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In simulation an  input variable like interarrival t ime is sampled. and  hence its average deviates from 
its known expectation. This information can be used to  improve the estimated simulation response: 
regression sampllng or control variate technique. The L I ~ L I X I  crude estimator is shown to be biased. If 
local linearity holds. then the regression estimator becomes ~ ~ n b i a s e d .  Moreover its varlance becomes 
smaller under mild conditions. The  assumption of local l inear~ty  is an  alternative to  the normality 
assumption of other authors.  This paper further emphasizes the difference between results ex tr17rr 

(unconditional) and  eu post (given the exper~mental  input values). A telephone-exchange simulation 
provides a case study. 

INTRODUCTION 

LINEAR regression estimation or Control Variates is a well-known variance reduction 
technique in simulation. Its statistical properties, however, are not well understood. 
Recently Chengl derived some properties assuming multivariate normality. Further 
properties under the normality assumption were derived by Lavenberg et 0 1 . ~  The 
present paper derives a similar variance expression using the mathematical assumption 
of local linear approximation instead of the statistical assumption of normality. More- 
over this paper emphasizes a new aspect, namely, the "crude" estimator (without regres- 
sion) gives a biased answer. Both the "unconditional" and the "conditional" variances 
and biases are derived. Finally the regression technique is applied to a real-life queuing 
situation (a PTT telephone exchange) instead of an academic queuing example. In this 
case study, the total simulation run is cut into subruns of predetermined length instead of 
replicating each run a number of times. Readers who find the statistical derivations in 
this article not so straightforward, can write to the authors for a more detailed v e r ~ i o n . ~  

REGRESSION ESTIMATION 

In a queuing simulation one may compute the average arrival rate of customers per 
(sub)run, say -x (stochastic variables are underlined). Then -y, ,  the simulation response of 
run i ( i  = 1,. . . ,!I), may be represented as 

where the noise vi has zero expected value and constant variance a:. Note that for a fixed 
x-value y can still vary, depending on the order in which customers arrive and depending 
on otherstochastic inputs. The value x, will not be exactly equal to its known expected 
value 11. In the case study, if .xi > 11 -y is expected to exceed its expectation v : y i  > v.  
Therefore -y is regressed on -x:  

-yi = Do + -xi+ -ui (i = 1 , .  . . ,!I) (2) 
where u, the noise around the assumed linecrr model, may have non-zero expected value. 
To obtain the estimators Do and D l  Least Squares is applied. Least Squares is a math- 
ematical procedure and unlike Maximum Likelihood it is not a statistical procedure. In 
practice one is interested in the response 17 for x = p (desired input), not for x = 2 
(accidentally sampled average). Therefore (3) is used: 



- - -  

- - - 
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This regression model is very simple except for the stochastic character of the indepen- 
dent variable x. Why is the linear approximation very realistic when applying control 
variates to ~ i ~ u l a t i o n ?  

(1)Mathematics shows that a function can be approximated by a linear function 
locally. Hence f (x) is replaced by (Po + Pix) in the neighbourhood of x = p. Linear 
approximation might be inadequate when x is varied systematically away from p as 
in experimental design. In simulation, however, the expected value of xi remains p 
and the length of the runs can be taken so long as to make the linear approxi- 
mation hold. Moreover in practice "obvious" outliers should be rejected. Hence an 
additional advantage of control variates is its check on "wild" random number 
streams. 

(2)Statistical theory shows that if (y, x) is bivariate ilormal then the linear model 
This assumption is realislic-if y and x are based on many observations so 

that a central limit theorem applies. FO< instance, even if individual waiting times 
are autocorrelated, their average or quantile4 is asymptotically normal under mild 
technical conditions. 

Note that the above regression model uses a single (control) variate x. Extensions to 
multiple variables are straightforward: either add other variables like service time 
(besides arrival time) or add higher order terms like x2. E l~ewhere ,~  however, it has been 
suggested that increasing the number of control variates may very well be inefficient 
because the variance of the estimated parameters -p increases for fixed sample size n; see 
also Lavenberg et a1.' 

VARIANCE COMPARISON 

The variances of the crude estimator L and the regression estimator i,,are examined for 
two cases, namely the general case f (x)  and the special case of a linear approximation. 
Runs (or subruns) are supposed to be independent so that the yi are independent. Further 

-x and -v are assumed to be independent; see (1). For the crudeestimator one obtains: 

The first component is the variation crlorzy the curve f (x), and the second component is 
the variance around f (x) given x. Iff (x) is assumed to be linear then (4) reduces to 

So var(j)  increases when the control variate can vary much from run to run, and when 
the response reacts strongly to changes in x (high PI). 

For given x' = (x l , .  . . ,x,) it is well-known that 

where a: = var(y x) is assumed to be constant over the (narrow) range of x ;  (6) does not 
assume normality of y or "correctness" of the fitted model (absence of specification error 
so that u = 0).If and-only if (2) is a correct model-f (x) in (1) is linear-then an unbiased 
estimator ofa: (given x) follows from the residuals e = y - j: 

From the conditional expectation 6($,21x) = a: immediately follows f ; (~? ,2 )  = a:. 
Combining the basic formula 

var(y) = A{var(y lx)J + var j b ( y x ) )  
y -i 

1034 
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with (3) and (6) yields 

where s: denotes the (biased) estimator of var(g) = a: : 

and Bo(x) = R (Do- I x), etc. 

Equation (9) may be compared to (6). If x varies much then in general var(y) increases: 
y moves along f(x). For the second term in  (9) the approximation for largen might be 
used : 

The last term in (9) refers to changes in the regression parameters Po and D l  as x changes. 
More insight results iff (x) is approximated linearly. If the regression model is correctly 
specified, then 

independently of x. Consequently in (9) the variance component vanishes and (9) reduces 
to 

Equation (13) can be compared to (5): 
(a) If approximation (11) is used then -G,,has a smaller variance than -y if 

To obtain (14) substitute the well-known relations /31 = p2 var(y)/var(x) and 
var(y) = o:/(l - p2) into (5). Condition (14) is met if p2 approaches unity,still assuming 
large n. 

(b) If x is assumed normal (y - possibly not normal) then the following exact result is 
easily derived. 

which leads to a similar condition as (14): n becomes (11 - 3). 
(c) Given the experimental inputs (x not stochastic), (13) or ( 6 t a n d  also ( 9 t s h o w s  

that regression gives a smaller variance if one of the following conditions holds: 

(i) 	 s: is large: a large spread in x permits more accurate prediction, as is known from 
experimental design theory, 

(ii) 	 x is close to p: the confidence bands in regression are less tight farther away from 
the center of gravity (in simulation 11 is known), 

(iii) the response J, reacts strongly to changes in x, as measured by B1. 
These are three intuitively acceptable conditions! 

Note that (13) is identical to the result Lavenberg et al. obtained assuming normality; 
Chen's printed result (his equation 9) is wrong. When the variance is used to construct a 
conjdeizce interval around j,,, then the normality assumption yields an exact interval 
based on the t-statistic with n - 2 degrees of If no normality is assumed then 
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this t-statistic is conjectured to remain valid because of the robustness of the t-statistic. If 
the practitioner does not trust this robustness he may use j a ~ k k n i f i n g . ~ . ~  

BIAS COMPARISON 

From (1) it follows that 

- - (16)B ( y )  = L ( A ( y x ) )  = 6 ( f ( x ) J  # f (&(x))= f ( p )  
-\ 

where the inequality holds unless f(x) is linear. Because the n pairs (y, - -x) are independent 
(independent runs or subruns) one obtains 

and 

wheref (p) is to be estimated! So the crude estimator shows both conditional bias given x 
(ex post) and overall bias (ex ante). Note that Least Squares implies 5, = y. I f f  (x) is 
linear (locally) then 

A(jlx) = Bo + Bix 
and 

Though the overall bias is zero, the actual simulation experiment realizes x so that the 
simulation measures the response at the input value 2, not at the value of interest p. 

If f (x )  is non-linear, then the regression estimator remains biased because this esti- 
mator approaches f (x )  linearly. In contrast to the crude estimator the regression esti- 
mator measures the approximated f (x) at x = p, not at s = 7. Iff (x) is linear (locally), 
then the regression model is correct and the estimators P o  and Dl are unbiased for any 
realization x ;  see (12). Hence regression yields an unbiased estimator of the response at 
x = B. 

CASE STUDY 

In a telephone exchange a telephone call (customer) gets a busy signal (blocking) if all 
lines (servers) are occupied. The simulation estimates the steady-state probability of 
blocking. The system is technically called a "grading" and forms an intricated network of 
servers6 To  estimate the standard error of the simulated blocking probability the total 
run is divided into 15 subruns of 10,665 calls each (after discarding the initial part of the 
run). Table 1 shows x, the average arrival rate of calls per subrun with 
Q(x) = p = 28.7000 (unit of time is mean service time) and y, the estimated blocking 
probability (in percents). Regression yields Do = -20.1978 and P I  = 0.7544 so that 

= 1.45 whereas y = 1.54. Next the sample analogue of (6) and (13) is used together with 
(7): 

so that the standard error is 0.048. Note that, assuming normality, (15) yields a result 
differing only in the fifth decimal. Instead of (5) one simply computes 

so that the standard error is 0.095. Because the desired blocking probability is I", both 
estimates show significantly worse blocking. Note that 6;= 0.1325 whereas 



Arrival Blocking 
rate v, j'; 

6;= 0.03219 or i, = 0.870. The efficiency gain through regression, estimated by the ratio 
of (22) and (21), is 3.84; the ratio of the standard errors is 1.96 (the Lariance determines 
the number of subruns required for fixed accuracy; for a fixed sample size n the length of 
the confidence interval depends on the standard deviation). 

CONCLUSION 

Before the actual simulation experimentation one might decide whether to use regression, 
considering either condition (14), namely p2 > 1 , ( n  + 1) (approximation for large II), or 
the condition p2 > l/(a - 2) (exact result for normal input r).If one conjectures that p2 
is small then one can save the extra work of regression anal$is. In the case study 17 = 15 
so that the conditions are met if p > 0.28. 

Both bias and variance are unconditional expected values. The actual bias of the crude 
estimator and the standard error of the regression estimator depend on the realized r 
values (besides the parameter p or P ,  which depends on the simulated system). Hence 
after the ex ante decision whether to do regression at all (depending on p2 > 1/(i1 + 1) or 
p2 > I/(??- 2)) one can look at the outcome of the regression analysis. The (conditional) 
bias of the crude estimator can then be estimated as Dl(?  - p), assuming either local 
linearity or bivariate normality of (1.. x). The standard errors of the two estimates 7 and 
i,,, are computed from (21) and (22r  One can e.xplcrii1 why f,,  has, say, smaller standard 
error: (i) the x values turned out to have a sizable spread measured by s:. and (ii) the 
realized average ,5happens to be not too far away from the point of interest p ,  and (iii) 
both (i) and (ii) would not have helped if 1, did not react to j:3: would be as large as 0; 

if p would be zero (remember a: = (1 -p2)a:.). Sizable variance reductions are possible, 
in the case study a factor 3.84. Note that the confidence intervals depend on the degrees 
of freedom (11 - 1) or ( n  - 2), and these intervals require that the point estimators be 
unbiased. 
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