ask and bid side, and the same for all assets under consideration. Let P, denote the

midprice of asset i at timet. Then the gross return on taking a long position is equal to

(178/2) Pi,t+l _ Pi,t+l _
(1+52) P, ot P " PR ©)

An important exception is Gibbons and Ramaswamy (1993), who also test term structure models using
Euler equations.
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and for short positionsthe grossreturn is equal to

(1+92) Pi,t+l s Pi,t+1

(1-92) P, - P, "R (10)

Intesting, transaction costs can be taken into account by rewriting the problem asonewith restrictions
on short and long positions (see Luttmer (1996)) and introducing separate assets for along position in
asseti with return ©' R, and for ashort position with return ©°R,_, . As a consequence, the absence of
arbitrage opportunities in the presence of transaction costs requires the existence of a strictly positive

SDF Y., such that

1 1.
= Et[Yt+1R,t+1] < g, i=1,..,n. (11)

TS

Inthe empirical analysiswe use unconditional Euler restrictions. Following Hansen and Jagannathan
(1991) and many others, we incorporate conditional information by constructing returns on managed
portfolios with payoffs x,, = z®R ; and corresponding price vector ¢, = z&,, where z is an m
dimensional vector with variables that are in the information set at time t.” The implied unconditional

Euler restrictions are

E[Y. . x
1 < M < 1, i=1,...mxn, (12)
T° E[qn;] TI

where x ., and g, represent thei" component of x,,, and q,, respectively. In the sequel, we shall refer
to the vector x, , asthe vector of returns, and we shall denote the number of returnsin (12) simply by
n, instead of mx n, to avoid too cumbersome notation.

In general, this ‘multiplicative’ approach may not be an optimal way of incorporating conditional

information. Indeed, for the volatility bounds of Hansen and Jagannathan (1991), Ferson and Siegel

"In the empirical analysis section we present our choice of zZ.
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(2003) discuss how to use conditional information optimally. However, the question of how to
incorporate conditional information in an optimal way in case of the specification error bound (to be
discussed in Subsection 3.3) does not seem to be resolved yet. Because of this, and because of the

simplicity of the multiplicative approach, we shall use this approach.

3.2 Testing using a Wald-Test

For every affine term structure model, Wald-type tests of the Euler restrictions for both the frictionless
case (implied by equation (1)) and the case with transaction costs (following from equation (11)) are
relatively straightforward to implement. For the case of transaction costs, theinequality constraints can
be tested along the lines of Kodde and Palm (1986). In this section, we briefly consider how such atest
canbeperformed. Thetest for frictionlessmarketsisaspecial case. Westart by assumingthat the SDF Y,
isfully observed.

Theimplied null hypothesiswetest isthat the SDF satisfiesthe Euler restrictions (12). Given T time-
seriesobservationsonthe n-dimensional vector of returns x,,; and acandidate SDF, we estimatetheratio
of expectationsin (12) by its sample analogue

%Zz—:l Yt+l Xite1

0 ;=10 (13)
1
?Zthl it

Then we use as test-statistic &, given by

~ ~-1,A
g T(V-V) W™ (V-v)
1 1. (14)
TI .

g, = min

where v = (v,,...,v,)’, and whereW denotes a consistent estimator of the asymptotic covariance matrix

of V = (V,,....)". As suggested by Wolak (1989, 1991), we interpret this test as a local test of the

SERR)

-11-



inequality constraints, meaning that -from an asymptotic point of view- for eachi=1,...,n, at most one of
the inequalitiesin (14) will be relevant.® As discussed in appendix C, the test is then a straightforward
special case of the test proposed by Kodde and Palm (1986).

In the absence of transaction costs, thetest-statistic &, reducesto the J-statistic of Hansen (1982), and
follows, under the null hypothesis, asymptotically a chi-square distribution with n degrees of freedom.
In case of transaction costs, it follows from Kodde and Palm (1986) that, under the null hypothesis, this
test-statistic isasymptotically distributed asamixture of chi-square distributions. Inthis case simulation
can be used to obtain p-values for a given value of the test-statistic.

In the empirical applicationthe SDFY,, contains unknown parameters, which have to be estimated.
Estimation of the SDF means that the limiting distribution under the null hypothesis of the test statistic
discussed above has to be adapted. We refer to appendix C for further details.

A disadvantage of the testing methodology of this subsection is that, if amodel isrejected, thereis
little indication of the direction of the misspecification. Also, if one rejects two non-nested models, no
indication is obtained whether one model is more misspecified than the other. In the next subsection, we

will argue that the use of the specification error bound overcomes these problems.

3.3 Testing using the Specification Error Bound

Asstressed by Hansen and Jagannathan (1997), an asset pricing model isan approximation of reality and,
therefore, it will typically not exactly satisfy the Euler restrictionsin an empirical analysis. Theseauthors
propose to measure the size of misspecification of a given proxy model, with SDF Y, ,, by measuring
in some way the pricing errors of this proxy model. In this section, we briefly describe the part of their
approach that is relevant for our application. Again, we start by assuming that the SDF Y, is fully

observable.

& A global interpretation of our test procedure would imply that we overestimate the size of transaction
costs that is needed to avoid statistical rejection of the model, or equivalently, that we would underestimate the
influence of transaction costs on model misspecification.
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In our case, the proxy model is given by one of the models that we described in section 2. We start
by introducing the set M of admissible SDFs consisting of random variables m,, (which are in the

information set at time t+1) that satisfy the Euler restrictions

Elq E[g
9 S W ﬂ i=1,..,n. (15)
T

TS

Thus, an SDFisadmissibleif it pricesall (linear combinations of) assets under consideration correctly.
The SDF Y,,, that is associated with the proposed model can be used to calculate model prices of the
payoffs, that, in general, may not satisfy therestrictionsin (15). Hansen and Jagannathan (1997) propose

to measure the size of this misspecification by

8% = min,  E[(Y.,-m, ). (16)

The square root of (16) is called the Specification Error Bound (SEB), and can be interpreted as a
(minimum) distance between the proxy SDF Y,,, and the set of admissible SDFs.’

For the casewithout market frictions(i.e.,t° = v = 1in(11)), Hansen and Jagannathan (1997) show
that the SEB following from equation (16) has an interpretation as the maximal pricing error of all

portfoliosin the n assets

8 = max, o [E[Y,; (VX)) -2l

A

17
st. E[(Ax,)%] =1 an

It is easy to show that this interpretation of the SEB still holds in the case of transaction costs. More

precisely, given the set M defined by (15), one can show that, with market frictions of the form (11), &

®Hansen and Jagannathan (1997) a so introduce a bound where the set of admissible SDFs only contains
SDFs with the same unconditional mean as the proxy SDF, and show that this condition is automatically satisfied
if one analyzes models with a stochastic discount factor that contains an additive, unknown constant term, that is
chosen such asto minimize the SEB. We do not analyze stochastic discount factors with this property, and we also
do not impose this restriction on the mean of the SDF, because this would imply that any model that we analyze
prices the return of a one-period bond without error.
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satisfies

8 = max, _ o Min,_go [E[Y,.; (M%) -2V

st. E[(Ax,.)] =1 (18)
Elq,] Ela] .
<V < , 1=1,...,n.
75 7

Both (17) and (18) show that & givesabound on pricing errors of portfolio payoffsthat are normalized
in a particular way. Note that this normalization does not imply that the components or ‘weights' in A,
which are egqual to the Kuhn-Tucker multipliers of the binding Euler restrictions (see Hansen and
Jagannathan (1997)), sum up to one.

A dlight modification of africtionless result in Hansen and Jagannathan (1997), adapted to the case

of transaction costs, reveal s that the SEB of (18) can also be calculated as

82 = minVERn E[YﬁlXH]_*V]/E[XH]_X[+]_/]71E[Yt+1X[+17V]

19
sit. i(z't] <V < i?'t] i=1,...,n (19)
T

T
Comparing this with equation (14) shows that the SEB is closely related to the population anal ogue of
the Wald test-statistic. The only difference is the weighting matrix.

By replacing population momentswith their sample anal oguesin equation (19), an estimate § forthe
SEB can be obtained. Hansen, Heaton and L uttmer (1995) show, under the assumption that the true &
isstrictly positive, that thisestimator has asymptotically anormal limiting distribution; they also provide
aconsistent estimate for the asymptotic variance™. The assumption that the true bound isstrictly positive
is crucialy different from the setup of the Wald-test, where the null hypothesis is that the model is

correctly specified.

191 the true & is equal to zero, Hansen, Heaton and Luttmer (1995) argue that the limit distribution is
mixed chi-squareif there are no transaction costs. Thistest isthen less efficient than the Wald-test discussed in the
previous subsection.
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Thus, athough the mathematical difference between the Wald test-statistic and the SEB is only the
form of the weighting matrix, the Wald-test and the SEB aretwo complementary approaches. The Wald-
test allowsfor efficient statistical testing based on the Euler restrictions of agiven model, but it does not
provide information on the direction of misspecification. If the model is misspecified, the properties of
the tests are not easy to derive. For the SEB, it is a priori accepted that the model is misspecified;
therefore, the size of misspecification is measured, along with the contributions of individual assetsto
this misspecification size by means of the Kuhn-Tucker Multipliers.

Inthe empirical application, we do not observethe SDF Y, ., but, instead, we haveto estimateit. The
preliminary round of estimation requires that the limit distribution of the SEB has to be adapted in a

similar way as the Wald test.

4 Empirical Results

4.1 Data

Thedataset that we use contains monthly dataon interest rates and bond holding returns. Theinterest rate
data are drawn from the CRSP Fama Files, and consist of interest rates of maturities ranging from 1
month to 5 years. The short-maturity interest rates are derived from T-bill prices, and the long-maturity
interest rates are cal culated from bond prices. We use a subsample from 1972-1997*, consisting of 312
monthly observations. Intable 1 some basi c sample statistics of the dataare presented. Theseinterest rate
data are used for the first-step Kalman filter estimation discussed below.
< Insert table 1 around here >

The monthly holding returns data that we use also come from the CRSP Fama Files. For maturities

up to one year, we use the nominal holding returns that are calculated from T-bill prices. For longer

maturities, we use the returns on the so-called maturity portfolios available in the CRSP Fama Files,

YBefore 1972 there are missing observations for some variables in the data.
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which are constructed from bonds whose maturity liesin agiven interval. The intervalswe use are: 2 to
3years, 4to 5 years, 5to 10 years, and larger than 10 years. These returns exactly represent returns on
tradable portfolios. Again we use the subsample from 1972-1997. In table 2 we report some sample
properties of these data. From thistable, it is clear that the average holding returns differ considerably
for the various short maturities, whereas the differencesin average holding returnsfor the long-maturity
assets are quite small, relative to the standard deviations and the difference in maturity.

< Insert table 2 around here >

In table 3 we report information on the bid-ask spreads on T-bill prices, which are derived from the

CRSP data. It follows that the size of the transaction costs due to the bid-ask spread is around 1.5 basis
points, averaged over time and over al T-bills. Table 3 also shows that the bid-ask spreads have
decreased considerably during the last 25 years. For bonds, we refer to Chakravarty and Sarkar (1999),
who report a bid-ask spread of government bonds (with maturities ranging from 10 months to 30 years)
of around 11 cents when reported on the basis of a $100 par value.

< Insert table 3 around here >

The following sets of assets returns will be used in the empirical analysis:

1. Short-Maturities Asset Set: Four T-bills with maturities of 1, 3, 6, and 9 months.

2. Long-Maturities Asset Set: Four bond portfolios with maturity intervals equal to 2to 3years, 4t0 5

years, 510 10 years, and larger than 10 years.

3. All-Maturities Asset Set: Set 1 and set 2.

Thus, we consider three subsets of assets, one that contains only short-maturity T-bills, another one that
contains only long-maturity bonds and a third one that contains bonds of both short and long maturities.

The maturities of the T-bills are the same asin Luttmer (1996). As mentioned earlier, we will both use
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monthly and quarterly returns on these assets to perform the Wal d-tests and cal cul ate the SEBs.

4.2 First round Maximum Likelihood estimation results

Before being able to test the models, we first need to estimate the SDFs Y, ; = Y, ,(0) of the various
models, see equation (7) for the completely affineyield models. We use Maximum Likelihood based on
the Kalman filter to estimate the parameter vector 6. This estimation procedure is described in detail in
appendix B. Some of the affine subfamilies contain many parameters (more than 20 in the three-factor
case). Therefore, following Duffee (2002), we first estimate a completely unrestricted specification for
each subfamily, and set parameters with t-ratios smaller than 1 in absol ute size equal to zero in a second
estimation step, except parameters that are restricted to be strictly positive (the diagonal components of
(I-A), and the unconditional means of square-root factors, see equations (2) and (3)). To prevent an
overload of tables, weonly report resultsfor the most preferred model sfor three sets of models (two- and
three-factor completely affine models, and three-factor essentially affine models), where we use as
criterion to select the most preferred models the monthly SEB for the all-maturities asset set. The
estimation results for these ‘ most preferred” models are presented in Table 4.2
< Insert table 4 around here >

For both the two- and three-factor models, onefactor has very slow mean reversion, so that thisfactor
causes almost parallel term structure movements. The other factors revert much faster to their long-term
means, and therefore mainly influence short-maturity interest rates (in linewith results of De Jong (2000)
and Duffee (2002)). The model fit seems very reasonable, with the best performance for the EA,(3)

model, which has a mean absolute yield error of 6 basis points across all maturities.

4.3 Conditional information

To perform the tests described in section 3, we also need to specify the conditional information. Recall

2The other estimation results are available upon request.
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that X, = zZ®R , and g, = z& , where z isavector with variablesthat arein theinformation set at
timet. Following Luttmer (1996), we construct these conditioning variablesin such away that they are
awayspositive, so that short-selling constraints or transaction costs are straightforward to impose on the
‘conditional’ assets as well. Given the empirical evidence that the yield spread predicts future interest
rate movements (Fama and Bliss (1987) and Campbell and Shiller (1991)), we choose to use the yield
spread as conditioning variable. More precisely, in case of the Short-Maturities Asset Set the conditional
information consists of a constant and the ratio of the 1-year and the 3-month interest rate (‘ the short
yield spread’); in case of the Long-Maturities Asset Set the conditional information consists of aconstant
and the ratio of the 5-year interest rate and the 1-year interest rate (‘the long yield spread’); and in case
of the All-Maturities Asset Set the conditiona information consists of a constant, the short yield spread
for T-bills and the long yield spread for the maturity bond portfolios. This implies that the Short-
Maturities Asset Set and the Long-Maturities Asset Set both contain 8 returns, whereasthe All-Maturities
Asset Set contains 16 returns.

Dai and Singleton (2001) and Duffee (2002) analyze to what extent essentially affine models can fit
the observed predictability of bond returns by the yield spread. Effectively, they assess the difference
between the empirical covariance and the model-implied covariance of the current yield spread with the
subsequent bond return. To rel atethese covariance moment restrictionsto the Eul er equations, werewrite
the Euler restrictions in equation (12) as follows

E[qit] _ COV[YH]_,)%’H]_]
TELY,, ] E[Y;.]

Elg]  CovY. 1%l
TE[Y, ] E[Y,..

< E[xiM] < , 1=1,...,mxn. (20)

Thisequation showsthat the Eul er equati ons can berewritten into restrictionson unconditional expected
bond returns (since z includes a constant), and on conditional expected bond returns (since z includes
theyield spread). Wethustest whether the average (conditional) bond returns sati sfy the lower and upper
boundsin (20), which are implied by a specific pricing kernel. Given that we include the unconditional

expected bond returns as moment restrictions, the restrictions on the conditional expected bond returns
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are directly related to restrictions on the covariance between the yield spread and bond returns, as
analyzed by Dai and Singleton (2001) and Duffee (2002). Compared to these two articles, our set of test
restrictionsisthuslarger, sinceweal soincludethetermstructure of unconditional expected bond returns.

Given the estimated SDFs of the various models, we can get afirst impression of the model accuracy
by calculating the pricing errors of the managed portfolios constructed from the All-Maturities Asset Set

for each of the models. The pricing error for the managed portfolio based on asset i is defined as

1 1w
_Z Yt+1 )ﬁ,nl B _Z Uit (21)
Tt:l Tt:]_

Intable 5 we present the average pricing errorstogether with corresponding t-values, calculated over all
managed portfolios on the basis of the All-Maturities Asset Set for the different models, in case of a
monthly holding period. The most preferred two- and three-factor completely affine yield models are
performing more or less equally, while the three-factor most preferred essentially affine yield model
seemsto perform slightly better. Table 5 al so contains the pricing error correlation across the modelsto
show which models are close and which are more apart. As can be seen from this table, there is a
substantial correlation between the pricing errors of the various preferred models.

< Insert table 5 around here >

4.4 Power of Wald test

Before discussing the empirical results, we use simulation to analyze the power of the Wald test
methodology. The simulation setup consists of the following steps. First, we simulate a three-factor
model and add transaction costs of 1 basispoint to the simulated bond pricesin arandomway acrosstime
and maturities (i.e., the bond priceis multiplied with 1+t or 1-t with equal probability). From these bond
prices, we then construct monthly time series of interest rates and bond returns (for a 25 years time
period). Wethen usethe simulated datato estimate and test both the (correct) three-factor model to assess

the size of the test, and a two-factor model to assess the power of the test. The two-factor model is a
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special case of the three-factor model. This procedure is repeated 1000 times.
< Insert table 6 around here >

We analyze three subfamilies of affine three-factor models. Panel A of Table 6 gives the results for
the size of thetest. In case of tests that assume frictionless markets, the ssmulation results show that the
teststend to reject model stoo often (given aconfidencelevel of 95% and the 25-year sample size). Once
we incorporate the assumed transaction cost of 1 basis point in our Wald test, the empirical size of the
testiscloser to the 5% level, athoughinthis casethere aretoo few rejections of themodel. Next, weturn
to Panel B of Table 6 which showsthe power of the Wald test (and the associated SEB). For the tests of
the two-factor model sthat assume frictionless markets, wefind aclear rejection of the two-factor models
in almost all of the 100 simulations. The SEB for the two-factor modelsis also large and comparablein
size to the SEBs that we find empirically for the two-factor models in case of frictionless markets (as
discussed in subsection 4.4). We al so test the two-factor models allowing for the presence of transaction
costs of 1 basis point. In this case, we find that the rejection rate is somewhat smaller compared to the
frictionless market test. However, the Wald test still rejects two-factor models in the majority of the
simulations, and the SEBs of thetwo-factor modelsarelarge. Finally, Table 6 showsthat a95% rejection
rateisobtained if one assumestransaction costs of about 0.1 basis point. In sum, these simulation results
show that the Wald test has reasonabl e power to distinguish two-factor models from three-factor models

for the sample size used in this paper, even if we allow for the presence of transaction costs.

4.5 Empirical test results

In this subsection we present empirical results for the specification tests, first of all, for a setup without

transaction costs, and then with transaction costs, and both for monthly and quarterly holding periods.

We start with the case without transaction costs.

< Insert table 7 around here >
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In table 7, we present the results of the Wald-test.”® As the table shows, the Wald-test (conducted at the
5% level) onthefrictionless Euler restrictionsrejectsal (preferred) modelsfor all asset setsand for both
monthly and quarterly holding periods with only one exception: the most preferred completely affine
three-factor yield model applied to thelong-maturities case, using amonthly holding period. This model
is however strongly rejected on the basis of the full set of assets. Thus, when confronted with the
frictionless Euler restrictions, we have to conclude that generally speaking the models seem to be
misspecified. For thetwo-factor models, thisisin linewith other research: using different test procedures
and different data, Dai and Singleton (2000) and De Jong (2000) also reject two-factor term structure
models. Interestingly, eventhethree-factor essentially affinemodel isrejected statistically. Duffee (2002)
has shown that the fit of this model is clearly better than the completely affine models, but that the
essentially affine models still have problemswith fitting both thetime-variation in conditional variances
andinterest raterisk premia. Our test resultscomplement Duffee’ sresultssincewe show that thereisalso
statistical evidencethat the essentially affine model s are misspecified, if we assume frictionless markets
and focus on the term structure of expected (conditional) bond returns.
< Insert table 8 around here >

Table 8 reports the SEBs of the various preferred models. As can be seen from this table, the SEBs
arelarge and far from zero. Notice that the difference between the various modelsis quite small, in line
with the correlation results reported in table 5.

The SEBsin case of the T-bills are much larger than the bounds based on long-maturity bonds. As
Luttmer (1996) notices, an explanation for the high T-bill boundsisthat, because the holding returnson
thedifferent T-billsare highly correlated, differencesin average holding returnson these T-billscan lead
to something close to an arbitrage opportunity. Thus, the admissible set of SDFsisrelatively small. For

the long-maturity bonds the differencesin average holding returns are not very large, especially relative

Bror quarterly holding periods we use the Newey-West (1987) method to estimate W, with two lags, in
order to correct for the overlapping nature of the quarterly pricing errors. We also estimated the matrix W using
Newey-West (1987) with ten lags. This hardly changes the results.
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to the volatility of the holding returns, and thus the admissible set of SDFsislarger in this case.

The economic significance of the estimated bounds under the assumption of frictionless marketsis
large. For example, based on the SEB results for the All-Maturities Asset Set and the preferred three-
factor essentially affine model, we can conclude that for this model there exists a portfolio, normalized
asin equation (17), with a pricing error of 0.617. This portfolio has an observed (mid)price of 0.646,
whereas the model assigns a price of 0.029 to this portfolio. The multipliersin equation (17) define the
weights of this maximum pricing error portfolio and show that this most severely mispriced portfoliois
characterized by extreme short and long positionsin bonds with adjacent maturities (not reported). This
implies that the model is rejected in this frictionless setting because the observed behaviour of bond
returns of different maturitiesisless smooth than implied by the model. In his study of Euler equations
for equity returns, Cochrane (1996) also finds that portfolios with long and short equity positions are
largely mispriced.

To obtain further insight in these results, we calculate the pricing errors for two types of portfolios:
portfolios in only one T-bill or bond, and two-asset portfolios that have a long paosition in one T-bill
(bond) and an equally large short position in another T-bill (bond). To facilitate the comparison between
these portfolio pricing errors and the SEBs in table 8, we normalize these portfolio weightsin the same
way asthe SEB-weights A in equation (18) are normalized. Table 9 presents the monthly pricing errors,
in case of the preferred essentialy affine three-factor model. It follows that individual T-bill and bond
returns have low pricing errors; the normalized pricing errors are much smaller than 0.01 for all assets.
The normalized pricing errorsfor the portfoliosin two assets are much larger than the pricing errorsfor
the individual assets, especialy for the T-bills. Hence, the difference between the small pricing errors
of two highly correlated T-bill returns implies a large pricing error for the portfolio that has a long
position in one T-bill and a short position in the other T-bill. Although the individua pricing errors of
the short-maturity assets are comparable to those of the long-maturity assets, the higher correlation and
lower variance of the short-maturity asset returns gives higher pricing errorsfor the short-maturity two-
asset portfolios.

< Insert table 9 around here >
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Table9isalso useful to compare our resultsto those of Dai and Singleton (2001) and Duffee (2002).
In section 4.3 we argued that our set of test restrictionsis larger than the set used by Dai and Singleton
(2001) and Duffee (2002), since we also focus on the term structure of unconditional expected bond
returns. Table 9 shows that these additional restrictions are important: especially the pattern of
unconditional expected returns on T-bills of different maturities leads to arejection of the essentially
affine models.

Overadl, the conclusion is that under the assumption of a frictionless market up to three-factor
completely and essentially affine yield term structure model s do not seem to perform appropriately. One
way to proceed is to turn to more-than-three-factor affine term structure models. However, in case of
more-than-three-factor model s, estimation becomes quickly much harder. A moreinteresting possibility
is to examine models outside the class of (essentially) affine models, as is done by Ahn, Dittmar, and
Gallant (2002), Duarte (2003), and Leippold and Wu (2003). Instead of this aternative, we choose to
stick to the tractable class of affine models, and investigate whether the assumption of a frictionless

market is too strong.

Therefore, we turn to the case with transaction costs.

< Insert table 10 around here >
In table 10 we present the results for the corresponding Wald test. We allow for transaction costs of t
(=92intermsof equations (9) and (10)) basis points per holding period, assuming for simplicity that the
transaction costs are the same for all transactions. We determine the critical transaction costs, defined
as the amount of transaction costs for which the p-value of the Wald-test equals 0.05. For monthly
holding periods, it followsthat for relatively small amounts of transaction costs of lessthan 1 basis point,
none of the preferred models is statistically rejected anymore. For quarterly holding periods larger
transaction costs, up to 2.8 basis points for two-factor models and 2.6 basis points for the three-factor
models, are required in order to avoid statistical rejection of the models. Because the monthly pricing

errorsare only very weakly correlated over time, the quarterly pricing errors are larger than the monthly
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pricing errors and, therefore, also larger transaction costs are required to accept the model statistically.
Confronting thecritical transaction costswith the transaction costs as observed in the market, we seethat
the models only have difficulty in fitting the Short Maturities Asset Set with a quarterly holding period
appropriately. Only for this case we find critical transaction costs (between 2 and 3 basis points) larger
than the average of 1.5 basis points found in the data on T-bills. The evaluation of the term structure
models thus becomes much more positive, than when judged on the basis of frictionless Euler
restrictions: the difference between observed and model-implied (conditional) expected bond returnsis
not significant once we correct for market size transaction costs. As discussed earlier, Duffee (2002)
notes that essentially affine models have problemsin fitting both the time variation in expected returns
and the time-varying behavior of volatilities. Our results show that allowing for transaction costs
considerably softenstherestrictions on expected (unconditional and conditional) bond returns. Thismay
give more freedom in fitting the time-varying behavior of volatilities. Since we estimate the model
parametersin afirst step, thistradeoff isnot directly observablein our parameter estimates. An analysis
that combinesthefirst-step ML estimation with the Euler restrictionsin case of transaction costs, as used

in the second step, isleft for future research.

< Insert figures 1 and 2 around here >

In figures 1 and 2 we plot the SEBs as function of the transaction costs, distinguishing between the
monthly and quarterly holding periods cases, respectively. Focusing first on the monthly holding period
case, we see that figure 1 shows that the size of the SEB is below 0.1 at transaction costs of 1.6 basis
point, which iseconomically rather small. In thefrictionless case, extreme short and long positionsin T-
bills and bonds blow up the differences between pricing errors of T-bills and bonds so that standard test
procedures reject the affine models. However, if small transaction costs are taken into account, these
differencesin pricing errors are not large enough to cause rejection of the models.

Next weturnto figure 2, showing the quarterly holding period case. Compared to the monthly holding
period, larger transaction costs of more than 3 basis points are required in the quarterly holding period

caseto obtain asmall SEB, inlinewith the findingsfor the Wal d-tests. Thefigure showsthat thereisstill
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a strong influence of small transaction costs on the SEBSs, although it is clearly less strong than for
monthly holding periods.

Concluding, we see that the SEB-results are quite in line with the Wald-test results: with transaction
costs of market size, the affineterm structure model s seemto performreasonably well. Only for the Short
Maturities Asset Set in case of a quarterly holding period, the restrictions implied by the models are
rejected. As noted by Duffee (1996), the one- and two-month T-bill returns contain an idiosyncratic
component, unrelated to returnson securitieswith longer maturities. Hisexplanationfor thisidiosyncratic
variation is market segmentation. This might (partially) explain the rejection of the models on the basis

of the Short Maturities Asset Set.

4.6 Simulation study

The empirical results suggest that, when allowing for transaction costs, the affine yield models seem to
be able to provide areasonabl e description of the term structure of interest rates. In this subsection, we
ask ourselves the following question: Assuming that the data are indeed generated by an affine yield
factor model with transaction costs, can we explain why two and three-factor models are rejected in
frictionless markets?
< Insert table 11 around here >

To answer this question, we perform a second simulation study. We simulate two-factor models,
adding transaction costs of 1 basis point, and then estimate and test three-factor models assuming
frictionless markets. The results are given in table 11. They indicate that a three-factor model cannot
accurately fit returns generated by atwo-factor model with transaction costs. A possible explanation for
thisisasfollows. Assuming that the direction of trading isindependent of thetrue state, transaction costs
essentially add idiosyncratic factors to the bond returns, so that adding one extra common factor is
unlikely to give correct pricing of bonds.

These simulation results show that the presence of transaction costs can lead to arejection of three-

factor affine models if one tests under the assumption of frictionless markets. In line with these
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simulation results, we find empirically that three-factor models are rejected in case of frictionless

markets, and that this apparent misspecification isresolved once we allow for modest transaction costs.

5 Summary and Conclusions

In this paper we analyze the bond pricing implications of both completely and essentially affine term
structure models, with up to three factors, allowing for the presence of transaction costs. The goa of the
paper isto assess the importance of incorporating market frictions for tests of bond pricing models.

Our tests focus on Euler equations, which can rewritten into restrictions on expected (conditional)
returns on bonds of different maturities. By including the yield spread as conditioning variable, our tests
include the implications of the affine modelsfor the predictability of bond returns as studied by Dai and
Singleton (2001) and Duffee (2002). However, our set of test restrictionsislarger sincewe also include
the term structure of unconditional expected bond returns.

Wetest two- and three-factor preferred modelsformally for different sizes of transaction costs, using
aWald-test, and we measure the size of misspecification of these models and analyze how sensitive the
misspecification size is to the size of the transaction costs. Our analysis can be seen as an extension of
Luttmer (1996), because we use the stronger specification error bound test, as opposed to the volatility
bound that isused by Luttmer (1996). Also, L uttmer (1996) focuses on consumption-based asset pricing
models, whereas we analyze models for the term structure of interest rates.

We find that, under the assumption of frictionless markets, completely and essentialy affine yield
model swith up to three factorsin general misprice T-bill and bond returnsin asignificant way. Theterm
structure of average bond returnsisless smooth than predicted by the model, so that long-short portfolios
of near-maturity bonds are significantly mispriced. However, if we take transaction costs of market size
into account, we find that the misspecification of the models disappears, in case of a monthly holding
period. For quarterly holding periodsand using market sizetransaction costs, the model sfit long-maturity

bond returns well, and are only rejected on the basis of short-maturity T-bill returns.
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Appendix A: Identification Restrictions

Not all parametersin the (essentially) affine model in equations (2) and (3) can beidentified. To ensure
econometric identification of the model, we impose the same normalizations as in Dai and Singleton
(2000) and Duffee (2002). For the sake of compl eteness, we describetheidentification restrictionsinthis
appendix.

We start by discussing the case of completely affine models (2). Dai and Singleton (2000) show that
the class of N-factor completely affine models consists of N+1 non-nested subclasses of models. The
classification is based on the number of factors mthat enter the conditional variance of the factors. The
associated subfamilies are denoted A,(N),..,A (N),...,Ay(N).

We define K = |- A inorder to maintain a similar notation as in Dai and Singleton (2000). We
partition a, as a, = (a%,a,”), where a® ismby 1 and a, is (N-m) by 1. We now list the restrictions
on the parameters that lead to identification of the remaining parameters for the A _(N) subclass. First

of al, if m=0, K isupper or lower triangular, and for m>0

BB
K O
(N-m)
K - . (A1)
KDB KDD
(N-m)xm (N-m)x(N-m)

In addition, for al m=0,...,N, we normalize

B
_ p'mxl
p‘ O 1
(N-m)x1
X =1,
| O (A.2)
o = 1 y
| T(N-m)x1
| BBD i
B = (Bly---’Bn) = 0 m OrnX(N m) "1
| T(N-m)xm (N-m)x(N-m)

and impose the following parameter restrictions
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9,20, m+l<i<N,

m
Z Kij pj>0, 1<i<m,
-1

K;<0, 1<j<m, j=i, (A.3)

K>0, 1<i<m,

Bij >0, 1<i<m, m+1<j<N.

Next, we discuss therestrictionsin essentially affine models, thus allowing for anonzero I' matrix in
(2) and(3). Inadditiontotherestrictionslisted above, Duffee (2002) showsthat inanessentialy affine EA_(N)

model the following normalization renders identification of the remaining parameters

0

mxN

r - (A.4)

D
F(N—m)xN

Thisimpliesthat the class of EA,(N) models coincides with the A (N) class,

Appendix B: Kalman Filter ML Estimation

In this appendix, we briefly describe the Kalman filter estimation of affine term structure models. For
amore detailed exposition, we refer to Duan and Simonato (1999) and De Jong (2000).

The Kalman filter state space model is characterized by the transition equation and the measurement
equation. The affine yield models in equation (2) and (3) provide the following transition equation for

the factors

ETONCEN RS (B.1)

Given the normality of & ,, the conditional distribution of the factors a,,, is multivariate normal, with

conditional expectation and covariance matrix given by
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Ela.,la] = 1 + Ala-W), Va,la] = V(@)X (B.2)

These expressions are simpler than those presented in De Jong (2000), because we use a discrete-time
affine model.

The second part of a state-space mode is the measurement equation. We use zero-coupon interest
rates to construct this equation. Let r = (1 ;y--F ) denote aK-dimensional vector with the time-t
interest rates of different maturities n(1),...,n(K), with K>N. From equation (5) we then obtain,

introducing a K-dimensional vector of measurement errors e,

r =

1 1
=A + =B’ .
R, g+ g (B.3)

Here A = (A Ay and B = (BB ) The vector e is assumed to be i.i.d. and normally

distributed with

E[e] = 0, V[g] = diag(c],....op). (B.4)

The errors are thus assumed to be independent across maturities. This completes the state-space model.

Given the conditional normality of ¢, and & _,, Maximum Likelihood (ML) yields consistent and
efficient parameter estimates (Hamilton (1994)). We refer to De Jong (2000) for the Kalman filter
eguations that are needed to construct the Likelihood function. We assume that all factors follow
stationary processes, so that we can use the unconditional expectation and (co)variances of the factors
to initiate the Kalman filter.

A well-known issue with Kalman Filter ML estimation of affine term structure models is that the
conditional varianceof &, depends on the unknown values a,, which makesthe ML estimator based on
the Kalman Filter strictly speaking inconsi stent. Simulation evidence by Duan and Simonato (1999) and
DeJong (2000) showsthat the resulting biasesare very small for reasonable sample sizes. Onecanobtain
consistent estimates by using the Efficient Method of Moments (EMM, Gallant and Tauchen (1996)),

combined with the semi-nonparametric (SNP) method of Gallant and Tauchen (1992). Duffee and
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Stanton (2000) provide a comparison of EMM/SNP estimation and Kalman Filter ML estimation. They
report important small-sample biases for the EMM/SNP method, and conclude that ‘for reasonable

sample sizes, the results strongly support the choice of the Kalman filter’.

Appendix C: Limit Distribution of Wald Test

We first discuss how our set-up fitsinto the framework of Kodde and Palm (1986) (KP from now on) in
casethe SDF isfully observable. After this, we discussthe required modificationswhen the SDF includes
unknown parameters that are estimated in a preliminary round.

Our case fitsin KP, case 2, with h(8) =h,(6) =0,q=0. In our case, the definition of 0 is given by

0 = (01,0

0, = (0,,,....0, )

1 1177 1n

0, = (0,0, C.1)
e1i - E[Yp,lxi’hl], i:1,...,n

0, = E[qg,], i=1,...,n

The function h(6) =h,(6) is defined by

h(®) = (h,(6)’....n (6))
h(6) = (h(6) h°©)), i=1,...n
(C.2)
h°0) = 0,/6, - 1/7° i=1,...,n

h°0) = -0,/0, + 1/7, i=1,..n

Thenwe can formulate the null hypothesisin the main text in terms of the notation of KPas H,: h(6) > 0.

However, in this set-up the components h,*(6) and hib(e), i=1,...,n are not independent, as required by
K P. Wetakealoca point of view, whichmeansthat for eachi=1,...,nat most oneof thetwo possibilities h,(6) > 0

and h; b(e) >0 will be relevant. Thus, when deriving the limit distribution of the test statistic under the
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null, weonly haveto include the relevant hij(e), je{ab},i=1,...,n, whichwe stack into an n-dimensional
vector function h(6).

As estimator for 6 we take

b = (0y,..0,,)

(C.3)

1

li ?Zt Yt+lXi,t+1' i=1,..,n

D>
Il

1 .
0, = ?Zt Oy =10

Obvioudly, using an appropriate version of the Central Limit Theorem, we have

JVT® - 6) - N(O,V(8)) (C4)
where V(6) can be partitioned in accordance with 6 = (6] 6)’ as

V(o) = (C.5)

Vi (0) Vi,(0)
Var(0)  Vio(0)
Define H, (0) = 1/6,, H,(0) = -6,/05. Then

oh;"(6) oh;"(6)
a0 ) 30

B Hli(e)

1i Li

(C.6)
MO o O
30 2(0) 90

B Hzi(e)

2i 2i

So, the difference between the > and the *-version is simply the sign. Let H,(6) =diag(H,,(6),...,H,(6))
and H,(0) =diag(H,,(0),...,H,,(6)) , and let ﬁl(e) and ﬁz(e) denotetheversionsof H,(6) andH,(6) with
the relevant > or the *-version included (following our local point of view). Applying the delta-method,

we find
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VT(R®) - h(©)) = (H,(6), HO)VT(® - 6) + 0(1) (C7)

so that the limit distribution of /T (h(6) - h(6)) isthe normal distribution with mean 0 and covariance

matrix

V.. () V,(0))] H,(®
e, gy RO O (C8)
Vu(0)  V,,(0) H,(0)
Due to the structure of H,(6) and H,(6) it is easy to see that thisis equal to
e, rap| OO (C9)
EETV,(0) Vyy(6)){ Hy6) '

which is the X-matrix used by KP. This completes the discussion of how our set-up fitsin KP, in case
the SDF does not depend upon unknown parameters.
When the SDF depends upon unknown parametersthat are estimated in apreliminary round we have

the following modification of the set-up presented in KP. First, we have

0, = 0,(@) = (0,4(0),....0,, ()’

. (C.10)
0y(0) = E[Y, ()% ,,], 1=1,...,n
Since a is unknown, we estimate it in apreliminary round by a, satisfying
R 1
VT@ - o) = == w(@) + o(1) ci1
ozt p (C.11)
with E(y,(a)) = 0, E(\yt(a)z) < . Weestimate 0,,(a), i=1,...,n, by
~ 1 n i
0, = ?Zt Y,,1(0)% .10 =100 (C.12)

We now illustrate how the limit distribution of ., can be derived. The general casefor 6 = (8, 6,)’,
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with 8, = (8,,,....8,,)’, then follows straightforwardly. We have

‘/T(%Zt Y,.1(0) X1 ~ E(Y;.4(e) Xivt*l) )

aY, .
:\/-—r(%zt Yo @)% — B(Yiq(a) Xml)) + %Zt %ﬁ(& —a) + 0,(1)

Y (@)X 1y 1 (C13)

:‘/T(%Zt Yea( WX - E(Y+1(a)xi,t+l))+%zt Zt yy(@) + 0,(1)

da’ JT
oY, ()X . 1 Yea(@)X ey — E(Ya(@)X 1)
_ 1, t+l it+l T—
( a(l/ )\/— T Zt Wt(a)

fromwhich the limit distribution of %Zt Y,.1(@) X ., followswithout further complications. Giventhe
limit distribution of & thelimit distribution of h(6) followssimilarly tothe casewithout initial parameter

estimation.
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Tables

Table 1. Properties of Interest Rates.

The sample moments are cal culated for interest rates from the CRSP Fama Files, which contains monthly data
for the period 1972-1997. Interest rates are expressed on ayearly basis.

Maturity in Months Mean St. Deviation Autocorrelation
1 6.61% 2.67% 0.96
3 7.03% 2.78% 0.97
12 7.50% 2.64% 0.97
24 7.78% 2.49% 0.98
36 7.96% 2.38% 0.98
48 8.11% 2.30% 0.98

60 8.20% 2.24% 0.98




Table 2. Properties of Holding Returns.

Thetable contains sample moments of monthly holding returnson T-billswith maturitiesof 1, 3,6 and 9 months
and monthly holding returns on portfolios of bonds with maturities in a certain maturity interval, which are
calculated using CRSP data for 1972-1997.

Maturity in Months Mean St. Deviation Autocorrelation
1 0.56% 0.23% 0.95
3 0.61% 0.27% 0.81
6 0.63% 0.36% 0.50
9 0.65% 0.49% 0.36
24-36 0.69% 1.20% 0.17
48-60 0.70% 1.67% 0.15
60-120 0.73% 2.07% 0.14

> 120 0.78% 2.92% 0.12




Table 3. Bid-Ask Spreadsof T-bill Prices.

Bid-ask spreads are in basis points and cal culated by dividing the difference between bid and ask prices by the
mid price. Data on bid and ask prices come from the CRSP T-bill dataset.

Maturity Average Bid-Ask Standard Average Bid-Ask Standard
Spread, Deviation, Spread, Deviation,
1972-1997. 1972-1997. 1987-1997. 1987-1997.
1 month 1.3bp 14 bp 0.4 bp 0.3bp
3 months 21bp 21bp 0.5bp 0.2bp
6 months 4.1bp 4.0bp 1.1bp 0.2bp
9 months 5.9bp 5.3bp 1.6bp 0.3bp




Table4. Kalman Filter ML Estimation Results; Preferred Models.

The table contains the results of Kalman Filter ML estimation of discrete-time, monthly, two-factor and three-
factor affine models. In appendix B, details on Kalman Filter ML estimation are provided. In brackets the
standard errors are given. Also presented are the mean and variance of the implied stochastic discount factor,
aswell asthe mean absolute yield error for the fitted interest rates. All parameters are expressed on a monthly
basis.

Parameter Ay(2) model A,(3) model EA,(3) model
© 0.006 (0.003) 0.003 (0.002) 0.002 (0.002)
100 ¢, , 0.036 (0.014) 0.002 (0.002) 0.002 (0.003)
100 ¢, , 0.047 (0.028) 0.029 (0.021) 0.027 (0.022)
100 @, 5 - 0.058 (0.049) 0.060 (0.045)
Hy - 1.238 (0.982) 1.412 (1.083)
Ay 0.998 (0.023) 0.999 (0.019) 0.999 (0.019)
Asy 0.925 (0.048) 0.673 (0.174) 0.713(0.187)
Ay 0.006 (0.004) - -
Ag - 0.949 (0.099) 0.933 (0.134)
Agy - 0.009 (0.007) 0.011 (0.008)
Box - 0.011 (0.006) 0.017 (0.013)
100y, -1.082 (1.277) -0.125 (0.345) -
100y, -2.636 (0.914) -0.541 (0.246) -0.384 (0.232)
100y, - -0.520 (0.427) -0.355 (0.319)
100 Ty, - - -0.059 (0.066)
100 T, - - 0.094 (0.086)
100 Iy, - - 0.035 (0.012)
Mean of SDF 0.9958 0.9942 0.9952
St.Dev. of SDF 0.0313 0.0540 0.0813
Mean Absolute yield 8.75 basis points 6.62 basis points 6.02 basis points

error




Table5. Pricing Error Correlations across Preferred Models.

For each asset in the all maturities asset-set, the correlation between the monthly pricing errors of two models
is calculated. The table presents the average of these correlations over al assets, for each pair of the preferred
models. Thetable also contains for each model the average pricing error, averaged over all assets, aswedl asthe

t-ratio of this average.

Avg. Pricing Ay(2) A.(3) EA.(3)
Error [t-ratio]

Ay (2) -0.0035[1.75] 1

A (3) -0.0039[1.88] 0.672 1

EA,(3) -0.0020[0.92] 0.538 0.772 1




Table 6. Simulation of Three-Factor Modd with Transaction Costs:
Test of Three-Factor and Two-Factor M odels

For each benchmark three-factor model, a monthly time series (25 years length) of interest rates and bond
pricesis simulated, adding transaction costs of 1.0 basis point to bond prices. In total, 1000 simulations are
performed. Next, three-factor (Panel A) and two-factor (Panel B) affine models are tested on these simulated
data, using the Wald test and the SEB, both for the assumption of frictionless markets and allowing for
transaction costs. We use a 5% critical value for the Wald test. Finally, the table reports the amount of
transactions costs that should be incorporated in the Wald test to obtain arejection rate of 95% for the two-

factor model.
Panel A: Tests of Three-Factor Models
Benchmark Model Ay(3) A(3) A4(3)
Tested Model A (3) A3 A(3)
Tests in case of frictionless markets
Percentage rejections Wald test 11.5% 12.2% 13.0%
Median SEB 0.127 0.142 0.133
Testsin case of transaction costs: 1.0 bp
Percentage rejections Wald test 4.0% 3.8% 3.7%
at transaction costs of 1.0 bp
Median SEB at transaction 0.035 0.042 0.040
costs of 1.0 bp
Panel B: Tests of Two-Factor Models
Benchmark Model Aq(3) A(3) As(3)
Tested Model Ay2) A2 AL2)
Tests in case of frictionless markets
Percentage rejections Wald test 97% 98% 97%
Median SEB 0.487 0.511 0.505
Testsin case of transaction costs: 1.0 bp
Percentage rejections Wald test 65.6% 56.8% 61.5%
at transaction costs of 1.0 bp
Median SEB at transaction 0.227 0.232 0.245
costs of 1.0 bp
Transaction costs at which 0.1bp 0.1bp 0.1bp

rejection rate equals 95%




Table 7.Wald-test for Preferred Two-Factor and Three-Factor
Modelsin Frictionless M arkets.

ThetablereportsWald test resultsfor two- and three-factor affine modelsand monthly and
quarterly holding periods. To ca culate the asymptoti c covariance matricesfor the quarterly
holding period, we use the Newey-West method with 2 lags to correct for the overlapping
nature of the returns.

A(2) A3 EA.(3)

Monthly holding period
p-value: Short-maturities 0.000 0.000 0.000
p-value: Long-maturities 0.033 0.089 0.047
p-value: All-maturities 0.000 0.000 0.000

Quarterly holding period
p-value: Short-maturities 0.000 0.000 0.000
p-value: Long-maturities 0.028 0.029 0.012

p-value: All-maturities 0.000 0.000 0.000




Table 8. SEB for Preferred Two-Factor and Three-Factor Modelsin Frictionless
Markets.
Thetablereportsthe SEB for two-factor and three-factor affine models. Asymptotic standard errors of the SEB

are given in brackets. To calculate the asymptotic covariance matrices for the quarterly holding period, we use
the Newey-West method with 2 lags to correct for the overlapping nature of the returns.

Ay2) Aqy(3) EA.(3)

Monthly holding period

SEB: Short-maturities 0.613 (0.057) 0.622 (0.067) 0.598 (0.072)
SEB: Long-maturities 0.195 (0.053) 0.189 (0.053) 0.191 (0.057)
SEB: All-maturities 0.642 (0.063) 0.638 (0.073) 0.617 (0.081)

Quarterly holding
period

SEB: Short-maturities 0.948 (0.088) 0.947 (0.082) 0.921 (0.111)
SEB: Long-maturities 0.342 (0.068) 0.327 (0.057) 0.352 (0.070)
SEB: All-maturities 1.165 (0.092) 1.157 (0.100) 1.150 (0.138)




Table 9. Normalized Absolute Pricing Errorsof Long-Short Portfolios:
Essentially Affine Three-Factor Model.

Thetable contains monthly absolute pricing errors of the essentially affine EA ,(3) model, for one- and two-asset
portfolios. For each T-hill, the long-short portfolio refersto aportfolio of the particular T-bill and the 1-month
T-bill. For each bond, the long-short portfolio refers to a portfolio in the particular bond and the 2-3 year
maturity bond. For these long-short portfolios, the multiplier-vector or weight-vector A in (17) always contains
apositive and an equally large negative element. The portfolio weights are normalized asin equation (17). In

brackets, standard errors of the pricing errors are presented.

Normalized Normalized Normalized Normalized
Pricing Error Pricing Error Pricing Error Pricing Error
Individual Long-Short Individual Long-Short

Assets Portfolios Assets Portfolios

Unconditiona Returns

Conditional Returns

T-bill 1-month ~ 0.0030 (0.0020) - 0.0041 (0.0018) -

T-bill 3-months ~ 0.0025 (0.0020)  0.289 (0.045) 0.0037 (0.0018)  0.297 (0.067)
T-bill 6-months ~ 0.0023 (0.0019)  0.092 (0.042) 0.0032 (0.0021)  0.121 (0.061)
T-bill 9-months ~ 0.0021 (0.0019)  0.044 (0.034) 0.0026 (0.0022)  0.067 (0.046)
Bond 2-3years  0.0018 (0.0016) - 0.0027 (0.0019) -

Bond4-5years  0.0018 (0.0015)  0.066 (0.054) 0.0025(0.0019)  0.045 (0.048)
Bond 5-10years  0.0015(0.0016)  0.038 (0.037) 0.0021 (0.0020)  0.019 (0.043)
Bond >10years  0.0012(0.0017)  0.025 (0.035) 0.0022 (0.0021)  0.010 (0.039)




Table 10. Critical Transaction Costsfor Two-Factor and Three-Factor M odels.

The critical transaction costs are defined as the amount of transaction costs for which the Wald p-value
isequal to 5%. Transaction costs are relative to the price and presented in basis points. Thetable presents
results for monthly and quarterly holding periods, and two- and three-factor affine models.

A2) A(3) EA.(3)
Monthly holding
period
Short-maturities 0.8bp 0.7 bp 0.8bp
Long-maturities 0.4bp 0.4bp 0.3bp
All-maturities 0.9bp 0.8 bp 0.8bp
Quarterly holding
period
Short-maturities 2.3bp 2.2bp 2.4 bp
Long-maturities 0.9bp 0.9bp 0.8bp

All-maturities 2.8 bp 2.6 bp 2.6 bp




Table 11. Simulation of Two-Factor Model with Transaction Costs: Tests of
Three-Factor Modelsin Frictionless M ar kets

For each benchmark two-factor model, a monthly time series (25 yearslength) of interest rates and bond
prices is simulated, adding transaction costs of 1 basis point to bond prices. Next, three-factor affine
models are tested on these simulated data, using the Wald test and the SEB, and assuming frictionless
markets. In total, 1000 simulations are performed. We use a 5% critical value for the Wald test.

Benchmark Model Ay(2) A (2 A,(2)
Tested Model A (3) A.(3) A(3)
Percentage rejections 95.6% 98.2% 98.8%
wald test

Median SEB 0.407 0.429 0.461




Figure 1. Monthly SEB for Two-Factor and Three-Factor M odels. The graph shows the SEB for
different sizes of transaction costs, for the preferred two-factor and three-factor affine models, in case

of monthly holding periods and the all-maturities asset set.

Figure 2. Quarterly SEB for Two-Factor and Three-Factor Models. The graph shows the SEB for
different sizes of transaction costs, for the preferred two-factor and three-factor affine models, in case

of quarterly holding periods and the all-maturities asset set.
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