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Abstract. We consider a rent-seeking contest of the kind introduced by Tullock (1980) in
which two players compete for a monopoly rent. We extend the contest by requiring that if a
player puts forward an effort, his expenditures must be larger than or equal to some minimum
level. We show that, depending on the model parameters, the number of Nash equilibria of the
extended model can be zero, one, two or four. Furthermore, it turns out that the extent of rent
dissipation in a Nash equilibrium of the extended model can be larger than, equal to, or smaller
than the extent of rent dissipation in the unique Nash equilibrium of the original model.

1. Introduction

Tullock (1980) has introduced a seminal game-theoretic model of a contest
in which two players compete for a monopoly rent. In the basic game, the
probability that a player wins the rent is given by the ratio of the expenditures
of the player himself and the total expenditures of both players. Tullock
focuses on the case in which both players attach the same valuation to the
rent. Hillman and Riley (1989) have extended Tullock’s basic model by
allowing that the players might value the rent differently (see also Ellingsen,
1991; and Leininger, 1993). They show that the model thus obtained has a
unique Nash equilibrium in which both players have positive expenditures.
Furthermore, they demonstrate that the size of the total expenditures of both
players in this Nash equilibrium is equal to one half times the harmonic mean
of the two players’ individual valuations of the monopoly rent. These total
expenditures can be considered as a measure of the extent of rent dissipation
in the contest.

In this paper we extend the model of Tullock by introducing a minimum
expenditure requirement, i.e., we assume that if a player decides to put forward
an effort, then his expenditures must be larger than or equal to some given
minimum level. Doing so, we allow that the two players attach a different value
to the monopoly rent. We demonstrate that, depending on the magnitudes of
the players’ valuations of the monopoly rent and the size of the minimum
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expenditure level, the extended model either has no Nash equilibrium at
all, or has one, two or four Nash equilibria. This contrasts with the unique
Nash equilibrium of the model without a minimum expenditure requirement.
Moreover, we point out that the extent of rent dissipation in a Nash equilibrium
of the extended model can be larger than, equal to, or smaller than the extent
of rent dissipation in the unique Nash equilibrium of the original model.

The device of a minimum expenditure requirement can be relevant in prac-
tice. For instance, in the Netherlands political parties participating in an
election contest for the parliament or the municipal council must pay to the
government a (sizable) fixed and equal, legally determined, amount of money
(entry fee). A minimum expenditure requirement has been discussed before
in the rent-seeking literature by Hillman and Samet (1987). However, the con-
test analysed by these authors is not of the kind of Tullock (1980), but rather
one in which the player with the highest expenditures wins the monopoly
rent for sure. Yang (1993) employs a minimum expenditure requirement in
a contest which is inspired by the model of Tullock. However, the model
of Yang is a multi-period one in which the two players decide alternatingly
in a sequential way about their expenditures. We investigate the impact of a
minimum expenditure requirement within the original single-period model
of Tullock (1980) and Hillman and Riley (1989), in which the players decide
simultaneously.

The paper is further organized as follows. In Section 2 we describe the
contest with a minimum expenditure requirement and derive the reaction
curves of both players. In Section 3 we characterize the Nash equilibria for
all feasible configurations of the model parameters. We conclude in Section 4.

2. The model and the reaction curves

Following Tullock (1980), we consider a contest in which two players compete
for a monopoly rent. The probability that player i (i = 1,2) wins the contest
is given by p;(x1,x2), where x; denotes the expenditures of player i. Player i
has two options regarding the size of his expenditures. First, he can choose x;
= 0. Second, he can choose some x; > 0. In that case it is required that x; is
greater than or equal to some minimum level xo > 0. The size of xj is given
to both players. The probability that player i wins the contest is given by

T if ;230 T; 2 20

[ if ;2 0
1) Ti 229, T; =
piz1,22) = § if z:;f)(: a:jz_a‘o @
% if 2:=0, ;=0
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with j # i. Notice that p1(x;,x2) and pa(xy,x3) are defined on the set D =
{(z1,z2)|z1 2 50 =1 = 0 or z; > zg or zz = 0}; cf. Baye, Kovenock, and
de Vries (1994).!

If a player wins the contest, he obtains the monopoly rent. Otherwise, he
obtains nothing. We assume that player i (i = 1,2) attaches a valuation of v;
> 0 to the monopoly rent, and suppose that v; < v,. The expected payoff of
player i is given by

mi(z1, T2) = vipi(z1, T2) — 2 2

with (x1,x2) € D.

Now, consider the problem faced by player i. We assume that this player
chooses x; in order to maximize his own expected payoff given the expen-
ditures, x; (j # i), of his rival. The reaction curve f;(x;) gives the optimal
choice of player i for all feasible values of x;. It turns out that we have to
distinguish four different cases with respect to f;(x;) (see the Appendix for
the derivation). In the case v; < 2xp we have

qyon_JOif z;=0
In the case v; = 2xg we have
Oormzg if z; =0
filz;) =14 0ormzp if z; =g @)
0 if ;> xg
whereas in the case 2xy < v; £ 4xg we have
Zp Zf Tj =0
oy ) o if oSz <vi—To
fl(x])_ OO’I‘:L‘o Zf -'Ej='Ui"$0 (5)
0 if £;>v— 2o
and, finally, in the case 4xg < v; we have
o ’Lf Tj =0
—:Bj+\/fll_j'l)—iifm0§$j<.’l:; .
fi(:l:j) =< Ty if :B;f < z; <vi — Zo 6
0or zo if zj=v;i— %0
0 if z;>v;— %0

where
2 = (v; - 2z0) + . v (v; — 4zo)' )
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Figure I.

Note that in case 4xg < v;, (i) :z:; is areal number satisfying g < .'z:;- < v;—1xg,
and (ii) fi(z;) > zoif 2o £ z; < z3.

Figure 1 illustrates the reaction curve of both players for a situation with
4zy < v; < wy (in particular, we have used the values v = 10, v, = 14
and xp = 1). The reaction curve of player 1 is given by the point (xo,0), the
line ABCD, and the vertical line segment along the x;-axis with x 2 vj-xg.
The reaction curve of player 2 is given by the point (0,xp), the line EFGH,
and the horizontal line segment along the x;-axis with x; 2 vz —xp. The line
through OBF is given by x; = x3. We observe with respect to the reaction
curve of player 1 that the curved part ABC corresponds to the part where
fi(za) = —x3 + (/z2v1. Point B, with coordinates (%vl, %vl), is the point
with the maximum x;-coordinate. Similarly, the part EFG pertains to the part
where fo(x1) = —x)+/Zj0;. Point F, with coordinates (}v2, §v2), is the point
with the maximum x,-coordinate.

3. The Nash equilibria

In this section we will present two propositions (one for the case with v; <
v and one for the case with vy = v;) that characterize the Nash equilibria of
our game: i.e., the combinations (£1, %) € D such that & = fi(& = fa(&)
(in Figure 1 the Nash equilibrium is given by point N). Before presenting the
propositions, it is useful to examine briefly as a benchmark case the situation
in which xg = 0. It then follows from (7) that £] = v; and 23 = v;. As a
result, the reaction curve of player i reduces to
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Hillman and Riley (1989) (see also Ellingsen, 1991) have shown that the
unique Nash equilibrium in this case is given by

~0 s
i =s(l-2%)
{ff? = s(1-2) @

withs = 1/ (% + ;};).We have attached an index ‘0’ to the Nash equilibrium
of the benchmark case. Observe that (i) ) = % > 0and &) = %:- > 0,

(i) 80 + 2 = s = 22, (iii) if v < vy, than v < s < v and s < 5oy,
and (iv) if v; = v, = v, then 30 = ) = lv and s = Jv < v. We see from (i)
that both players do expend in the Nash equilibrium, and from (ii), (iii) and
(iv), respectively, that the total expenditures are given by s and always less
than the valuation v.

Returning to the case with xp > 0, we first examine the situation with v
< v;. Doing so, recall that we have distinguished four different cases for
the reaction curve of player 1 —i.e., v; < 2zg,v1 = 270,220 < v1 £ 429
and 479 < vy — as well as four different cases for player 2 — i.e., v2 <
2z0,v2 = 270,220 < v2 £ 419 and 4z < v;. If we combine all cases
for the two players together, in principle we expect to obtain sixteen dif-
ferent cases. However, it turns out that seven of these cases cannot occur.
For instance, the combination of v; = 2z¢ with v3 < 2z is not feasible,
since we assume now that v; < w;. As a result, we actually end up with
the following nine different possible cases: case A: v; < v2 < 2zo; case B:
v; < 2mg = va;case C: vy < 2zg < 12 £ dap; case D vy < 2z < 41 < vy
case E: vy = 23¢9 < vy £ 4x; case F: vy = 2zp < 43¢ < wvy; case
G: 2z < v < v £ 4ap; case H: 229 < v; £ 479 < v2; and case It
43y < vy < v2. We now present our first proposition.2

Proposition 1. Consider the model defined by (1) and (2). Suppose that
0< zp < v <wy,sothats= i—’{ﬁf— Depending on the size of the parameters
vy, v2 and xg, the number of Nash equilibria of the model is zero, one, or two.
In particular, for the cases A to I we have the following results: In order to
discuss this proposition, recall that in the benchmark case with xq = 0, there
is a unique Nash equilibrium given by (9). Proposition 1 points out that the
introduction of a minimum expenditure requirement may change the ontcome
completely. Depending on the values of vy, v and xo, the model can have one

or two Nash equilibria, or no Nash equilibrium at all.
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‘We can use Proposition 1 to investigate what happens 1f we keep the values
of v; and v, fixed and take increasing values of xq in the (feasible) region
0 < zp < v. In particular, we can examine the development in the Nash
equilibria and, in order to assess the extent of rent dissipation, the development
of the size of the total expenditures in these equilibria compared with the size
of the total expenditures s in the benchmark case with xp=0. Doing so, we have
to distinguish three different situations, i.e., 2v; < v3,2v; > vy and 2v| = vs.

First, take the situation with 2u; < vs. If we consider now increasing values
of xg from O to v, we pass in turn through the cases, [, H,F, D, C, B and A. We
note that, depending on the numerical values of vy, v and xo, it might happen
that from a certain point onwards the last cases in this sequence cannot occur
(e.g., case A, or case B and A). A typical example of the present situation
is given by vy = | and v = 5, which implies that s = g. Using Proposition
1 we can derive the following results. In this example the cases C, B and A
cannot occur. There is either one Nash equilibrium or no one at all. Further,
depending on the value of xg, the size of Z; + 2, can be larger than, equal
to, or smaller than s = %. Stated otherwise, the extent of rent dissipation can
be larger than, equal to, or smaller than the extent of rent dissipation in the
benchmark case with xg = 0.

Next, consider briefly the situations 2v; > v and 2v; = v;. If we have
2v; > w, keep vy and v, fixed and take increasing values of xg from O to vy,
we pass through the cases I, H, G, E, C, B and A (as in the situation with 2v,
< vy, possibly only up to a certain point in this sequence). Analogously, in the
situation 2vy = vy, we pass through the cases I, H, E, C, B and A.> We remark
that if 2v; > v, or 2v; = v,, then the subcases Hii and ISii cannot occur. This
can be seen by noting that 2xo < v; and 2v; 2 v; imply that /zquz £ v .4

Proceeding, we turn to the case in which both players have the same val-
uation of the monopoly rent. Using the reaction curves derived in Section 2
we can easily prove Proposition 2 for this case.

Proposition 2. Consider the model defined by (1) and (2). Suppose that
0 < 29 < v; = v; = v. Depending on the size of the parameters v and xo,
the number of Nash equilibria of the model is one or four. In particular, we
have the following different cases: Recall that in the benchmark case with xg
=0, there is a unique Nash equilibrium with z; = 2, = _1111 and s = %v. We
see from Proposition 2 that the presence of a minimum expenditure require-
ment implies that either there is one Nash equilibrium or there are four Nash
equilibria. One can verify that in the model with xg > O the extent of rent
dissipation in a Nash equilibrium can be larger than, equal to, or smaller than
the extent of rent dissipation in the Nash equilibrium of the model with xp =
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0. The size of ; + 2, is largest in the Nash equilibrium (xg,xo) associated with
the case v = 2xo. In that case £; + & = v, i.e., there is full rent dissipation.

4. Conclusion

This paper has extended Tullock’s game-theoretic model of a contest for a
monopoly rent, by incorporating a minimum expenditure requirement. We
have shown that such a requirement may have different kinds of effects on
the number of Nash equilibria and the extent of rent dissipation. Thus, one
must be careful in this respect if such a minimum expenditure requirement is
relevant. The precise effects depend on the value of the minimum expenditures
as well as on the sizes of the players’ valuations of the monopoly rent.

Notes

1. Alternatively, one might also suppose that pi(0,0) = pz(0,0) = 0, i.e., if both players
decide to expend nothing, then the contest stops and nobody wins the rent. In that case
we can easily modify the results of this paper. In particular, in the Propositions 1 and 2 of
Section 3, the terms ‘2x,’ have to be replaced by ‘xo': e.g., the relevant condition of case
C in Proposition 1 becomes vi < zo < v2 < 4x0.

2. The proof of Proposition 1 is available from the authors upon request.

3. Typical examples of these two situations are given by vi = 1 and v2 = 1.9, and v; = 1 and
vz = 2, respectively. Analysis of these examples will be left to the reader.

4. Remark that if 2v| 2 va, then there exist values of xy falling in case C such that the size of
%1 +%2(= o) is respectively larger than, equal to, or smaller than s. This can be understood
by noting that there always holds %v; <s< %vz, or u; < 28 < vz. In combination
with 2v; 2 v,, we obtain from this that »; < 2s < vz < 4s. If we take x = 2, we have
v < 229 < 12 < 4xo, i.e., case C holds. Clearly, there also exists zo < s and zo > s
satisfying case C.
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Appendix: The derivation of the reaction curves

In this appendix we derive the reaction curve f;(x;) of player i. It is convenient to
suppose first that x; 2 xo and to require that x; must satisfy =; 2 zy. Doing so, the
optimal choice of player i can be determined by solving the Kuhn-Tucker conditions

ey ~ 1+ m=0
pi(zi —x0) =0
Hi ZO’ :1!,'—".170_2_.0
where p; is the Kuhn-Tucker multiplier associated with the constraint x; 2 xp (see

Takayama, 1985). From these conditions it can be derived that the optimal choice of
player i is given by the reaction curve

-z; + /T;0; of —T; + /T;0; > To )
ﬂu»—{ if —o;+ B < % -1
We have attached a tilde to the reaction curve to indicate that we have limited the
attention here to the case x; 2 2o and z; 2 0. It can be verified that there exists at
least one x; 2 xp satisfying the first subcase of (A.1) if and only if 4xy < v;.
In case 4x0 < v;, we can reformulate (A.1) as

<
ﬁmr{ %+ﬁmf§22?<“ A2)
where 25 = ((vi — 2x0) + V/vi(vi — 420))/2. In case 4xg = vi, (A.1) reduces to
filz;) =z forallz; 2 .

Next, let us introduce again the possibility that player i can decide to choose an
expenditure level equal to zero. Take for instance player 1, and consider in turn case
() in which his rival’s choice satisfies z, 2 2 and case (b) in which x; =0

In case (a), with z; 2 7o, we have to compare two alternatives for player 1: he can
choose either x; =0 orx; = f; (z2). Considering the possible choice x| = 0, we notice
that (0, x2) = 0 because x» 2 xo. Considering the alternative choice x; = f 1(x2),
we derive from equation (2) of Section 2 that m;{f,(x2),x2) > 0 if f 1(X2)+x2 < vy,
whereas 7 ( f 1(x2), X2 ) = 0 (< 0) if f1(x2)+x2 = v; (> v1). Now suppose first that
4xg < v and the first subcase of (A.2) holds (i.e., xp £ xz < z3). As a result, f 1(X2)
=-x3 + 4/Z2v1, which means that f, (%2)+x2 = /T7v1. Because x; < z3 and z3 < 1,
it follows that m( f 1(x2), x2) > 0. Recalling that 7 (0, x2) = 0, we conclude from a
comparison of the payoffs that player 1 will prefer the choice x; = f(x2) now.

Second, suppose that either 4xo < v; and the second subcase of (A.2) holds (1 e., X2
2 x3) dr4xp 2 v;. Considering the possible choice x| = f1(x2), we see that now f;(x2)
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= xp, and the resulting expected payoff 7 (xo, x2) is positive if xg + x; < vy, equal to
zero if xp + x3 = vy, and negative if xg + x2 > v;. Recalling again that 7(0, x;) = 0,
we conclude that player 1 will choose x; = f1(x2) = xg in case T3 < vy — 39, z; =0
in case £ > vy — zo, and either x; =0 or x; = f1(x2) = xp in case x, = v; — xp. (In the
latter case he is indifferent between the two choices.)

Next, consider case (b), i.e., the case with x; = 0. We distinguish the following
three alternative choices for player 1: x; = 0, x; = Xq, or x; > xp. If he chooses x;
= 0, then his (certain) payoff equals m(0, 0) = %‘vl. whereas his (certain) payoff is
m1(x0, 0) = v; — xp if he chooses x| = xo. Finally, player 1 will never choose x; >
Xp, because 7 (x;, 0) < m(xp,0) for all x; > xo. From a comparison of the payoffs,
we conclude that player 1 will choose x; = 0 in case vy < 2xg, X1 = xg in case v| >
2xg, and either x; = 0 or x; = X in case v; = 2xo. (In the latter case he is indifferent
between the two choices.)

Concluding, we see that we have to distinguish four different cases with respect to
the reaction curve fj(x;) of player 1, i.e., vi < 2xg, v = 2xg, 2xp < v} < 4xp and 4xg
< v;. We further remark that we can derive in a completely similar way the reaction
curve f(x1) of player 2. Combining results, we obtain the reaction curve f;(x;) of
player i as given in (3), (4), (5) and (6) in Section 2.

Case Conditions on vy, v; and xp Nash equilibria (£, X2)
A v < v <2z, (0,0)

B v < 2rp =12 (0,0) and (0,xy)

C m < 2z < v2 S 4xo (0.x0)

3] v < 220 < 4xo < V2 (0,x0)

E v =2z0 < 12 S 4x9 (0.x0) and (xy,X0)

F v = 2z0 < 4x9 < v (0,x0)

G 2x0 < v < v2 S 4xo (Xo.%0)

H 2x0 < vy é 4xg < v2 and

® subcase Hi VZovz S v (z0, —Za + /Tov2)

o subcase Hii VZovz > vy no one

I 4x < v < vzand

e subcase I ;{270 <u <z (s(1 - :_.)’3(1 - viz))
o subcase I8i w S ,in < wvand Jzovz S v (z0, —z0 + /Tyv2)
esubcase IBii w < ‘in < v; and /Tovz > Wi no one
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Case Conditjon on xqy Nash equilibria (£, £2)
subcase lo 0<zn< 3 (%2

subcase 183i FSx<i (za, —zo + V/5z0)
subcase 18ii 1< <i no one

subcase Hii 1Swm<i no one

F o= % 0, %

D I<m<l (Ox0)

Conditions on v and xy

Nash equilibria (%1, X2)

v< 2y
v= Zx()
2 < v < 4y
4xy <V

0,0

(0,9), (0.x0), (x0,0) and (xy,x0)
(x0,%0)

(3v,1v)
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