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SUMMARY 

This paper discusses, estimates and compares some microeconometric models for simultaneous discrete 
endogenous variables. The models are based on the assumption that observed endogenous variables 
represent the outcome of a static discrete game. I discuss models based on non-cooperative equilibrium 
concepts (Nash, Stackelberg), as well as models which presume Pareto optimality of observed outcomes. 
The models are estimated using data on the joint labor force participation decisions of husbands and 
wives in a sample of Dutch households. 

1. INTRODUCTION 

During the last two decades models for qualitative and limited dependent variables have 
evolved from subjects on the frontier of econometrics to  well-established and widely used 
research tools. This is witnessed not only by the existence of several reviews on the subject but 
also by the availability of numerous computer packages for estimation. 

In addition to univariate and multivariate models, simultaneous equations models for 
discrete and limited dependent variables have been proposed. An example is the simultaneous 
probit model: 

y 1* = xtP1+ 7lY2  + El ( la) 

yz*= xtP2 + Y Z V l f  E2 ( lb) 

y i = 1  if y * > 0 ,  i = 1 , 2  ( 1 ~ )  

0 otherwise 

Models like (1) were introduced as being the ostensibly natural adaptations of the classical 
linear simultaneous equations model to discrete endogenous variables. However, a well-known 
difficulty with model (1) and similar models is that they require some coherency restriction on 
parameters in order to  be statistically meaningful. The root of the coherency problem is that 
the relationship between (el, €2) and (yl, y2) defined by model (1) is not one to one. For model 
(1) the coherency condition is 7 1 7 2  = 0, which essentially eliminates simultaneity from the 
model (see e.g. Heckman, 1978). 

In applications where the discrete endogenous variables represent actions of two agents, y*  
can often be interpreted as the difference between the utility player i attaches to y; = 1 and the 
utility attached to yi = 0, given yj, i.e. given the action of player j (i # j ) .  Therefore if the 
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utility player i derives from each of the four possible combinations of actions is denoted by 
u ' ( Y I , Y ~ ) ,we have y1*= ~ ' ( 1 , ~ 2 )u l ( O , y z ) and yz*= u 2 ( y l ,  1 )  -- u 2 ( y l , 0 ) .  

Bjorn and Vuong (1984, 1985) noted that given this utility interpretation of the latent 
variables, one can use the Nash or Stackelberg equilibria of a game between the two agents 
to relate the latent variables to the observed discrete variables, rather than using ( l c ) .  
Although their papers present an interesting generalization of traditional discrete choice 
models, the equilibrium concepts they adopted suffer from the fact that they may yield 
allocations which are not Pareto optimal. Especially in applications to household behaviour, 
it seems more appropriate to employ an equilibrium concept which yields Pareto optimal 
outcomes only. Recently, Bresnahan and Reiss (1991) have discussed identification and 
estimation issues of a much wider range of models of discrete games, including sequential- 
moves games, co-operative games and games with mixed strategies. 

The present paper actually estimates some models of discrete games employing data on 
household labour force participation. Both co-operative and nonco-operative equilibrium 
concepts are used. The paper is organized as follows. Section 2 presents the econometric 
models, based on four different equilibrium concepts. Section 3 discusses and compares the 
estimation results. Section 4 concludes. 

2. ECONOMETRIC MODELS OF SOME DISCRETE GAMES 

Consider two players who each can take one of two actions. The action player i ( i= m, f l  takes 
is denoted by a dummy variable yi.  The utility player i derives from each of the four possible 
combinations of actions is denoted by U' ( Y , ~ ,y f ) .  (In the sequel a combination of actions will 
be called an allocation.) The preferences of the ith player in this model are completely 
characterized by the ranking of his/her four utility levels. For each player 4!  different rankings 
are possible. Therefore for the two players there are (4!12= 576 possible combinations of 
utility rankings. 

For empirical implementation, we parameterize the utility levels as follows: 

Specification (2) follows McFadden's random utility hypothesis. It decomposes u ~ ( ~ ~ ,y2) 
into a deterministic component which depends upon a vector x of observed exogenous 
variables, and a random component E which follows some probability distribution; the a 's  and 
0's are fixed parameters (see e.g. McFadden, 1981). Specification (2) assumes that the change 
in utility of player i caused by a change of action of player j does not depend on x; for example 
U m ( l ,1 )  - U m ( l  ,0) = a in and u f ( l,o) - uf(O,O)= a{. The latter assumption reduces the 
number of possible utility rankings per player from 24 to 6.  For example, if a i" is positive and 
ao"is negative, then utility rankings with U m ( l , l )- Um(l,O)< 0 and Um(O,l)- Um(O,O)> 0 
cannot occur. The specification of constant terms in model (2)  is similar to that in the 
'simultaneous-move' games as proposed by Bresnahan and Reiss (1991). 

In the sequel, the following additional notation will prove to be useful: 
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Given the preferences of both players, we can define an equilibrium concept. The aim of this 
is to attach an allocation to each combination of utility rankings. We will consider the Nash 
equilibrium, the Stackelberg equilibrium, equilibria based on Pareto optimality only, and three 
mixtures of Pareto optimal equilibria and Nash equilibria. The first two of these have been 
proposed earlier in Bjorn and Vuong (1984) and Bjorn and Vuong (1985), respectively. 

Model 1. Nash 

Each player is assumed to maximize his or her utility function, given the action of the other 
player. Both players then adjust their actions until their decisions are mutually consistent. 
More formally, allocation ( k ,I )  is a Nash equilibrium if 

U r n (1 )  > 1 - k 1 )  and u f ( k ,1 )  > u f ( k ,1 - 1) k , 1 = 0 ,I 

Therefore, the Nash equilibrium (NE) is determined by the signs of the following utility 
differences (reaction functions): for player m :  

U m ( l , l )- Um(O,l)= x ' p m+ amem and Um(l,O)- Um(O,O)= x ' p m + em (3a) 

and for player f: 

u f ( l , l )- u f ( l ,O)= x ' p f  + a f  + e f  and u f ( O , l )- uf(O,O)= x ' p f  + e f  (3b) 

Table A1 in the Appendix gives the Nash equilibria corresponding to each of the sixteen 
possible combinations of signs of reaction functions. In some cases there are two Nash 
equilibria, whereas in others there does not exist a Nash equilibrium. In case of multiple equi- 
libria we assume, following Bjorn and Vuong (1984),that players choose one of the equilibria 
at random, such that each equilibrium is chosen with equal probabilities. If there is no Nash 
equilibrium players are assumed to choose one of the four allocations with equal probabilities. 
As has been noted by Bresnahan and Reiss (1991), there are several other ways of responding 
to the nonuniqueness problem. One possibility is to treat some combination of outcomes as 
one event. However, if the total number of outcomes is already small such an approach is not 
useful. Another possibility is to restrict the support of the error terms. Basically, this is 
equivalent to assigning in an ad hoc way smaller or even zero probabilities to some outcomes 
and larger probabilities to others. Given that the models offer no further basis for 
distinguishing between multiple equilibria, we feel that assuming random choice with equal 
probabilities is a natural way to proceed. Nevertheless, this assumption is ad hoc as well. 
Additional data, for example direct information on each player's preferences, is needed to 
investigate the validity of this assumption. Finally, it should be kept in mind that in all cases 
there is always a positive probability of the existence of pure strategies due to the parametric 
specification in model (2).  

From Table AI, the likelihood contributions can be derived straightforwardly (see Bjorn and 
Vuong, 1984). As will be clear from Table AI, only a m and a f  are identified, not a T", a r ,  a f  
and ad separately; the same holds true for the 0's. 

It is well known that the Nash equilibrium is generally not Pareto optimal. For example, 
consider the case where we have the reaction functions U m ( l , l )- Um(O,l)> 0 and 
U m ( l  ,0) - Um(O,O)> 0 for player m and the reaction functions u f ( l ,1 )  - u f ( l  ,0) < 0 and 
u f (O , l )- uf(O,O)> 0 for player f .  Then the NE is (1,0), but is it perfectly possible that ( 0 , l )  
is Pareto more efficient than ( 1 , O ) .  To determine whether this is the case, we would need to 
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know the signs of Um(l ,0) - Um(O, 1) = x'Pm - a t  + em and u f ( l  ,o) - uf(O,l) = -xtfp + 
a6 - ef. However, as noted earlier, ao" and a&are not identified in the Nash model. 

Model 2. Stackelberg 

In a Stackelberg game the role of the players is asymmetric. One of the players (the leader), 
is assumed to maximize his or her utility anticipating the reaction of the other player (the 
follower). Formally, allocation (k, I) is a Stackelberg equilibrium (SE) with player m being the 
leader and player f being the follower if 

uf(k, I) > uf(k, 1 - I) and Um(k, I) > Um(l - k, I) 
1 - k, I) > u f ( l  - k, 1 -1) 

uf(k, I) > uf(k, 1 - I) 
and Um(k, I) > Um(l - k, 1 - 1)

u f ( l  - k, I) < uf ( l  - k, 1 - I) 

Table A11 in the Appendix gives the Stackelberg equilibrium for all possible configurations. 
First note that, as opposed to the NE, the Stackelberg equilibrium (SE) is always defined 
uniquely. In the Stackelberg model pm, a ?  and ar are identified for the leader m, whereas 
for the follower f only pf and af are identified. Like a NE, a SE need not be Pareto optimal. 
For example, consider the first case in Table AII, i.e. u f ( l , l )  > uf(l,O), uf(O,l) > uf(O,O) 
and Urn (1,l) > Urn (0,l). Here the SE (1, I), but (0,O) might be Pareto more efficient than (1,l). 
The likelihood function is derived along the same lines as in case of the NE (see Bjorn and 
Vuong, 1985). 

Model 3. Pareto Optimality Only 

Allocation (k, I) is Pareto optimal if 

[Um(k, I) > Um(k, 1 - I) or uf(k, I) > uf(k,  1 - I)] 

and 

[Um(k, I) > Um(l- k, I) or uf(k, I) > u f ( l  - k, I)] 

and 

For the case a ?  > 0, a? > 0, a{ > 0 and a-f;> 0, Table A111 in the Appendix gives the 
Pareto optimal allocations for each of the 36 possible combinations of utility rankings. In 
many cases several allocations are Pareto optimal. As before, we assume that the players then 
choose one of the Pareto optimal allocations at random, such that each Pareto optimal 
allocation is chosen with equal probabilities. 

From Table AIII, the likelihood contributions for the Pareto optimality model can be 
derived straightforwardly. For example, if allocation (0,O) is observed, the likelihood 
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contribution becomes: 

Pr(0,O) =4Pr [UE < UU;; < UZ < <;I; and ~ $ 1< ~ $ 0< U{O < U{I] 
+ jPr [UE < U'i'l < UZ < Ufl and ~ $ 1< U& < U{I < U ~ O ]  
+ jPr [UE < UYl < UZ < U;I; and ~ $ 1< U ~ I< ~ $ 0< U{O] 

+ jPr [UE < UZ < U';1 < U;I; and ~ $ 1< U{I < ~ $ 0< U ~ O ]  
+ fPr  [UE < U Z  < Uoml < U';1 and ~ $ 1< U.fl < U$O< u-~o] 

= 3 P r [ e r n < - x f p r n - a ; f  	 and - ~ ' / 3 ~ - - a { + a $ < e ~ <-x fp f ]  (4) 

+ f P r [ ~ ~ <  and -xfpf-min(0,a{-a$)]- x ' p r n - a ?  - X ' @ ~ - ~ < < E ~ <  

+ 3 P r [ e r n <  - X ' / ~ ~ - C Y ; ~and e f <  -x'pf-a{] 

+ f  P r [ - x ' p r n - a ? <  e m <  - ~ ' / 3 ~ - m i n ( O , a ' i ' - a f )  and .sf< -xfpf -a{]  

$ 3  Pr [ -x 'prn- a;2+aOm < ern< -xfprn  and ef < -x fp f - a{ ] .  

The second equality is based on specification (2). Note that some of the probability terms in 
model (4) may be zero, depending on the signs of a i" - aOm and a{ - a$. 

Model 4. Mixed Pareto OptimalitylNash 

From the point of view of predictability of a model, a large number of cases with multiple 
solutions as in model 3 is undesirable. It seems reasonable to choose an equilibrium concept 
that minimizes the number of cases where multiple solutions arise, and when they arise, that 
produces as few solutions as possible. The following model uses the Nash principle to reduce 
the number of multiple Pareto optimal solutions. Three cases can be distinguished: 

Case I (One Nash equilibrium). If the game has exactly one NE and if this NE is Pareto 
optimal, we assume this to be the outcome of the game (see Example 1). 

Example 1. The unique Nash equilibrium (0,l) is Pareto optimal 

If the unique NE is not Pareto optimal, there exists exactly one allocation at which both 
players are better off as compared to the Nash equilibrium.' The players are then assumed 
to choose this Pareto efficient allocation (see Example 2). 

Example 2. Allocation (1,l) is Pareto more eficient than the NE (0,O) 

Case 2 (Two Nash equilibria). If the game has two Nash equilibria at least one of these will 

'Let ( k , l )  be a Nash equilibrium (NE) which is not Pareto optimal ( k , l = 0 , 1 ) . Because it is a NE we have 
Um(k ,  I )  > U m ( l- k , I ) and uf (k , I )  > u1(k, 1 - I ) . Therefore the allocation at which both players are better off than 
at (k ,  I )  must be ( 1  - k,  1 - I ) .  
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be Pareto optimal.* If only one NE is Pareto optimal, we assume this to be the outcome 
of the game (Example 3). 

Example 3. Two Nash equilibria ((1,l) and (0,O)); only (1,l) is Pareto optimal 

If both NE are Pareto optimal, the players are again assumed to choose one of these with 
equal probabilities (Example 4). 

Example 4. Two Nash equilibria ((1,O) and (O,l)), both Pareto optimal 

Case 3 (No Nash equilibrium). If the game does not have a NE, there may be two, three 
or four Pareto optimal allocations (Examples 5, 6, and 7, respectively). In such a case the 
players are assumed to choose one of the Pareto optimal allocations with equal 
probabilities. 

Urn(0,O)< Urn(1,0) < Urn(l,l)  < Urn(0,1) 

uf(0, l )  < u~(o,o)< uf( l ,0)  < u f ( l , l )  

Example 5. No Nash equilibrium; two Pareto optimal allocations ((1,I) and (0,l)) 

Example 6. No Nash equilibrium; three Pareto optimal allocations ((1,1), (0,l) and (1,O)) 

Example 7. No Nash equilibrium; all allocations Pareto optimal 

Suppose (k ,I )  is one of the two NE (k ,I= 0,l).  Then we have 

u m ( k ,I )  > u m ( l- k ,  I )  ( F 1 )  

and 

u f ( k ,I )  > u f ( k ,1 - I )  (F2) 

so that the other NE must be ( I  - k ,  1 - 1 ) .  This implies 

Um(l- k,1 - I )  > Um(k ,I -1) (F3) 

and 

uf(1- k ,  1 - I )  > u f ( l  - k ,  I )  (F4) 

Allocations ( 1  - k,I) and (k ,1 - I )  cannot be Pareto more efficient that (k , I )  in view of equations (Fl)  and (F2), 
whereas ( 1  - k ,  I )  and (k ,1 - I )  cannot be Pareto more efficient than ( 1  - k ,  1 - I )  in view of equations (F3)and (F4).If 

k 1) > 1 - k ,  1 - I i = m,f ( F S )  

then only (k ,I )  is Pareto optimal ( ( 1  - k ,  1 - 1 )  if the inequality is reversed). If 

( k ,I )  > 1 - k ,  1 - I and ( k ,1 )  < 1 - k ,  1 - I )  i # j 

then both ( k ,I )  and ( 1  - k ,  1 - I )  are Pareto optimal. 
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Table I .  Identifiability of a's 

Nash (a;" - a:), ( a ( -  a{)  
Stackelberg, male leader a I l l ,  a:, ( a ( -  a{)  

Stackelberg, female leader (a;"- a:), a{, a{ 
Pareto optimality only a;", a:, a(,  a{ 
Mixed Pareto optimality/Nash a?,  a:, a(,  a{ 

For the case a ?  > 0, aF  > 0, a{ > 0 and a6 > 0, Table AV in the Appendix gives the 
outcomes of the game for each of the 36 possible combinations of utility rankings. (Note that 
Examples 6 and 7 do not arise when all a 's  are positive.) In order to facilitate the derivation 
of Table AV, table AIV gives the corresponding Nash equilibria. 

Obviously, there are several other possibilities to define mixed models. One example is to 
start from Pareto optimality and invoke the Nash property in case of multiple Pareto optimal 
allocations (see Table AVI). This yields a model which is identical to model 4, except for the 
case with multiple Pareto optimal allocations and a single Nash equilibrium which is not 
Pareto optimal (Example 2). In that case the Nash equilibrium cannot help to choose among 
the Pareto optimal allocations, so that one would make the equal probability assumption. We 
prefer the approach of model 4 since it yields fewer cases with multiple solutions. A second 
example is to consider outcomes that are both Pareto optimal and Nash equilibria with an 
equal probability treatment for the cases where there are many or no Pareto Nash allocations. 
However, this would also yield more cases with multiple solutions than model 4 (see Table 
AVII). 

The identifiability of the a 's is summarized in Table I. In all models, only fim and pf can 
be identified, not p r ,  Or, p{, and p i  separately. 

3. AN APPLICATION TO HOUSEHOLD LABOUR FORCE PARTICIPATION 

In this section the models described in Section 2 are estimated using data on the labour force 
participation of males and females in Dutch households. The data stem from a labour mobility 
survey in the Netherlands, conducted in 1985. The sample contains 849 households. 

Since in the Netherlands (and in our sample) the proportion of nonparticipating males is 
small, it seems more interesting to model the choice between working full-time and working 
part-time for males rather than their choice between working and not working at all. In our 
empirical analysis we therefore define the dependent variables y, and yf as 

y, 	 = 1 if the male works at least 38 hours per week 
= 0 if the male works less than 38 hours per week 

y,= 1 if the female works a positive number of hours per week 
= 0 if the female does not work 

The 38 hours cut-off point is motivated by the fact that in the Netherlands a full-time job 
usually stands for a working week of 38 hours. In the total sample of 849 households allocation 
(1,l) is observed in 249 cases, (1,O) in 377 cases, (0,l) in 82 cases, and (0,O) in 141 cases. Table 
I1 lists the variables that have been used in the empirical analysis and gives some sample 
statistics. The education index ranges from 1 to 5, 1 representing the lowest and 5 the highest 
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Table 11. Sample statistics 
- -- 

Variable Description Mean St. dev. Min Max 

K6 1 if the household contains at least one child 0.26 0.44 0 1 
younger than 6, 0 otherwise 

FS: # of persons in the household 3.47 1.24 2 10 
WAGEM: Wage rate of the male partner per week 15.61 5.72 5.14 59.5 

(in Dfl.) 
A GEM; Age of the male partner 39.70 10.01 20 63 
EDUCM: Education index of the male partner 2.78 1.08 1 5 
WAGER Wage rate of the female partner per week 11.94 3.09 5.19 39.38 

(in Dfl.) 
A GEF: 
EDUCF: 

Age of the female partner 
ducati ion index o f  the female partner 2.35 2.01 1 5 

NLINC: Non-labour income of the household 64.58 138.5 0 1054.1 

level of education. For nonparticipating persons the (potential) wage rate has been predicted 
on the basis of selectivity bias corrected wages equations. 

To specify the set of explanatory variables, preliminary estimates were obtained using a 
bivariate probit model. In the male participation probit equation household composition 
variables (K6 and FS) were found to  be insignificant. Nonlabour income was insignificant in 
both the male and female labour force participation equation, a result that appears to  be 
common for Dutch data sets. In both equations nonlinear wages effects were found for the 
own wage but not for the spouse's wage. On the basis of these results, we specified the set of 
explanatory variables in the game-theoretic models as shown in Table 111. 

The models have been estimated by maximum likelihood assuming that em and ef follow a 
bivariate normal distribution with zero means, unit variances and correlation p.  Since in the 
Nash model and in the preliminary probit results the estimate for the correlation coefficient 
p was not significantly different from zero, we estimated the other models with p = 0. 

Although the model based on Pareto optimality only is theoretically identified, its estimation 
suffered from a lack of convergence of the likelihood maximization algorithm. The 
explanation is that there is a large number of multiple equilibria in this case (cf. Table AIII), 
in which case one of the equilibria is chosen at random. Clearly, this reduces the role of 
explanatory variables. 

A dash in Table I11 indicates that the parameter is not identified in that particular model 
(see Section 2, Table I). 

As can be seen from equation (2) and Tables A1 and AV, the game-theoretic models collapse 
to the bivariate probit model if am= 0 and af= 0. Using likelihood ratio tests we find that the 
bivariate probit model is rejected against the Mixed model and both Stackelberg models, but 
not against the Nash model. The estimates for D m  and Df do not differ much across columns. 
Note that while the female wage rate does not have a significant influence on male preferences, 
the male wage rate has a significant negative effect on female preferences for work. The own 
wage effects are nonlinear for both male and female partners. For most of the wives the own 
wage effect is positive. For a majority of the husbands it is negative, indicating that they are 
on the backward-sloping part of their labour supply curve. A part of the nonlinearity of the 
wage effects, however, may be the result of neglected endogeneity of the wage rates due to the 
tax system. The estimates of am and af show some variation across columns. Note that 
(significant) estimates of am are negative whereas the estimates of afare positive. This implies 
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Table 111. Estimation results (t-values in parentheses) 


Prn 
Constant 

WA GEM 

WAG EM^ 

WA GEF 

AGEM 

A G E M ~  

af 

Constant 

K6 

FS 

WA GEF 

WAGEF~ 

WAGEM 

AGEF 

AGEF~ 

ai" 


at' 

a 

a6 
a rn 

or' 


P 

loglikelihood 
fitc 

Simultaneous 
probit 

-0.347 
(- 0.4) 
-0.087 

(- 2.6) 
0.0016 

(2.2)
-0.0003 

(- 0.0) 
0.103 

(2.5)
-0.0013 

(- 2.6) 

10.0 
(5.4) 
-0.426 

(- 5.0) 
-0.477 

(-7.1) 
-2.21 

(- 6.6) 
0.093 

(6.6) 
-0.024 
(-1.8) 

0.224 
(3.3) 
-0.0032 

(- 3.6) 
-

-

-

-

-

0.309 
(0.3) 
-0.172 

(- 0.3) 
-85 1.07 

0.620 

Nash 

-0.413 
(-0.7) 
-0.086 

(- 2.6) 
0.0016 

(2.2)
-0.0008 

(- 0.0) 
0.105 

(3.2)
-0.0013 

(- 3.4) 

11.0 
(5.7) 
-0.427 

(-6.1) 
-0.478 

(- 7.4) 
-2.22 

(- 7.2) 
0.093 

(7.2) 
-0.025 
(-1.9) 

0.225 
(3.6) 
-0.0033 

(- 4.0) 
-

-

-

-

0.034 
(0.2) 
0.234 

(0.3) 
-0.145 

(-0.3) 
-851.06 

0.620 

Stackelberg 
male leader 

-0.096 
(- 0.1) 
-0.093 

(- 2.7) 
0.0016 

(2.1) 
-0.001 1 

(-0.1) 
0.110 

(2.5) 
-0.0014 

(- 2.7) 

11.0 
(6.7) 
-0.465 

(- 5.2) 
-0.492 

(- 7.6) 
-2.20 

(- 7.5) 
0.092 

(7.6)
-0.026 

(- 2.3) 
0.238 

(4 3)
-0.0035 

(-4.9) 
-2.84 
(-1 1) 
-2.63 
(-1 .O) 
-

-

-0.20ga 
(-1.4) 

0.205 
(2.4) 
0.0 

(fixed) 
-844.31 

0.618 

Stackelberg 
female leader 

-0.256 
(- 0.3) 
-0.086 

(- 2.7) 
0.0016 

(2 2)
-0.0006 

(- 0.0) 
0.103 

(2.6)
-0.0013 

(- 2.8) 

11.5 
(6 4) 
-0.559 

(-5.7) 
-0.555 

(-7.5) 
-2.46 

(- 7.4) 
0.102 

(7.5) 
-0.030 

(- 2.2) 
0.289 

(4.5) 
-0.0042 

(-5.1) 
-

-

-3.69 
(-1.9) 
-4.18 

(- 2.2) 
-0.111 

(- 2.4) 
0 . 4 9 2 ~  

(2.4) 
0.0 

(fixed) 
-840.52 

0.620 

Mixed 

(Pareto optimality 


imposed) 


-0.436 
(- 0.5) 
-0.084 

(- 2.6) 
0.0016 

(2.1) 
-0.0010 

(- 0.1) 
0.106 

(2.6)
-0.0013 

(- 2.8) 

11.3 
(6.7) 
-0.454 

(- 5.0) 
-0.488 

(- 7.4) 
-2.25 

(- 7.6) 
0.094 

(7.7) 
-0.027 

(- 2.3) 
0.235 

(4.2) 
-0.0034 

(-4.8) 
0.0 

(fixed) 
-0.024 

(- 0.1) 
0.117 

(0.0) 
-0.097 
(0.0) 
-

-

0.0 
(fixed) 

- 847.58 
0.621 

aImplied by the estimates for a? and cur. 
Implied by the estimates for a{ and a;. 

CProportion of observations with a correct joint prediction for y, and y ~ .  
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that, ceteris paribus, female participation makes the husband less inclined to  work full-time, 
whereas (full-time) male participation makes females more inclined to  participate as well. 

In the absence of direct information on individual preferences, the differences between the 
various models are basically differences in the functional form. A way to compare the 
empirical performance in this case is to look at goodness-of-fit. Comparing the loglikelihood 
values, i.e. comparing the goodness-of-fit in terms of the Kullback-Leibler information 
criterion, we find that the Mixed model performs better than the Nash model, but not as good 
as both Stackelberg models. The highest loglikelihood is attained for the Stackelberg female 
leader model. If we use the proportion of correct joint predictions for ym and yf as a measure 
of goodness-of-fit, the Mixed model performs slightly better. The general picture, however, is 
that the differences between the various models are small. An explanation is that the cross- 
wage effects pick up most of the interdependence between male and female labour force 
participation. Apparently, once (cross-) wage effects are controlled for, little room is left for 
direct structural influence as represented by cuf and am. 

4. CONCLUSIONS 

In this paper we have estimated and compared various econometric models for simultaneous 
discrete endogenous variables. The models are based on the assumption that observed 
endogenous variables represent the outcome of a static discrete game. Estimation by means of 
maximum likelihood we found to be feasible and produced plausible results, except for the 
model based on Pareto optimality only. Apparently, this concept imposes insufficient structure 
on the model to be able to obtain sensible results. 

The models that have been estimated are still relatively simple. For example, each assumes 
that the decision process within all households can be described by a single equilibrium 
concept. It seems, however, that identification and estimation of more subtle models require 
additional data, particularly on the individual preferences of the players. 

With the insights of game theory becoming central in many areas of economic theory, it is 
now a challenge to  exploit these insights in empirical research. This paper has attempted to  do 
so in one particular field of applied econometrics: household labour force participation. 
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