provided by Research Papers in Economic

JOURNAL OF COMBINATORIAL THEORY, Series A 57, 316-319 (1991)

Note

Divisible Designs with $r - \lambda_1 = 1$

WILLEM H. HAEMERS

Tilburg University, Tilburg, The Netherlands Communicated by the Managing Editors Received November 20, 1989

We give a classification of divisible designs with $r - \lambda_1 = 1$. © 1991 Academic Press, Inc.

INTRODUCTION

A (group) divisible design with parameters $(m, n, k, r, \lambda_1, \lambda_2)$ is an incidence structure with constant block size k, and with mn points split into m classes (also called groups) of n points, such that any two points are covered by r, λ_1 , or λ_2 blocks, depending on whether these points coincide, belong to the same class, or belong to distinct classes, respectively. In this note we shall classify divisible designs with $r - \lambda_1 = 1$. A classification in the case that there exists a cyclic divisible difference set was given by Arasu, Jungnickel, and Pott [2]. They also give a construction method for such designs, which was generalised by Arasu, Haemers, Jungnickel, and Pott [1]. This construction method uses a strongly regular graph with $\mu - \lambda = 1$, or a skew-symmetric Hadamard matrix. We shall show that apart from these, no other non-trivial constructions exist.

PRELIMINARIES

In terms of the incidence matrix N, the definition of a divisible design reads:

$$N'\mathbf{1} = k\mathbf{1}, \qquad NN' = (\lambda_2 J + (\lambda_1 - \lambda_2) I) \otimes J + (r - \lambda_1) I.$$

Herein \otimes denotes the Kronecker (or tensor) product, *I* denotes the identity matrix, *J* the all-one matrix, and 1 the all-one vector of appropriate

size. A strongly regular graph with parameters (v, k, λ, μ) is a k-regular graph with v vertices, such that any two distinct vertices have λ or μ common neighbours, depending on whether the vertices are adjacent or non-adjacent, respectively. It is straightforward and well known that a graph with adjacency matrix A is strongly regular with $\mu - \lambda = 1$ if and only if

$$A^2 + A \in \langle I, J \rangle.$$

A skew-symmetric Hadamard matrix of order v is a $v \times v$ matrix H with entries 1 or -1, such that H' = 2I - H and HH' = vI. Multiplication of some rows and the corresponding columns by -1 does not affect these properties. So, without loss of generality,

$$H = \begin{pmatrix} 1 & 1' \\ -1 & C \end{pmatrix}.$$

The matrix C is called a core of H. It is not difficult to show that a (-1, 1) matrix C is a core of a skew-symmetric Hadamard matrix if and only if

$$C' = 2I - C, \quad C1 \in \langle 1 \rangle, \quad CC' \in \langle I, J \rangle.$$

CLASSIFICATION

LEMMA 1. Suppose A is a square (0, 1) matrix of size m with zero diagonal. Let $D_1, ..., D_m$ be the incidence matrices of block designs with parameters $(v', b', k', r', \lambda')$. Put $D = \text{diag}(D_1, ..., D_m)$. Then $N = (A \otimes J) + D$ is the incidence matrix of a divisible design if and only if one of the following holds:

(i) J-2A is the core of a skew-symmetric Hadamard matrix.

(ii) b' = 2r', and A is the adjacency matrix of a strongly regular graph with $\mu - \lambda = 1$,

(iii) A = 0, or A = J - I.

Proof. Clearly N has constant column sum whenever A has. Furthermore,

$$NN^{t} = b'AA^{t} \otimes J + r'(A + A^{t}) \otimes J + DD^{t}$$
$$= (b'AA^{t} + r'(A + A^{t}) + \lambda'I) \otimes J + (r' - \lambda') I.$$

So, by definition, N denotes a divisible design if and only if

 $A'\mathbf{1} \in \langle \mathbf{1} \rangle$ and $b'AA' + r'(A + A') = \alpha J + \beta I$, (*)

for some integers α and β . Now, the "if" part of the lemma follows by verification (see [1]). To prove the "only if" part, consider the entries $a = (A)_{ii}$ and $\bar{a} = (A)_{ii}$ for arbitrary *i* and *j* ($i \neq j$). We easily have

$$\alpha = \begin{cases} r' \mod b' & \text{if } a \neq \bar{a}, \\ 0 \mod b' & \text{if } a = \bar{a} = 0, \\ 2r' \mod b' & \text{if } a = \bar{a} = 1. \end{cases}$$

Hence, in case $\alpha = r' \mod b'$, A + A' = J - I. Thus C = J - 2A satisfies C' = 2I - C, and (*) implies $CI \in \langle 1 \rangle$, $CC' \in \langle I, J \rangle$. This proves *i*. If $\alpha = 0 = 2r' \mod b'$, then b' = 2r', *A* is symmetric and (*) becomes $A^2 + A \in \langle I, J \rangle$. This proves ii. Finally, if $\alpha = 0 \neq 2r' \mod b$, or $\alpha = 2r' \neq 0 \mod b$, then A = 0, or J - I, respectively.

LEMMA 2. Suppose N is the incidence matrix of a divisible design with $r - \lambda_1 = 1$. Then, up to taking complements and after suitable row and column permutations.

$$N = (A \otimes J) + I,$$

where A is a square (0, 1) matrix with zero diagonal.

Proof. For i = 1, ..., m let N_i denote the part of N corresponding to class *i*. Then $N_i N_i^i = \lambda_1 J + (r - \lambda_1) I = \lambda_1 J + I$. So, any two distinct rows of N_i differ in just two positions. This implies that after a suitable permutation of the columns and, if necessary, complementation N_i takes the form $N_i = [IJ0]$. With the same column partition, write $N_j = [KLM]$ for some $j \neq i$. Let $k_1, ..., k_n$ be the columns of K, and let n_x and n_y be any two distinct rows of N_i . Then $n_x - n_y$ has 1 on position x, -1 on position y, and 0 elsewhere; moreover, $N_j n'_x = N_j n'_y = \lambda_2 1$. Hence

$$0 = N_i (n_x - n_y)^i = k_x - k_y.$$

Thus all columns of K are equal, so K = J or K = 0. The first column of N, and hence each column, has column sum equal to $1 \mod n$. So for each column there is precisely one number $i (1 \le i \le m)$ for which the column corresponds to the indentity matrix in N_i . By permuting the columns of N such that these indentity matrices are moved to the diagonal, we obtain the desired form for N.

So, by Lemma 2, a divisible design with $r - \lambda_1 = 1$ has the structure of Lemma 1, where $(v', k', b', r', \lambda')$ is one of the trivial parameter sets (v', 1, v', 1, 0) or (v', v' - 1, v', v' - 1, v' - 2). This leads to the main result.

THEOREM. An incidence structure \mathcal{D} is a divisible design with $r - \lambda_1 = 1$ if

and only if \mathscr{D} or the complement of \mathscr{D} has an incidence matrix $(A \otimes J) + I$, where one of the following holds:

(i) J-2A is the core of a skew-symmetric Hadamard matrix.

(ii) J has size 2×2 and A is the adjacency matrix of a strongly regular graph with $\mu - \lambda = 1$,

(iii) A = 0, or A = J - I.

REFERENCES

- 1. K. T. ARASU, W. H. HAEMERS, D. JUNGNICKEL, AND A. POTT, Matrix constructions for divisible designs, *Linear Algebra Appl.*, to appear.
- 2. K. T. ARASU, D. JUNGNICKEL, AND A. POTT, Symmetric divisible designs with $k \lambda_1 = 1$, Discrete Math., to appear.