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Games with Chance Elements

Marcel Dreef1,2, Peter Borm1 and Ben van der Genugten1

December 20, 2001

Abstract

An interesting aspect of games is the relative extent to which a player can positively
influence his results by making appropriate strategic choices. This question is closely
related to the issue of how to distinguish between games of skill and games of chance.
The distinction between these two types of games is definitely interesting from a ju-
ridical point of view.

Borm and Van der Genugten (2001) presented a method to measure the skill level of
a game. In principle, their measure can serve as a juridical tool for the classification of
games with respect to skill. In this paper we present a modification of the measure. The
main difference is that this new definition does not automatically classify incomplete
information games without chance moves as games of skill. We use a coin game and a
simplified version of standard drawpoker as an illustration.

Keywords: games of skill; games of chance.
JEL code: C72.

1 Introduction

In various countries, including the Netherlands, legislation is such that the question whether a

specific game should be considered as a game of chance or as a game of skill is predominant

in the exploitation possibilities of private casinos. Borm and Van der Genugten (2001)

developed an objective and operational criterion to quantify the level of skill in games with

chance elements. This measure can serve as a juridical tool for the classification of games,

since its definition is in accordance with the relevant paragraphs in the Dutch Gaming Act.

A recent article on skill in games is Larkey et al. (1997). Whereas we are interested in

the skill involved in the game as a whole, this article focuses on the skill differences between

1CentER and Department of Econometrics and Operations Research, Tilburg University.
2Corresponding author. P.O. Box 90153, 5000 LE Tilburg, The Netherlands. E-mail: dreef@kub.nl.
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players. Moreover, it provides an interesting discussion on the interpretation and relevance

of the skill concept in analyzing games. A study of psychological aspects of chance and skill

elements in games can be found e.g. in Keren and Wagenaar (1988).

By definition of the skill measure of Borm and Van der Genugten (2001), every game in

which no external chance moves are present, is a pure game of skill. Examples of external

chance moves are the dealing of cards and the spin of a roulette wheel. In more-person games

a different kind of chance element, generated by the players who use mixed strategies, can

play a role. We will refer to this type of chance moves as internal chance moves.

In this paper we redefine the skill measure, such that these internal chance moves are

taken into account. This results in a modification for more-person games only. For one-

person games the definition does not differ from the one given by Borm and Van der Genugten

(2001). In section 2 we recall the definition of relative skill for one-person games. In section 3

we discuss the consequences of the original extension of the skill measure to more-person

games and subsequently present the modified definition. In section 4 the theory is illustrated

by two examples. We compute the skill level of two simple, but non-trivial games: a coin

game and a poker game. Section 5 concludes.

2 One-person games

We consider a finite game for one player, possibly with chance moves. The number of chance

moves must be finite and for each chance move the number of possible outcomes must be

finite. The rules of the game determine a finite, non-empty set X of pure strategies of the

player. For this game we also consider the fictive situation in which the player knows the

outcomes of the chance moves before he has to make a decision. This knowledge extends the

set of strategies to a finite set X̄ ⊇ X.

The quality of a strategy x̄ ∈ X̄ is determined by its corresponding expected gains. The

expectation of the player’s gains with respect to the external chance moves is given by the

function U that assigns expected gains U(x̄) to each strategy x̄ ∈ X̄. Let ∆(X) and ∆(X̄)

denote the sets of all probability distributions on X and X̄ respectively. Using expectations

with respect to these internal chance elements, the extension U(σ̄) for mixed strategies

σ̄ ∈ ∆(X̄) is immediate.

The definition of (potential) relative skill is based on the expected gains of three types

of players: the beginner, the optimal player and the fictive player. A beginner is associated

with a given strategy σ0 ∈ ∆(X) with corresponding expected gains

U0 := U(σ0).
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The optimal player uses a strategy with maximal expected gains, i.e.

Um := max
x∈X

U(x).

Clearly, the fact that the optimal player maximizes over his set of pure strategies, instead

of its mixed extension, does not affect his maximum expected gains. We could also have

written Um := maxσ∈∆(X) U(σ). The fictive player has the extra information on the outcome

of the chance moves and can do at least as good as the optimal player, but possibly better.

He uses a strategy in X̄ with maximal expected gains. We write

U f := max
x̄∈X̄

U(x̄).

Using the same arguments as for the optimal player, we could also have written U f :=

maxσ̄∈∆(X̄) U(σ̄). These definitions lead to a nice ordering of the expected gains of the three

player types: U0 ≤ Um ≤ U f . We call the difference between the expected gains of the

optimal player and the beginner, Um − U0, the learning effect LE in the game, while we

refer to the difference between the expected gains for fictive and optimal players, U f − Um,

as the random effect RE in the game.

The definition of the relative skill level RS of the game is based on the ratio of the learning

effect and the random effect:

RS =
LE

LE + RE
=

Um − U0

U f − U0
.

Clearly, both the learning effect and the random effect are nonnegative. As a consequence,

0 ≤ RS ≤ 1. For RS to be equal to its lower bound, the learning effect must be zero.

Therefore RS = 0 indicates a pure game of chance. On the other hand, we have RS = 1 if

there is no random effect in the game. Therefore, this extreme case corresponds to a pure

game of skill.

For the sake of completeness we define RS = 1 if LE = RE = 0. This boundary case

is only of theoretical importance, because in practical games this will not occur. In a game

with LE = RE = 0 the chance elements do not have a restrictive influence on the maximal

expected gains a player can attain, but the game is so easy that even a beginner can figure

out how to play optimally.
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3 More-person games

The generalization of the definition of relative skill for one-person games to n-person games

is not straightforward. To study skill in more-person games, we will use an objective analysis

of strategic behaviour based on the assumption of rationality of players. We will follow the

lines of game theory, the mathematical theory of conflict situations that was initiated by

Von Neumann and Morgenstern (1944).

We consider a finite game with player set N = {1, . . . , n}, again possibly with chance

moves. The finite, non-empty set Xi contains the pure strategies of player i. The set of

strategy profiles of the players is then X :=
∏n

i=1 Xi. For each player i the fictive situation

that he knows the outcomes of the chance moves leads to the extended set X̄i ⊇ Xi of

strategies. This leads to the extension X̄ :=
∏n

i=1 X̄i. For player i, ∆(Xi) and ∆(X̄i) denote

his sets of mixed strategies as a normal and as a fictive player respectively. The product sets∏n
i=1 ∆(Xi) and

∏n
i=1 ∆(X̄i) contain all possible strategy profiles.

For all i ∈ N the function Ui assigns to each strategy profile x̄ ∈ X̄ the expected gains

Ui(x̄) of player i. The vector U(x̄) = (U1(x̄), . . . , Un(x̄)) specifies the gains of all players.

The extension U(σ̄) for mixed strategy profiles in the set
∏n

i=1 ∆(X̄i) is straightforward.

As before, we base our definition of relative skill on the expected gains of three types of

players: the beginner, the optimal player and the fictive player. However, these types must

now be defined for each role a player can take. After all, in most games player roles are not

symmetric. The difficulty, compared to the one-player case, is that a player’s gains may now

depend on the strategy choices of his opponents. Borm and Van der Genugten (2001) solved

this problem in the following way. For each player i ∈ N the strategy choices of the other

players are thought to be fixed. The uniform reference for the three player types in the role

of player i is a minimax strategy of the coalition of all opponents of player i in the related

two-person zero-sum game.

A drawback of this method is that the coalition of opponents of player i in general has

multiple minimax strategies. The value of the skill measure depends on the selected minimax

strategy. Although it does not influence the expected gains of player i as an optimal player,

it does influence these numbers for this player as a beginner and as a fictive player. Borm

and Van der Genugten (2001) solved this problem by replacing the minimax strategy with

an approximation obtained by fictitious play with prescribed accuracy and starting with the

strategy profile consisting of beginners’ strategies. However, from a numerical point of view

this is not a simple solution and can still be judged as a drawback of the concept.

Again, each game without external chance elements is a game of skill by definition. This
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is a consequence of the fact that the effects of the use of mixed strategies, the so-called

internal chance elements, are not taken into account. The following example serves as an

illustration.

Example 3.1 (Matrix game) Consider the following zero-sum game for two players. Both

players have a coin. They simultaneously put their own coin on a table and cover it with one

hand. The players can choose which side of the coin will be up, H(eads) or T (ails). If both

players decide the same, then player 1 receives one dollar from his opponent. Otherwise,

player 1 has to pay one dollar to player 2. The matrix A below summarizes the expected

gains of player 1, the row player.

A =

H T

H

T

(
1 −1

−1 1

)

This two-person zero-sum game has no external chance moves. Therefore, the random ef-

fect is equal to zero. According to the definition of Borm and Van der Genugten (2001),

the consequence is a skill level of one, whatever the learning effect may be. However, in

practice in this game players will always strongly randomize between the strategies available

to them; this is pure gambling. Anyone observing this game will intuitively associate this

randomization with a game of chance.

The message of this example is that merely the fact that optimal play needs randomization

should influence the measure of relative skill. The following alternative definition of relative

skill for more-person games incorporates this idea.

We drop the earlier idea of a fixed and uniform reference of the opponents against each

type of player in a specific player role. Instead we let the opponents react optimally, de-

pending on the type of player. Playing optimally must be interpreted as giving maximal

opposition. This assumption on the behaviour of the coalition of opponents is only reason-

able for zero-sum games. After all, for a zero-sum game, the coalition’s aggregate gains are

higher as the gains of player i are lower (and vice versa), while this relation does not hold

for nonzero-sum games. This is not really a restriction, since any practical casino game you

can think of can, maybe apart from some entrance fee, be modelled as a zero-sum game. If

a bank (or dealer) is involved, this person should be considered as an extra player with only

one (dummy) strategy.

We will give the formal definitions. Let X−i =
∏

j 6=i Xj denote the pure (coalition)

strategies of the opponents of player i. Then for player i as beginner with strategy σ0
i ∈ ∆(Xi)
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the gains with optimal play of opponents are

U0
i := min

x−i∈X−i

Ui(σ
0
i , x−i).

The expected gains for player i as an optimal player are given by his expected gains in the

Nash equilibrium of the related two-person zero-sum game against the coalition of the other

players:

Um
i := max

σi∈∆(Xi)
min

x−i∈X−i

Ui(σi, x−i) = min
σ−i∈∆(X−i)

max
xi∈Xi

Ui(xi, σ−i).

Note that the equality follows from the minimax theorem of Von Neumann (1928) and

that Um
i is exactly the value of the two-person zero-sum game. For player i as a fictive

player we assume that he does not only know the outcome of the chance moves, but also

the outcome of the randomization process of his opponents. This is the key change to the

better incorporation of the randomization of the players in the definition of relative skill.

So, in optimal play against a fictive player randomization has no effect at all. Therefore, the

opponents will choose a pure strategy from X−i, minimizing the maximum gains of a fictive

player i. Player i will choose a strategy from X̄i that maximizes his expected gains, given

the strategy of his opponents. This leads to the expected gains U f
i of the fictive player:

U f
i := min

x−i∈X−i

max
x̄i∈X̄i

Ui(x̄i, x−i).

It is not difficult to see that, for a specific player i, just as in the one-person case, we have

for the ordering of expected gains of the different player types that U0
i ≤ Um

i ≤ U f
i . To

find the expected gains of the game for each player type, we take the average over all n

possible player roles. For the beginners, this leads to U0 = 1
n

∑n
i=1 U0

i . Similarly, we have

Um = 1
n

∑n
i=1 Um

i and U f = 1
n

∑n
i=1 U f

i for the expected gains for optimal and fictive players

respectively.

The learning effect is again the difference between the expected gains for beginners and

optimal players: LE = Um − U0. The contribution of player i to this learning effect is
1
n
(Um

i −U0
i ). Analogously, the random effect of the game is RE = U f−Um, with 1

n
(U f

i −Um
i )

as contribution of player i. Now we are ready to give the extension of the measure of skill

for more-person games. Analogous to the measure for one-person games we define

RS =
LE

LE + RE
=

Um − U0

U f − U0
=

1
n

∑n
i=1 (Um

i − U0
i )

1
n

∑n
i=1 (U f

i − U0
i )

.

Let us illustrate the formulas with the matrix game from example 3.1.

6



Example 3.2 (Matrix game (2)) In this example we show how to calculate the skill mea-

sure for the matrix game we defined in example 3.1, starting from a certain characterization

of beginner’s play. Recall that the payoff matrix A of the game is as follows.

A =

H T

H

T

(
1 −1

−1 1

)

Both players can choose from the same set of pure strategies: X1 = X2 = {H,T}. Beginners

will probably choose between H and T randomly, so σ0
1 = σ0

2 = 1
2
H + 1

2
T . To compute the

expected gains of the a beginner in the role of player 1, we check what his expected gains are

if player 2 plays optimal against σ0
1. Player 2 can choose either strategy to obtain a payoff

of 0. Therefore, U0
1 = 0 and, because of symmetry, U0

2 = 0.

To compute the expected gains of the optimal players, Um
1 and Um

2 , we compute the Nash

equilibrium of the matrix game. It is not difficult to see that this equilibrium is unique and

that the for each player the equilibrium strategy is equal to the beginner’s strategy. The value

of the game, v(A), is zero, so the optimal players have expected gains Um
1 = Um

2 = v(A) = 0.

In the fictive situation that player 1 can observe the outcome of the possible randomization

of his opponent, he can always put his coin with the same side up. So, his gains will be 1,

independent of the strategy choice of player 2. The same reasoning holds for player 2 as a

fictive player, so we have U f
1 = U f

2 = 1.

Using these numbers, we can now compute the learning effect and the random effect for

our matrix game.

LE = 1
2

∑2
i=1 (Um

i − U0
i ) = 1

2
((0− 0) + (0− 0)) = 0

RE = 1
2

∑2
i=1 (U f

i − Um
i ) = 1

2
((1− 0) + (1− 0)) = 1

The last step is to combine these effects to find the value of the skill measure:

RS =
LE

LE + RE
=

0

0 + 1
= 0.

Thus, following the new definition, we conclude that this is a pure game of chance. We stress,

however, that changes in the assumptions on the behaviour of the beginners may influence

the value of the skill measure. Note that the expected gains of the optimal players do not

influence the value of RS in a two-person zero-sum game, since these values cancel out in

the formula. However, if we want to see how much the players individually contribute to the

learning effect and the random effect, we need to know the values of Um
1 and Um

2 . For this

reason we are still interested in the value of the game.
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After this small illustration of the computations the skill analysis requires, we will turn to

the analysis of two more interesting games in the following section.

4 Examples

In this section we will illustrate the computations of the skill measure for more-person games

that we presented in section 3 with two simple, but realistic games. Section 4.1 discusses a

coin game. Subsequently, in section 4.2 we analyze the skill involved in a simple poker game

among three players in which an external chance element, the dealing of cards, plays a role.

4.1 The coin game

In this section we consider a generalization of the n-coin game that was explored by Schwartz

(1959). The n-coin game is a two-person zero-sum game in which both players have n coins

available to play with. In the game we will discuss, this number of coins is not necessarily

the same for both players. We call this generalization the (m,n)-coin game. Both players

know the number of coins available to the opponent.

First, each player takes a number of coins, possibly zero, in his hand. A player cannot

see what the opponent has taken in his hand. Now, first player 1 guesses the total number

of coins taken by both players and then player 2 does the samem Subsequently, both players

show their hands, so that this total can be determined. The game is won by the first player

who guessed the total number of coins correctly. The winner receives a dollar from the

opponent. If neither of the two guesses the right number, then nothing is paid.

We calculate the relative skill RS of the (1, 2)-coin game. A pure strategy of player 1 has

the form (i; j) where i is the number of coins he takes and j represents the sum he guesses.

Player 2 plays a strategy of the form (k; l0, l1, l2, l3). In this notation, k denotes the number

of coins player 2 takes, while lj tells us what number player 2 will guess if player 1 guessed

the total number of coins to be j.

To find the value of this game, we have to find its normal form. Since the normal form is

rather large, we restrict attention to the quasi-reduced normal form. Two pure strategies xi

and xj of a player are called realization equivalent if they lead to the same terminal node for

every given specification of the strategies for the other player, i.e. if xi and xj differ only at

irrelevant information sets. The quasi-reduced normal form considers for player i a subset

Qi of his collection of pure strategies Xi, such that no two elements of Qi are realization

equivalent. If we construct this quasi-reduced normal form for the (1,2)-coin game and if we

next iteratively delete dominated strategies from it, then we see that the game is equivalent
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to the reduced normal form game that is displayed in table 4.1. Player 1 is the row player,

while the columns of the table correspond to pure strategies of player 2.

Player 2

(0
;1

,0
,0

,0
)

(0
;1

,0
,0

,1
)

(0
;1

,0
,1

,0
)

(0
;1

,0
,1

,1
)

(1
;1

,2
,1

,1
)

(1
;1

,2
,1

,2
)

(1
;2

,2
,1

,1
)

(1
;2

,2
,1

,2
)

(2
;2

,2
,3

,2
)

(2
;2

,3
,3

,2
)

(2
;3

,2
,3

,2
)

(2
;3

,3
,3

,2
)

(0; 0) 1 1 1 1 -1 -1 0 0 -1 -1 0 0

(0; 1) -1 -1 -1 1 1 1 1 1 -1 0 -1 0

(0; 2) -1 -1 0 0 -1 -1 -1 -1 1 1 1 1

Player 1 (0; 3) -1 0 -1 0 -1 0 -1 0 -1 -1 -1 -1

(1; 0) -1 -1 -1 -1 0 0 -1 -1 0 0 -1 -1

(1; 1) 1 1 1 1 -1 -1 -1 -1 0 -1 0 -1

(1; 2) 0 0 -1 -1 1 1 1 1 -1 -1 -1 -1

(1; 3) 0 -1 0 -1 0 -1 0 -1 1 1 1 1

Table 4.1: The reduced normal form of the (1, 2)-coin game.

It is easily verified that, by playing 1
5
(0; 0) + 2

5
(0; 2) + 2

5
(1; 2), player 1 can guarantee

a value of −1
5
. Analogously, player 2 can guarantee this value by playing 2

5
(0; 1, 0, 0, 1) +

1
5
(1; 1, 2, 1, 2) + 2

5
(2; 2, 3, 3, 2). Therefore, the value of this game is −1

5
. Then we know the

expected gains for the optimal players, both in the role of player 1 and player 2: Um
1 =

−Um
2 = −1

5
.

The next step is to determine the strategies for the beginners. For player 1 two pure

strategies can be considered “unreasonable” at first sight. After all, choosing (0; 3) or (1; 0)

ensures him that he will not win the game, because the sum guessed is not reachable with

his own choice of coins. Furthermore, randomization is a logical thing to do. Therefore, we

assume that a naive player 1 chooses each of the remaining six pure strategies with equal

probability. A possible best reply of player 2 is the pure strategy (1; 1, 2, 1, 2). This results

in the expected gains of player 1 as a beginner: U0
1 = −1

3
.

For player 2 there is a number of strategies that is immediately seen to be irrelevant. It

makes no sense for player 2 to guess a sum that is smaller than the number of coins he has

in hand. Even someone who plays the game for the first time will see this. Consequently,

all strategies with lj < k for any j are left out of consideration. A beginner in the role of

player 2 will play a fair randomization over the remaining strategies. A best response of
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player 1 against this strategy σ0
2 is to play (0;0). In this way player 2 has to pay an expected

value of 71
109

. So U0
2 = − 71

109
. Taking a fair average over the player roles yields us expected

beginner’s gains of U0 = −161
327

.

Computation of the expected payoffs of fictive players is easy. A fictive player knows how

many coins the opponent has taken in his hand. With this information, player 1 can always

win the game by guessing the sum of this number and the (arbitrarily chosen) number of

coins in his own hand. There is nothing player 2 can do to prevent him from winning.

Player 2 can do something similar, but he needs to have at least one coin to make sure he

can form a sum of coins that player 1 has not guessed yet. Since player 2 has two coins

available, as a fictive player he will succeed in winning too. Hence, the expected gains for

the fictive players are U f
1 = U f

2 = 1. Consequently, the average expected gains for a fictive

player are U f = 1.

We can now compute the learning effect and the random effect for the (1, 2)-coin game.

LE = 1
2

∑2
i=1 (Um

i − U0
i ) = 1

2
((−1

5
+ 1

3
) + (1

5
+ 71

109
)) = 161

327

RE = 1
2

∑2
i=1 (U f

i − Um
i ) = 1

2
((1 + 1

5
) + (1− 1

5
)) = 1

The last step is to combine these effects to find the value of the skill measure:

RS =
LE

LE + RE
=

161

488
≈ 0.33.

The resulting skill value of 0.33 strongly depends on our definition of how beginners act. If the

explanation of the (1,2)-coin game to a new player includes an advise on strategy selections,

then a starting player may do significantly better than “our” beginner and, consequently,

the skill level we find for this game would be lower.

The next section gives an illustration of the way the skill measure should be computed for

games with more than two players in which an external chance element is involved.

4.2 Drawpoker

In this section we consider the simplified version of standard drawpoker that is discussed by

Binmore (1992). The first simplification is that there is no second dealing round in which

players can change a number of cards. The second simplification is that we do not use a

standard deck with the usual types of hands of five cards. Instead of that, all cards have

distinct values and every player gets only one card, dealt with or without replacement. In

this way we get a poker game which still contains most of the strategic features of standard

drawpoker. First we will give a formal description of the game and thereafter we will compute
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the relative skill of the three-person version of this game that Binmore (1992) also analyzed.

For general references on specific aspects of poker, we refer to Epstein (1977) and Scarne

(1990).

We will describe the rules of the most general form of our version of drawpoker precisely.

The game is played with n players, numbered from 1 to n, where n ≥ 2. At the beginning

of the game, each player places the initial bet (or ante) a into the stakes. Then each player

gets one card. This card is randomly chosen out of a deck of c cards with card values

0, 1, . . . , c− 1. According to the set-up of the game, cards are dealt with (r = 1) or without

(r = 0) replacement.

Then the betting starts, beginning with player 1, followed by player 2 and so on. Player

1 can pass or open the game with bet. If he bets, then he chooses an amount bi from a given

set of s betting possibilities b1, . . . , bs and places this into the pot. As long as the game is

not opened with a bet, the next players have the same choice of moves. If all players have

passed, then the game is a draw and the ante is returned to the players.

As soon as the game is open, the player whose turn it is can choose between three actions.

He may call, raise or fold. His successors have the same choice. A call means placing an

amount into the pot equal to that of the last bet made. A raise means that the last bet is

raised with some extra amount chosen from the set of betting possibilities and this new bet

is placed into the pot. A fold means that the player drops out of the game and loses his

contribution to the stakes.

The total number of raises, including the first bet, must not exceed a certain maximum

m. A player cannot raise or call again on his own bet or raise. So the betting round ends if

at a stage where the player who’s turn it would be next is the last player who did not call

or fold. If at such a stage, this player is the only player still in the game, then he wins the

pot. Otherwise, a showdown is forced. In a showdown all players that are still in the game

show their cards. The player with the highest card wins the pot. If more than one player

has the highest card, which is only possible if cards were dealt with replacement, then the

pot is equally divided between them.

To compute the skill level of our drawpoker game, we have to specify the strategy of a

beginner in all possible player roles. It is not easy to judge how a beginner would play this

game in all variants. Perhaps a very simple way is to imagine that he has two card values

in mind: a raisecard RC and a foldcard FC. He uses these values to play as follows.

• If his card value is less than or equal to FC, then he folds whenever this choice is

available to him, otherwise he passes.
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• If his card is greater than or equal to RC, then he raises (or bets, after a pass) the

maximum, bs.

• If his card is between FC and RC, then he does not pass, but bets the minimum, b1.

If the game is already open, then he calls.

Of course the values of FC and RC will depend on the game parameters. It seems reasonable

to assume that a beginner bets or raises if, roughly spoken, his card value is among the

highest 10% in the deck. With respect to the determination of the foldcard, we think that

the beginner will in general play with too much opportunism and will not pass or fold unless

his card is among the lowest 50% in the deck. If the number of players becomes larger, this

percentage may increase, but it will probably not exceed 70%. This choice is deflected in

the following formula for FC. Clearly, this is too difficult to compute for a beginner, but

the resulting value for the foldcard satisfies the preceding description of the behaviour of our

beginners.

FC = max
(
0, (c− 2)− ⌊

(c− 1)
(

1
2
− 1

10
ln(n− 1)

)⌋)

RC = (c− 1)− ⌊
1
10

(c− 1)
⌋

Here, bxc denotes the integer part of x. This notion is used to make sure that the boundaries

are given by (integer) card numbers.

So far we kept our notation and definitions with respect to the game as general as possible. In

the remainder of this section we will restrict our attention to the variant for which Binmore

(1992) computed the Nash equilibrium. This is the 3-person drawpoker game with 2 cards,

L (low) and H (high), that are dealt with replacement (r = 1). The ante is a = 2 and the

only possible betting amount is b0 = 8. Only one bet is allowed; when the game is open,

players are only allowed to fold or call. This parameter choice enables us to do a large part

of the skill analysis manually. Binmore already showed that the pure strategy space for all

three players can be reduced enormously.

For this game the beginners’ strategies we proposed above boil down to passing or folding

with an L and raising or calling with an H.

For our analysis we are interested in the expected gains of the three players when the

coalition formed by the two opponents gives maximal opposition. Let us consider the two-

person zero-sum game that corresponds to the situation in which player 1 plays against the

coalition of the players 2 and 3. After elimination of dominated strategies player 1 has two

pure strategies left: X1 = {x1, x2}. Strategy x2 is the beginner’s strategy, i.e. passing or
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folding with an L and raising or calling with an H. The other pure strategy, x1, differs

from x2 in one position; it prescribes passing with a high card. This phenomenon in which a

player with a good hand tries to mislead his opponents is called sandbagging. The coalition of

players 2 ando3 also have only two undominated pure strategies: X23 = {y1, y2}. Translation

of these strategies in terms of strategies for the two individual players in this coalition shows

that player 2 always plays the same strategy as the beginner. Player 3 does that too in

strategy y1, but in y2 he bets with a low card when neither of his predecessors has opened

the game. This strategic aspect of poker is more familiar than sandbagging; this is called

bluffing. The matrix A1,23 below displays the net expected gains for player 1 in this reduced

two-person zero-sum game.

A1,23 =

y1 y2

x1

x2

(
−1

2
3
4

0 −1
4

)

In the unique Nash equilibrium of this game player 1 plays 1
6
x1 + 5

6
x2, while his opponents

use the mixed strategy 2
3
y1 + 1

3
y2. The resulting game value is v(A1,23) = − 1

12
. Therefore,

the expected gains for optimal player 1 is Um
1 = − 1

12
.

When player 1 plays the strategy of a beginner, then a possible best answer of the coalition

is to let player 2 play the beginner’s strategy and let player 3 play the bluffing strategy, i.e.

to bet with an L when the other players have not opened the game. Since player 1 already

reveals his card in the opening move, the other players make sure he does not gain anything

unnecessary with an L and that the coalition does not lose any betting amounts if player 1

has an H. In this way player 1 makes an expected loss of 1
4

and therefore his expected gains

are U0
1 = −1

4
.

Now, let us see what the possibilities of the fictive player are. He knows the cards of

the other players and the opponents know this. Therefore, for players 2 and 3 bluffing and

sandbagging become useless if they face a fictive player. So, if player 1 knows that neither

player 2 nor player 3 has a higher card than he has, the best he can do with an L is to bet

(bluff). The opponents will fold. If he has a high card, he will always bet. This is how

player 1 as a fictive player can make expected gains of U f
1 = 1

2
.

For the other players similar computations have to be carried out. Then we find the

values that are displayed in table 4.2. From the numbers in this table we can compute the

learning effect and the random effect for 3-person drawpoker.

LE = 1
3

∑3
i=1 (Um

i − U0
i ) = 1

3
((− 1

12
+ 1

4
) + (− 1

12
+ 1

4
)) + ( 1

10
− 0)) = 13

90

RE = 1
3

∑3
i=1 (U f

i − Um
i ) = 1

3
((1

2
+ 1

12
) + (1

2
+ 1

12
) + (1

2
− 1

10
)) = 47

90
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player 1 player 2 player 3

beginner −1
4

−1
4

0

optimal − 1
12

− 1
12

1
10

fictive 1
2

1
2

1
2

Table 4.2: The expected gains in 3-person drawpoker.

The last step is to combine these effects to find the value of the skill measure.

RS =
LE

LE + RE
=

13

60
≈ 0.22

Just as in the coin game example, we would like to stress that this result depends on our

definition of beginners’ behaviour. If this game is played in a casino where the brochure with

the game description ends with some words on bluffing and sandbagging, then a beginner

may use a strategy that differs heavily from the one we assumed him to use. This may also

affect the skill level we find for the drawpoker game.

5 Concluding remarks

In this paper we presented a modification of the skill measure of Borm and Van der Genugten

(2001) for more-person games. The new measure takes into account the effect of internal

chance moves, the chance effect that is caused by the players themselves by randomization

in choosing their actions. The result is a unique number indicating the skill level, that can

be computed for a large class of games. In this final section we want to make two remarks

with respect to the computations. The first is about the behaviour of naive players and the

second is about measuring the game result of a player.

One of the numbers used in the definition of skill, is the expected gain of a beginner. To

compute this number, we have to make assumptions about the strategies selected by naive

players. Although these strategies strongly depend on game specific aspects, it is possible

to give a few rules of thumb that can be used for determination of the behaviour of the

beginning players. Practical situations indicate that, in general, beginners do not succeed

in combining safety and risk into an appropriate strategy. Furthermore, beginners have

difficulties taking into account the situation of the opponents. They focus heavily on their

own situation. Think of a poker game; beginners mostly ignore cards dealt to other players

and base their decisions only on their own hand. Another strategic aspect that is difficult
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to apply for a beginner is randomization. As a consequence, players who have just mastered

the rules of a game tend to use pure strategies.

The qualification of beginners’ behaviour in specific games changes over time. When

the popularity of a game increases, the “news” about strategic aspects will spread quickly

and players can already gain from experience—although not their own—the first time they

participate in the game. A related issue is the way a game is presented. Recall the example

of the poker brochure that gives information on bluffing and sandbagging to see that even the

presentation of the game may affect the behaviour of beginning players, and thus influences

the game’s skill value.

Example 3.2 demonstrated that the skill measure is applicable to the class of matrix

games too. However, one should be careful with conclusions based on the resulting value

of the skill measure. After all, the definition of a beginner’s strategy is a very subjective

element here and may very well depend on “the story behind the matrix”.

The second aspect on which we want to make a remark is the measurement of the quality

of a specific strategy of a player. We used the expected gains corresponding to the strategies

to compare them, but this is not the only possibility. Another option would be the mean gains

per bet in the long run. Alternative ways of expressing strategy quality in our definitions

will have our attention in future research. At first sight, however, we think that the notion

of expected gains is an appropriate choice, because this is the what players seem to (try to)

maximize in practice.
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