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A (group) divisible design with parameters (m, n, k, r, I,, AZ) is an 
incidence structure with constant block size k, and with mn points split into 
m classes (also called groups) of n points, such that any two points are 
covered by r, A I, or A2 blocks, depending on whether these points coincide, 
belong to the same class, or belong to distinct classes, respectively. In this 
note we shall classify divisible designs with r - A, = 1. A classification in the 
case that there exists a cyclic divisible difference set was given by Arasu, 
Jungnickel, and Pott [2 J. They also give a construction method for such 
designs, which was generalised by Arasu, Haemers, Jungnickel, and Pott 
[ 11. This construction method uses a strongly regular graph with p - I = 1, 
or a skew-symmetric Hadamard matrix. We shall show that apart from 
these, no other non-trivial constructions exist. 

In terms of the incidence matrix N, the definition of a divisible design 
reads: 

N’l = kl, NN’=(Jl,J+(~,-a,)z)@J+(r-A,)z. 

Herein @ denotes the Kronecker (or tensor) product, Z denotes the iden- 
tity matrix, J the all-one matrix, and 1 the all-one vector of appropriate 
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size. A strongly regular graph with parameters (u, k, 2, ZL) is a k-regular 
graph with v vertices, such that any two distinct vertices have I or ,u com- 
mon neighbours, depending on whether the vertices are adjacent or non- 
adjacent, respectively. It is straightforward and well known that a graph 
with adjacency matrix A is strongly regular with P-A = 1 if and only if 

A’+AE (I, J). 

A skew-symmetric Hadamard matrix of order v is a v x v matrix H with 
entries 1 or - 1, such that H’ = 2Z- H and HH’ = OZ. Multiplication of 
some rows and the corresponding columns by - 1 does not affect these 
properties. So, without loss of generality, 

H= 

The matrix C is called a core of H. It is not difticult to show that a ( - 1, 1) 
matrix C is a core of a skew-symmetric Hadamard matrix if and only if 

C’=2Z-c, ClE(l), CC’ E (Z, J>. 

CLASSIFICATION 

LEMMA 1. Suppose A is a square (0, 1) matrix of size m with zero 
diagonal. Let D, , . . . . D, be the incidence matrices of block designs 
with parameters (v’, b’, k’, r’, 1’). Put D = diag(D,, . . . . D,). Then N = 
(A @J) + D is the incidence matrix of a divisible design if and only if one of 
the following holds: 

(i) J- 2A is the core of a skew-symmetric Hadamard matrix. 

(ii) 6’ = 2r’, and A is the adjacency matrix of a strongly regular graph 
with p---=1, 

(iii) A=O, or A= J-Z. 

Proof: Clearly N has constant column sum whenever A has. Further- 
more, 

NN’=b’AA’@J+r’(A+A’)@J+DD’ 

= (b/AA’+ r’(A + A’) + A’Z) @ J+ (r’- A’) Z. 

So, by definition, N denotes a divisible design if and only if 

A’le (1) and b’AA’+ r’(A + A’) = aJ+ PZ, (*I 
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for some integers IX and /I. Now, the “if” part of the lemma follows by 
verification (see [ 11). To prove the “only if” part, consider the entries 
a = (A), and a = (A),i for arbitrary i and i (i #J. We easily have 

i 

r’ mod b’ ifa#G, 

tl= 0 mod b’ ifa=G=O, 

2r’ mod b’ ifa=Si= 1. 

Hence, in case a = r’ mod b’, A + A’ = J-Z. Thus C = J-2A satisfies 
C’ = 2Z- C, and (*) implies Cl E (1 ), CC’ E (Z, J). This proves i. If 
ct = 0 = 2r’ mod b’, then b’ = 2r’, A is symmetric and (*) becomes 
A* + A E (Z, J). This proves ii. Finally, if IX = 0 # 2r’ mod b, or 
u = 2r’ # 0 mod 6, then A = 0, or J- Z, respectively. 

LEMMA 2. Suppose N is the incidence matrix of a divisible design with 
r - 1, = 1. Then, up to taking complements and after suitable row and column 
permutations. 

N=(A@J)+Z, 

where A is a square (0, 1) matrix with zero diagonal. 

Proof: For i= 1, . . . . m let Nj denote the part of N corresponding to class 
i. Then N,N:= A,.Z+ (r-AI) Z=J,.Z+Z. So, any two distinct rows of Ni 
differ in just two positions. This implies that after a suitable permutation 
of the columns and, if necessary, complementation Ni takes the form 
Ni = [ZJ 01. With the same column partition, write Nj = [K L M] for 
somej# i. Let k,, . . . . k, be the columns of K, and let n, and ny be any two 
distinct rows of Ni. Then n,- n,. has I on position x, - 1 on position y, 
and 0 elsewhere; moreover, N,n: = Njnl = A, 1. Hence 

O=Ni(n,-n,)‘=k,-k,. 

Thus all columns of K are equal, so K = J or K = 0. The first column of N, 
and hence each column, has column sum equal to 1 mod n. So for each 
column there is precisely one number i (1~ i< m) for which the column 
corresponds to the indentity matrix in Nj. By permuting the columns of N 
such that these indentity matrices are moved to the diagonal, we obtain the 
desired form for N. 

So, by Lemma 2, a divisible design with r-A, = 1 has the structure of 
Lemma 1, where (v’, k’, b’, r’, A’) is one of the trivial parameter sets 
(u’, 1, II’, 1, 0) or (v’, u’ - 1, v’, v’- 1, u’- 2). This leads to the main result. 

THEOREM. An incidence structure 9 is a divisible design with r - 1, = 1 if 
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and only if 9 or the complement of 9 has an incidence matrix (A 0 J) + I, 
where one of the following holds: 

(i) J- 2A is the core of a skew-symmetric Hadamard matrix. 

(ii) J has size 2 x 2 and A is the adjacency matrix of a strongly 
regular graph with p - 1= 1, 

(iii) A=O, or A=J-I. 
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