Note

Divisible Designs with $r-\lambda_{1}=1$

Willem H. Haemers
Tilburg University, Tilburg, The Netherlands

Communicated by the Managing Editors
Received November 20, 1989

> We give a classification of divisible designs with $r-\lambda_{1}=1$. 1991 Academic Press, Inc.

Introduction

A (group) divisible design with parameters ($m, n, k, r, \lambda_{1}, \lambda_{2}$) is an incidence structure with constant block size k, and with $m n$ points split into m classes (also called groups) of n points, such that any two points are covered by r, λ_{1}, or λ_{2} blocks, depending on whether these points coincide, belong to the same class, or belong to distinct classes, respectively. In this note we shall classify divisible designs with $r-\lambda_{1}=1$. A classification in the case that there exists a cyclic divisible difference set was given by Arasu, Jungnickel, and Pott [2]. They also give a construction method for such designs, which was generalised by Arasu, Haemers, Jungnickel, and Pott [1]. This construction method uses a strongly regular graph with $\mu-\lambda=1$, or a skew-symmetric Hadamard matrix. We shall show that apart from these, no other non-trivial constructions exist.

Preliminaries

In terms of the incidence matrix N, the definition of a divisible design reads:

$$
N^{\prime} 1=k 1, \quad N N^{t}=\left(\lambda_{2} J+\left(\lambda_{1}-\lambda_{2}\right) I\right) \otimes J+\left(r-\lambda_{1}\right) I .
$$

Herein \otimes denotes the Kronecker (or tensor) product, I denotes the identity matrix, J the all-one matrix, and $\mathbf{1}$ the all-one vector of appropriate
size. A strongly regular graph with parameters (v, k, λ, μ) is a k-regular graph with v vertices, such that any two distinct vertices have λ or μ common neighbours, depending on whether the vertices are adjacent or nonadjacent, respectively. It is straightforward and well known that a graph with adjacency matrix A is strongly regular with $\mu-\lambda=1$ if and only if

$$
A^{2}+A \in\langle I, J\rangle
$$

A skew-symmetric Hadamard matrix of order v is a $v \times v$ matrix H with entries 1 or -1 , such that $H^{t}=2 I-H$ and $H H^{t}=v I$. Multiplication of some rows and the corresponding columns by -1 does not affect these properties. So, without loss of generality,

$$
H=\left(\begin{array}{rr}
1 & 1 \\
-1 & C
\end{array}\right)
$$

The matrix C is called a core of H. It is not difficult to show that a ($-1,1$) matrix C is a core of a skew-symmetric Hadamard matrix if and only if

$$
C^{t}=2 I-C, \quad C 1 \in\langle 1\rangle, \quad C C^{t} \in\langle I, J\rangle .
$$

Classification

Lemma 1. Suppose A is a square $(0,1)$ matrix of size m with zero diagonal. Let D_{1}, \ldots, D_{m} be the incidence matrices of block designs with parameters $\left(v^{\prime}, b^{\prime}, k^{\prime}, r^{\prime}, \lambda^{\prime}\right)$. Put $D=\operatorname{diag}\left(D_{1}, \ldots, D_{m}\right)$. Then $N=$ $(A \otimes J)+D$ is the incidence matrix of a divisible design if and only if one of the following holds:
(i) $J-2 A$ is the core of a skew-symmetric Hadamard matrix.
(ii) $b^{\prime}=2 r^{\prime}$, and A is the adjacency matrix of a strongly regular graph with $\mu-\lambda=1$,
(iii) $A=0$, or $A=J-I$.

Proof. Clearly N has constant column sum whenever A has. Furthermore,

$$
\begin{aligned}
N N^{t} & =b^{\prime} A A^{t} \otimes J+r^{\prime}\left(A+A^{t}\right) \otimes J+D D^{t} \\
& =\left(b^{\prime} A A^{\prime}+r^{\prime}\left(A+A^{t}\right)+\lambda^{\prime} I\right) \otimes J+\left(r^{\prime}-\lambda^{\prime}\right) I
\end{aligned}
$$

So, by definition, N denotes a divisible design if and only if

$$
\begin{equation*}
A^{t} \mathbf{1} \in\langle\mathbf{1}\rangle \quad \text { and } \quad b^{\prime} A A^{t}+r^{\prime}\left(A+A^{t}\right)=\alpha J+\beta I, \tag{*}
\end{equation*}
$$

for some integers α and β. Now, the "if" part of the lemma follows by verification (see [1]). To prove the "only if" part, consider the entries $a=(A)_{i j}$ and $\bar{a}=(A)_{j i}$ for arbitrary i and $j(i \neq j)$. We easily have

$$
\alpha=\left\{\begin{aligned}
r^{\prime} \bmod b^{\prime} & \text { if } a \neq \bar{a}, \\
0 \bmod b^{\prime} & \text { if } a=\bar{a}=0, \\
2 r^{\prime} \bmod b^{\prime} & \text { if } a=\bar{a}=1 .
\end{aligned}\right.
$$

Hence, in case $\alpha=r^{\prime} \bmod b^{\prime}, A+A^{t}=J-I$. Thus $C=J-2 A$ satisfies $C^{t}=2 I-C$, and (${ }^{*}$) implies $C \mathbf{1} \in\langle\mathbf{1}\rangle, C C^{t} \in\langle I, J\rangle$. This proves i. If $\alpha=0=2 r^{\prime} \bmod b^{\prime}$, then $b^{\prime}=2 r^{\prime}, A$ is symmetric and (*) becomes $A^{2}+A \in\langle I, J\rangle$. This proves ii. Finally, if $\alpha=0 \neq 2 r^{\prime} \bmod b$, or $\alpha=2 r^{\prime} \neq 0 \bmod b$, then $A=0$, or $J-I$, respectively.

Lemma 2. Suppose N is the incidence matrix of a divisible design with $r-\lambda_{1}=1$. Then, up to taking complements and after suitable row and column permutations.

$$
N=(A \otimes J)+I,
$$

where A is a square $(0,1)$ matrix with zero diagonal.
Proof. For $i=1, \ldots, m$ let N_{i} denote the part of N corresponding to class i. Then $N_{i} N_{i}^{t}=\lambda_{1} J+\left(r-\lambda_{1}\right) I=\lambda_{1} J+I$. So, any two distinct rows of N_{i} differ in just two positions. This implies that after a suitable permutation of the columns and, if necessary, complementation N_{i} takes the form $N_{i}=[I J 0]$. With the same column partition, write $N_{j}=[K L M]$ for some $j \neq i$. Let k_{1}, \ldots, k_{n} be the columns of K, and let n_{x} and n_{y} be any two distinct rows of N_{i}. Then $n_{x}-n_{y}$ has 1 on position $x,-1$ on position y, and 0 elsewhere; moreover, $N_{j} n_{x}^{\prime}=N_{j} n_{y}^{\prime}=\lambda_{2} 1$. Hence

$$
0=N_{j}\left(n_{x}-n_{y}\right)^{i}=k_{x}-k_{y} .
$$

Thus all columns of K are equal, so $K=J$ or $K=0$. The first column of N, and hence each column, has column sum equal to $1 \bmod n$. So for each column there is precisely one number $i(1 \leqslant i \leqslant m)$ for which the column corresponds to the indentity matrix in N_{i}. By permuting the columns of N such that these indentity matrices are moved to the diagonal, we obtain the desired form for N.
So, by Lemma 2, a divisible design with $r-\lambda_{1}=1$ has the structure of Lemma 1, where ($v^{\prime}, k^{\prime}, b^{\prime}, r^{\prime}, \lambda^{\prime}$) is one of the trivial parameter sets ($v^{\prime}, 1, v^{\prime}, 1,0$) or ($v^{\prime}, v^{\prime}-1, v^{\prime}, v^{\prime}-1, v^{\prime}-2$). This leads to the main result.

Theorem. An incidence structure \mathscr{D} is a divisible design with $r-\lambda_{1}=1$ if
and only if \mathscr{D} or the complement of \mathscr{D} has an incidence matrix $(A \otimes J)+I$, where one of the following holds:
(i) $J-2 A$ is the core of a skew-symmetric Hadamard matrix.
(ii) J has size 2×2 and A is the adjacency matrix of a strongly regular graph with $\mu-\lambda=1$,
(iii) $A=0$, or $A=J-I$.

References

1. K. T. Arasu, W. H. Haemers, D. Jungnickel, and A. Pott, Matrix constructions for divisible designs, Linear Algebra Appl., to appear.
2. K. T. Arasu, D. Jungnickel, and A. Рott, Symmetric divisible designs with $k-\lambda_{1}=1$, Discrete Math., to appear.
