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Abstract: Keane, Hooghiemstra and Van de Ree have proposed a new numerical method for calculating state 
probabilities for queueing systems with more than one waning line in parallel. The method is based on power series 
expansions of state probabilities as functions of the traffic intensity of a system. The coefficients of these power series 
can be recursively calculated. The coefficients of the power series expansions of moments of queue length distributions 
can be derived from those of the state probabilities in a straightforward manner. The above method is discussed for a 
rather general class of exponential queueing systems. The asymptotic behaviour of moments in heavy traffic is used to 
obtain extrapolations of the coefficients of their power series expansions at the origin. The calculation of moments is 
strongly improved by means of these extrapolations. 
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1. Introduction 

Queueing systems with more than one waiting line are in general hard to analyse if the joint 
queue length distribution does not possess a product form. During the last decade a rather 
general analytical method has been developed for the study of systems with two waiting lines. 
This method is based on application of the theory of Riemann-Hilbert type boundary value 
problems to solve functional equations for bivariate generating functions of joint queue length 
distributions, see a [S] and [2]. At present it does not seem likely that this method can be 
generalised as useful tool for the analysis of systems with more than two waiting lines. Moreover, 
in many instances non-trivial algorithms (e.g. the numerical solution of integral equations) are 
required to obtain numerical data from the formulas which result by application of this method. 

Numerical methods for calculating state probabilities without the use of generating functions 
have been proposed by several authors. They include Conolly [4], who uses truncation of the 
state space (i.e. of the waiting rooms) and inversion of the matrix of transition rates, and 
Gertsbakh [6], who uses truncation of the state space and numerical evaluation of the matrix-ge- 
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ometric solution of the truncated system. Keane et al. [7] propose another method for calculating 
state probabilities directly from the equilibrium equations. They consider power series expan- 
sions of the state probabilities at the origin as functions of the traffic intensity. For a wide class 
of queueing systems the coefficients of these power series expansions can be calculated recur- 
sively. Keane et al. [7] found that for several models a (bilinear) conformal transformation has to 
be used to ensure convergence of the power series over the whole range of traffic intensities for 
which a system is stable. The coefficients of the power series expansions of the moments of the 
queue length distributions follow directly from those of the state probabilities. The number of 
coefficients required to reach a certain accuracy can be strongly reduced by extrapolation of 
these coefficients on the basis of the singular behaviour of the moments near the end of the 
region of stability of the queueing system. 

The idea of the method of Keane et al. [7] will be outlined in Section 2 for a class of 
exponential queueing systems; Section 3 is devoted to the procedure for calculating moments of 
queue length distributions. In Section 4 the procedure will be illustrated by means of some 
examples, and experiences with the method will be discussed. 

2. Calculating state probabilities 

Consider the class of stable exponential queueing systems with s (s > 1) waiting lines which 
can be described in the following way. Let Z = (n,, . . . , n,) be a vector with non-negative entries; 
let paj(Z) be the arrival rate to queue j and dj(Z) be the departure rate from queue j, 
j=l >..., s, when the system is in state Z. Let N, be the number of customers in queue j in the 
stationary situation, j = 1,. . . , s, and define the stationary state probabilities 

p(p; E)=Pr{N,=n;, j=l,..., s}. (2.1) 

Let I(E) stand for the indicator function of the event E, and Zj = ( ejl, _ . . , ej,) for the vector 
with e,j = 1 and eji = 0 if i #j, j = 1,. . . , s. The equations for the state probabilities (2.1) read: 

I p 2 LZj(ii) + i dj(n)l(njzO) P(Pi ‘1 
/=I j=l I 
= C dj(2+ZJ)p(p; ii+Zj) +P C LZj(Fi-ej)p(p; n-zj)l(nj>O)' (2-4 

j=l j=l 

The following assumptions are made: 
(Al) the system is stable for 0 G p < 1; 
(A2) the state probabilities p(p; Fz) possess analytic continuations as functions of p into a 

domain which includes the disk 1 p - i 1 < : ; 

(A3) not all servers are idle when customers are present in the system, i.e. 

idj(E)l(nj>O)>O foralln, Z#O=(O,...,O). 
j=l 
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Introducing the notations, for m = 0, 1, 2,. . . , 1 E 1 = C:=lnj, 

Iiil=m J=l 

A(Pi m> = ,_E P(Pi ‘> C aj(n>, (2.3) 
n m j=l 

we obtain by summation of the equations in (2.2) over all states Z with 1 ii 1 = m, for 
m=l,2 >..*> 

P&? m> + NP; m> = D(p; m+l)+pA(p, m-l), pA(p;O)=D(p; 1). 

This implies, by induction, that 

pA(p; m)=D(p; m+l), m=0,1,2 )... . (2-4 

From (2.3) and assumption (A3) it follows, for m = 1, 2,. . . , that if D(p; m) = 0( pk), p JO, for 
some k, then also p(p; Z) = O(p“), p JO, for all 7i with I ii I = m, and hence A(p; m) = O(pk), 
p 1 O.-Therefore, relations (2.4) imply that D(p; m) = O(p”), p JO, m = 1, 2,. . . (note that 
p( p; 0) = O(l), p JO). Hence, if state probabilities p( p; n) satisfy (2.2) and if assumption (A3) 
holds, then 

PC& n) = O(C), P JO. (2.5) 
Motivated by this property Keane et al. [7] propose the following procedure. Write 

p(p; Z) =p”’ 5 pku(k; ii), (24 
k=O 

and substitute these power series expansions into (2.2). Equating coefficients of corresponding 
powers of p leads to: for k = 0, 1,. . . , 

c d,(i)l(nj> O)u(k; ii) 
j=l 

= -J$,o,(i)u(k-l: Z)I(k>O)+ &,(E+e,)u(k-1; i+S-,)l(k>O) 
j=l 

+ c a,(+e,)l(n,>O)u(k; E-Zj). 
j=l 

(2.7) 

To obtain a relation for u( k; ?I), k = 0, 1,. . . , the law of total probability is used: substituting 
(2.6) and equating corresponding powers of p gives 

u(0; 0) = 1; u(k; fi)= -c...cu(k- 17~1; Z), k=l,2 ,... . (2.8) 
O<Iiil<k 

It is readily verified that all coefficients u( k; Z) can be recursively calculated from (2.8) and 
(2.7). The state probabilities p(p; E) can then be approximated with any degree of accuracy for 
p smaller than the radius of convergence of their power series (2.6). When these radii of 
convergence are smaller than one, Keane et al. [7] propose to apply a bilinear conformal 
transformation of the real interval [O,l] onto itself: 

(j= l+G 8 
l+GpP’ ‘= l+G-G8’ G>, 0. (2.9) 
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Studying the state probabilities as functions of 6 it can be shown in a similar way as above that, 
cf. (2.6) 

(2.10) 

where, cf. (24, (2.9), 

b(0; Tj) = 1; W; Q= -C**.Cb(k- InI; ?I), k=l,2 )...) (2.11) 
O<lril<k 

and for E # 0, 

(1 + G) c d,(n)Z(nj>O)b(k n> 
j=l 

+ Cd,(n+e,)[(l+G)b(k-1; Fi+Zj)Z(k>O)-Gb(k-2; E+e,)Z(k>l)] 
j=l 

- ‘&,(Z)-G&)Z(nj>O) b(k-1; E)Z(k>O), k=O,l,... . 

j=l j=l 1 

(2.12) 

By assumption (A2) the constant G can be chosen in such a way that the radii of convergence of 
the power series (2.10) are at least one. 

Remark. Note that the coefficient of u(k; E) in (2.7) and that of b( k; E) in (2.12) does not 
vanish when E # 8 by assumption (A3). 

3. Calculating moments 

The coefficients of the power series expansions of the moments of queue length distributions 
can be directly calculated from those of the state probabilities. For i, j = 1,. . . , s, let, cf. (2.9), 
(2.10), 

E{ T.} = f Z+K E{N,N,} = E hjj(k)8k. (3.1) 
k=l k=l 

It is easily verified that for i, j = 1,. . . , s, k = 1, 2,. . . , 

f,(k) = ~<;;;<;Q(k- IEli 3, hjj(k)= ~..+,njb(k- IFzl; Z). (3.2) 
. . O<liil<k 

As can be expected the power series of the moments converge very slowly for 8 close to one 
(heavy traffic, assumption (Al)), because the nth moments will have a pole of (at most) order n 
at 8 = 1. The latter implies for instance that f,(k) tends to some constant and h,J k) tends to 
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some linearly increasing sequence as k + 00 (i, j = 1,. . . , s). Therefore, we propose to use 

&(W +f,(WS, 

k=l 

(3.3) 

as approximations for E{ Nj} and E{ NiNj} respectively, when the coefficients of the power 
series expansions have been calculated up to the Mth power of 8. These extrapolations of the 
power series of moments strongly improve the rates of convergence to the exact values of the 
moments when 0 is close to one. E.g. in a typical case with p = 0.9 the relative error between the 
approximate and the exact value of the average total number of customers in a system is 0.03 for 
M = 60 without the use of the extrapolation, and 0.001 for A4 = 24 with the aid of the 
extrapolation. 

4. Examples 

In this section two queueing models will be discussed for which the equations to be satisfied 
by the state probabilities fall within the general framework of (2.2). The interarrival times and 
the service times have negative exponential distributions in both models. 

Example 1. The shortest queue model: customers choose with equal probabilities one of the 
shortest of s queues upon arrival; customers in queue j are served by server j with service rate 5, 
j= l,..., S; Cg=irj = 1. For all states Z in this model, for j = 1,. . . , s, 

dj(E) = rj, ai = 0 if 3i n, < nj, 

= l/v, if Vi n, 2 nj, v= #{i; ni=nj}. (44 

The special case s = 2, ri = r, = :, has been studied by several authors; Conolly [4] and 
Gertsbakh [6] provided numerical data. In [l] moments of the waiting time distribution have 
been calculated for more general cases (S = 2, 3) based on the present method. In Table 1 values 
of the average total number of customers in the system and the correlation between the number 
of customers in two queues are given for the symmetrical models with two and three servers for 
several values of the traffic intensity p. 

Table 1 
The shortest queue model 

P 

0.10 
0.30 
0.50 
0.70 
0.90 
0.98 

s=2, rI=r2=+ 

E{N,+N,I 

0.2035 
0.6864 
1.426 
2.951 
9.855 

49.97 

CoMN,, Nz) 

0.09982 
0.3032 
0.5257 
0.7659 
0.9647 
0.9984 

s = 3, rl = r, = r, = f 

E{N,+N,+N,) 

0.3010 
0.9579 
1.867 
3.589 

10.75 
51.00 

Corr(N,, N2) 

0.09098 
0.1984 
0.3925 
0.6560 
0.9404 
0.9973 
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Table 2 
The pre-emptive longer queue model (s = 2, pL1 = 4~~) 

P A, = 4h, A, = A, 4h, = A, 

E{Nll E{N2) E{NlI E{NzI EINlI EiN21 

0.10 0.05588 0.05547 0.02283 0.08874 0.006823 0.1045 
0.30 0.2211 0.2126 0.1061 0.3378 0.03656 0.4005 
0.50 0.5264 0.4934 0.3283 0.7679 0.1455 0.9195 
0.70 1.230 1.151 1.037 1.724 0.6286 2.073 
0.90 4.621 4.470 5.343 6.314 4.743 7.417 
0.98 24.65 24.46 32.44 33.54 34.67 38.17 

Example 2. The pre-emptive longest queue model: s independent customer streams form s 
queues, one server provides service to a customer which is selected with equal probabilities from 
one of the longest queues; at each arrival instant the server reselects the customer to be served 
according to this rule. In this model we have for each state 7i, for j = 1,. . . , s, 

ai = Aj, dj(Fi) = 0, if 3i n, > nj, 

=pj/v, ifVini<nj, v= #{i; ni=nj}. (4.2) 

The arrival rates are normalized by the relation 

i xj/Pj=l, (4.3) 
j=l 

in order to satisfy the assumption (Al). In the Tables 2 and 3 values of mean queue lengths and 
correlation between queue lengths are displayed for the case of two queues, a ratio between 
service rates of 4 : 1, and ratios between arrival rates of 4 : 1, 1 : 1, 1 : 4, respectively. Models with 
s queues and one server, without a pre-emptive service discipline, such as the longer queue model 
studied by Cohen [3], where a customer is selected from the longer of two queues and then served 
without interruption, and the alternating service model studied by Cohen and Boxma [2], are not 
contained in the framework of equations (2.2). But by extending the state space with a variable 
indicating the queue from which a customer is being served these models are readily adapted to 
the present procedure for calculating state probabilities and moments. 

In general, the choice of G in (2.9), i.e. the choice of the conformal mapping, is difficult, 
because the state probabilities p( p; Z), as functions of p, may possess different singularities 

Table 3 
The pre-emptive longer queue model (s = 2, pL1 = 4p2) 

P h, = 4x, &=A, 4x, = A, 

CON% N2) E{IN,-N2ll CoNN,, N2) E{IN,-N2ll CoMN,, N2) E{IN,-N2Il 

0.10 0.06604 0.09978 0.06451 0.1035 0.04175 0.1084 
0.30 0.2629 0.2964 0.3107 0.3310 0.2252 0.3904 
0.50 0.5062 0.4901 0.6055 0.5838 0.4765 0.8089 
0.70 0.7612 0.6858 0.8402 0.8603 0.7131 1.482 
0.90 0.9638 0.8909 0.9793 1.159 0.9307 2.708 
0.98 0.9984 0.9777 0.9991 1.284 0.9957 3.525 
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inside the unit disk for different states Z. G should be at least so large that all singularities of all 
state probabilities and moments (which are unknown in general) are mapped outside the unit 
disk (when all values of the traffic intensity p, 0 < p < 1, are considered). However, choosing G 
much larger often leads to slower convergence of the power series, because other singularities 
(e.g. on the interval (1, cc)) are mapped closer to the unit disk as G increases. In some cases the 
power series expansions of moments did converge for a specific value of G, while those of several 
state probabilities did not. A value which often gives good results is G = 1. 

It seems that limitations on application of the method are caused more by the amount of 
memory space required to store the coefficients of the power series than by the amount of 
computation time. When power series are needed up to the Mth power of 8 coefficients b( k; Z) 
have to be calculated for all k and E with k + 1 Z 1 G M: To avoid reservation of superfluous 
memory space points (k, Fi) could be mapped onto the integers, e.g. in the following way 

/ 
\ 

(k, n, ,..., n,)+ i k+‘+ i$‘i . 

j=O 
j+l I 

Then (,p+i) memory positions are required instead of (M + I)S+l. 

Remark. Assumption (Al) requires that the stability condition of a system is known in order to 
normalize the arrival rates a_J Fz) for all states Z and j = 1,. . . , s. If the stability condition is not 
known, it can be obtained from the coefficients of the power series expansion of the average 
number of customers in the system which will tend to a geometrical sequence. In a similar way 
inspection of the coefficients of the power series expansions of the state probabilities will give 
information about the radii of convergence of these series. This information can be used to 
choose an appropriate conformal mapping. 
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