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In simulation experiments confidence intervals may be based 
on subruns. To test whether subruns are independent the Von 
Neumann statistic is often used. This note shows that the 
power of this statistic may be very small. The practical recom- 
mendation is to apply the statistic only if at least 100 subruns 
are available. 

The simulation literature shows a continuing 
interest in the use of subruns for the derivation of 
confidence intervals; see [2,4,5,6]. In such an ap- 
proach the total run is divided into, say, n subruns, 
and the subrun-averages are tested for indepen- 
dence. A popular statistic, to test for independence 
is the 'Con Neumann ratio; see [7]. The purpose of 
the present note is to emphasize that the power 
(complement of fl-error) of this test statistic is 
small for less than, say, 100 observations, i.e., if 
n < 100, then there is a sizable chance that the 
experimenter erroneously accepts the indepen- 
dence hypothesis. Note that this power issue is 
indirectly addressed in [4, pp. 518-519]. 

The Von Neumann statistic is defined as 

n-- I t~ 
Q= ~ (x~+,-x,)2/ ~ (x, _:[)2. (I) 

i=l i=l 

If H o denotes the hypothesis of independent x, 
then 

v.(QI n0) = 2. (2) 

If moreover x is normally distributed, then 

o2(Qlno)'-4(n-2)/(n-1)(n+l). (3) 
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Hence while the expected value remains 2 for any 
n the standard deviation is quite large for small n, 
for instance, 0.57 for n = 10 and 0.20 for n = 100. 
For n > 20 the distribution of Q may be approxi- 
mated by a normal distribution. 

We wish to concentrate on the power of the 
above test as a function of the sample size n. 
Therefore we assume that x is indeed normal. We 
characterize the dependence among the x through 
the first-order autocorrelation coefficient P l. We 
quantify the power of the test in two ways, namely 
analytically introducing some additional assump- 
tions, and empirically using Monte Carlo simula- 
tion. 

Analytically it is well known that 

V~(Q) = 2 - 2 -  2E(~I). (4) 
n 

If we further assume that under the alternative 
hypothesis H I, the statistic Q remains normally 
distributed with the variance, say o 2, shown in (3), 
then (5) results: 

E(QlHI}=E{QIHo}-I.96o-Doo (5) 

where D# stands for the distance between the mean 
and the fl% point of the ~gt distribution. Substitut- 
ing (3) and (4) into (5) enables us to compute the 
relation between p~ and fl for different n values 
(provided we neglect the bias of b i; see below). 
This results in Table 1; see also fig. 1. This table 
means that, e.g., a correlation between successive 
observations of 0.92 results in acceptance of H 0 in 
5% of the applications in which 10 subruns are 
available. 

The analytical derivation can be checked 
through a Monte Carlo simulation. This simula- 
tion generates normally distributed variables x 
with prescribed 0t; see [3, p. 234], The experiment 
is replicated 100 times for each n value; 01 varies 
between 0.001 and 0.5. This experiment yields the 
dashed curves in Fig. 1. The simulation confirms 
the analytical result except in the situation of 
n = 10 subruns. This deviation is probably ex- 
plained by the bias of bl for instance E{bl[ H0} ~ 
-l /n.  The exact bias under H I is complicated 

0377-2217/82/0000-0000/$02.75 © 1982 North-Holland 

CORE Metadata, citat ion and similar papers at core.ac.uk

Prov ided by  Research Papers  in  Economics

https://core.ac.uk/display/6647776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


J.P.C. Kleijnoa et al. / testing indepotdence of simulation subruns 

Table I 
Pl as a function of number of subruns n and fi-error (a=O.05) 
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Sample B (in%) 
size 

5 I0 15 25 50 75 90 97.5 

I0 0.92 0.82 0.75 0.65 0.46 0.26 0.09 0 
50 0.48 0.43 0.40 0.35 0.25 O. 16 0.07 0 

100 0.35 0.31 0.29 0.25 0. I 8 O. 12 0.06 0 

and depends on the structure of the x-process; see 

ill. 
In conclusion, it may be good practice to com- 

pute confidence intervals in simulation from only 
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Fig. I. Relationship between B error, sample size n and correla- 
tion p ~. 

10 to 20 subr:,ns; see [6]. However, first it must be 
decided whether the batches are independent. The 
Von Neumann test yields reliable results only if, 
say, 100 subruns are available! 
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