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An Analysis of Speaking Fluency of Immigrants Using
Ordered Response Models with Classification Errors

and Random Thresholds

Abstract

Ordered categorical dependent variables, as frequently analysed in economics and

other social sciences, are often affected by misclassification error. In addition, if these

variables refer to subjective evaluations, a further source of error is the choice of scale

across individuals. An example for a variable that is likely to suffer from both errors

is speaking fluency of immigrants as reported in survey data. We develop parametric

models that take account of this by incorporating misclassification errors in an ordered

response model, and by allowing for subjectively chosen boundaries between the cate-

gories. As an alternative, we consider a semi-parametric model that nests all parametric

models. We apply these estimators to the analysis of English speaking fluency of immi-

grants in the UK, focusing on Lazear’s theory that due to either learning or self-selection,

there is a negative relation between speaking fluency and the ethnic minority concentra-

tion in the region. Specification tests show that the model allowing for misclassification

errors outperforms the ordered probit model. All models lead to the same qualitative

conclusions on the relation between speaking fluency and minority concentration, but

there is substantial variation in the size of parameter estimates and marginal effects.
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1 Introduction

Many empirical studies in economics and other social sciences are concerned with the

analysis of ordered categorical dependent variables, like banded data on earnings, in-

come, or hours worked. This data, often retrieved from surveys, has a true objective

underlying scale, but can be affected by misclassification error. Another type of cate-

gorical data that has become increasingly popular in applied econometrics is based on

subjective evaluations. Examples are data on job satisfaction (see, for example, Clark

and Oswald (1996)), satisfaction with health (Kerkhofs and Lindeboom (1995)), future

expectations of household income (Das and Van Soest (1997)), or subjective evaluations

of English speaking fluency of immigrants in the UK (e.g. Chiswick (1991), Chiswick

and Miller (1995) and Dustmann (1994)), which we will analyze in this paper. Such

data may suffer from the same misclassification problem. Moreover, the bounds used

to distinguish, for example, good from reasonable, reasonable from bad, etc., may be

specific to the person who evaluates (the respondent or the interviewer).

In applied work, ordered categorical dependent variables are typically analyzed with

ordered probit or ordered logit models. In these non-linear models, misclassification

can lead to biased estimates of the parameters of interest. To deal with this problem in

the binary choice case, several parametric models have been introduced that explicitly

incorporate misclassification probabilities as additional parameters. Lee and Porter

(1984) estimate an exogenous switching regression model for market prices of grain,

distinguishing regimes where firms are cooperative and noncooperative. They observe

an imperfect indicator of the actual regime and extend the standard probit model with

two misclassification probabilities for the events that regime A is observed given that

regime B is active or vice versa. They estimate these probabilities jointly with the

parameters of the price equations in both regimes. Hausman et al. (1998) estimate

binary choice models for job changes. Using parametric models, they find significant

probabilities of misclassifying in both directions. Using semi-parametric models, they

obtain estimates of the slope coefficients of interest that are similar to the estimates in
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the parametric model allowing for misclassification.

In this paper, we follow Porter and Lee and Hausman et al. and incorporate misclas-

sification errors in an ordered response model. Moreover, we focus on the case where

the dependent variable is a subjective evaluation on a discrete ordered scale, with sub-

jectively chosen boundaries (thresholds) between the categories. These thresholds may

vary across the observations. This is allowed for in the same way as in Das (1995), who

treats the thresholds in the ordered probit model as random variables, depending on

observed and unobserved characteristics. To test for misclassification or random thresh-

olds, standard tests cannot be used since the null hypothesis puts the parameters on

the boundary of the parameter space. We apply simulation based testing procedures

recently developed by Andrews (2001). In addition, we consider a semi-parametric

model that nests all parametric models and avoids distributional assumptions on the

error terms. Since this is a single–index model, the slope parameters of interest can be

estimated using the semi–parametric least squares estimator of Ichimura (1993).

The main issue in the application is the relation between host country language

proficiency of immigrant minorities and the regional concentration of the minority

group. Understanding the assimilation and adaptation of minority and immigrant

groups is an important and growing area of research in economics, becoming more

relevant as societies are increasingly characterized by a mix of individuals with different

cultural backgrounds. Speaking a common language is a key factor in this process. In

an influential recent study, Lazear (1999) has developed a model where trade between

different groups requires the ability to communicate with each other. To enhance

trading possibilities, minority individuals may learn the language of the majority group.

The incentive of learning the language is larger the smaller the relative size of the

minority group. Moreover, minority individuals with low proficiency in the majority

language may sort themselves into communities where individuals speaking their own

minority language are concentrated. As Lazear points out, the two processes both lead

to a negative association between minority concentration and fluency in the majority
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language. If the effect of minority concentration on language is created primarily

through learning, then the interaction between minority concentration and years of

residence should contribute to explaining language proficiency. On the other hand, if

sorting is the only relevant mechanism, then this interaction should not be significant.

Comparing data from the U.S. census for 1900 and 1990, Lazear concludes that only

sorting matters in 1990, while learning was important in 1900.

We investigate the same issue for the UK, using cross–section data on immigrants

from ethnic minority communities drawn in 1994. Our parameter of interest are, as

in Lazear’s study, the effects of the regional minority concentration and its interaction

with years of residence on English language proficiency of immigrants.

In survey data, language proficiency is typically evaluated by the respondent or the

interviewer on a four or five point scale, ranging from bad or very bad to very good. It

seems likely that evaluators differ in what they think is the threshold between bad and

reasonable, reasonable and good, etc. In addition, the reported variable may suffer

from the same misclassification error as objective variables, such as the job change

variable investigated by Hausman et al. (1998). Dustmann and van Soest (2002)

focus on the latter type of error, comparing answers to identical survey questions on

self–reported speaking fluency in the host country language by the same immigrants

at different points in time. They find that, under the assumption that a decrease of

language capacity is not possible, more than one fourth of the total variance in the

observed speaking fluency variable is due to random misclassification.

Our main empirical question is whether generalizing the ordered response model

to allow for misclassification and random category bounds affects the answers to the

economic questions concerning the relation between language proficiency, minority con-

centration, and years of residence.

The results of our empirical analysis show that allowing for classification errors is a

clear improvement to the standard ordered probit model. In particular, the estimated

probabilities of misclassification into the extreme categories are large. A formal test
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based upon Andrews (2001) clearly rejects the null hypothesis that all misclassification

probabilities are zero. Allowing for misclassification also leads to substantially different

estimates of some of the slope coefficients of the regressors. In our application, allowing

for random thresholds is much less important. Andrews tests show that this does not

lead to significant improvements in either the ordered probit model or the model with

misclassification.

The qualitative conclusions on the effect of minority concentration on speaking

fluency do not change if misclassification is allowed for. The effect is significantly

negative. This is confirmed by the semi-parametric estimates. The estimates of the size

of the marginal effects, however, are biased substantially if misclassification is ignored,

particularly at low values of the concentration index. The interaction term between

years of residence and minority concentration is significant at the 10% level only in the

parametric models and insignificant in the semi-parametric model, suggesting that, for

our particular application, self-selection is a better explanation for the negative relation

between minority concentration and speaking fluency than learning.

The paper is organized as follows. In section 2, we present the models and their

estimators. In section 3, we briefly describe the data. Semi-parametric and parametric

estimates are presented in Sections 4 and 5. In Section 6, we compare predictions of

the two parametric models and the semi-parametric model and test the parametric

specifications. Section 7 concludes.

2 Categorical Data and Misclassification

We assume that the dependent variable is observed on an ordinal scale with three levels,

coded 1, 2 and 3. In our application, this corresponds to speaking English slightly or

not at all, reasonably well, or very well, respectively. The models we discuss extend

straightforwardly to the case of more than three categories, but the parametric models

will lead to more auxiliary parameters and more intricate expressions for the likelihood
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function. Starting point is the ordered probit model, not allowing for classification

errors. It relates observed categorical information for respondent i to an underlying

latent index y∗i as follows:

y∗i = x′
iβ + ui, (1)

yi = j if mj−1 < y∗i < mj, j = 1, 2, 3 , (2)

ui|xi ∼ N(0, σ2) . (3)

Here xi is a vector of explanatory variables including a constant term, β is the

vector of parameters of interest, and ui is the error term. We assume m0 = −∞,

m1 = 0, m3 = ∞. The variance σ2 and the bound m2 can be seen as nuisance

parameters. We will fix σ2 to 100 to identify the scale. Throughout, we assume that

the observations (yi, xi) are a random sample from the population of interest.

2.1 A Parametric Misclassification Model

For the binary choice case, Hausman et al. (1998) show that the bias in estimates

of β can be substantial if some observations on the endogenous variable are misclas-

sified. They propose a generalization of the binary probit model to take account of

classification errors. We extend this model to the ordered probit case.

We assume that the reported category is yi, but the (unobserved) true category is

zi, which is related to the latent variable y∗i as in the ordered probit model:

zi = j if mj−1 < y∗i < mj , j = 1, 2, 3 . (4)

The probabilities of misclassification are given by:

P(yi = j|zi = k, xi) = pk,j, j, k = 1, 2, 3, j �= k. (5)

Thus pk,j is the probability that an observation belonging to category k is classified

in category j. If pk,j = 0 for all j, k with j �= k, there is no misclassification and the
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model simplifies to the ordered probit model. The model with three categories has six

misclassification probabilities pk,j.

In this model, the latent variable y∗i can be seen as a perfect indicator of speaking

fluency on a continuous scale, something like the score on the ideal objective speaking

fluency test. The ”true” category zi is the categorical outcome based upon this score.

Misclassification means that the wrong outcome is reported. It should be acknowledged

that this is only one way to model misclassification. For example, another source of

misclassification would be measurement error in y∗i , but a normally distributed mea-

surement error would be captured in ui and would not be identified. A third source

would be individual variation in cut-off points. This is discussed in the next subsection.

The main identifying assumption in the model is that pk,j does not depend upon

xi (except through zi). This is the common identifying assumption in this literature,

used by Hausman et al. (1998), Lee and Porter (1984), and in other applications

such as Douglas et al. (1995). Such an assumption can only be avoided if a different

measurement can be used as a benchmark, such as, in our empirical example, objective

measurement of language proficiency (see Charette and Meng (1994)).

For the binary choice case (with categories denoted 0 and 1), Hausman et al. (1998)

show that identification of pk,j, j, k = 0, 1 does not rely on the normality assumption,

as long the support of x′
iβ is the whole real line, i.e., as long as there are enough obser-

vations with very low and very high values of x′
iβ. The probabilities of misclassification

are then given by:

p1,0 = lim
x′

iβ →∞
P(yi = 0|xi) and p0,1 = lim

x′
iβ →−∞

P(yi = 1|xi) .

Hausman et al. (1998) show that their model satisfies the single index property

that E{yi|xi} depends on xi via x′
iβ only. Therefore, β is identified up to scale and

sign. The additional condition required for identification is that p0,1 and p1,0 are not

too large:

p1,0 + p0,1 < 1. (6)
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This guarantees that E{yi|xi} increases with x′
iβ. Accordingly, the sign of β is also

identified, and (5) implies that the p0,1 and p1,0 are non-parametrically identified.

For the ordered probit case with categories 1, 2 and 3 and six misclassification

probabilities, we get

E{yi|xi} = 2− p2,1 + p2,3 − Φ((m1 − x′
iβ)/σ)(1− p1,2 − p2,1 + p2,3 − 2p1,3) (7)

+ [1− Φ((m2 − x′
iβ)/σ)](1− p3,2 − p2,3 + p2,1 − 2p3,1) .

Thus the condition that E{yi|xi} increases with x′
iβ for every value of x′

iβ implies

(instead of (6) for the binary choice case):

p1,2 + p2,1 − p2,3 + 2p1,3 < 1 and p2,3 + p3,2 − p2,1 + 2p3,1 < 1 . (8)

This condition is satisfied for small enough values of the misclassification probabil-

ities. A sufficient condition for (8) is given by Abrevaya and Hausman (1999):

p1,1 > p2,1 > p3,1 and p3,3 > p2,3 > p1,3 . (9)

This condition is stronger than (8) but easier to understand intuitively.

The argument for nonparametric identification in the binary choice case applies to

p1,j and p3,j, but not to p2,1 or p2,3. Identification of these is achieved in this parametric

model by imposing normality of the error terms. The model can straightforwardly be

estimated by Maximum Likelihood (ML), where the pk,j are estimated jointly with

the slope parameters β. The ML estimates are consistent, asymptotically normal,

and asymptotically efficient if the assumptions (including normality of the errors) are

satisfied.

2.2 Random Threshold Variation across Respondents

Evaluators (typically the respondent or the interviewer) are usually not precisely in-

structed how to construct their subjective score y∗i on a continuous scale or which
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cut–off points to use for the discrete outcomes. This suggests that there will be (un-

observed) heterogeneity in y∗i and the cut-off points. Unobserved heterogeneity in y∗i

is picked up by the error term ui in (3). (To identify β, it has to be assumed that

such heterogeneity is independent of the regressors.) In this subsection we discuss how

heterogeneity in the cut-off points m1 and m2 can be incorporated.

Extending the ordered probit model (with or without misclassification probabilities)

to allow for heterogeneity in the threshold values is intuitively attractive, since it implies

that two evaluators who perceive the same latent value y∗i may still give different

answers on the ordinal scale, using their own interpretation of what is, for instance,

good, reasonable, or bad speaking fluency.

Ordered probit models with category bounds that vary across respondents have

been introduced by Terza (1985) and Das (1995). While Terza (1985) only allows for

variation of the category bounds with observed (exogenous) respondent characteristics,

Das (1995) also allows for unobserved heterogeneity in the bounds. Here we follow Das

(1995). We first discuss the model without classification errors. Its specification is as

follows.

y∗i = x′
iβ + ui, (10)

m∗
ji = w′

iγj + vji j = 1, 2

yi = 1 if y∗i ≤ min(m∗
1i,m

∗
2i)

yi = 2 if min(m∗
1i,m

∗
2i) < y∗i ≤ max(m∗

1i,m
∗
2i)

yi = 3 if y∗i > max(m∗
1i,m

∗
2i)

ui ∼ N(0, σ2), vji ∼ N(0, σ2
j ), j = 1, 2

ui, v1i and v2i are independent of each other and of xi and wi (11)

The ordering in the thresholds cannot be determined a priori: with positive prob-

ability, m∗
1i exceeds m∗

2i, and the model with categories (−∞,m∗
1i), (m

∗
1i,m

∗
2i), and
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(m∗
2i,∞) is not well-defined. Das (1995) solves this problem by using the ordered

thresholds instead of the original ones. In the case with three categories, this means

that m∗
1i is replaced by min(m∗

1i,m
∗
2i) and m∗

2i by max(m∗
1i,m

∗
2i). The probabilities of

the three outcomes (yi = 1, yi = 2 or yi = 3) for this model can be rewritten as follows:

P(yi = 1|xi, wi) = P(ui − v1i < w′
iγ1 − x′

iβ and ui − v2i < w′
iγ2 − x′

iβ) , (12-a)

P(yi = 2|xi, wi) = P(ui − v1i < w′
iγ1 − x′

iβ and ui − v2i > w′
iγ2 − x′

iβ) (12-b)

+P(ui − v1i < w′
iγ1 − x′

iβ and ui − v2i > w′
iγ2 − x′

iβ) ,

P(yi = 3|xi, wi) = P(ui − v1i > w′
iγ1 − x′

iβ and ui − v2i > w′
iγ2 − x′

iβ) . (12-c)

This is a bivariate probit model that does not distinguish between the two regimes

leading to outcome yi = 2. It is clear that scale and location need to be fixed to identify

the model. The scale is set by choosing σ2 = 100, as in the other models. To identify

the location, we set γ1 = −γ2. This is equivalent to several other normalizations but

has the advantage of symmetry. It implies that an increase of |w′γ1| induces an increase
in the probability of giving the intermediate answer. The sign of γ1 is identified by

imposing that w′γ1 is more often the lower bound than the upper bound (i.e., w′γ1 ≤ 0

for at least 50% of the observations).

The covariance structure of the bivariate probit model is given by V (ui − v1i) =

σ2 + σ2
1, V (ui − v2i) = σ2 + σ2

2, and Cov(ui − v1i, ui − v2i) = σ2. Thus the variances

of ui, v1i and v2i are identified. Relaxing (11) by allowing for non–zero correlations

between the three error terms would lead to an unidentified model.

This model can also be interpreted as follows. Two evaluations are reported: one

based upon −w′
iγ1 − v1i + x′

iβ + ui, and one upon −w′
iγ2 − v2i + x′

iβ + ui. If both

evaluations are positive, the answer yi = 3 (good or very good) is given. If both are
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negative, yi = 1 (bad or very bad) is reported. If one evaluation is positive and the

other is negative, yi = 2.

In the empirical application, speaking fluency is evaluated by the interviewer. The

data provide no information on the interviewer so that interviewer characteristics can

enter only through v1i and v2i. Including respondent characteristics in wi seems less

natural here. We experimented with this but found no significant results. In the results

that we will report, wi consists of a constant term and threshold heterogeneity comes

through v1i and v2i only.

Explicitly allowing for misclassification in this model is possible in the same way as

in the standard ordered probit model. The probabilities for the true categorical out-

comes zi are given by (12-a), (12-b) and (12-c), with yi replaced by zi. The probabilities

of the reported outcomes given the true outcomes are again given by (5).

2.3 A Semi-parametric Approach

The parametric ML estimates of the slope parameters β in the models introduced above

require distributional assumptions and may not be robust to misspecification. If we

are interested in β only and consider the pk,j as nuisance parameters, semi-parametric

estimation seems a good alternative.

Consider the model with fixed thresholds and misclassification probabilities. The

conditional mean of the observed categorical variable yi in model (1) - (5) given xi is

given by (7). It depends on xi only through the index x′
iβ. Thus (1)-(5) is a special

case of the single index model given by

E{yi|xi} = H(x′
iβ) , (13)

where H is an unknown link function. If we relax the normality assumption (3)

and replace it by the assumption

ui is independent of xi , (14)
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we get the following expression instead of (7):

E{yi|xi} = 2− p2,1 + p2,3 −G(m1 − x′
iβ)(1− p1,2 − p2,1 + p2,3 − 2p1,3) + (15)

[1−G(m2 − x′
iβ)](1− p3,2 − p2,3 + p2,1 − 2p3,1) ,

where G is the distribution function of the error term ui (G(t) = P[ui ≤ t]).

Again, the right-hand side depends on xi only through x′
iβ, so that (1), (2), (4), (5)

and (14) lead to the single index model (13) with link function H given by (15). As

stated before, the crucial assumption here is that the misclassification probabilities in

(4)- (5) do not depend on xi.

Moreover, under the same assumptions, it is straightforward to show that the con-

ditional variance V {yi|xi} also depends on xi through the same index x′
iβ only. This

implies that the model for yi is heteroskedastic but the heteroskedasticity has a special

form. Finally, it is easy to show that the inequalities in (8) imply that H can be chosen

non–decreasing.

An expression similar to (15) can be derived from the extension of the model which

allows for random cut–off points. Under the additional assumption that the variation in

the cut–off points is independent of observed characteristics xi, the model with random

cut–off points is also a single index model and the statements above remain valid.

Thus the models discussed above are all special cases of the general single index

model (13) for some (unknown) link function H. In this model, the vector β of slope

parameters is identified up to scale; the constant term is not identified. A number

of asymptotically normal root n consistent estimators for β in this model have been

discussed in the literature, requiring various assumptions on the distribution of the

explanatory variables xi and regularity conditions on the link function H. Ichimura

(1993) uses nonlinear least squares combined with nonparametric estimation of H.

This estimator requires numerical minimization of a non–convex objective function.

Hausman et al. (1998) use the maximum rank correlation estimator of Han (1987).

This also requires numerical optimization. We experimented with applying this esti-
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mator, but ran into convergence problems with the Han estimator, possibly due to the

relatively large number of explanatory variables.

Attractive from a computational point of view is the class of (weighted or un-

weighted) average derivative estimators (see, for example, Powell et al. 1989). They

require that the distribution of x is absolutely continuous and are therefore not directly

applicable to our empirical example. Horowitz and Haerdle (1996) have developed an

estimator which allows for discrete variables, but not for interaction terms of continu-

ous variables. Since interaction terms are important in our particular application, the

Horowitz and Haerdle (1996) estimator cannot be applied. We will therefore focus on

Ichimura’s semi–parametric least squares (SLS) estimator.

Ichimura’s SLS estimator minimizes the sum of squares Sn(β) over β, where

Sn(β) = 1/n
∑

(yi − Ê[yi|x′
iβ])

2. (16)

Here Ê[yi|x′
iβ] is a univariate kernel regression estimate of yi on the index x′

iβ (for

given β). Finding the β at which (16) is minimized requires an iterative procedure.

If smooth kernel weights are used, the function to be minimized is smooth in β and

a Newton-Raphson technique can be used to find the optimal β, i.e., β̂SLS. Ichimura

(1993) shows that, under appropriate regularity conditions, this yields a
√
n consistent

asymptotically normal estimator of β0. He also derives the asymptotic covariance

matrix of this estimator and shows how it can be estimated consistently.

Ichimura (1993) also indicates how to design an asymptotically efficient weighted

semi-parametric least squares (WSLS) estimator that uses SLS as the first step. For the

general case, this requires nonparametric regression of the squared SLS residuals on x

and leads to problems if x contains interaction terms or discrete variables. In our case,

however, we have seen above that the natural generalization of the parametric models

implies that V [yi|xi] depends on xi only through x′
iβ, and for this special case Ichimura

shows that the efficient WSLS estimator requires weighting with V̂ [yi|x′
iβ̂SLS]

−1, ob-

tained by a non-parametric regression of the squared SLS residuals on the index x′
iβ̂SLS.
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Implementing the SLS and WSLS estimators in practice requires a choice of kernel

and bandwidth. We will work with the Gaussian kernel. For consistency, the bandwidth

should tend to zero if n → ∞ at a slow enough rate. Although a large literature on

the optimal bandwidth choice exists for the non–parametric regression problem itself,

it is not clear how to determine the optimal bandwidth for estimating β. Theoretical

results for similar problems suggest that under-smoothing will be optimal, i.e., the

optimal bandwidth will be smaller than the optimal bandwidth for the non–parametric

regression of yi on x′
iβ. The common approach for choosing a bandwidth in a situation

like this is to experiment with the bandwidth which would be optimal for the non-

parametric regression problem (given a value of β) and with smaller bandwidth values

(to under-smooth). We will present results for several values of the bandwidth.

Once βSLS (or βWSLS) is obtained, the link function H can be estimated by a

non–parametric (kernel) regression of yi on the estimated index x′
iβ̂SLS. The usual

asymptotic properties of a kernel estimator apply since β̂SLS converges at a faster rate

than the non-parametric estimator.

3 Data

We apply the models and techniques discussed above to analyze the effect of minority

concentration on immigrants’ proficiency in the host country language. The empirical

analysis is based on the Fourth National Survey on Ethnic Minorities (FNSEM), a

cross- sectional survey carried out in the UK in 1993 and 1994. Individuals included

are aged 16 or more. There are 5196 observations in the minority sample. We focus on a

homogeneous sample of 1471 men of Indian ethnicity (from India, Bangladesh, Pakistan

or Uganda). The FNSEM contains information on the concentration of the individual’s

own minority group at ward level, which has been matched to the survey from the
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1991 Census.1 The language information in the survey is based on the interviewer’s

evaluation of the individual’s language ability in English, with categorical answers

(speaks English) very well, fairly well, slightly, and not at all. For the empirical analysis,

we have combined the categories slightly and not at all and recoded the three categories

to 3 (very well), 2 (fairly well) and 1 (slightly or not at al).

Summary statistics on the resulting categorical speaking fluency variable and on

other individual characteristics are presented in Table 1. About 47 percent of the 1471

men in the survey data are reported to speak English very well. For only 4.3%, the

interviewer reports not at all; this group is merged with the 22.6% in the category

slightly.

On average, concentration of minorities of the same ethnicity as the respondent is

about 16.2%, with substantial variation in the sample and a sample standard deviation

of 15.2%. There is a clear negative correlation between language proficiency and mi-

nority concentration. Average minority concentration in the subsample of people with

low speaking fluency is about 20.8%, in the subsample of the most fluent speakers it is

only 13.7%. The rank correlation coefficient is -0.215.

4 Semi-parametric Estimates

Some SLS and WSLS estimates explained in section 2.3 are presented in Table 2.

In the first column, SLS estimates are presented with the bandwidth set equal to

1.06σ̂(x′β̂)n−0.2, where n is the number of observations and σ̂(x′β̂) is the estimated

standard deviation of the single index. This is the rule of thumb estimate for the

optimal bandwidth in the kernel regression (Silverman, 1986). Since under-smoothing

typically gives more efficient estimates for the single index (Powell, 1994), we also

present the results for a bandwidth that is half as large (third column). The differences

1In the UK, a ward is the smallest geographical area identified in the Population Census. According

to the 1991 census, the mean population within a ward is 5459 individuals, and the median is 4518.
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between the two sets of estimates or their standard errors are small, confirming the

general finding in this literature that the SLS results are not sensitive to the choice of

the bandwidth (see, for example, Bellemare et al., 2002). The second column presents

the WSLS estimates, using the same bandwidth as column I. These estimates are very

similar to those in column I. Estimated standard errors are somewhat smaller in most

cases, in line with the fact that WSLS is asymptotically efficient while SLS is not, but

there are also two parameters for which the estimated standard error is slightly larger

for WSLS than for SLS. Results for the smaller bandwidth (not presented) tell the

same story.

Standard errors are based upon the asymptotic distribution of the estimator. Boot-

strapped standard errors give the same economic conclusions and are therefore not

presented. They are larger than the asymptotic standard errors for some parameters

and smaller for others.

The constant term is not estimated. The coefficient of YSM (years since migra-

tion) is normalized to 0.9634, its estimate in the ordered probit model (see below).

This normalization makes it easy to compare semi-parametric and parametric results.

The variable YSM has a significant positive effect with a large absolute t-value in all

parametric models, which justifies the assumption that the coefficient is nonzero, the

(only) necessary condition for using this normalization.

The estimation results are qualitatively in line with Lazear (1999). Since not only

YSM itself but also YSM squared and YSM interacted with the minority concentration

index are included among the regressors, the effect of an increase of YSM on expected

speaking fluency varies across observations. Still, the marginal effect of increasing

years since migration on expected fluency is positive at almost all observations. The

negative sign of YSM squared implies that this effect is smaller for those with longer

years of residence. Conditional on years since migration, older immigrants are less

fluent in English than younger immigrants. The country of origin dummies indicate

that, keeping other characteristics constant, immigrants from Pakistan and Bangladesh
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are significantly less fluent than immigrants from India, whereas the individuals of afro-

asian origin are the most fluent.

Speaking fluency falls with minority concentration at a declining rate, confirming

Lazear’s finding for the U.S. One explanation for this is that individuals who live in

areas with high concentrations of residents of their own minority have lower incentives

to learn the majority language. Another explanation is that individuals select their

area of residence according to their language proficiency. As Lazear points out, a

significant negative effect of the concentration variable on speaking fluency is consistent

with both explanations. In both cases, the individual’s (location or learning) choice is

determined by the objective to maximize interaction with individuals with whom they

share a common language.

To distinguish between the two explanations, Lazear adds an interaction term be-

tween minority concentration and years of residence (YSM). An insignificant interaction

term favors the self selection hypothesis, since the learning argument would imply a

negative interaction effects (a larger learning rate, i.e., a higher effect of YSM, when

learning pays off more, i.e., when minority concentration is lower). In Table 2, the

coefficient on the interaction term of years since migration and minority concentration

is negative but insignificant and close to zero, favoring the self selection hypothesis.

Interestingly, this is similar to what Lazear finds for the 1990 U.S. census.

In figure 1, we have drawn the estimated link function H in (13) for the first set

of results in Table 2. For the other results, the figure looks very similar.2 The figure

also contains 95 percent uniform confidence bounds (based upon Haerdle and Linton

(1994)). The estimated link function is increasing on its full domain, except at very

low values of the index, for which the estimates are imprecise due to the small number

of observations in that region. In an ordered response model without misclassification,

the value of the link function should tend to 1 if the index value tends to −∞. The

figure suggests that this is not the case. This could be due to misclassification of some

2We use the quartic kernel. The bandwidth is chosen by visual inspection.
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respondents with low speaking fluency (yi = 1).

5 Parametric Estimates

Estimates for several parametric models are presented in Table 3. The first columns

give the results of the standard ordered probit model. In the second column, mis-

classification probabilities are incorporated (see section 2.1). The third column allows

for random cut–off points (see section 2.2) but not for misclassification. Results in

the fourth column allow for non-zero misclassification probabilities as well as random

thresholds.

The four sets of parametric estimates of the slope coefficients are generally in line

with each other in terms of signs and significance levels, but there are substantial dif-

ferences in magnitude. We will discuss the magnitude of the most important estimates

below when we look at predicted marginal effects on the probabilities of good and

reasonable speaking fluency. The coefficients all have the same sign as in the semi-

parametric model. Fluency increases with years since migration at a decreasing rate.

Immigrants from Pakistan and Bangladesh are less fluent than immigrants from India,

while afro-asian immigrants have the highest fluency, ceteris paribus. Speaking fluency

is lower in regions where the concentration of immigrants from the same country of

origin is larger.

The estimated coefficient on the interaction term of minority concentration and

years since migration is always negative and significant at approximately the two-

sided 10% level in the first two models, and at a somewhat higher level in the models

with random thresholds. This is different from the semi-parametric estimates, which

were negative but smaller in magnitude and not significant at all. While the semi-

parametric evidence suggested that the negative effect of minority concentration on

speaking fluency is due to self selection into local areas and not due to the effort in

learning the language, the parametric results suggest that learning could play a role as
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well. Still, t-values are not high enough to draw any final conclusions on this. For those

with zero years of residence, the estimated pattern of speaking fluency as a function

of minority concentration is decreasing up to about the 88th percentile of minority

concentration according to the model with misclassification only, up to about the 92nd

percentile for the model with random thresholds only, and up to the 94th percentile for

the semi-parametric models. This suggests that already shortly after entry, immigrants

in low minority concentration areas speak better English, something which can only

be explained by self selection.

The misclassification probabilities in column 2 are by definition nonnegative, im-

plying that standard t-tests or likelihood ratio tests on pk,j = 0 are inappropriate (see,

e.g., Shapiro (1985)). Still, the estimates of the pk,j and their standard errors imply

that 0 is not contained in the one-sided 95% confidence intervals of four of them, sug-

gesting that adding the probabilities of misclassification is an improvement compared

to the standard ordered probit model. A formal test of the hypothesis pk,j = 0 for all

j �= k can be based upon the likelihood ratio, using the method proposed by Andrews

(2001). The LR test statistic does not have the usual chi–squared distribution under

the null, since the test is one–sided and since under the null, the parameter vector is

not in the interior of the parameter space. Andrews (2001) demonstrates that the LR

test statistic can still be used and shows how to compute the appropriate asymptotic

critical values, using a quadratic approximation to the likelihood. In the appendix we

give the algorithm that is used for our case. We find a 5% critical value of 9.04 and a

1% critical value of 12.88. Since the realization of the LR test statistic is 16.72, the null

hypothesis is rejected at the 1% level. This confirms that allowing for misclassification

errors improves the fit of the model significantly.

The estimates of the misclassification probabilities amply satisfy the inequalities in

(9) that are sufficient for identification and imply monotonicity of the link function.

The estimates of p2,1 and p2,3 have the largest standard errors, reflecting the problem

that these are harder to identify. Compared to the ordered probit model, most slope
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coefficients and the estimate of the category boundm2 have increased by approximately

a factor 2. Due to the normalization, this can also be seen as a reduction of the standard

deviation of the error term u by about 50 percent. The interpretation is that part of the

unsystematic variation in observed speaking fluency is now explained by classification

errors.

The third specification presented in Table 3 is the model with random thresholds

but without misclassification probabilities. The final two parameters are the estimated

standard deviations of the thresholds. One of them is equal to zero, but the other

one is not, although its standard error is as large as the point estimate. A likelihood

ratio test similar to the one discussed above (following Andrews 2001) does not reject

the ordered probit model against the model with random thresholds at the 10% level

(LR test statistic 3.7; 5% and 10% critical values 5.09 and 3.77, respectively). The

estimates of the slope parameters are close to those in the ordered probit model.

In the final columns of Table 3, both misclassification probabilities and random

thresholds are incorporated. The estimates of the misclassification probabilities p2,1

and p2,3 are extremely inaccurate now, suggesting a serious identification problem in

this rich parametric model. The other misclassification probabilities, which are non-

parametrically identified, are estimated more accurately and the estimates are close

to those in the model with fixed thresholds. The estimates of the misclassification

probabilities satisfy the monotonicity conditions (8) but not the stronger conditions in

(9). An Andrews (2001) LR test of this model against the previous one again rejects

the hypothesis that all pj,k are zero at conventional significance levels (test statistic

15.16; 1% critical value 12.44). On the other hand, an Andrews test of the model with

misclassification probabilities and fixed thresholds (specification 2) cannot be rejected

against the more general model with random thresholds (LR test statistic 2.12; 10%

critical value 2.90). Thus all Andrews tests taken together lead to the unambiguous

conclusion that misclassification is significant but random variation in thresholds is not,

supporting specification 2, with misclassification probabilities and fixed thresholds.
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The results of the parametric models can be used to analyze the size of the effects

of concentration of immigrants of a certain language minority on true speaking fluency,

not affected by misclassification error or variance in thresholds. Table 4 summarizes

the results. It presents the estimated marginal effects of minority concentration on the

probabilities of at least slight fluency and very good fluency according to each of the

models in Table 3 at the first, second and third quartile of the sample distribution of

the concentration index. Other regressors have been set to their sample means. The

estimated marginal effects are functions of the estimates of β and m2 (models 1 and

2) or γ (models 3 and 4). Misclassification probabilities are discarded; the marginal

effects refer to the true classification, not to the reported classification. In models 3

and 4, random variation of the thresholds is also discarded, and the mean threshold

values are used.

The table shows some substantial differences in the estimated marginal effects. For

example, let us compare two otherwise identical immigrants in a region with approx-

imately median ethnic concentration. If the area of the one has a 1%-point higher

ethnic concentration than the area of the other immigrant, the ordered probit model

predicts a 1.33%-point higher probability of speaking English very well for the immi-

grant in the lower concentration area. According to the misclassification model, the

difference has the same sign but is much larger, about 2.27 %-points (with standard

error 0.44%-points).

Model 2 allows for misclassification and significantly outperforms the ordered probit

model. On the other hand, it leads to much larger standard errors on the estimated

marginal effects. As an intermediate case, we also estimated a model that allows for

misclassification in an adjacent category, but not in non-adjacent categories. In other

words, we imposed p1,3 = p3,1 = 0 in model 2 (without threshold variation). We do

not present detailed results for this model, since this model if formally rejected against

model 2. Still, most of the estimation results are similar to those in model 2. The

estimates of the misclassification probabilities are, for example, p̂1,2 = 0 (the lower
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bound), p̂2,1 = 0.2528 (standard error 0.0468), p̂2,3 = 0.3023 (standard error 0.0384),

and p̂3,2 = 0.0877 (standard error 0.0379), values which are similar to those in Table 3.

The estimated marginal effects are also similar to those of model 2, but with standard

errors that are about 20% smaller, on average.

Comparing Two Parametric Models

In Figures 2 and 3,Arthur: Figures need relabeling - there are now figures

1, 2a, 2b, and 4 we compare the predictions of two parametric models: ordered

probit and the misclassification model. We do not consider the models with random

thresholds, since we found no support for these. We look at the estimated probabilities

that true fluency is (at least) good and that reported fluency is good. In the ordered

probit model, observed and true speaking fluency (y and z) coincide, but in the model

with misclassification errors they do not.

Figure 2 presents a scatter plot of the predicted probabilities of good speaking flu-

ency according to the two parametric models. For the misclassification model (vertical

axis), the figure shows the predictions of the true speaking fluency variable z. For

the ordered probit model (horizontal axis and 45 degree line), predictions of y and z

coincide. We find that the misclassification model leads to more probability estimates

close to zero or one than the ordered probit model, leading to a larger dispersion in

P̂ [z = 3|x] according to the misclassification model than according to ordered probit.

Still, the correlation between the two sets of predictions is quite large (the sample

correlation coefficient is 0.97).

In Figure 3, we compare predictions of the probability that individuals report good

or very good speaking fluency. In the misclassification model, the probability of report-

ing good or very good fluency is never close to one or zero. For most observations with

predicted probabilities not close to one or zero, the predictions according to ordered

probit and misclassification models are similar. The correlation coefficient is almost

0.99.
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The substantial differences between true and reported fluency in the misclassifica-

tion model confirm the conclusion from the misclassification probabilities in Table 4:

generalizing the ordered probit model by incorporating misclassification probabilities

is useful in this empirical example. The same conclusion is obtained for the probability

of bad or very bad speaking fluency (figures not reported).

Mis-specification Tests of Parametric Models

In principle, the parametric models could be tested against the semi-parametric model

using a Hausman test. Under the null that the parametric model is correct, the para-

metric ML estimates are asymptotically efficient and the SLS estimates are consistent.

Under the alternative that the semi-parametric model is correctly specified but the

parametric model is not, only the SLS estimates are consistent. Thus a chi-squared

test can be based on the difference between parametric and semi-parametric estimates.

Unfortunately, however, the estimated standard errors of the SLS estimates are not

always larger than those of the parametric ML estimates. This implies that the Haus-

man test statistic cannot be computed. This problem remains if bootstrapped standard

errors are used for the semi-parametric model. The procedure of Newey (1985) can not

be used as it does not apply to the semi-parametric estimator.

An alternative, graphical, specification test of parametric models is introduced by

Horowitz (1993). The null hypothesis is that the parametric model is correctly specified.

The result for the parametric model with misclassification is given in Figure 4. It

presents two functions of the index estimate x′b/s, where b and s are the parametric

estimates of β and σ in Table 3. The solid curve gives the predicted probabilities

P̂ [yi = 3|xi] = P̂ [yi = 3|x′
ib] according to the parametric model, as a function of x′

ib.

The dashed curves gives nonparametric kernel regression estimates of the observed

dummy indicator variable I(yi = 3) on the same index x′
ib with uniform 95% confidence

bands. Since the estimator b converges to β at rate root n, which is faster rate than

the rate of convergence of the nonparametric estimator, the standard errors of b are
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asymptotically negligible, and confidence bands are calculated as if b was known.

Under the null that the parametric model is specified correctly, b is consistent for β

and the parametric expression for the predicted probability P̂ [yi = 3|xi] is consistent

for P [yi = 3|xi]. The null hypothesis, however, also implies that P [yi = 3|xi] is a single

index function of x′
iβ, and b is a consistent estimate of this single index (up to scale).

The nonparametric curve is the estimated link function, and it will also be consistent for

P [yi = 3|xi]. Thus under the null both curves are consistent for the same function, and

should be similar. The null hypothesis will be rejected if the nonparametric (circled)

curve is significantly different from the parametric (solid) curve. Since the parametric

curve is based upon estimates which converge at rate
√
n, while the nonparametric

curve converges at the lower rate n0.4, the imprecision in the former curve can be

neglected compared to that in the latter, and the test can be based on the uniform

confidence bands around the nonparametric curve.

The result is that the solid curve is everywhere between the uniform confidence

bands, so that the parametric model cannot be rejected. This can be seen as support

in favour of the parametric misclassification model. It should be admitted, however,

that the same test cannot reject the ordered probit model either, while we already

saw that the Andrews test rejects this model against the model with misclassification

errors. This casts some doubt on the power of this type of test. The same conclusions

are obtained if P [yi = 1|x′
ib] is used instead of P [yi = 3|xi].

6 Summary and Conclusions

In models with ordered categorical dependent variables where the categorical assign-

ment is based on subjective evaluations, misclassification may have two sources: Clas-

sical misclassification due to simple reporting errors, and misclassification due to a sub-

jective choice of scale. Both sources can lead to seriously biased parameter estimates

and predictions. Parametric estimators which incorporate and estimate misclassifica-
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tion probabilities, as well as semi-parametric estimators, are an alternative to standard

parametric models. Extending the work of Lee and Porter (1984) and Hausman et

al. (1998), we introduce a parametric model that incorporates misclassification prob-

abilities for the case of more than two ordered categories, and that allows for scale

heterogeneity. We show that this model is a special case of a semi-parametric single

index model that can be estimated with semi-parametric least squares.

Using these models, we analyze the association between minority concentration

and speaking fluency of immigrants, using data for the UK. We find that the misclas-

sification model is a significant improvement compared to the standard probit model.

Allowing for random thresholds in addition does not lead to further improvements. The

qualitative effects of minority concentration are similar, supporting Lazear’s finding for

the US that speaking fluency falls with minority concentration. Marginal effects show,

however, that the size of the correlation and the shape of the relationship between flu-

ency and minority concentration are quite different according to the two models. The

models both give weak evidence in favor of a learning effect, reflected by a negative

interaction effect of minority concentration and years since migration that is significant

at the one sided 10% level. The evidence in favor of self selection of more fluent immi-

grants into areas with lower minority density is much stronger and insensitive to the

chosen model. Semi-parametric estimates in a model that nests all parametric mod-

els considered confirm the qualitative conclusions, although the evidence of a learning

effect is even weaker.

A shortcoming of the model is that probabilities of misclassification in intermediate

categories are not precisely estimated, since their identification relies on parametric

assumptions. Better estimates of all misclassification probabilities would require ad-

ditional data, for example alternative measurements (Charette and Meng (1994)), or

panel data. This is on our research agenda.
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Appendix: Andrews Test

This appendix explains how to test the null hypothesis H0: pjk = 0, j, k = 1, 2, 3, j �= k

against the alternative pjk > 0 for at least one pair j �= k.3 Since the model is not

defined for pjk < 0, the parameter vector is not an internal point of the parameter

space under the null hypothesis, implying that standard asymptotic theory of the ML

estimator does not apply.4 Andrews (1999) derives the asymptotic distribution of a

class of a general class of estimators including ML when the true parameter value is on

the boundary of the parameter space. Andrews (2001) applies the results in Andrews

(1999) to derive the asymptotic distribution of the quasi-likelihood ratio test statistic,

which is what we need. (Andrews (2001) also allows for nuisance parameters which

play a role under the alternative only; such parameters do not appear in our case.) See

Theorem 4 in Andrews (2001). (The special case without nuisance parameters that

are not identified under the null also follows from Theorem 3 in Andrews (1999).) It is

straightforward to check that the regularity assumptions required for this theorem are

satisfied in our example, since observations are i.i.d., ML estimation is used, the log

likelihood has continuous right partial derivatives of second order, and the parameter

space has the form of a convex cone. Checking the regularity conditions is basically

the same as for the example of a random coefficients model in Andrews (1999).

Let LR be the likelihood ratio test statistic: 2(ln L1 − ln L0), where L1 is the

unrestricted maximum of the likelihood (allowing for all pj,k ≥ 0) and L0 is the re-

stricted maximum (imposing pj,k = 0 for all j, k = 1, 2, 3. The parameter vector can

be written as θ = (θ′1, θ
′
2)

′, where θ2 contains the six misclassification probabilities

p1,2, . . . , p3,2 and θ1 contains the other 12 (unrestricted) parameters of the model. The

parameter space can be written as V = (−∞,∞)12 x [0,∞)6), and the null hypothesis

is θ ∈ V0 = (−∞,∞)12 x {0}6. (We ignore the obvious lower bound on the threshold

3Tests for random thresholds against fixed thresholds are constructed in the same way.
4It also imples that alternative tests for inequality constraints such as those of Andrews (1998) or

Szroeter (1997) cannot be applied.
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m2), since it is not binding and irrelevant for the local approximations.) Let J be

minus the expected value of the Hessian of the log likelihood contribution of a random

observation at the true parameter values, which, under the null, can be consistently

estimated in the usual way by Ĵ , the sample mean of the matrix of second order partial

derivatives at each observation, evaluated at the restricted ML estimates. Similarly,

let I be the expected value of the outer product of the gradient of the log likelihood

contribution of a random observation, and Î its natural estimate under the null. The

only difference with the usual case of an internal point of the parameter space is that

right partial derivatives are used for the parameters pj,k.

Theorem 4 in Andrews (2001) now implies that LR has the same asymptotic dis-

tribution as

Inf[θ∈V0] q(θ)− Inf[θ∈V ] q(θ) (17)

with

q(θ) = (θ − Z)′J(θ − Z), Z ∼ N(0, J−1IJ−1) (18)

The asymptotic distribution of LR is thus be obtained by the following simulation

procedure:

• plugging in the estimates Ĵ for J and Î for I. (As in the usual ML case, I and

J coincide under the null, so an asymptotically equivalent procedure is to use an

estimate for only one of them.)

• generating multivariate normal draws of Z,

• solving the two quadratic programming problems in (17)for each draw,

• considering the thus obtained simulated distribution of the difference between

the two minimum values.
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Table 1: Variable Definitions and Sample Statistics
Variable Code Mean Std Dev
Speaks English slightly or not at all SPF=1 26.85 –
Speaks English fairly well SPF=2 26.24 –
Speaks English very well SPF=3 46.91 –
Age (in years) age 42.38 14.27
Years since Migration ysm 19.58 9.35
Country of Birth: African afroas 22.71 –
Country of Birth: Bangladesh bangladesh 17.88 –
Country of Birth: Indian indian 29.98 –
Country of Birth: Pakistan pakistan 29.44 –
Minority Concentration (%) conc index 16.20 15.20
Source: Fourth National Survey on Ethnic Minorities (FNSEM), 1471 observations

Table 2: Semi-parametric Estimation Results
bandwidth SLS; h = 1.54701 WSLS; h = 0.1.54701 SLS; h = 0.75632

coeff. st. error coeff. st. error coeff. st. error
ysm 0 .9634 — 0.9634 — 0.9634 —
age -0 .9617 0.1071 -0.9923 0.1201 -0.9840 0.1094
conc. index -25.1826 6.4955 -26.5351 6.4125 -20.2509 6.1338
afroas 4.2826 0.9689 4.1344 0.9171 4.1996 0.9296
pakistan -4.2943 0.8178 -4.4190 0.7726 -3.7830 0.7825
bangla desh -4.3825 0.8960 -4.6807 0.8785 -4.1162 0.8716
age sq 0.0061 0.0010 0.0063 0.0010 0.0064 0.0010
ysm sq -0.0140 0.0011 -0.0139 0.0010 -0.0147 0.0010
conc ind sq 32.3767 9.2184 34.0762 8.8466 24.2073 8.6987
ysm * conc. in -0.0655 0.1420 -0.0656 0.1524 -0.0872 0.1460
Notes:

1: 1.06
√

V̂ (x′β̂)n−0.2 (Silverman’s rule of thumb)

1: 0.53
√

V̂ (x′β̂)n−0.2
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Table 3: Estimation Results Parametric Models
Ordered Misclass. Random Misclass.
Probit Model Thresholds Random Th.

coeff. st. err. coeff. st. err. coeff. st. err. coeff. st. err.
Constant 28.4750 3.3542 55.6333 13.2788 25.5461 3.7574 84.6781 24.8929
ysm 0.9634 0.1342 2.0196 0.4168 1.0323 0.1429 3.5985 1.1871
age -0.8258 0.1411 -1.6342 0.4246 -0.8817 0.1555 -3.1134 0.9219
conc. index -34.0386 7.7247 -64.1300 17.8579 -36.6716 8.5027 -119.8281 42.0837
afroas 3.7520 0.9326 7.9896 2.5771 4.1600 1.0014 15.5292 6.0728
pakistan -6.0868 0.8292 -9.6401 2.2333 -6.2717 0.9171 -18.0508 6.0543
bangla desh -6.0094 0.9649 -10.0340 2.4232 -6.1796 1.0397 -18.7859 6.3406
age sq 0.0041 0.0015 0.0082 0.0034 0.0043 0.0015 0.0169 0.0060
ysm sq -0.0152 0.0032 -0.0314 0.0079 -0.0164 0.0032 -0.0548 0.0205
conc ind sq 48.2251 10.8978 93.2072 24.1164 50.5726 11.7550 170.1757 60.1355
ysm * conc. in -0.3918 0.2307 -0.6923 0.4164 -0.3764 0.2509 -1.0383 0.7712
m2 8.7001 0.3913 23.2845 5.3590 -4.4034 0.2440 16.8234 7.9191
σ1 5.2893 2.1503 10.2876 8.1447
σ2 0 — 23.4378 10.6779
Prob 2 if 1 0 — 0 —
Prob 3 if 1 0.1029 0.0458 0.13891 0.0505
Prob 1 if 2 0.2725 0.0473 0.37238 0.5401
Prob 3 if 2 0.2450 0.0570 0.07365 1.2068
Prob 1 if 3 0.0095 0.0146 0 —
Prob 2 if 3 0.1042 0.0381 0.09293 0.0335
Log-Likelihood -1317.646 -1309.332 -1315.858 -1308.278

Table 4: Marginal Effects of Minority Concentration; Parametric Models
Quantile of Minority Ordered Misclass. Random Misclass.
Concentration Probit Model Thresholds Random Th.

Effect st. err. Effect st. err. Effect st. err. Effect st. err.
P(fairly or very fluent)
at 1st quartile -0.8811 0.0972 -0.1857 0.1878 -0.8982 0.1055 -0.2915 0.5199
at median -0.9255 0.1140 -0.3733 0.2614 -0.9610 0.1287 -1.0777 0.9529
at 3rd quartile -0.7895 0.0928 -0.6286 0.2422 -0.8349 0.1099 -2.3014 0.9506
P(very fluent)
at 1st quartile -1.5310 0.1983 -2.8962 0.5999 -1.6076 0.2158 -4.0193 2.8528
at median -1.3293 0.1638 -2.2688 0.4407 -1.4033 0.1830 -4.3820 1.5748
at 3rd quartile -0.8728 0.0860 -1.0649 0.1985 -0.9214 0.0990 -1.8027 1.6470
Explanation: marginal effect of an increase of ethnic concentration by 1 %-point on the probability
(in %-points) of speaking English fairly or very well (top panel) or very well (bottom panel)
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