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Abstract

The classical inconsistency between increasing returns and perfect

competition is studied. For example, if firms must pay a fixed cost of

entry but then can produce using a constant returns to scale technology,

they will generally operate at a loss, necessitating a government sub-

sidy in order to attain an efficient allocation. Here we provide examples

demonstrating that perfect competition and increasing returns can be

consistent by extending the Alonso model to include production. The

key is that producers use intervals of land, and the price they pay for

land interior to the parcels can be adjusted to provide an implicit sub-
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1 Introduction

Our goal is to begin to reconcile the notions of increasing returns and perfect

competition. We demonstrate in our model that equilibria can exist and can

be efficient without government intervention. This finding is established for a

rather specific model with parameter restrictions. Land plays a key role in our

analysis. In this context, models of imperfect competition have been analyzed

and are known to produce market failures. It is not known, however, if such

failures are due to product differentiation or to the departure from price taking

behavior. We address this issue by assuming that agents take prices as given.

It is well-known that global increasing returns (say a fixed cost followed by

constant returns to scale production) and perfect competition are not compat-

ible, since at an equilibrium, the first order condition for profit maximization

– price equals marginal cost – implies negative profits. Although substantial

progress has been made using models in which price is set at marginal cost but

firms are subsidized, or multipart tariffs are employed, problems still remain;

see Bonnisseau and Cornet [14] [as well as other papers in the symposium

issue], Bonanno [13] or Vassilakis [45], [46] for discussion.1

Our initial goal was to prove a second welfare theorem. Here transfers

have generally been employed in the literature. They can obviously mitigate

the problem of negative profits for producers by simply providing a subsidy to

producers who are operating at a Pareto optimum but who would otherwise

make a loss at supporting prices. The idea that firms yielding increasing

returns to scale should be subsidized in order to obtain an efficient allocation

goes back at least to Marshall [29, Book V, Chapter XIII], the first edition

of which was published in 1890. A precursor can be found in Whitaker [47,

pp. 88-89, pp. 228-230], who published writings of Marshall dating from the

1870’s. Pigou [35, Part II, Chapter XI], first published in 1920, touches on this

subject in passing. Pigou [33, p. 197] is particularly explicit:2

In order to maximize satisfaction– inequalities of wealth among
1For instance, marginal cost pricing relates only to the first order conditions for optimiza-

tion for the firms, so at a marginal cost pricing equilibrium, a firm may not be maximizing
profits. Further, a marginal cost pricing or multipart tariff equilibrium allocation is not nec-
essarily Pareto optimal. (Marginal cost pricing reflects the first order conditions for Pareto
efficiency, but the second order conditions might not hold.)

2Pigou [33] is part of a far-ranging discussion about “Empty Boxes” in the Economic
Journal addressing this topic; see in particular Robertson [37, p. 22]. Others involved in
this discussion are Clapham [15], Pigou [32], Sraffa [42], Shove [40], Pigou [34], Robbins [36],
Schumpeter [39], Young [48], Robertson [38], Sraffa [43], and Shove [41].
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different people and so on being ignored – it is necessary, except

in the special case where satisfaction is maximised by a nil output,

for that quantity of output to be produced which makes demand

price equal to marginal costs, i.e. which corresponds to the point of

intersection of the demand curve and the curve of marginal costs.

[...] Output, however, tends to be carried to the point in respect of

which the demand curve intersects with the supply curve. [...] But

in conditions of decreasing costs, where the supply curve coincides

with the curve of average costs, it will not be the right point. Un-

less the State intervenes by a bounty or in some other way, output

will be carried less far than it is socially desirable that it should

be carried.

It is important to note that the work of Marshall and Pigou confused scale

economies with externalities internal to an industry but external to each firm,

and consequently they recommended a misplaced Pigouvian remedy for scale

economies. Our reconciliation of increasing returns and perfect competition is

direct and invokes no externality argument.

The use of transfers would be an easy way out of the conflict between

increasing returns and a perfectly competitive equilibrium by essentially as-

suming the conflict away. Instead, we focus on existence of a competitive

equilibrium and the first welfare theorem.

This research has applications to the theory of agglomeration and city

formation. Increasing returns is often used as an agglomerative force in models

seeking to explain how, where, and why cities form. For example, Fujita

[19]; Fujita and Krugman [21], [22]; and Krugman [26], [27], [28]; which were

preceded by Abdel-Rahman [1], [2] and Abdel-Rahman and Fujita [3], use a

Dixit-Stiglitz [17] framework and increasing returns to generate city formation

in a monopolistic competition context. Since our model will employ increasing

returns in a spatial context, it offers the prospect of addressing questions and

generating testable hypotheses about cities. This is discussed further in the

conclusion.

In what follows, we stick as closely as possible to the perfectly competitive

ideal, since it is simplest to analyze, it is a very standard and convenient bench-

mark, it allows us to develop proofs of existence of equilibrium (perhaps useful

in the imperfect competition context) without having to worry about other dis-

tractions, it may be a good approximation to reality in large economies, and

it will tell us when the welfare theorems are likely to hold and why. More-
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over, it enables us to separate problems due to the spatial context from those

attributable to imperfect competition. Notice that models of marginal cost

pricing, multipart tariffs, and subsidization of firms under increasing returns

all employ close relatives of perfect competition.

We investigate whether a government ought to intervene in markets for

commodities subject to increasing returns in production. The key to the anal-

ysis is provided by Berliant and Fujita [9], who show that for Alonso’s urban

economic model, a model of pure exchange on the real line where agents are

required to own intervals that represent land parcels, there is generally a con-

tinuum of equilibria under perfect competition.3 Infra-marginal land (that is,

land not at the endpoints of an interval owned by an agent) is not priced

uniquely, thus allowing a kind of indeterminacy in the expenditure of agents

on land. It is this kind of indeterminacy that we exploit below to effect implicit

transfers to producers (by keeping the infra-marginal price of land low) who

would otherwise have negative profits.

Section 2 presents the notation and model while section 3 introduces an

example with one producer and one consumer, solving for two different types

of equilibria. Section 4 shows how these equilibria can be extended to a model

with two producers and multiple consumers, section 5 presents a version of the

first welfare theorem, while section 6 concludes. An appendix contains all of

the proofs.

3A spatial model with finite numbers of producers and consumers (rather than a con-
tinuum) is examined because in the arguments we use, agents employ intervals rather than
densities of land. By this, we mean that agents own land parcels represented by sets of
positive Lebesgue measure in a Euclidean space (R) rather than owning parcels represented
by a quantity at a point. The latter is more common in urban economics, and is usually
called a density. Berliant [7] shows that the usual approximation of continuum economies
by finite economies does not work when land plays a role in the models, so demand and
equilibria of the continuum models may not be close to those of any interesting finite model.

It is then reasonable to ask if the continuum models make any sense. Examples in Berliant
and ten Raa [11] show that equilibrium can fail to exist in the monocentric city model under
standard assumptions on preferences. Examples in Berliant, Papageorgiou and Wang [10]
show that the welfare theorems can fail in the monocentric city model. Berliant and Wang
[12] show that even utilitarian social optima might fail to exist in continuum models with
land. The implication of these examples is that the use of a continuum of consumers solves
some of the problems associated with the indivisibility of location, but creates others.
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2 The Model

We introduce production into Alonso’s [4] model of pure exchange. The model

of pure exchange was developed further by Asami [5], Asami, Fujita and Smith

[6], Berliant [8], and Berliant and Fujita [9].

Consider a long narrow city represented on the real line. Land is given by

X = [0, l), where l is the length of the city. In section 4, it will be convenient

to use another interval of the real line for X to reduce computations. The

density of land available is 1 at each point x ∈ X.
There are i = 1, ..., I consumers and j = 1, ..., J producers. Each consumer

has an endowment of 1 unit of labor, which will be supplied inelastically.

For simplicity, labor is assumed to be homogeneous, so labor income is the

same for all consumers. Moreover, consumers all have the same preferences,

and will get utility from a composite consumption good and land. Thus,

u : R2
+ → R. Consumers are not endowed with composite good or land.

Composite good is produced, while an absentee landlord is endowed with land.

We write u(c, s), where c is the quantity of consumption good and s is the

quantity of land consumed; the latter is equal to the length of the interval

owned by the consumer. For consumer i, ci is composite good consumption,

si is land consumption, w is the wage rate, and [ai, ai + si) ⊆ X is the parcel

of land owned by i.

Notice that w is assumed to be independent of the location of labor. This

is an assumption of perfect competition, that each agent takes prices as given

independent of their own actions and the actions of other agents, particularly

firms’ locations. Without such an assumption, equilibrium allocations are not

likely to be Pareto optimal. Since our purpose is to reconcile increasing returns

with perfect competition, we must take prices as parametric. Of course, for

other purposes, imperfect competition is a more suitable premise. If wages are

allowed to vary with location in the context of perfect competition, then the

constant wage gradient equilibrium that we study here naturally becomes a

special case.4 Consumers have no intrinsic preference for location.

4The decision whether or not to use a wage gradient is not at all obvious. Our model
is not one of multiple regions, but rather of one city, since we have commuting cost but no
transport cost. From a positive viewpoint, one does not observe in the real world wages

paid to workers differing by their location of residence within a city or by producer location
within a city. From a normative viewpoint, if we had wages differing by producer, our
equilibrium allocations would likely not be efficient, since symmetry of the allocation would
be destroyed. In the literature, for example Fujita and Ogawa [23] use a wage gradient that
differs by location of a firm (but not by location of consumer residence). Subject to the
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Composite consumption good, assumed to be freely mobile, is taken to be

numeraire. The price of land is denoted by an integrable function p : X → R.

The price of consumer i’s parcel is
R ai+si
ai

p(x)dm(x). Throughout, m is the

Lebesgue measure on the real line.

Since the labor market is competitive and consumers pay their own com-

muting cost, consumers will turn to the producers who minimize their com-

muting cost. Let producer j use land parcel [bj, bj +σj) ⊆ X. Define t > 0 to
be the constant marginal monetary cost (in terms of composite consumption

good) of commuting an extra mile. Then the cost of commuting to producer j

is given by T ji (ai, si, bj,σj) = t · inf{kx− yk |x ∈ [ai, ai+ si), y ∈ [bj, bj + σj)},
the closest point distance between consumer i and employer j. When con-

sumers optimize utility subject to their budget constraints, they will choose to

commute to the closest producer. However, we must account for the possibility

that there is more than one closest producer.

This is the form of commuting cost used by Alonso [4] and Berliant and

Fujita [9]; it incorporates a constant marginal cost of transport per unit dis-

tance to the closest firm. Notice that commuting cost depends on both the

consumer location and the location of the nearest employer.

The minimal commuting cost available to consumer i is given by

min
j
T ji (ai, si, bj,σj).

For notational simplicity, define B = [b1,σ1, b2,σ2, ..., bJ ,σJ ], and define

Ti(ai, si, B) = [T
1
i (ai, si, b1,σ1), ..., T

J
i (ai, si, bJ ,σJ)].

The fact that T ji can depend on the allocation of land to producer j creates an

externality, in that the choice of land parcel by an agent (in particular, a pro-

ducer) can affect the budget constraint of another (in particular, a consumer).

What is fascinating about this observation is that, as we shall see in section 5,

this externality might not create a market failure.

Let Qi be a J-dimensional unit vector (one component 1 and all others 0),

to indicate consumer i’s choice of employer. Let S be the collection of all such

unit vectors, and let Qji denote component j of Qi.

remarks above, such a structure would be admissible in our framework, but would make the
analysis much messier. In general, addition of a wage gradient to a model will not add extra
degrees of freedom to equilibrium determination. Although more free variables are added
to the system in the form of wages depending on locations, extra market clearing conditions

equating labor demand to supply at each location are also added.
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Consumer i’s optimization problem is5

max
ai,si,ci,Qi

u(ci, si) subject to ci +
Z ai+si

ai
p(x)dm(x) +Qi · Ti(ai, si, B) = w (1)

This framework allows consumers to choose to work at a firm so that com-

muting cost and commuting distance are minimized.6

Producers use land and labor to produce composite good. All producers

have the same production function g : R2
+ → R. Let producer j use land

parcel [bj, bj + σj) ⊆ X. The scalar qj ∈ R+ represents the labor demand of

firm j. We define output of firm j to be zj = g(σj, qj). We assume throughout

most of the sequel that g(σ, q) = β ·min(σ, q)− f for σ > 0 and q > 0, where
f is a fixed cost in terms of composite good. We define g(0, 0) = 0, so it is

possible for a firm to shut down. This has the implication that in equilibrium,

profits must be non-negative. The only part of this paper where we alter this

production function is at the beginning of section 6, where it is convenient to

normalize the labor input for computational purposes. The profit optimization

problem of firm j is:

πj = max
bj ,σj ,qj

g(σj, qj)−
Z bj+σj

bj
p(x)dm(x)− qjw. (2)

List the firms’ profits in the vector π ≡ [π1, ...,πJ ].
We have assumed, implicitly, that only the size of an interval matters in

production. Thus, output is a function of land and labor where both inputs

are represented by scalars and, therefore, returns to scale can be defined as

usual. It is the fixed cost f that gives us increasing returns to scale. The

particular form of the production function that we use implies that average

cost is globally decreasing, so increasing returns are in fact global.

5Unlike most of the literature in urban economics, we do not introduce or use the concept
of “bid rent,” since we have no need for it. The results and proofs are more easily given

in primal rather than dual form. Any references to “marginal willingness to pay” for
land are simply to the marginal rates of substitution at a particular bundle of commodities.
Notice that agents take into account the total supply of land when solving their optimization
problems. This constriction of the commodity space is essential to our results, and appears
in the spatial economic literature more generally. It is hard to imagine that a consumer
visualizes simultaneously purchasing two different houses on the same parcel or buying a
house in a lake when solving her optimization problem.

6Strictly speaking, a consumer could choose not to work, but then good consumption
would be zero and utility would be suboptimal in all theorems of this paper. Hence we

ignore the possibility Qi = 0. Also notice that utility levels will be equal across consumers
in equilibrium.
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Following Alonso [4] and the new urban economics literature, an absentee

landlord is endowed with all of the land, but gets utility only from composite

good. For simplicity, we also endow the absentee landlord with all of the shares

in all of the firms.7 In equilibrium, the absentee landlord collects all of the land

rent. Taking p(·) and π as given, the landlord consumes R l0 p(x)dm(x)+PJ
j=1 πj.

The composite good consumption of the landlord will be denoted by cL.

Notice that, as in the Alonso model, preferences and production are location

independent.

We continue with the analogs of standard definitions for this model.

Definition 1 An allocation is a list [(ci, ai, si, Qi)Ii=1, cL, (zj, bj,σj, qj)
J
j=1],

where for every i = 1, ..., I and j = 1, ..., J, ci, zj, cL, qj ∈ R+, si, ai, bj,σj ∈ X,
and Qi ∈ S.

Definition 2 An allocation [(ci, ai, si, Qi)Ii=1, cL, (zj, bj,σj, qj)
J
j=1] is called fea-

sible if8
IX
i=1

[ci +Qi · Ti(ai, si, B)] + cL ≤
JX
j=1

zj (3)

zj = g(σj, qj) for j = 1, ..., J (4)
IX
i=1

Qji = qj for j = 1, ..., J (5)

([ai, ai + si))
I
i=1, ([bj, bj + σj))

J
j=1 form a partition of X. (6)

Definition 3 A feasible allocation [(ci, ai, si, Qi)Ii=1, cL, (zj, bj,σj, qj)Jj=1] is called
Pareto Optimal with J Active Firms if all zj > 0 and there is no other fea-
sible allocation [(c0i, s

0
i, a

0
i, Q

0
i)
I
i=1, c

0
L, (z

0
j, b

0
j,σ

0
j, q

0
j)
J
j=1] with all z

0
j > 0 such that

c0L ≥ cL and for each i = 1, ..., I, u(c0i, s0i) ≥ u(ci, si), with a strict inequality
holding for at least one of these relations.

It is important to note that this concept of efficiency does not allow entry

or exit of firms.
7It seems clear that one could allow consumer ownership of stock in the firms without

altering the results much, but at the cost of complicating the arguments and notation.
8Condition (5) requires that all people work. Strictly speaking, this is not necessary.

However, since we will assume that there is no disutility of work and utility is increasing
in consumption, (5) will hold in equilibrium. Also, condition (6) requires that all land is
used. This will hold in equilibrium since we will assume that utility is increasing in land
consumption.
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Definition 4 A competitive equilibrium consists of a feasible allocation

[(ci, ai, si, Qi)
I
i=1, cL, (zj, bj,σj, qj)

J
j=1], an integrable land price function p : X →

R, a vector of profits π ∈ RJ and a wage w ∈ R (the freely mobile composite

consumption commodity is taken to be numeraire), such that

cL =
Z l

0
p(x)dm(x) +

JX
j=1

πj (7)

(ci, ai, si, Qi) solves (1) for i = 1, ..., I (8)

(πj, zj, bj,σj, qj) solves (2) for j = 1, ..., J. (9)

The allocation component of a competitive equilibrium is called an equilib-

rium allocation.

This equilibrium concept does allow firms to shut down, but does not allow

entry beyond J firms.9 In equilibrium, firm profits are non-negative (and

possibly positive).

3 Existence of Equilibriumwith One Producer

and One Consumer

Due to the discreteness and nonconvexities inherent in the model,10 we prove

that an equilibrium exists by actually finding some.

In this section we examine the following set of examples. Let I = 1 and

J = 1, and for notational simplicity, drop the subscripts referring to agents.

We will find particular equilibria (others exist as well) with two types of rent

densities: continuous and discontinuous.

Definition 5 We say that the functional form restriction holds when util-
ity satisfies the following condition: u(c, s) = c+ α · ln(s)(α > 0).

Next, let us give bounds on exogenous parameters for continuous equilib-

rium rent densities.
9Debreu (1959) has a similar feature, but there it is less innocent, for he assumes non-

increasing returns to scale, which favors small-scale production and unlimited entry. Our
inclusion of a fixed cost puts a bound on the number of firms.
10As described in Berliant and Fujita [9], demand (and in the present model, supply)

correspondences are not convex-valued. In fact, the contract curve in the pure exchange

model is disconnected; see figure 2 of that paper.
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Definition 6 We say that the parameter restrictions for continuous
equilibrium rent densities hold when the following conditions are met: l ≥
2.87, 0 < f < φc(α, l), β ≥ Bc(α, l), t ≥ τ c(α, l), where the functions φc, Bc,

and τ c all mapping R2 into R are defined in the appendix.

In essence, what is needed is that total land l ≥ 2.87, fixed cost f is small
relative to the marginal utility of land (α), the marginal product (β) is large

relative to α, and commuting cost (t) is large relative to α. Clearly, these

restrictions represent a set of parameters with nonempty interior.

The fixed cost must be small here to guarantee that the producer can be

subsidized on its parcel so that the fixed cost is covered but the consumer will

not encroach. If the fixed cost is high, then a low price of land on the producer

parcel covering the fixed cost will induce the consumer to encroach.

Theorem 1 Under the functional form restriction and the parameter restric-

tions for continuous equilibrium rent densities, there exists an equilibrium.

Proof: See Appendix.

Figure 1 provides a picture of the equilibrium. The horizontal axis rep-

resents the location space, while the vertical axis is used for the land price

density (in dollars per foot or inch). The horizontal axis is located not at

height zero, but at height α/(l − 1), the equilibrium marginal utility of land

for the consumer. The firm is located on the parcel [0,1) while the consumer

buys the remainder of the land. The shaded area is the implicit subsidy from

the landlord to the producer, in dollars. The price density is in fact the min-

imum of two curves representing marginal willingness to pay for land of the

consumer over (0, l− 1) and (1, l) (starting from the consumer’s right and left
endpoints, respectively).

Heuristically, this is an equilibrium for the following reasons. Regarding

the consumer, the first order conditions for problem (1) tell us that the price of

the marginal piece of land purchased on the end farthest from the firm must be

equal to the marginal willingness to pay for land, or p(a+ s) = α/s, and that

the price of marginal piece of land purchased closest to the firm, p(a), must

be between the marginal willingness to pay for land generally, α/s, and the

marginal willingness to pay for additional land plus the associated reduction

in commuting cost, α/s + t, from having the front of the parcel closer to the

firm. The latter condition arises because marginal commuting cost drops

discontinuously from t to 0 as the consumer becomes adjacent to the firm.

With our quasi-linear utility function, these first order conditions are satisfied
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by the parcel [1, l). Notice that if t isn’t large enough, then this last condition

might not hold; that is why there is a parameter restriction on t. Regarding

the firm, profits are location independent, so the firm simply wants to buy a

parcel that is cheapest per unit of land purchased. Given the price density,

either the left endpoint is at 0 or the right endpoint is at 1. Optimization over

the amount of land used by the firm yields a price equals marginal revenue

product condition. Given an equilibrated wage, this will occur when the firm

uses either [0, 1) or [l − 1, l). Symmetry of the price density around l/2 is

important for showing that the consumer and firm wouldn’t want to inhabit

the same parcel.

Land payments follow the p contour, but land use by agents is adjusted in

response to the marginal price paid for an extra unit of land. While the firm

would incur a loss if it had to pay this marginal price for each unit of land

it uses, lower inframarginal prices in [0, 1) can generate zero profit.11 Notice

that if fixed cost f is too large, the implicit subsidy cannot cover it. That is

why there is a parameter restriction on f .

Next we shall study another class of equilibria for this same model, one that

is motivated by the observation that marginal commuting cost is discontinuous

when the consumer and producer are adjacent. Marginal commuting cost

drops from t to zero when the consumer and producer touch, thus allowing a

discontinuity in land rent at the boundary.

Definition 7 We say that the parameter restrictions for discontinuous
equilibrium rent densities hold when the following conditions are met: l ≥
3.19, 0 < f ≤ φd(α, l), β ≥ Bd(α, l), t ≥ τd(α, l), where the functions φd, Bd,

and τd all mapping R2 into R are defined in the appendix.

Once again, total land (l) needs to be large enough, while fixed cost (f)

must be small relative to the marginal utility of land (α), the marginal product

(β) must be large relative to α, and commuting cost (t) must also be large

relative to α. Again, these restrictions represent a set of parameters with

nonempty interior.

Theorem 2 Under the functional form restrictions and the parameter restric-
tions for discontinuous equilibrium rent densities, there exists an equilibrium.

11The same kind of subsidy could apply to consumers, but it is not relevant for them.

There is no analog of the non-negative profit condition for consumers, whereas this is a
participation constraint for producers in our model.
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Proof: See Appendix.

Figure 2 provides a picture of the equilibrium. The horizontal axis repre-

sents the location space, while the vertical axis is used for the land price density

(in dollars per foot). The horizontal axis is located not at height zero, but at

height α/(l − 1), the equilibrium marginal utility of land for the consumer.

The firm is located on the parcel [0, 1) while the consumer buys the remainder

of the land. The shaded area is the implicit subsidy from the landlord to the

producer, in dollars.

The intuition for why figure 2 represents an equilibrium is very much the

same as the intuition for why figure 1 represents an equilibrium. The discon-

tinuity in rent is admissible for the following reasons. From the viewpoint of

the consumer, it doesn’t induce further purchase of land, since at 1 (and to

the left of 1), price is just equal to marginal willingness to pay, α/(l− 1), and
the marginal reduction in commuting cost from moving left of 1 is nil. From

the viewpoint of the firm, expansion of its parcel to the right of 1 means less

profit, since the marginal revenue product of land is equal to its price at 1.

4 Existence of Equilibrium with Two Produc-

ers and Many Consumers

This generalization of the model is not as easy as it may appear. In this

section, first we will examine the natural extension of the model to multiple

producers and explain what goes wrong with existence of equilibrium. Then

we will make a modification so as to obtain existence of equilibrium.

Consider a model with one producer and an even number, say 2I, of con-

sumers. Let us examine a continuous rent density equilibrium. To keep the

model as close as possible to the one in the last section, let us change the

technology to g(σ, q) = β ·min(σ, q/I)−f , and let X = [−l+1, l]. One way to
construct a continuous rent density is illustrated in Figure 3. In the end, this

figure will not represent an equilibrium. Again, the horizontal axis represents

location space while the vertical axis gives the price density for land in dollars

per foot. The horizontal axis is located at height αI/(l−1) rather than at zero
on the vertical axis. The price density is the same as in the previous section

for the consumer to the right of the firm. We replicate the same density for

the consumer to the left of the firm. This necessitates an alteration of the

density on the firm’s parcel, due to the presence of land to the left of the firm

that it would want to buy unless the price were raised (this is justified by the
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first order condition for firm optimization with respect to b). Thus, we take

the maximum of these two price densities. However, land at the extreme left

and extreme right in X is cheapest under this new density, so the firm would

move out to an extreme. To prevent this, we must raise the price of land in

the extremes by replicating a shifted price density once again, and taking the

maximum of all price densities. This will violate the first order conditions

for the consumers, which state that the price of the edge of a parcel closer

to the firm must be t higher than the edge further away from the firm (as in

Berliant and Fujita [9]). This statement does not apply to the innermost two

consumers, since there is a discontinuity in their marginal commuting cost at

zero distance; there is no such discontinuity for consumers not adjacent to the

firm, so this statement must apply to them. Moreover, given that the price

density on each consumer parcel is the same, the total cost of each consumer

parcel is the same, so why would any consumer choose to live on a parcel not

adjacent to the firm? They would pay the same total land rent, but incur

a higher commuting cost further out, thus attaining a lower level of utility.

Figure 3 does not represent an equilibrium.

So how can we solve this problem and obtain an equilibrium? The answer

to this question lies in noticing that the problem we have is overconstrained.

We are asking too much of the rent density, in that it reflects differences in

commuting cost among parcels as stated above (essentially the Mills [30] –

Muth [31] condition for our model)12 , but at the same time, reflects the fact

that the profit function only accounts for the cost and not the location of the

parcel, so the producer will always choose the cost minimizing one. In other

words, consumer optimization requires that rent decreases as distance from a

producer increases, to compensate for commuting costs, while the producer will

always find the lowest cost parcel, located as far as possible from its current

spot.

If prices are low on the producer parcel, then consumers will move there to

reduce commuting cost. If prices are low on consumer parcels distant from the

producers to compensate for commuting cost, then producers will move there

to reduce land cost. Equilibrium is not likely to exist. This is in essence the

problem discovered by Koopmans and Beckmann [25] in their investigation of

the quadratic assignment problem.13 Although their model is different from

12See, for instance, Fujita [20, p. 25, equation 2.37] for a nice statement and explanation.
13The quadratic assignment problem is distinct from, but related to, the linear assignment

problem (or one sided matching problem) that is generally more familiar to economists. The
quadratic assignment model allows flows of (intermediate) goods between agents, at some
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ours, this kind of problem pertaining to existence of equilibrium arises in most

location models where all agents and resources are mobile.

We must specify out-of-equilibrium commuting costs properly. In the pure

exchange version of the Alonso model, the location to which consumers com-

mute, the central business district or CBD, is given and occupies no land.

Commuting cost is given by the “front location” or “front door” (closest point)

distance from the consumer’s parcel to the CBD. See Asami, Fujita and Smith

[6] for elaboration. However, if a producer (or the CBD) occupies space, it is

unclear, especially out of equilibrium, where the consumer must commute to.

For instance, if the consumer decides to buy a subset of the parcel used by a

producer, clearly a disequilibrium situation, what is its commuting distance

and cost? This must be specified, even out of equilibrium, in order to verify

whether a particular situation represents an equilibrium or not.

We assume that if a consumer outbids a producer, he or she can no longer

work at that location, since the producer will no longer be there. Consumers

and producers remain price takers; this is simply a specification of disequilib-

rium commuting costs. Formally, it amounts to defining commuting distance

for consumer to firm j as

T ji (ai, si, bj,σj) =
½
infx∈(ai,ai+si), y∈(bj ,bj+σj) tkx−yk if (ai,ai+si)∩(bj ,bj+σj)=∅
∞ if (ai,ai+si)∩(bj ,bj+σj)6=∅ .

Commuting cost is defined to be minj T
j
i (A,B), analogous to the Alonso

model. We say that commuting cost satisfies the functional form restriction

when this commuting cost function is used.14 Notice that this commuting

cost function is not upper semicontinuous in consumer location; it can drop

discontinuously as the intersection of consumer and producer parcels tends to

the empty set.

Figure 4 illustrates what an equilibrium will look like. The horizontal axis

represents the location space X = [−2l, 2l], while the vertical axis is used for
the land price density (in dollars per foot). The horizontal axis is located not

at height zero, but at height p(2l), the equilibrium marginal utility of land for

the consumers located farthest from a firm. Equilibrium configurations consist

of individual producers surrounded by commuting consumers. This configura-

cost.
14We intend to attack the Koopmans-Beckmann quadratic assignment problem head on,

using the same modification of out-of-equilibrium transport costs that we have used here
for commuting costs. If an agent wants to cohabit a parcel with another, then it must
go elsewhere for supplies (or more generally, transactions). In closing, we note that the
quadratic programming disease is present in many location models.
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tion involves agglomeration around a producer, essentially a company town.

Notice that parcels get cheaper as we move out away from a firm. This is

necessary in equilibrium in order to compensate for the increased cost of com-

muting as distance from the firm increases, for otherwise nobody would live in

the hinterlands. Notice also that we can do this while still making the firm’s

parcel the cheapest per unit cost of land, so the firm has no incentive to move.

The modification of the commuting cost function implies that no consumer will

encroach on a producer’s parcel, since encroachment means that the consumer

must commute to the next closest producer, requiring a large jump in expendi-

ture on commuting. Thus, the commuting cost deters consumer encroachment

into a firm’s parcel, and the low price of land on a firm’s parcel keeps the firm

there.

There will be some restrictions on the parameters. The equilibrium will

have the same pattern as equilibrium in the Alonso model, that consumers with

higher wages live further from the firm and buy more land. As in Berliant and

Fujita [9], we try to find equilibrium allocations that are Pareto optimal and use

the property that richer consumers purchase more land and are located farther

from the producer (otherwise we can switch positions of the consumers, save

on commuting costs, and create a Pareto improvement).15 For simplicity, we

shall only examine the case when all consumers are identical.

To make notation simpler, let X = [−2l, 2l]. We focus on the part of the
economy to the right of 0 in X; the part to the left will be symmetric. We

return to using the production function g(σ, q) = β · min(σ, q) − f . There
are 4I consumers. In contrast with the assumptions of the preceding section,

we allow a general utility function. The utility function of every consumer is

u(c, s), where u : R2
+ → R satisfies the following conditions, the first three

of which are adapted from Berliant and Fujita [9, Assumption 1]. Let c =

C(s, u) define the indifference curve at utility level u and denote a partial

derivative by a subscript. As is standard, the implicit function theorem gives

us that −Cs(s, u) = (us/uc)(c, s). This is the marginal rate of substitution of
composite good for land, or the marginal willingness to pay for land.

Definition 8 A utility function u is said to be well-behaved if it satisfies the
following:

15If land is a normal good, consumers with higher wages and thus more income will
purchase more land. Although land is not strictly normal in the example we considered in
section 3, it is weakly normal in the sense that the income derivative of demand for land is
zero, so the argument applies.
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(i) On R2
++, u is twice continuously differentiable, strictly quasi-concave,

and uc > 0, us > 0.

(ii) No indifference curve intersecting R2
++ cuts an axis, and every indif-

ference curve intersecting R2
++ has the c-axis as an asymptote.

(iii) Lot size (or land) s is a normal good on R2
++.

(iv) The composite consumption commodity is a normal good on R2
++.

(v) For each fixed u, −Cs(s, u) is a convex function of s.
(vi) For each fixed s > 0, Css(s, u) is a nondecreasing function of u.

Cobb-Douglas utilities are an example.

Definition 9 The parameter restrictions for two producers are said to
be satisfied if the following hold. I ≥ 2, l ≥ 2I2 + I, 0 < f/β ≤ (16/17)I,
t/β ≥ 9/17. Finally, the marginal willingness to pay for land satisfies the

following inequality at a particular (given) allocation (c, s) > (0, 0) (specified

in the appendix): (us/uc)(c̄, s̄) > θ(I, l, β, f, t), where the function θ : R5 → R

is given in the appendix.

For example, a CES utility function will satisfy the last inequality if pa-

rameters are chosen appropriately.

These parameter restrictions imply that the total land available (l) is large

relative to the number of consumers and that marginal product (β) is large

relative to fixed costs (or that the number of consumers is large relative to

fixed costs) but small relative to commuting costs. The condition on marginal

willingness to pay for land at a particular bundle implies that one consumer’s

land consumption cannot become too small relative to another’s.

Theorem 3 If the utility function is well-behaved, commuting cost satisfies the
functional form restriction, and the parameter restrictions for two producers

hold, then there exists an equilibrium.

Proof: See Appendix. Figure 4 provides a picture of the equilibrium, and

was explained earlier in this section.

The strategy of the proof is as follows. Guess that the firms’ parcels are

[−(l + I),−(l − I)] and [l − I, l + I]. Then we fix a wage rate, and solve the
consumer equilibrium problem on the parcels not occupied by firms, exploiting

the results of Berliant and Fujita [9] to construct an equilibrium. We set the

firm land price lower than the lowest consumer price, the difference depending

only on fixed costs, total land available, and the number of consumers. Then
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we set up the zero profit condition of the firm in equilibrium, and find a wage

rate that solves it. This wage rate, the implied rent density, the allocation of

land, and the allocation of consumption good form an equilibrium. The hard

part of the proof is to show that no consumer would intrude on a firm’s parcel,

and vice-versa.

The details of the proof can be found in the appendix.

5 The First Welfare Theorem

In this section we show that an equilibrium allocation can be first best, though

it is not necessarily first best. There are two reasons an equilibrium allocation

might not be first best in this model. First, the entry or exit of a firm causes

an externality in that the firm does not account for the changes in commuting

cost to consumers as a consequence of its decision. Second, the location deci-

sion of a firm causes an externality in that the firm does not account for the

changes in commuting costs of consumers as a consequence of its decision. We

can characterize equilibrium allocations that are optimal in the second sense,

namely with a fixed number of firms.

For notational convenience, in this section we useX = [−2l, 2l] as the total-
ity of land available. The production function remains g(σ, q) = β·min(σ, q)−f
and the number of consumers remains I.

Definition 10 An allocation [(ci, ai, si, Qi)Ii=1, cL, (zj, bj,σj, qj)Jj=1] is called
symmetric in production if
(i) the number of consumers commuting to a firm from the left and right

are equal and the same for all firms; that is, for all j, the cardinality of the

sets {i|1 ≤ i ≤ I, Qji = 1, ai ≤ bj} and {i|1 ≤ i ≤ I, Qji = 1, ai ≥ bj} is the
same and independent of j, and

(ii) the midpoints of the firm land parcels are evenly dispersed; that is, if

the numbering of firms is such that the midpoints of their parcels are ordered

from left to right, then bj + σj/2 = −2l + 2l/J + 4(j − 1)l/J.

Notice that by the first requirement, I/(2J) must be integer.

Due to the form of the production function, for all producers j, land usage

is σj = I/J at any equilibrium allocation that is symmetric in production. If

we wish to examine the efficiency properties of an equilibrium allocation in

which a firm is shut down, then we can simply reduce J .
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Theorem 4 Suppose that the utility function u is well-behaved. Fix any equi-
librium that is symmetric in production, and set J to be the number of firms j

with zj > 0 (eliminating the firms that are shut down). Then the equilibrium

allocation is Pareto optimal with J active firms.

Proof: See Appendix.

The purpose of this result is to cover the situation studied in section 4. The

result can easily be extended to the situations discussed in section 3, where

X = [0, l), I = 1 and J = 1, or more generally to cases where I/(2J) is

not integer. However, the benefit of additional generality from such results is

exceeded by the cost of additional complexity that is introduced.

Notice that no agent has as their objective the minimization over J of the

fixed cost of J firms plus total commuting cost, fJ+
PI
i=1minj T

j
i (a

J
i , s

J
i , B

J),

where (aJ1 , s
J
1 , ..., a

J
I , s

J
I , B

J) is an equilibrium parcel configuration with J ac-

tive firms. The landlord comes closest to having this as an objective (through

maximization of land rent); an equilibrium concept in which the landlord im-

plicitly chooses the number of active firms by choosing the rent density could

be formulated, but the objective is still not quite the same as minimization of

fixed costs plus aggregate commuting cost. Since J is not chosen by an agent

who accounts for the externality, one cannot in general expect equilibrium al-

locations to result in an optimal number of active firms. This explains the

notion of efficiency that is used here, which is conditional on J active firms. If

J happens to minimize fixed cost plus aggregate commuting cost, then Theo-

rem 4 implies that an equilibrium allocation that is symmetric in production

is first best.

6 Conclusions and Extensions

Using some classes of examples, we have examined how land can reconcile

increasing returns and perfect competition in the following sense. In a model

without location, production of a commodity using a technology requiring a

fixed cost followed by constant returns to scale will imply that only one firm

producing this good will operate in an efficient allocation. However, in a spatial

model with commuting cost, such as the one examined here, there is a trade-

off between returns to scale and the cost of accessing a firm, thus limiting the

extent of the market served by any single firm, and therefore allowing multiple

active firms in an efficient allocation. A perfectly competitive equilibrium can
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result in a land price scheme that limits firm size optimally and provides a

subsidy to active firms consistent with efficiency.

The numbers of firms and consumers can be made large by replicating the

example of section 4.

The questions we have studied seem important not only in the theory of

industrial organization, in that government intervention in markets for goods

produced under an increasing returns to scale technology may not be justified,

but also in the theory of spatial economics. For example, we can separate

results due to imperfect competition from those due to the presence of loca-

tion in models. These questions are of central interest to urban economics and

location theory as well. The Spatial Impossibility Theorem of Starrett [44],

as interpreted by Fujita [18], tells us that some assumption of neoclassical

economics must not hold if we are to generate equilibrium models of agglom-

eration. Here we have used increasing returns and perfect competition, but we

are able to generate agglomeration and factory towns in equilibrium without

imperfect competition. Unlike much of the other work on agglomeration, our

equilibrium configurations can be first best.16

Here we have assumed perfect competition, but have not justified this as-

sumption formally. The latter should be the subject of future work; the tests

of Gretsky, Ostroy and Zame [24] for perfect competition should be useful.

One testable implication derived from the model is that the unit land price

of a firm’s parcel should be low relative to the unit price of residential land

surrounding the producer. Of course, the hazards involved in testing this

hypothesis include the difficulty in separating the value of land from structures

as well as zoning laws.

Another issue of interest is the conjecture that, in both this model and the

simpler Alonso exchange model, even though equilibria exist and equilibrium

allocations are Pareto optimal (see Berliant and Fujita [9] for the exchange

case), the core can be empty. Thus far, we have a quasi-linear example (see

section 3) where the emptiness or non-emptiness of the core depends on endow-

16A referee has suggested that, as a further extension, the assumption that consumers have
no intrinsic preference for location be relaxed as follows. Consumers have single peaked
preferences over location with bliss points uniformly distributed over front locations in X.
In general, heterogeneity in consumer utilities or endowments such as locational preference
allows more room for existence of equilibrium, since equal utility conditions no longer need

to hold in equilibrium. However, heterogeneity also makes the calculations in the analysis
much messier. Probably extensions such as this one will have to wait for different techniques
of proof.
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ments. We intend to look at this more generally, and examine the implications

for core convergence.

7 Appendix

Parameter Restrictions for Continuous Equilibrium Price Densities:
φc(α, l) ≤ α/[l−2]−α · ln[(l−1)/(l−2)], Bc(α, l) = α/(l−2)+2α · ln[(l−

1)/((l/2)− 1)]−α · ln[(l− 1)/(l− 2)], τ c(α, l) = 2α[1/(l− 2)− 1/l]. It is easy
to see that the functions φc and Bc are positive.

Proof of Theorem 1: Let p(x) = α/(l − x − 1) for x ≤ l/2, p(x) =

α/(x − 1) for x ≥ l/2, b = 0, σ = 1, q = 1, z = β − f , a = 1, s = l − 1,
Q = [1], w = β − α/(l − 2), π = β − f − w − α · ln[(l − 1)/(l − 2)], c =
w− {2α · ln[(l− 1)/((l/2)− 1)]−α · ln[(l− 1)/(l− 2)]} (which is non-negative
by the assumption on β), and cL = 2α · ln((l − 1)/({l/2}− 1)) + π. We claim

that this is an equilibrium. Figure 1 provides a sketch of the price density.

First, we verify that this is indeed a feasible allocation. To verify (3), note

that commuting cost is zero in this allocation, and calculate

c+ cL = w−{2α · ln[(l−1)/((l/2)−1)]−α · ln[(l−1)/(l−2)]}+2α · ln[(l−
1)/((l/2)− 1)] + β − f − w − α · ln[(l − 1)/(l − 2)] = β − f = z.
(4) and (5) are obvious. Finally, note that [0, 1), [1, l) is indeed a partition

of X, so (6) holds.

Regarding the equilibrium conditions (7), (8), and (9), (7) can be veri-

fied simply by calculating the total area under the price density, 2α · ln[(l −
1)/((l/2)− 1)], and adding to it profits π.
Problem (1) can be written as the following unconstrained optimization

problem by substituting the budget constraint for c:

max
a,s

α · ln(s) + w −
Z a+s

a
p(x)dm(x)− t ·max(0, a− 1)

The first order condition with respect to s is p(a+s) = α/s; this is verified

for our price density at a = 1 and s = l − 1. The first order condition with
respect to a is p(a) − p(a + s) = t if a > 1, p(a) − p(a + s) ∈ [0, t] if a = 1,
p(a)− p(a+ s) = 0 if a < 1. This is an interesting and important fact. Notice
first that if a = 1, the parameter restriction on t implies p(a) − p(a + s) =
α/(l−2)−α/(l−1) < 2α[1/(l−2)−1/l] ≤ t, so our equilibrium satisfies the first
order condition. Second, this first order condition is a result of the assumption

that closest point distance is all that matters when computing commuting
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cost, so discontinuous marginal commuting cost is the consequence. Total

commuting cost is continuous.

Regarding second order conditions for the consumer, it is rather evident

that the consumer cannot do better by decreasing its parcel size to the right

of l/2, since the rent curve is equal to the marginal willingness to pay for land

of the consumer with left endpoint at 1; if the left endpoint is greater than

1, then marginal willingness to pay exceeds price. For points x ∈ (1, l/2],
we must prove that marginal utility of land exceeds price less the reduction

in commuting cost from purchasing additional land closer to the producer.

Marginal utility is α/(l − x), while price is α/(l − 1 − x) and commuting
cost is t. Thus, for x ∈ (1, l/2], we must show that α/(l − x) ≥ α/(l −
1 − x) − t. The parameter restriction on t is t ≥ 2 · α(1/(l − 2) − 1/l), so
t ≥ α[1/((l/2) − 1) − 1/(l/2)] and α/(l − x) ≥ α/(l − 1 − x) − t at x = l/2.
Since ∂

∂x
[α/(l − x) − α/(l − 1 − x) + t] = α[1/(l − x)2 − 1/(l − 1 − x)2] < 0,

α/(l − x) ≥ α/(l − 1 − x) − t for all x ∈ (1, l/2]. The consumer cannot do
better by increasing its parcel size (starting from [1, l)) since for larger parcels,

the rent curve α/(l − x − 1) is greater than the marginal willingness to pay
for land α/(l − x). Due to the symmetry of the rent curve, the consumer
cannot do better by owning a parcel containing {0} rather than {l}. Thus, the
equilibrium allocation solves (1) for the consumer.

With regard to the firm, notice that optimization will imply that q = σ

and optimization problem (2) reduces to:

max
b,σ

β · σ − f −
Z b+σ

b
p(x)dm(x)− w · σ

The first order condition with respect to σ is β−p(b+σ)−w = 0, and w was
chosen to satisfy this equality for b = 0 and σ = 1. The first order condition

with respect to b is p(b) = p(b + σ),17 which can either be ignored since the

producer hits the land boundary at zero, or we can set p(0) = α/(l−2), altering
p on a set of measure zero.

Turning next to second order conditions for the firm, notice first that if

the firm uses a parcel of any size, it is indifferent about its location, so it will

choose one of the cheapest parcels, and [0,σ) is among these. The first order

condition with respect to σ will imply that it will choose σ = 1. Beyond this,

up to σ = l/2, the marginal cost of land exceeds the marginal benefit net

of labor cost. If the firm can make higher profits from expanding the scale

of its operations beyond 1, then given the production function and the price

17This reflects the location independence of the production function.
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density, it will make higher profits when b = 0 and σ = l. Profits from such a

production plan are given by

β · l − f − w · l − 2 · α ·
Z l

l/2
1/(x− 1)dm(x) (10)

Profits from the equilibrium production plan are given by

β − f − w − α ·
Z l

l−1
1/(x− 1)dm(x) (11)

Following some calculations, it can be shown that (11) always exceeds (10)

if [(l−1)/(l−2)] ≤ 2 · ln(2)+ ln[(l−1)/(l−2)] or, as assumed above, l ≥ 2.87.
Finally, it is necessary to show that (11) is non-negative, in order to en-

sure that the producer will not exit. Again, following some calculations, the

assumption that f ≤ α/[l−2]−α · ln[(l−1)/(l−2)] implies that (11) is always
non-negative.

Q.E.D.

Parameter Restrictions for Discontinuous Equilibrium Price Den-
sities: φd(α, l) = α · [1/(l− 2)− 1/(l− 1)], Bd(α, l) = α/(l− 2) +α/(l− 1)+
2α · ln[(l − 2)/(l/2− 1))], τd(α, l) = 2 · α[1/(l − 2)− 1/l].
Proof of Theorem 2: Let p(x) = α/(l − x− 1) for 1 ≤ x ≤ l/2, p(x) =

α/(x− 1) for l− 1 ≥ x ≥ l/2, p(x) = α/(l− 1) for 0 ≤ x < 1, p(x) = α/(l− 1)
for l − 1 < x ≤ l, b = 0, σ = 1, q = 1, z = β − f , a = 1, s = l − 1,
Q = [1], w = β − α/(l − 2), π = β − f − w − α/(l − 1), c = w − {α/(l −
1)+2α · ln[(l− 2)/(l/2− 1)]} (which is non-negative by the assumption on β),

and cL = 2α/(l − 1) + 2α · ln[(l − 2)/(l/2− 1)] + π. We claim that this is an

equilibrium. Figure 2 provides a sketch of the price density.

First, we verify that this is indeed a feasible allocation. To verify (3), note

that commuting cost is zero in this allocation, and calculate
c+ cL = w−{α/(l−1)+2α · ln[(l−2)/(l/2−1)]}+2α/(l−1)+2α · ln[(l−

2)/(l/2− 1)] + β − f − w − α/(l − 1) = β − f = z.
Verifications of equations (4) and (5) are obvious. Finally, note that

[0, 1), [1, l) is indeed a partition of X, so (6) holds.

Regarding the equilibrium conditions (7), (8), and (9), (7) can be verified

simply by calculating the total area under the price density, 2α/(l − 1) + 2α ·
ln[(l − 2)/(l/2− 1)], and adding to it profits π.
As the reader might suspect, the remainder of the proof that the specified

discontinuous rent density and allocation is in fact an equilibrium is quite
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analogous to the proof for continuous equilibrium rent densities, so we shall

not bother to repeat it here. The proof that equilibrium profits are larger than

profits using all land involves solving a quadratic equation, the largest root of

which is approximately 3.19.

Q.E.D.

Parameter Restrictions for Two Producers:
Let (c0, s0) solve maxc,s u(c, s) subject to c + p0s ≤ w0 for w0 = (β +

f
4(l−I))/(1 +

I
l−I ) and p

0 = β + f
4(l−I) + (I − 1)t. Let u∗ = u(β + f

4(l−I) ,
l−I
I
).

Then specify c̄ = min{β − f/(2I) − f [l/(2I) − 1/4]/I − (1 − 1/I2)(l − I)t,
f [l/(2I) − 1/4](l − I − Is̄)/[(l − I)(I − 1)]} and s̄ = max{f(2l/I − 1)/[(l −
I)(I − 1)t], l−I

I
− I−1

2
t/Css(s

0, u∗)}. θ(I, l,β, f, t) = β + f/[4(l− I)] + (I − 1)t.
The expressions are positive. s̄ > 0 due to the assumption on l. θ > 0 by

the assumption on f/β. c > 0 because s̄ < (l − I)/I. To see this, consider

the first expression in the definition of s̄. It is less than (l − I)/I due to the
assumptions on I, l and f/t ≤ (16/9)I. The second expression is obviously

less than (l − I)/I.
Proof of Theorem 3: We begin by fixing w, the wage rate, in [0,β +

f/[4(l − I)]]. Apply Proposition 4 of Berliant and Fujita [9] to the exchange
economy where consumers i = 1, ..., I have an endowment of consumption

good w and land is limited to the interval (l + I, 2l], to obtain an equilibrium

price density pw(x), where pw(2l) is uniquely determined (and is the same for

all equilibria). Using the assumption that land is a normal good, pw(2l) is in-

creasing in w. Using upper hemi-continuity of the equilibrium correspondence

of the exchange economy in w, pw(2l) is continuous in w. We want to solve

β − w − f/(2I)− pw(2l) + f [l/(2I)− 1/4]/(l − I) = 0 (12)

on 0 ≤ w ≤ β + f/[4(l − I)]. This will be the zero profit condition for the
firms (with pw(2l)− f [l/(2I)− 1/4]/(l − I) representing rent).
As w tends to zero, pw(2l) tends to zero, so the left hand side of (12)

tends to β + f/[4(l − I)], which is positive by assumption on l. Note that at
w = β+f/[4(l−I)], the left hand side is−pβ+f/[4(l−I)](2l), which is nonpositive.
By the intermediate value theorem, there is a w∗ solving the equation.
Define p = pw∗ . Mirror the allocation on the interval (0, l − I). The

allocations on the intervals (−2l,−l−I) and (−l+I, 0) are defined analogously.
Let Q1i = 1 and Q

2
i = 0 if i ≤ 2I. Let Q1i = 0 and Q2i = 1 if i > 2I.
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For l − I ≤ x ≤ l + I, define p(x) = p(2l) − f [l/(2I) − 1/4]/(l − I). The
price density on the firm’s parcel is less than the lowest price on any consumer’s

parcel.

For 0 ≤ x ≤ l − I, define p(x) = p(2l − x). For −2l ≤ x ≤ 0, define

p(x) = p(−x).
Let b1 = l − I, b2 = −l − I. For j = 1, 2 let σj = 2I, qj = 2I, zj =

2Iβ − f , πj = 0. For consumers residing in the interval (l + I, 2l), ci = w∗ −R ai+si
ai

p(x)dm(x)− t · (ai− l− I) ≥ 0 by construction of the exchange economy
allocations. The consumption of other consumers is defined analogously. cL =R 2l
−2l p(x)dm(x) ≥ 0.
We claim that this is an equilibrium. First we must prove that the price

density on the firm’s parcel is non-negative (this also ensures cL ≥ 0). This is
tantamount to a lower bound on p(2l), the minimal willingness to pay for land

in the exchange economy equilibrium on the interval (l + I, 2l]. The vehicle

will be the assumption on the marginal rate of substitution, but its application

requires s1 ≤ s̄ and c1 ≥ c̄, where the parcel front locations are a1 ≤ ai ≤ aI .
Using the assumption that land is a normal good, s1 ≤ ... ≤ si ≤ ... ≤ sI ,
c1 ≥ ... ≥ ci ≥ ... ≥ cI ; moreover, the rent density is constant on the first

parcel and decreases by t across every other parcel; see Berliant and Fujita [9].

We will also use two upper bounds. When all si = (l− I)/I, an upper bound
for rent on (l + I, 2l] is obtained, namely

p(2l)(l − I) + (I − 1)t(l − I)/I + (I − 1)t(l − I)/I + ...+ t(l − I)/I
= p(2l)(l − I) + (I − 1)(1 + I/2)t(l − I)/I,

and transport cost on (l + I, 2l] is maximal, namely

t(l − I)/I + ... +t(I − 1)(l − I)/I = t(I − 1)I(l − I)/(2I).
Now suppose, to the contrary, that the price density on the firm’s parcel

is negative, then p(2l) < f [l/(2I) − 1/4]/(l − I) and by equation (12) w∗ >
β−f/(2I). Subtracting the upper bounds for rent and transport cost, a lower
bound for mean consumption is β−f/(2I)−p(2l)(l−I)/I− (I−1)(1+ I)(l−
I)t/I2 >

β − f/(2I)− f [l/(2I)− 1/4]/I − (1− 1/I2)(l − I)t ≥ c̄ by definition of c̄.
It follows that c1 ≥ c̄. Next we prove s1 ≤ s̄.
For this purpose we first establish a lower bound for s1. Notice that from

equation (12), β + f
4(l−I) = β − f/(2I) + f [l/(2I)− 1/4]/(l − I) = w + p(2l).

Also, Iw ≥ p(2l)(l − I), since all land must be purchased, so p(2l) ≤ Iw
l−I .

Substituting, β + f
4(l−I) ≤ w(1 + I

l−I ). Hence w ≥ w0. Also from equation
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(12), p(2l) ≤ β + f
4(l−I) . Hence the price paid by consumer 1 for land is

p(2l) + (I − 1)t ≤ β + f
4(l−I) + (I − 1)t = p0. Since land is a normal good,

w ≥ w0 and p(2l) + (I − 1)t ≤ p0 yield s1 ≥ s0.
Denote the equilibrium level of utility for all consumers by u. By as-

sumption −Cs(s, u) is convex, hence Cs(s, u) is concave and Css(s, u) is non-
increasing in s, so that the mean value theorem implies Cs(s2, u)−Cs(s1, u) ≤
Css(s

0, u)(s2 − s1). But the left hand side of this inequality is t, the drop in

rent across the parcel of consumer 2. It follows that s2 − s1 ≥ t/Css(s0, u) ≥
t/Css(s

0, u∗) where u∗ = u(β + f
4(l−I) ,

l−I
I
) ≥ u(c1, s1), using the assumption

that Css is nondecreasing in u. In fact, this argument applies to every pair

of adjacent consumers (there is nothing special about consumers 1 and 2).

Thus, s1 ≤ si− (i− 1)t/Css(s0, u∗), so Is1 ≤ l− I − I
2
(I − 1)t/Css(s0, u∗); thus

s1 ≤ l−I
I
− I−1

2
t/Css(s

0, u∗).
Consumer 1 pays rent density p(2l)+ (I − 1)t. This price equals the con-

sumer’s marginal willingness to pay for land which exceeds θ(I, l, β, f, t) =

β− f/[4(l− I)] + (I − 1)t by assumption on the marginal rate of substitution,
normality of both goods. Subtracting (I − 1)t, p(2l) ≥ β − f/[4(l − I)] ≥
f(17/16)/I − f/[4(l − I)] ≥ f(I + 1)/(2I2) − f/[4(l − I)] ≥ fl/[2I(l − I)] −
f/[4(l− I)] by assumption on f/β, I and l, respectively. This contradicts the
presumption and thus completes the proof of the nonnegativity of p(x).

(3) is verified by substitution of the expressions above for consumption and

output (note that the transportation cost terms cancel). Equations (4), (5),

(6) and (7) hold by construction.

Next, we argue that the allocation we have specified solves the consumers’

problems (1). By construction of the exchange economy equilibrium, no con-

sumer has an incentive to relocate within the intervals occupied by the con-

sumers. The land occupied by producers is less expensive than any land oc-

cupied by consumers, but always requires more transport cost. Consider a

consumer parcel (a, a + s) containing part of the land parcel of the firm lo-

cated at (l −I, l + I). We may assume that a + s/2 ≤ l. For if a + s/2 > l,
then we can flip the consumer parcel symmetrically about l, save on commuting

cost, and obtain the same quantity of land.

First we consider the case a + s > l + I. The idea is to shift the parcel

towards the left. This saves commuting cost. It also saves rent, as long as

p(a) ≤ p(a+s). By symmetry about l, rent density p(a+s) is also attained at
2l− (a+ s), but a is to the left of this point, since a+ s/2 ≤ l. The next point
leftward where rent density p(a+ s) is attained is−2l + (a+ s), by symmetry
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about 0. As long as s ≤ 2l, a is to the right of −2l + (a+ s) and we can shift
the parcel towards the left, saving both commuting cost and rent. If s > 2l,

then since a + s/2 ≤ l, a < 0; now we will show that the utility associated

with such a big parcel is below the equilibrium utility level of consumers.

We distinguish two sub-cases. Call the rightmost consumer commuting to

the left producer consumer i. In the first sub-case, a ≤ ai. The encroaching
consumer is spending at least as much on land as any consumer in equilibrium,

is consuming at least as much land, and is facing the same marginal commuting

cost. Therefore, using strict quasi-concavity, the marginal willingness to pay

of this encroaching consumer for land to the left of ai is no more than the

marginal willingness to pay of consumer i. So parcels containing points to the

left of ai will yield lower utility. Now consider the second sub-case, ai < a < 0.

By shifting the parcel to the left, towards the left producer, the quantity of land

consumed is the same, and the savings in commuting cost (t per unit distance)

exceed the additional rent, p(a)− p(a+ s). This inequality follows from three
facts. First, since we are in the declining rent region, p(a) < p(ai). Second,

p(a+ s) ≥ p(0), the minimum consumer rent density (recall that a+ s > l+ I,
so a + s is in a consumer’s parcel). Third, p(ai) − p(0) = t, the first order

condition of consumer i with respect to a. Thus, a shift to the left increases

utility and we conclude that it suffices to consider a+ s ≤ l + I.
Summarizing, ruling out a ≤ ai as before, and using the fact that very small

consumer parcels will only be located on the left part of the firm’s parcel, (l

−I, l+ I), to save commuting cost, the only choices that might be optimizing
and yielding higher utility than equilibrium utility for any consumer are:

for s < 2I (the size of the firm’s parcel), (l −I, l − I + s)
for 2I ≤ s ≤ l + I + si (or ai ≤ a ≤ l − I), (a, l + I).
In the first case, by assumption, l ≥ 2I2 + I, s < 2I ≤ (l − I)/I ≤ si. If

the encroaching consumer has a greater utility level than consumer i, then we

reduce his composite good consumption until the utility levels are the same.

By strict quasi-concavity, the marginal willingness to pay for land is greater

for the encroaching consumer. By the first order conditions the rent density

he faces on the right hand side of his parcel must exceed that of consumer i.

This contradicts the construction of the rent schedule.

In the second case the parcel is (a, l + I). If a > 0, let us compare this

parcel to an alternative parcel, (a − 2I, l − I), that is the same size but just
does not encroach on the producer. Since a > 0 and the alternative parcel

does not encroach, the consumer saves at least (l − I)t in commuting cost by
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moving to the alternative, which is adjacent to a producer. An upper bound on

the additional cost of land is the difference between the maximal and minimal

prices of land over a parcel of size 2I, 2I(I − 1)t+ f(l− I/2)/(l − I). This is
less than (l− I)t, by the assumptions on f and t (yielding f/t ≤ (16/9)I) and
on l (the lower bound is a worst case) and I. Summarizing, the alternative

parcel (that does not encroach on a producer), (a − 2I, l−I), is the same size
as the original parcel, (a, l+ I), and after paying for commuting cost, there is

at least as much consumption good remaining. Thus, the only parcel choices

that might be optimizing and yielding higher utility than equilibrium utility

are (a, l + I) where ai ≤ a ≤ 0.
If ai ≤ a ≤ 0, then the amount of land purchased exceeds l−I, hence si, and

therefore the marginal willingness to pay for land is less than p(2l). Hence the

consumer must therefore be willing to purchase more land, beyond the point 0,

only if
R l−I
0 p(x)dm(x) +

R l+I
l−I p(x)dm(x) ≤

R l−I
0 p(2l)dm(x) +

R l+I
l−I p(2l)dm(x)

or Z l−I

0
[p(x)− p(2l)]dm(x) ≤ 2If [l/(2I)− 1/4]/(l − I). (13)

Next, we contradict this inequality by using our assumptions. In the proof

of the non-negativity of the firms’s rent the combination c1 ≥ c̄ and s1 ≤ s̄
was shown to contradict the assumption on the marginal rate of substitution.

Two possibilities remain: s1 > s̄ or c1 < c̄. If s1 > s̄, then s1 > 4f [l/(2I) −
1/4]/[(l+I)(I−1)t], so s1(I−1)t > 4f [l/(2I)−1/4]/(l+I). Now s2(I−2)t ≥
s1(I − 2)t, ..., sI−1t ≥ s1t. Summing these inequalities and using 1 + 2 + ... +
I − 1 = (I − 1)I/2, we obtain R l−I

0 (p(x) − p(2l))dm(x) > s̄(I − 1)It/2 =
2If [l/(2I)− 1/4]/(l + I), contradicting inequality (13).
Now consider the remaining case, c1 < c̄ and s1 < s̄. Use the lower bounds

for transport cost and rent on [0, l − I): ts1 + ...+ t(I − 1)s1 = t(I − 1)Is1/2
and p(2l)(l−I)+(I−1)ts1+...+ts1 = p(2l)(l−I)+(I−1)Its1/2, respectively.
Then using c1 (the consumption of the first consumer) as a lower bound on the

consumption on the interval [0, l− I), c1 + p(2l)(l− I) + (I − 1)Its1 ≤ Iw∗ =
Ic1+ I[p(2l) + (I − 1)t]s1. Hence, using the non-negativity of the firms’s rent,
c1 ≥ [p(2l)(l−I)−Ip(2l)s1]/(I−1) ≥ f [l/(2I)−1/4](l−I−Is̄)/[(l+I)(I−1)] ≥
c̄ by definition of c̄, contradicting c1 < c̄.

Thus when transport costs are taken into account, the willingness to pay

of a consumer for any land occupied by a producer falls short of the cost. A

consumer purchasing land used by a producer will have utility lower than a

consumer farthest away from a producer. Since all consumers are at the same

utility level in equilibrium, such a purchase would reduce the utility level of
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the consumer, and therefore will not be made.

With regard to the firms, notice that optimization will imply that the labor

input quantity will be set equal to the land input quantity, and optimization

problem (2) reduces to:

max
b,σ

β · σ − f −
Z b+σ

b
p(x)dm(x)− w∗ · σ

The first order condition with respect to σ is β−w∗ = p(b+σ) ∈ [p(l), p(l+
I)]. Marginal revenue net of labor cost equals the marginal cost of land. Since

there is a discontinuity in the price of land, this net marginal revenue need

only be between the bounds of the discontinuity. w∗ was chosen to satisfy this
condition for b1 = l − I, σ1 = 2I, b2 = −l − I, σ2 = 2I. The first order

condition with respect to b is p(b) = p(b + σ); this is fulfilled by symmetry.

Equilibrium profits are zero by construction of w∗; see equation (12).
Turning next to second order conditions for the firm, notice first that if

the firm uses a parcel of any size σ, it is indifferent about its location, so it

will choose one of the cheapest parcels. For σ ≤ 2I, these are contained in
(b1, b1+σ1), (b2, b2+σ2). The first order condition with respect to σ will imply

that it will choose σ = 2I. If it occupies a parcel at an extreme of X and σ is

slightly larger than 2I, then the cost of this parcel is higher than the cost of a

similarly slight extension of (b1, b1 + σ1) or (b2, b2 + σ2). If the firm can make

higher profits from expanding the scale of its operations beyond 2I, then given

the production function and the price density, it will make still higher profits

when b = −2l and σ = 4l.

Profits from such a production plan are given by

4βl − f − w∗ · 4l −
Z 2l

−2l
p(x)dm(x) (14)

Profits from the equilibrium production plan are zero by construction of

w∗. Using this by substituting the definition of w∗ given by equation (12)
into equation (14), after some tedious calculations, non-positivity of (14) is

equivalent to
R l−I
0 [p(x) − p(2l)]dm(x) ≥ 0. The integrand is non-negative by

construction.

Q.E.D.

Proof of Theorem 4: Take an equilibrium allocation

[(ci, ai, si, Qi)
I
i=1, cL, (zj, bj,σj, qj)

J
j=1]
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that is symmetric in production, and suppose that it is Pareto dominated by

another feasible allocation,

[(c0i, a
0
i, s

0
i, Q

0
i)
I
i=1, c

0
L, (z

0
j, b

0
j,σ

0
j, q

0
j)
J
j=1]

with z0j > 0∀j. So u(c0i, s
0
i) ≥ u(ci, si) for all i and c0L ≥ cL, with strict

inequality holding for at least one relation.

First,18 we assert that without loss of generality, we can assume that the

land parcels of consumers commuting to a firm in the Pareto dominating allo-

cation form a connected set in combination with that firm’s parcel. For if not,

we can switch the land parcels around so that they do form a connected set,

and create a Pareto improvement by reducing aggregate commuting cost and

distributing the surplus composite commodity to the landlord.

Second, we argue that without loss of generality, the Pareto dominating

allocation has the same number of consumers commuting to each firm from

each side or direction. By the first condition defining an allocation that is sym-

metric in production, I/(2J) is integer. All consumers commute (see footnote

6). It follows that the difference between the maximum and minimum number

of consumers commuting to any firm from one side at the Pareto dominating

allocation, n̄ and n respectively, must be more than one. [The proof is by con-

tradiction. There are 2J clusters of consumers (to the left and to the right of

the J firms). Let the number of clusters with n consumers be N , 0 < N < 2J .

Now suppose n̄ = n + 1. Then I = nN + (n + 1)(2J −N) = (n+ 1)2J −N .
Dividing by 2J we obtain that N/(2J) is integer, contradicting 0 < N < 2J.]

Take the closest consumer, consumer 1, commuting to a firm from a side with
n̄ consumers commuting to the firm. Move this consumer, retaining their land

and composite good consumption, to the side of a firm with n consumers com-

muting to it. Place this consumer so that it is the agent adjacent to the firm

on the side with n consumers commuting to it. Shift agents (without changing

their order) so that material balance is maintained in the land market.

We claim that this rearrangement of consumers creates a Pareto improve-

ment. The reason is as follows. Removing the first consumer from the side

with n̄ consumers reduces total commuting cost from that side by (n̄−1) ·s01 ·t.
Placing the consumer in the side with n commuters increases commuting cost

by n · s01 · t, where n < n̄ − 1. Thus, a surplus of composite good is created,
and this can be given to the landlord.

18At this juncture, it is important to note that the concept of “Pareto optimality with J
active firms” implies that no firm is shut down in the Pareto dominating allocation.
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Since I/(2J) is integer, it must be that each firm has the same number of

consumers commuting to it from each side. From the form of the production

function, we know that the production plans of all firms must therefore be

identical, since labor usage is identical (and equal to I/J).

Third, we claim that without loss of generality, the Pareto improving allo-

cation has the property that the consumers adjacent to a firm all have the same

allocations of consumption good and land, the consumers second closest to a

firm all have the same allocations, and so forth. For suppose that this were not

the case. Take the set of all of the consumers who are i people from the firm to

which they are commuting. Take the average of their allocations and give each

of them the average allocation. Do this separately for each set of consumers

who are i people from each firm. This new, average allocation is feasible since

the original allocation is feasible. For instance, aggregate commuting cost is

the same in both the original and averaged allocations. Moreover, since utility

is strictly quasi-concave, the original allocation Pareto dominates the equilib-

rium allocation, and the equilibrium allocation features equal utility levels for

all consumers (see footnote 6), the average allocation also Pareto dominates

the equilibrium allocation.

An immediate implication is that the Pareto dominating allocation is, with-

out loss of generality, symmetric in production. Since the equilibrium alloca-

tion is symmetric in production (by assumption), the locations of producers

and their land usage are the same in both the equilibrium allocation and the

Pareto dominating allocation.19 Thus, the difference boils down to a pure

exchange economy where the central business districts are the firms and the

consumers are each endowed with w units of consumption good. From Berliant

and Fujita [9, Proposition 2], given a fixed production sector, the equilibrium

allocation is efficient. This contradicts the presumed existence of a Pareto

dominating allocation. So the hypothesis is false, and the equilibrium alloca-

tion is Pareto optimal.

Q.E.D.
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