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Abstract Oakes (1994) described in broad terms an omnibus semiparametric procedure
for estimating the dependence parameter in a copula model when marginal dis-
tributions are treated as (infinite-dimensional) nuisance parameters. The result-
ing estimator was subsequently shown to be consistent and normally distributed
asymptotically (Genest et al. 1995, Shih and Louis 1995). Conditions under
which it is also semiparametrically efficient in large samples are given. While
these requirements are met for the normal copula model (Klaassen and Wellner
1997), it is argued that this is an exception rather than the norm.
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1. Introduction

A random vector (X1; : : : ;Xm) is said to arise from a copula model when its
joint distribution function is assumed to be of the form

H(x1; : : : ;xm) =CθfF1(x1); : : : ;Fm(xm)g ; (1.1)

where Fi(xi) denotes the marginal distribution of Xi and for each parameter
value θ, Cθ is an m-variate distribution function with uniform marginals, i.e.,
a copula. The same terminology is sometimes used to describe situations in
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which the joint survival function of the Xi’s can be written as

H̄(x1; : : : ;xm) =CθfF̄1(x1); : : : ; F̄m(xm)g (1.2)

in terms of the marginal survival functions F̄i(t) = 1�Fi(t).
Representations (1.1) and (1.2) are advantageous in that they allow to model
separately the behaviour of each of the Xi’s and their dependence structure.
Oakes (1989), Bandeen-Roche and Liang (1996), and Klugman and Parsa
(1999), among others, have shown the value of this modelling approach in
medical, engineering, and actuarial contexts.
In typical applications of copula models, specific parametric forms are selected
for the dependence structure (i.e., Cθ) and the marginals (e.g., normal distribu-
tions or Pareto survival functions). Then arises the question of estimating the
various (scalar or vector-valued) parameters of the model from a random sam-
ple (X11; : : : ;Xm1), : : :, (X1n; : : : ;Xmn) of data from H or H̄, as the case may be.
A standard approach consists in maximizing the joint likelihood, either directly
or in two steps as suggested in Chapter 10 of Joe (1997). However, inappro-
priate choices for the marginals could then affect appreciably the estimation
of the dependence parameter θ. To avoid this problem, margin-free estimates
of θ had to be found. Thus, from ad hoc proposals made in special contexts
(e.g., Clayton and Cuzik 1985; Oakes 1982, 1986; Genest 1987; Hougaard
1989) gradually emerged a general strategy for estimating semiparametrically
the dependence parameters in copula models.
This omnibus procedure, described in broad terms by Oakes (1994), is quite
simple. For each 1 � i � m, let

Fin(x) =
1

n+1

n

∑
j=1

1(Xi j � x)

be the (rescaled) empirical distribution function corresponding to Xi, and select
the value θ̂ that maximizes the pseudo-log-likelihood

n

∑
j=1

log cθ
�

F1n(X1 j); : : : ;Fmn(Xm j)
	
; (1.3)

where cθ is the density associated with Cθ, assuming it is strictly positive on
(0;1)m. In other words, replace Fi by Fin in the likelihood for θ and maximize
it. As shown by Genest et al. (1995) and Shih and Louis (1995), the resulting
estimator is consistent and asymptotically normally distributed, even in the
presence of censorship. This allows for the construction of confidence intervals
that have the desired coverage probability asymptotically.
Since this omnibus method is close in spirit to maximum likelihood, it might
be hoped that the estimator it yields becomes semiparametrically efficient as
the sample size increases. Copula models for which this is indeed the case
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are characterized in Section 2, where it is argued on intuitive grounds that ef-
ficiency should actually be the exception rather than the norm. And indeed,
only two instances of semiparametric efficiency are identified in Section 3: the
case of independence and the normal copula model, for which this finding was
already announced by Klaassen and Wellner (1997). While this list is by no
means exhaustive, the search for a more efficient rank-based estimation proce-
dure seems justified, if only on theoretical grounds, and alternative avenues to
that effect are briefly touched upon in Section 4. The proof of the character-
ization result is given in an appendix, using theory described by Bickel et al.
(1993).

2. When is the omnibus estimator
asymptotically semiparametrically eÆcient?

Though the arguments developed in this paper are valid in a multivariate con-
text, discussion is restricted hereafter to the case m = 2 for ease of exposition.
Under sufficient regularity conditions (to be given later), the omnibus semi-
parametric estimator θ̂ is then a solution of

n

∑
j=1

˙̀θ
�

F1n(X1 j);F2n(X2 j)
	
= 0;

where ˙̀θ(u1;u2) = ∂ logcθ(u1;u2)=∂θ. While the substitution of consistent
estimators Fin of the unknown marginals ensures that θ̂ is both rank-based
and consistent, this procedure ignores information about the Fi’s that may be
present in the data when the underlying copula is known to belong to a given
class (Cθ).
This observation is not new; e.g., it is at the root of work by Zheng and Klein
(1995), who use knowledge about the dependence structure of two compet-
ing risks to improve on standard (Kaplan-Meier) estimates of the marginal
survival functions. To illustrate this point in a simple way, suppose that the
class (Cθ) reduces to a single copula C that concentrates all its probability
mass uniformly on the line segments u2 = u1�1=2 and u2 = u1 +1=2, accord-
ing as u1 � 1=2 2 [�1=2;1=2] is positive or negative. If random observations
(X11;X21); : : : ;(X1n;X2n) are drawn from

H(x1;x2) =CfF1(x1);F2(x2)g ; (2.1)

the fact that the “shuffle of min” C is singular (Mikusiński et al. 1992) implies
that for all j, one will have either

X2 j = F�1
2 fF1(X1 j)�1=2g or X2 j = F�1

2 fF1(X1 j)+1=2g;

depending on whether X1 j is larger or smaller than med(X1) = F�1
1 (1=2). To

estimate the latter, F�1
1n (1=2) would then be an inefficient choice. For, the
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median of X1 would necessarily be located in the interval (X1( j?);X1( j?+1)),
where the X1( j)’s denote the order statistics of the X1 sample and X1( j?) = X1 j

with rank(X2 j) = n. A fortiori, F1 should not be estimated by F1n.
If the Fin’s are indeed inefficient estimators of the marginals when information
is available about the dependence structure, it may then be suspected that the
omnibus estimator θ̂ is not always semiparametrically efficient. To determine
exactly when it is, results from Chapter 3 of Bickel et al. (1993) can be used.
For i = 1;2, define

˙̀i(u1;u2) =
∂

∂ui
logcθ(u1;u2);

I(θ) =
Z 1

0

Z 1

0

˙̀2
θ(u1;u2)cθ(u1;u2)du1du2;

and among the primitives of

Iθi(ui) =

Z 1

0

˙̀θ(u1;u2) ˙̀i(u1;u2)cθ(u1;u2)du3�i;

let Wi(ui) denote that one which has zero expectation. A proof of the following
proposition may be found in the appendix under the regularity conditions used
in Section 3.4 of Bickel et al. (1993).

Proposition. The omnibus semiparametric estimator θ̂ is asymptotically effi-
cient if and only if for each possible value of θ, there exists a constant 0 <

I�(θ)� I(θ) such that for all 0 � u1;u2 � 1,

f1� I(θ)=I�(θ)g ˙̀θ(u1;u2) =
2

∑
i=1

EfWi(Ui) jU3�i = u3�ig

+
2

∑
i=1

˙̀i(u1;u2)

Z u3�i

0
[Wi(v)+EfW3�i(U3�i) jUi = vg]dv: (2.2)

Under these conditions, I�(θ) is then the information for estimating θ in the
semiparametric model.

3. Illustrations

It is immediate from (2.1) that the estimator θ̂ is semiparametrically efficient
and even adaptative at independence. For, in this case, the ˙̀i’s and the Iθi’s
vanish, so that the condition of the proposition is trivially verified with I�(θ) =
I(θ). Under independence, the empirical distributions are well known to be
efficient estimators of the marginals, of course.
The following examples illustrate the calculations involved in checking condi-
tion (2.1) for two familiar systems of copulas that include independence as a
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special case. The omnibus estimator θ̂ is seen to be semiparametrically effi-
cient in the first model, but not in the second.

Example 1. (Normal distributions). If Φθ represents the distribution function
of a bivariate normal vector with standardized marginals Φ and correlation
coefficient θ, the underlying normal copula is defined on the unit square by

Cθ(u1;u2) = Φθ
�

Φ�1(u1);Φ�1(u2)
	
= Φθ(v1;v2)

with vi =Φ�1(ui), i = 1;2. Let φdenote the standard normal density. Klaassen
and Wellner (1997) showed

˙̀θ(u1;u2) =
v1v2

1�θ2 +
θ

1�θ2

�
1�

v2
1 + v2

2�2θv1v2

1�θ2

�
;

˙̀i(ui) =
θ

1�θ2

v3�i�θvi

φ(vi)
; Iθi(ui) =

θ
1�θ2

vi

φ(vi)
;

and

Wi(ui) =
1
2

θ
1�θ2

�
v2

i �1
�
; i = 1;2:

Taking

I�(θ) =
1

(1�θ2)2 � I(θ) =
1+θ2

(1�θ2)2 ;

it is a routine exercise to check that (2.1) holds. Note that in this case, θ̂
is a function of the normal scores that is different from, but asymptotically
equivalent to, the van der Waerden rank correlation coefficient, which is the
estimator proposed by Klaassen and Wellner (1997) for this particular model.

Example 2. (the Farlie-Gumbel-Morgenstern system). Copulas in this class
are of the form

Cθ(u1;u2) = u1u2 +θu1u2(1�u1)(1�u2)

with jθj< 1. Setting vi = 2ui �1, elementary calculations yield

˙̀θ(u1;u2) =
v1v2

1+θv1v2
;

˙̀i(u1;u2) =
2θv3�i

1+θv1v2

and

Iθi(ui) =�
2

θvi
�

1

θ2v2
i

log

�
1�θvi

1+θvi

�
;

whence

Wi(ui) =
∞

∑
k=1

θ2k�1

2k(2k+1)

�
v2k

i �
1

2k+1

�
; i = 1;2:

It is then a simple matter to show that for given θ 6= 0, the right-hand side of
(2.1) is not proportional to ˙̀θ.



108 DISTRIBUTIONS WITH GIVEN MARGINALS

4. Discussion

Although this remains to be checked in full generality, the nature of condition
(2.1) makes it improbable that the omnibus estimator θ̂ is semiparametrically
efficient for any of the most common parametric copula models, say within
the broad Archimax class recently introduced by Capéraà et al. (2000). Using
techniques described in Chapter 3 of Bickel et al. (1993), it would be of interest
to determine, for a variety of such models, the extent to which this procedure
is inefficient by comparing its limiting variance (already determined by Genest
et al. 1995) to the semiparametric information bound.
Alternative semiparametric estimation strategies could also be envisaged. As a
step towards the construction of a more efficient procedure, consider the situ-
ation in which data (X11;X21); : : : ;(X1n;X2n) arise from a bivariate distribution
of the form (2.1) with unknown marginals F1, F2 and arbitrary, but known, ab-
solutely continuous copula C with density c. As before, let Xi( j) denote the jth
order statistic among the observations of Xi1; : : : ;Xin.
Suppose for a moment that each Fi belonged to a parametric family (Fiαi) with
corresponding densities ( fiαi). Obviously, the αi’s should then be estimated,
not from the log-likelihoods of the individual univariate margins

Li(αi) =
n

∑
j=1

log fiαi(Xi j);

but from the overall log-likelihood

L1(α1)+L2(α2)+
n

∑
j=1

logcfF1α1(X1 j);F2α2(X2 j)g:

Likewise, nonparametric estimators F̂i of the Fi’s should exploit the additional
information provided by the fact that C is known. An alternative to the omnibus
procedure leading to θ̂ would then be as follows: (i) derive an initial consistent
estimate θ̃ of the dependence parameter by some simple method, such as the
inversion of Kendall’s tau; (ii) compute the F̂i’s assuming Cθ =Cθ̃; (iii) replace
Fin by F̂i in the pseudo-log-likelihood (1.3), and maximize it with respect to θ.
At present, however, it is not clear how efficient nonparametric estimators F̂i’s
might be constructed using knowledge about C. One option might be to ob-
serve that among estimators of the form

F̂i(x) =
n

∑
j=1

pi j1
�
Xi( j) � x

�
;

with arbitrary positive weights adding up to one, the standard empirical distri-
bution function corresponds to the choice of pi j’s that maximizes the empirical
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likelihood (Owen 1990)

n

∑
j=1

log pi j =
n

∑
j=1

logP
�
X = Xi( j)

�
;

i.e., the likelihood of the data with respect to the counting measure on the order
statistics Xi( j). When C is known, analogy with the parametric case would then
suggest that the pi j’s be chosen to maximize

n

∑
j=1

log p1 j +
n

∑
j=1

log p2 j +
n

∑
j=1

log c

 
R1 j

∑
k=1

p1k;

R2 j

∑
k=1

p2k

!
;

where Ri j denotes the rank of Xi j among Xi1; : : : ;Xin. This seems intuitively rea-
sonable, since knowledge of the copula might lead one to assign higher weights
to those pairs of observations (or more precisely to the induced relative ranks
(R1 j;R2 j)=n) that occurred in comparatively more likely regions of the unit
square. And indeed, the F̂i’s can be proved to be asymptotically normal and
unbiased estimators of the marginal distributions in that case. Although these
estimators are possibly more efficient than the Fin’s in large samples, extensive
Monte Carlo simulations suggest that coupled with an initial estimation of θ
by inversion of Kendall’s tau, this choice of nonparametric estimator for the
marginals does not yield any significant improvement in the estimation of the
dependence parameter of the various copula models considered.

Appendix: Proof of the characterization result

From Section 3.4 of Bickel et al. (1993), efficient semiparametric inference
must be based on the “efficient score,” i.e., the residual of the projection of ˙̀θ
on a closed linear subspace of functions that are square-integrable and have
zero mean with respect to the measure Cθ. In the bivariate case, and under
the regularity conditions of Proposition 4 on p. 166 of Bickel et al. (1993),
this so-called tangent space comprises all functions t(u1;u2) expressible in the
form

t(u1;u2) =
2

∑
i=1

�
γi(ui)+ ˙̀i(u1;u2)Γi(ui)

	
(4.1)

in terms of arbitrary functions γi with

Γi(ui) =
Z ui

0
γi(v)dv and Γi(1) = 0; i = 1;2:

The same regularity conditions imply that

Z 1

0

˙̀i(u1;u2)cθ(u1;u2)du3�i = 0;
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and (through integration by parts)

Z 1

0
γi(ui)cθ(u1;u2)dui =�

Z 1

0
Γi(ui) ˙̀i(u1;u2)cθ(u1;u2)dui:

Hence it follows from (4.1) that

γi(ui) =
Z 1

0
t(u1;u2)cθ(u1;u2)du3�i = Eft(U1;U2) jUi = uig; (4.2)

where (U1;U2) has distribution Cθ. Thus if h(u1;u2) is a zero-mean function
that is orthogonal to the tangent space, it must satisfy

Efhi(U1;U2) jUi = uig= 0; (4.3)

where hi(u1;u2) = ∂h(u1;u2)=∂ui, i = 1;2, because use of (4.1) and integration
by parts shows that Efh(U1;U2)t(U1;U2)g

=
2

∑
i=1

Z 1

0

Z 1

0
h(u1;u2)

�
∂

∂ui
Γ(ui)cθ(u1;u2)

�
duidu3�i

= �
2

∑
i=1

Z 1

0

Z 1

0
Γ(ui)cθ(u1;u2)

�
∂

∂ui
h(u1;u2)

�
duidu3�i

= �
2

∑
i=1

E [Γi(ui)Efhi(U1;U2) jUi = uig] = 0;

for all choices of γi’s.
In particular, the efficient score function must be of the form h(u1;u2) =
˙̀θ(u1;u2)� t(u1;u2) for a specific t of the form (4.1) with γi’s that meet con-
dition (4.3). As shown in Section 4.7 of Bickel et al. (1993), this leads to a
pair of coupled Sturm-Liouville differential equations involving the γi’s, their
primitives and their derivatives, viz.

Iθi(ui)+γ0i(ui)� Iii(ui)Γi(ui)+

Z 1

0

˙̀12(u1;u2)Γ3�i(u3�i)du3�i = 0

for i = 1;2. These results were used by Klaassen and Wellner (1997) to assess
the semiparametric efficiency of the normal scores (or van der Waerden) rank
correlation coefficient as an estimator of θ in the normal copula model. The
same can be done with the omnibus estimator θ̂, whose asymptotic variance is
given in Proposition 2.1 of Genest et al. (1995) as

σ2 =
1

I(θ)
+

1
I2(θ)

var

(
2

∑
i=1

Wi(Ui)

)
;
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where the Wi’s are defined as in Section 2 to have zero expectation and deriva-
tive Iθi. The score function implicitly used by these authors is

h(u1;u2) =
1

σ2I(θ)

(
˙̀θ(u1;u2)+

2

∑
i=1

Wi(ui)

)
;

which satisfies (4.3) and hence is orthogonal to the tangent space, because the
regularity conditions imply that

E
�

˙̀θi(U1;U2) jUi = ui
	
=�Iθi(ui); i = 1;2:

For θ̂ to be efficient, however,

t(u1;u2) = ˙̀θ(u1;u2)�h(u1;u2)

=

�
1�

1
σ2I(θ)

�
˙̀θ(u1;u2)�

1
σ2I(θ)

2

∑
i=1

Wi(ui);

should also be of the form (4.1) with γi’s given by (4.2), viz.

γi(ui) =�
1

σ2I(θ)
[Wi(ui)+EfW3�i(U3�i) jUi = uig] ;

on account of the fact that Ef ˙̀θ(U1;U2) jUi = uig= 0 for i= 1;2. Accordingly,
identity (2.1) must hold with I�(θ) = 1=σ2 � I(θ), whence the result.
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