Strongly Regular Decompositions of the Complete Graph

EDWIN R. VAN DAM*
Edwin.vanDam@uvt.nl
Department of Econometrics and O.R., Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Received September 14, 2001; Revised September 6, 2002

Abstract

We study several questions about amorphic association schemes and other strongly regular decompositions of the complete graph. We investigate how two commuting edge-disjoint strongly regular graphs interact. We show that any decomposition of the complete graph into three strongly regular graphs must be an amorphic association scheme. Likewise we show that any decomposition of the complete graph into strongly regular graphs of (negative) Latin square type is an amorphic association scheme. We study strongly regular decompositions of the complete graph consisting of four graphs, and find a primitive counterexample to A.V. Ivanov's conjecture which states that any association scheme consisting of strongly regular graphs only must be amorphic.

Keywords: association scheme, strongly regular graph

1. Introduction

In this paper we tackle several questions about so-called amorphic association schemes. Such an association scheme has the property that all of its graphs are strongly regular. Moreover, they are all of Latin square type, or all of negative Latin square type. For background on amorphic association schemes, we refer the reader to the expository paper [6].

To study the relevant questions on amorphic association schemes, we introduce more general strongly regular decompositions of a complete graph. These are decompositions of the edge set of a complete graph into spanning subgraphs that are all strongly regular. A trivial example is given by a strongly regular graph and its complement, which form a strongly regular decomposition of a complete graph consisting of two graphs. Such a decomposition is also an amorphic association scheme (trivially).

An important role in this paper is played by commutative decompositions. These are decompositions for which the adjacency matrices of all graphs in the decomposition commute. In Section 3 we therefore investigate how two commuting edge-disjoint strongly regular graphs G_{1} and G_{2} interact algebraically, and characterize the case when the commutative decomposition $\left\{G_{1}, G_{2}, \overline{G_{1} \cup G_{2}}\right\}$ is an association scheme. We also give examples of all possible cases.

One of our main goals in this paper is to show that any decomposition of a complete graph into three strongly regular graphs is an amorphic association scheme. This surprising

[^0]fact was claimed to be true by Gol'fand et al. [7], but no proof was given. Now two quite different proofs are available. One is contained in Section 4; for the other proof see [6]. The result generalizes a result by Rowlinson [13] and independently Michael [12] who showed that any decomposition of a complete graph into three isomorphic strongly regular graphs is an association scheme.
In Section 5 it is shown that any strongly regular decomposition consisting of Latin square type graphs only, or of negative Latin square type graphs only, is also an amorphic association scheme. This generalizes a result by Ito et al. [9] who showed that any association scheme consisting of (negative) Latin square type graphs only is amorphic.

Since a strongly regular decomposition of a complete graph into three graphs necessarily is an amorphic association scheme, the next case to investigate would be decompositions into four strongly regular graphs. In the general (not necessarily commutative) case it seems hard to characterize such decompositions. We have only one (!) non-commutative example (on 6 vertices), which we found by classifying the decompositions into four strongly regular graphs of which at least three are disconnected.

In the commutative case with four graphs Theorem 5 reduces the number of cases considerably. The commutative case is also of interest because of A.V. Ivanov's conjecture (cf. [10, Problem 1.3]). This conjecture states that any association scheme consisting of strongly regular graphs only must be amorphic. Already in [5] counterexamples to this conjecture were found, but these were all imprimitive. Theorem 5 helped us to find a first primitive counterexample to the conjecture, which was also one of the main goals of the research which led to this paper.

2. Preliminaries

In this paper we consider simple undirected graphs without loops, unless otherwise indicated. A decomposition of a graph is defined as an edge-decomposition into spanning subgraphs, i.e. a partition of the edge set of the original graph into graphs on the same vertex set. More formally, we say that $\left\{G_{1}, G_{2}, \ldots, G_{d}\right\}$ is a decomposition of a graph G if for any two adjacent vertices in G, there is exactly one i for which the two vertices are adjacent in the graph G_{i}, and the vertex set of G_{i} is the same as the one of G, for all i. For any graph G_{1}, the graph and its complement $G_{2}=\overline{G_{1}}$ form a (trivial) decomposition of a complete graph. Association schemes are other examples of decompositions of the complete graph. A decomposition is called strongly regular if all graphs in the decomposition are strongly regular graphs.

2.1. Strongly regular graphs and restricted eigenvalues

A strongly regular graph G with parameters (v, k, λ, μ) is a non-complete graph on v vertices which is regular with valency k, and which has the property that any two adjacent vertices have λ common neighbours, and any two non-adjacent vertices have μ common neighbours. It is well known that the adjacency matrix of a strongly regular graph has two or three distinct eigenvalues, depending on whether the graph is disconnected or not. Since
G is regular with valency k, it has the all-ones vector \mathbf{j} as an eigenvector with eigenvalue k. To unify the cases where G is connected and where it is not, we introduce the concepts of restricted eigenvalues and multiplicities. We say that a regular graph (and its adjacency matrix) has a restricted eigenvalue θ if it has an eigenvector for θ which is orthogonal to the all-ones vector \mathbf{j} (i.e., these are all eigenvalues except the valency in case the graph is connected, and all eigenvalues if the graph is not connected). The restricted multiplicity for a restricted eigenvalue θ is the dimension of its eigenspace intersected with \mathbf{j}^{\perp}. It now follows that a regular graph is strongly regular if and only if it has two distinct restricted eigenvalues, say r and s. It is well known that for a strongly regular (v, k, λ, μ) graph the restricted eigenvalues r and s follow from the equations $r+s=\lambda-\mu$ and $r s=\mu-k$. The restricted multiplicities f for r and g for s are given by the equations $f=-\frac{k+(v-1) s}{r-s}$ and $g=\frac{k+(v-1) r}{r-s}$. If G is connected then these numbers are the usual multiplicities for a strongly regular graph.

A strongly regular graph is of Latin square type or of negative Latin square type if there are integers n and t (positive or negative, depending on the "type") such that the graph has n^{2} vertices, valency $t(n-1)$, and restricted eigenvalues $n-t$ and $-t$.

We remark finally that the complement of a strongly regular graph is also strongly regular, hence a strongly regular graph and its complement form a (trivial) strongly regular decomposition of a complete graph. For more information on strongly regular graphs we refer the reader to [4].

2.2. Commutative decompositions and association schemes

We call a decomposition of a complete graph commutative if the adjacency matrices $A_{i}, i=$ $1,2, \ldots, d$ of all graphs in the decomposition commute. It follows that in a commutative decomposition of a complete graph all graphs are regular, since each adjacency matrix $A_{i}, i=1,2, \ldots, d$ commutes with the all-ones matrix $J=I+A_{1}+\cdots+A_{d}$.

A (d-class) association scheme is a decomposition $\left\{G_{1}, G_{2}, \ldots, G_{d}\right\}$ of a complete graph such that there are $p_{i j}^{h}, h, i, j=1, \ldots, d$, called the intersection numbers, such that for any two vertices x and y adjacent in G_{h}, there are $p_{i j}^{h}$ vertices z that are adjacent to x in G_{i} and adjacent to y in G_{j}. It follows that an association scheme is a commutative decomposition, and hence that all graphs in the decomposition are regular. Because of this regularity we can extend the definition of the $p_{i j}^{h}$ to $h, i, j=0,1, \ldots, d$, if we define G_{0} as the graph consisting of a loop at each vertex (with adjacency matrix $A_{0}=I$).

If A_{i} denotes the adjacency matrix of G_{i}, then the conditions of the association scheme translate into $A_{i} A_{j}=A_{j} A_{i}=\sum_{h=0}^{d} p_{i j}^{h} A_{h}$ for $i, j=0,1, \ldots, d$. This implies that a decomposition $\left\{G_{1}, G_{2}, \ldots, G_{d}\right\}$ of a complete graph is an association scheme if and only if the vector space $\left\langle A_{0}=I, A_{1}, A_{2}, \ldots, A_{d}\right\rangle$ forms an algebra (i.e. is closed under taking products) over the real number field. This algebra is called the Bose-Mesner algebra of the association scheme. We remark that in the literature more general definitions of association schemes are being used. In this respect we add that the association schemes in this paper will always be symmetric and hence commutative.

Association schemes are generalizations of strongly regular graphs in the sense that a decomposition of a complete graph into a graph and its complement is an association scheme
if and only if the graph is strongly regular. For more information on association schemes we refer the reader to [1] or [3].
Now consider a commutative decomposition with adjacency matrices $A_{i}, i=1,2, \ldots, d$, and let $A_{0}=I$. Since the matrices A_{i} commute, they can be diagonalized simultaneously, and hence they have a common basis of (mutually orthogonal) eigenvectors. It follows that the vector space \mathbb{R}^{v} can be decomposed into maximal common eigenspaces $V_{i}, i=0,1, \ldots, t$ (for some t). Since all graphs are regular, one of these maximal common eigenspaces is $\langle\mathbf{j}\rangle$, which will be denoted by V_{0}. Let E_{i} be the idempotent matrix representing the orthogonal projection onto the eigenspace V_{i}, for $i=0,1, \ldots, t$, then $E_{i} E_{j}=\delta_{i j} E_{i}$. Moreover, we can express the matrices A_{i} in terms of the matrices E_{j}, i.e. $A_{i}=\sum_{j=0}^{t} P_{j i} E_{j}$ for $i=0,1, \ldots, d$, where $P_{j i}$ is the eigenvalue of A_{i} on the eigenspace V_{j}. The matrix P is called the eigenmatrix of the decomposition. The following lemma characterizes the association schemes among the commutative decompositions.

Lemma 1 Let $\left\{G_{1}, G_{2}, \ldots, G_{d}\right\}$ be a commutative decomposition of a complete graph with idempotents $E_{j}, j=0, \ldots, t$, and eigenmatrix P as defined above. Then $t \geq d$ with equality if and only if the decomposition is an association scheme. If $t=d$, then P is nonsingular.

Proof: Let $\mathbf{A}=\left\langle A_{0}=I, A_{1}, A_{2}, \ldots, A_{d}\right\rangle$, and $\mathbf{E}=\left\langle E_{0}, E_{1}, \ldots, E_{t}\right\rangle$. Since $A_{i}=$ $\sum_{j=0}^{t} P_{j i} E_{j}$ for $i=0, \ldots, d$ it follows that $\mathbf{A} \subseteq \mathbf{E}$, hence we have that $d \leq t$ (since clearly the matrices $A_{i}, i=0,1, \ldots, d$ are linearly independent).

We claim that \mathbf{E} is the smallest algebra containing \mathbf{A}. This shows that \mathbf{A} is an algebra if and only if $t=d$, which proves the first part of the lemma. If $t=d$, then P is the matrix which transforms one basis of the algebra into another (since also the matrices $E_{j}, j=0,1, \ldots, t$ are linearly independent), and hence P is nonsingular.

To prove the claim, we first remark that clearly \mathbf{E} is an algebra. The remainder of the proof is similar to the argument in [1, Theorem 3.1]. Fix i. Because of the maximality of the common eigenspaces V_{j}, there is a $k(j)$ such that $P_{j k(j)} \neq P_{i k(j)}$, for each $j \neq i$. Now the matrix $F=\prod_{j \neq i}\left(A_{k(j)}-P_{j k(j)} I\right)$ is contained in each algebra containing \mathbf{A}, and hence also in \mathbf{E}. Moreover, F vanishes on each $V_{j}, j=0,1, \ldots, t$ except on V_{i}. This means that E_{i} is a multiple of F, and hence that E_{i} is contained in each algebra containing A. Since this holds for all i, the claim is proven.

2.3. Fusions and amorphic association schemes

A decomposition $\left\{H_{1}, \ldots, H_{e}\right\}$ of some graph G is called a fusion of a decomposition $\left\{G_{1}, \ldots, G_{d}\right\}$ of G if for all i, the edge set of H_{i} is the union of the edge sets of some of the graphs G_{j}.

An association scheme is called amorphic if any of its fusions is also an association scheme. It follows that each of the graphs in an amorphic association scheme must be strongly regular. Thus amorphic association schemes are strongly regular decompositions of a complete graph. Moreover, it was shown in [7] that in an amorphic association scheme with at least three graphs all graphs are of Latin square type, or all graphs are of negative

Latin square type. For more information on amorphic association schemes we refer the reader to [6].

The following association schemes are in some cases amorphic, and they will play an important role in Section 6. Let $q=p^{m}$, where p is prime, and let d be a divisor of $q-1$. The d-class cyclotomic association scheme on vertex set $G F(q)$ is defined as follows. Let α be a primitive element of $G F(q)$. Then two vertices are adjacent in graph G_{j} if their difference equals $\alpha^{d i+j}$ for some i, for $j=1, \ldots, d$. Note that in some cases this association scheme is non-symmetric, but these association schemes will not be used in this paper. It was proven by Baumert et al. [2, Theorem 4] that, for $d>2$, the cyclotomic scheme is amorphic if and only if -1 is a power of p modulo d.

3. Commuting strongly regular graphs and three-class association schemes

Suppose we have two edge-disjoint strongly regular graphs G_{1} and G_{2} on the same vertex set. Assume that the two graphs are not complementary, so that there is a remaining nonempty third graph $G_{3}=\overline{G_{1} \cup G_{2}}$ with adjacency matrix $A_{3}=J-I-A_{1}-A_{2}$, where A_{1} and A_{2} are the adjacency matrices of G_{1} and G_{2}, respectively. We would like to know when these three graphs form a 3-class association scheme. It is clear that a necessary condition for this is that the matrices A_{1} and A_{2} commute. Examples of noncommuting A_{1} and A_{2} are not hard to find, for example, take the triangular graph $T(5)$ and the graph consisting of five vertex-disjoint edges which are not in the triangular graph (a matching in the Petersen graph, the complement of $T(5)$). These two graphs leave two vertex-disjoint 5 -cycles as the third graph. This example is particularly interesting since it shows that although the third graph is part of some 3-class association scheme (the wreath product of K_{2} and C_{5}), it does not form one with G_{1} and G_{2}.

Is the property that G_{1} and G_{2} (i.e. A_{1} and A_{2}) commute sufficient for G_{1}, G_{2}, and G_{3} to form an association scheme? Before answering this question we first need the following lemma. This lemma, which in a sense tells us how G_{1} and G_{2} interact algebraically, will also play an important role in Section 6.

Lemma 2 Let G_{1} and G_{2} be edge-disjoint strongly regular graphs on v vertices, with G_{i} having adjacency matrix A_{i}, valency k_{i}, and restricted eigenvalues r_{i} and s_{i}, for $i=1,2$. If A_{1} and A_{2} commute, then $A_{1}+A_{2}$ has restricted eigenvalues $\vartheta_{1}=s_{1}+s_{2}, \vartheta_{2}=s_{1}+r_{2}$, $\vartheta_{3}=r_{1}+s_{2}$, and $\vartheta_{4}=r_{1}+r_{2}$, with respective restricted multiplicities

$$
\begin{array}{ll}
m_{1}=\frac{v r_{1} r_{2}-\left(k_{1}-r_{1}\right)\left(k_{2}-r_{2}\right)}{\left(r_{1}-s_{1}\right)\left(r_{2}-s_{2}\right)}, & m_{2}=-\frac{v r_{1} s_{2}-\left(k_{1}-r_{1}\right)\left(k_{2}-s_{2}\right)}{\left(r_{1}-s_{1}\right)\left(r_{2}-s_{2}\right)}, \\
m_{3}=-\frac{v s_{1} r_{2}-\left(k_{1}-s_{1}\right)\left(k_{2}-r_{2}\right)}{\left(r_{1}-s_{1}\right)\left(r_{2}-s_{2}\right)}, & m_{4}=\frac{v s_{1} s_{2}-\left(k_{1}-s_{1}\right)\left(k_{2}-s_{2}\right)}{\left(r_{1}-s_{1}\right)\left(r_{2}-s_{2}\right)}
\end{array}
$$

If moreover $r_{i}>s_{i}$ for $i=1,2$, then $m_{2}>0$ and $m_{3}>0$.

Proof: Since A_{1} and A_{2} commute, they have a common basis of eigenvectors. Clearly, this is also a basis of eigenvectors for $A_{1}+A_{2}$. The all-ones vector \mathbf{j} is a common eigenvector with eigenvalues k_{1}, k_{2}, and $k_{1}+k_{2}$, respectively. It is also clear that $A_{1}+A_{2}$ has restricted eigenvalues $\vartheta_{i}, i=1, \ldots, 4$, as stated. Now let m_{i} be the restricted multiplicity of ϑ_{i}, for $i=1, \ldots, 4$ (more precisely, m_{1} is the dimension of the intersection of the restricted eigenspaces of s_{1} (of A_{1}) and s_{2} (of A_{2}), etc.), and let g_{i} be the restricted multiplicity of the restricted eigenvalue s_{i} of the matrix A_{i}, for $i=1,2$. From the equations $m_{1}+m_{2}=g_{1}$, $m_{1}+m_{3}=g_{2}, m_{1}+m_{2}+m_{3}+m_{4}=v-1$ and $\left(k_{1}+k_{2}\right)^{2}+m_{1}\left(s_{1}+s_{2}\right)^{2}+m_{2}\left(s_{1}+\right.$ $\left.r_{2}\right)^{2}+m_{3}\left(r_{1}+s_{2}\right)^{2}+m_{4}\left(r_{1}+r_{2}\right)^{2}=v\left(k_{1}+k_{2}\right)$ (which follows from the trace of $\left(A_{1}+\right.$ $\left.A_{2}\right)^{2}$), and the property that $g_{i}=\frac{v r_{i}+k_{i}-r_{i}}{r_{i}-s_{i}}$ for $i=1,2$, the multiplicities $m_{i}, i=1, \ldots, 4$ follow.

If moreover $r_{1}>s_{1}$ and $r_{2}>s_{2}$, then $\left(k_{1}-r_{1}\right)\left(k_{2}-s_{2}\right)>v r_{1} s_{2}\left(\right.$ since $\left.s_{2}<0 \leq r_{1} \leq k_{1}\right)$, hence $m_{2}>0$. Similarly $m_{3}>0$.

We remark furthermore that if $r_{i}>s_{i}$, then we also have that $\vartheta_{1}<\vartheta_{i}<\vartheta_{4}$ for $i=2,3$, and that $\vartheta_{2}=\vartheta_{3}$ if and only if $r_{1}-s_{1}=r_{2}-s_{2}$. In this case the restricted multiplicity of $\vartheta_{2}=\vartheta_{3}$ is of course $m_{2}+m_{3}$.

An immediate consequence of Lemma 2 is the following corollary, which will be used in Theorem 3.

Corollary 1 Let G_{1} and G_{2} be edge-disjoint strongly regular graphs, both of Latin square type or both of negative Latin square type. If the adjacency matrices of the two graphs commute, then their union $G_{1} \cup G_{2}$ is also strongly regular of Latin square type, or negative Latin square type, respectively.

Proof: There are integers n, t_{1}, and t_{2} (positive or negative, depending on the "type" of the graphs) such that the number of vertices is n^{2}, and G_{i} has valency $t_{i}(n-1)$ and restricted eigenvalues $r_{i}=n-t_{i}$ and $s_{i}=-t_{i}$, for $i=1,2$. It follows from Lemma 2 that the multiplicity m_{4} equals zero. It thus follows that $G_{1} \cup G_{2}$ has valency $\left(t_{1}+t_{2}\right)(n-1)$ and restricted eigenvalues $n-t_{1}-t_{2}$ and $-t_{1}-t_{2}$, hence it is also a strongly regular graph of Latin square type or negative Latin square type graph, respectively.

Now we shall answer our earlier question.

Theorem 1 Let G_{1} and G_{2} be commuting, edge-disjoint strongly regular graphs on v vertices, with valencies k_{1} and $k_{2}<v-1-k_{1}$, and restricted eigenvalues $r_{1}>s_{1}$ and $r_{2}>s_{2}$, respectively. Then $\left\{G_{1}, G_{2}, \overline{G_{1} \cup G_{2}}\right\}$ is an association scheme if and only if $r_{1} r_{2}=$ $\left(k_{1}-r_{1}\right)\left(k_{2}-r_{2}\right)$ or $v s_{1} s_{2}=\left(k_{1}-s_{1}\right)\left(k_{2}-s_{2}\right)$.

Proof: Let $A_{1}, A_{2}, A_{3}=J-I-\left(A_{1}+A_{2}\right)$ be the adjacency matrices of G_{1}, G_{2}, and $G_{3}=\overline{G_{1} \cup G_{2}}$, respectively. Since G_{i} is regular for $i=1,2,3$, and A_{1} and A_{2} commute, it follows that the decomposition $\left\{G_{1}, G_{2}, G_{3}\right\}$ is commutative. Moreover, G_{3} has valency $k_{3}=v-1-k_{1}-k_{2}$ and restricted eigenvalues $\theta_{i}=-1-\vartheta_{i}$ with restricted
multiplicities $m_{i}, i=1, \ldots, 4$ (where the ϑ_{i} are the restricted eigenvalues of $A_{1}+A_{2}$, as given in Lemma 2). Now let $V_{0}=\langle\mathbf{j}\rangle$, and let V_{i} be the restricted eigenspace corresponding to the eigenvalue ϑ_{i} of $A_{1}+A_{2}$, for $i=1, \ldots, 4$ (more precisely, V_{1} is the intersection of the restricted eigenspaces of s_{1} (of A_{1}) and s_{2} (of A_{2}), etc.). The eigenmatrix of the commutative decomposition (as defined in Section 2.2) is thus given by

$$
P=\left(\begin{array}{cccc}
1 & k_{1} & k_{2} & k_{3}=v-1-k_{1}-k_{2} \\
1 & s_{1} & s_{2} & \theta_{1}=-1-s_{1}-s_{2} \\
1 & s_{1} & r_{2} & \theta_{2}=-1-s_{1}-r_{2} \\
1 & r_{1} & s_{2} & \theta_{3}=-1-r_{1}-s_{2} \\
1 & r_{1} & r_{2} & \theta_{4}=-1-r_{1}-r_{2}
\end{array}\right) .
$$

Consequently, since m_{2} and m_{3} are positive (by Lemma 2), we find from Lemma 1 that at most one of the multiplicities m_{1} and m_{4} can be zero, and if indeed one of them is, then $\left\{G_{1}, G_{2}, G_{3}\right\}$ is a 3-class association scheme. The result now follows from the expressions for m_{1} and m_{4} in Lemma 2.

The theorem we just proved allows us to make a first step towards proving that any strongly regular decomposition of a complete graph consisting of three graphs is an amorphic association scheme.

Corollary 2 A commutative strongly regular decomposition $\left\{G_{1}, G_{2}, G_{3}\right\}$ of a complete graph is an amorphic association scheme.

Proof: From the proof of Theorem 1 it follows that $G_{3}=\overline{G_{1} \cup G_{2}}$ has two restricted eigenvalues only if $m_{1}=0$ or $m_{4}=0$. Hence the decomposition is an association scheme. Moreover, from the definition of amorphic schemes it follows easily that any 3-class association scheme in which all graphs are strongly regular is amorphic.

In the next section we shall generalize this corollary, and prove that any strongly regular decomposition with three graphs is an amorphic association scheme.

The following examples of commuting strongly regular graphs G_{1} and G_{2} show that there are indeed cases where the decomposition $\left\{G_{1}, G_{2}, G_{3}=\overline{G_{1} \cup G_{2}}\right\}$ is not an association scheme. Moreover, they show that the number of distinct eigenvalues of G_{3} is not a criterion for forming a scheme.

We just saw that the case where G_{3} is strongly regular gives an amorphic scheme. However, in the following infinite family of examples G_{3} has three distinct eigenvalues also, and the graphs do not form a scheme (G_{3} will be disconnected). Let A_{1} and A_{2} be the following adjacency matrices of the Clebsch graph and the lattice graph $L_{2}(4)$,
respectively:

$$
\begin{aligned}
A_{1} & =\left(\begin{array}{cccc}
O & J-I & I & I \\
J-I & O & I & I \\
I & I & O & J-I \\
I & I & J-I & O
\end{array}\right) \text { and } \\
A_{2} & =\left(\begin{array}{cccc}
J-I & I & K & K \\
I & J-I & K & K \\
K & K & J-I & I \\
K & K & I & J-I
\end{array}\right)
\end{aligned}
$$

where all submatrices are 4×4, and K is a symmetric permutation matrix with zero diagonal. These matrices commute, and the corresponding graphs have no edges in common. By taking $H_{1}=J-2\left(A_{1}+I\right)$ and $H_{2}=J-2 A_{2}$ we have two commuting regular symmetric Hadamard matrices with constant diagonal (cf. [4]), which have no entry -1 in common. Now define $H_{1}^{\prime}=H^{\otimes t} \otimes H_{1}$ and $H_{2}^{\prime}=H^{\otimes t} \otimes H_{2}$, for $t=0,1, \ldots$, where

$$
H=\left(\begin{array}{cccc}
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1
\end{array}\right)
$$

and \otimes denotes the Kronecker product (and superscript $\otimes t$ the t-th Kronecker power), then H_{1}^{\prime} and H_{2}^{\prime} are also commuting regular symmetric Hadamard matrices with constant diagonal, which have no entry -1 in common (we leave the technical details to the reader). Now define $A_{1}^{\prime}=\frac{1}{2}\left(J-H_{1}^{\prime}\right)-I$ and $A_{2}^{\prime}=\frac{1}{2}\left(J-H_{2}^{\prime}\right)$, so that two vertices are adjacent if there is a -1 in the corresponding entry of the Hadamard matrix. Now also A_{1}^{\prime} and A_{2}^{\prime} commute, and the graphs defined by them are edge-disjoint, and both are strongly regular on $v=4^{t+2}$ vertices (cf. [4]). Moreover, A_{1}^{\prime} has eigenvalues $k_{1}=2^{2 t+3}-2^{t+1}-1, r_{1}=2^{t+1}-1$ and $s_{1}=-2^{t+1}-1$, while A_{2}^{\prime} has eigenvalues $k_{2}=2^{2 t+3}-2^{t+1}, r_{2}=2^{t+1}$ and $s_{2}=-2^{t+1}$. From this, it follows that the corresponding eigenmatrix is the following.

$$
P=\left(\begin{array}{cccc}
1 & 2^{2 t+3}-2^{t+1}-1 & 2^{2 t+3}-2^{t+1} & k_{3}=2^{t+2} \\
1 & -2^{t+1}-1 & -2^{t+1} & \theta_{1}=2^{t+2} \\
1 & -2^{t+1}-1 & 2^{t+1} & \theta_{2}=0 \\
1 & 2^{t+1}-1 & -2^{t+1} & \theta_{3}=0 \\
1 & 2^{t+1}-1 & 2^{t+1} & \theta_{4}=-2^{t+2}
\end{array}\right)
$$

with multiplicities $m_{0}=1, m_{1}=2^{t+1}-1, m_{2}=2^{t+2}\left(2^{t+1}-1\right), m_{3}=2^{2 t+3}, m_{4}=2^{t+1}$, hence the graphs do not form a scheme. Here G_{3} has 3 distinct eigenvalues, in fact it is the
disjoint union of (strongly regular) complete bipartite graphs. Note that in this example G_{1} is of negative Latin square type, while G_{2} is of Latin square type.

Next, we shall construct infinite families of examples of commuting strongly regular graphs, where G_{3} has 4 or 5 eigenvalues. In the latter case it is clear that the graphs cannot form an association scheme. In the first case we have examples forming schemes, and examples not forming schemes.

Consider a generalized quadrangle $G Q(q-1, q+1)$, with $q=2^{e}$, as constructed by Hall [8], that is, with points those of the affine space $A G(3, q)$ and lines those of $q+2$ parallel classes (spreads) of lines in $A G(3, q)$ corresponding to a hyperoval O in $P G(2, q)$ (the linear representation $T_{2}^{*}(O)$, cf. [14]). Take the line graph of this generalized quadrangle (vertices are lines, being adjacent if they intersect), which has $v=(q+2) q^{2}$ vertices, valency $k_{1}=q(q+1)$, and restricted eigenvalues $r_{1}=q$ and $s_{1}=-q$. From the definition, it is clear that it has a partition of the vertices into $q+2$ cocliques of size q^{2}. This partition is regular (equitable), meaning that the induced subgraph on the union of two cocliques is regular. This implies that when we take as second graph G_{2} the corresponding disjoint union of q^{2}-cliques, then G_{1} and G_{2} commute. Since G_{2} has valency $k_{2}=q^{2}-1$ and restricted eigenvalues $r_{2}=q^{2}-1, s_{2}=-1$, it follows that the corresponding eigenmatrix is

$$
P=\left(\begin{array}{cccc}
1 & q(q+1) & q^{2}-1 & k_{3}=q^{3}-q \\
1 & -q & -1 & \theta_{1}=q \\
1 & -q & q^{2}-1 & \theta_{2}=q-q^{2} \\
1 & q & -1 & \theta_{3}=-q
\end{array}\right)
$$

with multiplicities $m_{1}=m_{3}=\frac{1}{2}(q+2)\left(q^{2}-1\right)$ and $m_{2}=q+1$. Since $m_{4}=0$ the three graphs form an association scheme, with G_{3} having 4 distinct eigenvalues (unless $q=2$, in which case it has 3 distinct eigenvalues).
Small adjustments of the previous construction will give us the other two cases. First, we shall refine the partition into $q+2$ cocliques "plane-wise", that is, take a first parallel class (a coclique), and partition it into q parallel "planes". Since the set of all lines forms a generalized quadrangle, there is a unique other parallel class that can be partitioned into the "same planes", and we do so (again, we skip the technical details). Repeating this procedure with the remaining q parallel classes we find a partition of the vertex set into $(q+2) q$ cocliques of size q, which is again regular. The partition gives us as the second graph G_{2}^{\prime} a disjoint union of q-cliques, which commutes with $G_{1}^{\prime}=G_{1}$, the line graph of the generalized quadrangle. Since G_{2}^{\prime} now has valency $k_{2}^{\prime}=q-1$ and restricted eigenvalues $r_{2}^{\prime}=q-1$ and $s_{2}^{\prime}=-1$, we have eigenmatrix

$$
P=\left(\begin{array}{cccc}
1 & q(q+1) & q-1 & k_{3}^{\prime}=q^{3}+q^{2}-2 q \\
1 & -q & -1 & \theta_{1}^{\prime}=q \\
1 & -q & q-1 & \theta_{2}^{\prime}=0 \\
1 & q & -1 & \theta_{3}^{\prime}=-q \\
1 & q & q-1 & \theta_{4}^{\prime}=-2 q
\end{array}\right)
$$

with multiplicities $m_{1}^{\prime}=m_{3}^{\prime}=\frac{1}{2}(q+2) q(q-1), m_{2}^{\prime}=\frac{1}{2}\left(q^{2}+3 q\right)$, and $m_{4}^{\prime}=\frac{1}{2}\left(q^{2}+\right.$ $q-2$). Thus the three graphs do not form an association scheme; in this case G_{3}^{\prime} has 5 distinct eigenvalues.

The constructed partition into cocliques by "planes" also allows us to partition the lines regularly into $\frac{1}{2}(q+2) q$ cocliques of size $2 q$ (simply reunite pairs of parallel "planes" consistently). This gives a graph $G_{2}^{\prime \prime}$ which also commutes with $G_{1}^{\prime \prime}=G_{1}$, and which has valency $k_{2}^{\prime \prime}=2 q-1$ and restricted eigenvalues $r_{2}^{\prime \prime}=2 q-1$ and $s_{2}^{\prime \prime}=-1$. Thus we obtain the eigenmatrix

$$
P=\left(\begin{array}{cccc}
1 & q(q+1) & 2 q-1 & k_{3}^{\prime \prime}=q^{3}+q^{2}-3 q \\
1 & -q & -1 & \theta_{1}^{\prime \prime}=q \\
1 & -q & 2 q-1 & \theta_{2}^{\prime \prime}=-q \\
1 & q & -1 & \theta_{3}^{\prime \prime}=-q \\
1 & q & 2 q-1 & \theta_{4}^{\prime \prime}=-3 q
\end{array}\right)
$$

with multiplicities $m_{1}^{\prime \prime}=m_{3}^{\prime \prime}=\frac{1}{4}(q+2) q(2 q-1), m_{2}^{\prime \prime}=\frac{1}{4} q^{2}+q$, and $m_{4}^{\prime \prime}=\frac{1}{4} q^{2}-1$, and hence also here the three graphs do not form an association scheme, unless $q=2$ (in which case $m_{4}=0$); in these examples $G_{3}^{\prime \prime}$ has 4 distinct eigenvalues.

4. Decompositions into three strongly regular graphs

In this section we shall consider decompositions of the complete graph into three strongly regular graphs. We shall prove that such decompositions must be (amorphic) association schemes. This generalizes the result of Rowlinson [13] and independently Michael [12] that any decomposition of a complete graph into three isomorphic strongly regular graphs forms an amorphic association scheme. The proof given here is based on techniques from linear algebra. An independent proof based on noncommutative algebra and representation theory is given in [6].

Theorem 2 Let $\left\{G_{1}, G_{2}, G_{3}\right\}$ be a strongly regular decomposition of a complete graph. Then $\left\{G_{1}, G_{2}, G_{3}\right\}$ is an amorphic association scheme.

Proof: Let G_{i} have parameters ($v, k_{i}, \lambda_{i}, \mu_{i}$), restricted eigenvalues r_{i} and s_{i}, and adjacency matrix A_{i}, for $i=1,2,3$. Denote by $E\left(r_{i}\right), E\left(s_{i}\right)$ the restricted eigenspaces of r_{i}, s_{i}, respectively, that is, the spaces of corresponding eigenvectors orthogonal to the all-ones vector. Let $f_{i}=\operatorname{dim} E\left(r_{i}\right)$ and $g_{i}=\operatorname{dim} E\left(s_{i}\right)$ denote the restricted multiplicities of the eigenvalues, then $f_{i}=-\frac{k_{i}+(v-1) s_{i}}{r_{i}-s_{i}}$ and $g_{i}=\frac{k_{i}+(v-1) r_{i}}{r_{i}-s_{i}}$, for $i=1,2,3$. Without loss of generality we rearrange the eigenvalues such that $f_{i} \geq \frac{1}{2}(v-1)$ (hence we do not necessarily have that $r_{i}>s_{i}$).

Our goal is to show that the graphs have a common basis of eigenvectors, hence that the decomposition is commutative, since then we have an association scheme by Corollary 2.

The all-ones vector \mathbf{j} is a common eigenvector of the graphs with eigenvalues k_{1}, k_{2}, and k_{3}, respectively. Therefore, from now on we only have to consider restricted eigenvectors, i.e. eigenvectors in the $(v-1)$-dimensional subspace \mathbf{j}^{\perp} of \mathbb{R}^{v}.

First we suppose that r_{i} and $r_{j}, i \neq j$ do not have a common eigenvector. Then necessarily $f_{i}+f_{j}=\operatorname{dim} E\left(r_{i}\right)+\operatorname{dim} E\left(r_{j}\right)=\operatorname{dim}\left(E\left(r_{i}\right)+E\left(r_{j}\right)\right) \leq v-1$, hence $f_{i}=f_{j}=\frac{1}{2}(v-1)$. But then $k_{i}=k_{j}=\frac{1}{2}(v-1)$ (if $f_{i}=\frac{1}{2}(v-1)$ then it follows that $k_{i}=-\frac{1}{2}(v-1)\left(r_{i}+s_{i}\right)=$ $\frac{1}{2}(v-1)\left(\mu_{i}-\lambda_{i}\right)$, hence k_{i} is a multiple of, and hence equal to, $\frac{1}{2}(v-1)$). Thus the remaining graph is empty, which gives a contradiction. So in the remainder of the proof we may assume that r_{i} and r_{j} do have a common eigenvector.
Now, suppose that some r_{i} and $s_{j}(i \neq j)$ have a common eigenvector. Then $-1-r_{i}-s_{j}$ is an eigenvalue of A_{h} (with the same eigenvector), where $h \neq i, j$. First suppose that this eigenvalue is r_{h}, i.e. $-1-r_{i}-s_{j}=r_{h}$. Since we know that r_{i} and r_{j} also have an eigenvector in common, it follows that $-1-r_{i}-r_{j}$ is also an eigenvalue of A_{h}, and this eigenvalue must then equal s_{h}. Also r_{j} and r_{h} have an eigenvector in common, and it now follows that $-1-r_{j}-r_{h}=s_{i}$. From these equations we find that $r_{i}-s_{i}=r_{j}-s_{j}=r_{h}-s_{h}$, and then

$$
\begin{aligned}
f_{i} & =-\frac{k_{i}+(v-1) s_{i}}{r_{i}-s_{i}}=-\frac{v-1-k_{j}-k_{h}+(v-1)\left(-1-r_{j}-r_{h}\right)}{r_{i}-s_{i}} \\
& =\frac{k_{j}+(v-1) r_{j}}{r_{j}-s_{j}}+\frac{k_{h}+(v-1) r_{h}}{r_{h}-s_{h}}=g_{j}+g_{h},
\end{aligned}
$$

and so $g_{i}=f_{j}+f_{h}-(v-1)$. Since $s_{i}=-1-r_{j}-r_{h}$, we have that $E\left(r_{j}\right) \cap E\left(r_{h}\right) \subset E\left(s_{i}\right)$. However, the previous computation shows that $\operatorname{dim} E\left(s_{i}\right)=f_{j}+f_{h}-(v-1) \leq \operatorname{dim} E\left(r_{j}\right)+$ $\operatorname{dim} E\left(r_{h}\right)-\operatorname{dim}\left(E\left(r_{j}\right)+E\left(r_{h}\right)\right)=\operatorname{dim}\left(E\left(r_{j}\right) \cap E\left(r_{h}\right)\right)$, hence $E\left(s_{i}\right)=E\left(r_{j}\right) \cap E\left(r_{h}\right)$. Similarly we find that $E\left(s_{j}\right)=E\left(r_{i}\right) \cap E\left(r_{h}\right)$ and $E\left(s_{h}\right)=E\left(r_{i}\right) \cap E\left(r_{j}\right)$. Now (use that $\left.f_{i}=g_{j}+g_{h}\right)$ it is clear that each eigenvector of A_{i} is also an eigenvector of A_{j}, and consequently also of A_{h}. Hence A_{1}, A_{2}, and A_{3} commute, so we have an association scheme.

Secondly, suppose that $-1-r_{i}-s_{j}=s_{h}$. Then $-1-r_{i}-r_{j}=r_{h}$, and so $r_{h}-s_{h}=s_{j}-$ r_{j}. Now

$$
\begin{aligned}
g_{h} & =\frac{k_{h}+(v-1) r_{h}}{r_{h}-s_{h}}=\frac{v-1-k_{i}-k_{j}+(v-1)\left(-1-r_{i}-r_{j}\right)}{r_{h}-s_{h}} \\
& =\frac{k_{i}+(v-1) r_{i}}{r_{j}-s_{j}}+\frac{k_{j}+(v-1) r_{j}}{r_{j}-s_{j}}=\frac{r_{i}-s_{i}}{r_{j}-s_{j}} g_{i}+g_{j} .
\end{aligned}
$$

Because of the symmetry of j and h, we may assume without loss of generality that $g_{h}>g_{j}$ (equality cannot occur by the previous computation). If r_{j} and s_{h} do not have a common eigenvector, then $f_{j}+g_{h} \leq v-1$. However, $f_{j}+g_{h}>f_{j}+g_{j}=v-1$, which is a contradiction. So r_{j} and s_{h} do have a common eigenvector, and then $-1-r_{j}-s_{h}=s_{i}$, which together with the other equations gives that $r_{i}-s_{i}=r_{j}-s_{j}$, and $g_{h}=g_{i}+g_{j}$. Now we find similarly as before that $E\left(r_{h}\right)=E\left(r_{i}\right) \cap E\left(r_{j}\right), E\left(s_{i}\right)=E\left(r_{j}\right) \cap E\left(s_{h}\right)$ and $E\left(s_{j}\right)=E\left(r_{i}\right) \cap E\left(s_{h}\right)$, and that the adjacency matrices commute, proving that we have an association scheme.

In the remaining case, which will need a different approach, r_{i} and r_{j} do have common eigenvectors, and r_{i} and s_{j} do not have common eigenvectors, for all i, j. Consequently $f_{i}+g_{j} \leq v-1$, and also $f_{j}+g_{i} \leq v-1$. But $f_{i}+g_{j}+f_{j}+g_{i}=2(v-1)$, hence we have equality, and so $f_{i}=f_{j}$. Thus $f_{1}=f_{2}=f_{3}$ and $g_{1}=g_{2}=g_{3}$. It is also clear from the assumptions that $r_{1}+r_{2}+r_{3}=-1$, and since $\left(r_{1}-s_{1}\right) g_{1}=k_{1}+(v-1) r_{1}=$ $v-1-k_{2}-k_{3}+(v-1)\left(-1-r_{2}-r_{3}\right)=-k_{2}-(v-1) r_{2}-k_{3}-(v-1) r_{3}=$ $-\left(r_{2}-s_{2}\right) g_{2}-\left(r_{3}-s_{3}\right) g_{3}=-\left(r_{2}-s_{2}+r_{3}-s_{3}\right) g_{1}$, so that $r_{1}-s_{1}+r_{2}-s_{2}+r_{3}-s_{3}=0$, also $s_{1}+s_{2}+s_{3}=-1$. Moreover, we see that $r_{1}-s_{1}+r_{2}-s_{2} \neq 0$, a property which we shall use later on. Now, finally, we need some combinatorics.

Let $\pi_{i j}^{h}$ be the average number of vertices that are adjacent in G_{i} to vertex x, and in G_{j} to vertex y, over all pairs (x, y) that are adjacent in G_{h}, for $i, j, h \in\{1,2,3\}$. The parameters $\pi_{i j}^{h}$ naturally resemble the intersection numbers $p_{i j}^{h}$ of an association scheme. Obviously we have the equations $\pi_{i j}^{h}=\pi_{j i}^{h}, \pi_{i 1}^{h}+\pi_{i 2}^{h}+\pi_{i 3}^{h}=k_{i}-\delta_{h i}, \pi_{i i}^{h}=\mu_{i}$ if $h \neq i$, and $\pi_{i i}^{i}=\lambda_{i}$. By counting ordered " (i, j, h)-triangles", we find that $k_{h} \pi_{i j}^{h}=k_{i} \pi_{h j}^{i}$.

Using these equations we derive that $\pi_{23}^{1} \pi_{31}^{3}=\frac{k_{2}}{k_{1}} \pi_{13}^{2} \frac{k_{1}}{k_{3}} \mu_{3}=\pi_{13}^{2} \frac{k_{2}}{k_{3}} \pi_{33}^{2}=\pi_{13}^{2} \pi_{23}^{3}$. From the equations $\pi_{12}^{3}+\pi_{13}^{3}=k_{1}-\mu_{1}, \pi_{12}^{3}+\pi_{23}^{3}=k_{2}-\mu_{2}, \pi_{31}^{3}+\pi_{32}^{3}=k_{3}-1-\lambda_{3}$ we derive that $2 \pi_{12}^{3}=k_{1}-\mu_{1}+k_{2}-\mu_{2}-\left(k_{3}-1-\lambda_{3}\right), 2 \pi_{31}^{3}=k_{1}-\mu_{1}-\left(k_{2}-\right.$ $\left.\mu_{2}\right)+k_{3}-1-\lambda_{3}$, and $2 \pi_{32}^{3}=-\left(k_{1}-\mu_{1}\right)+k_{2}-\mu_{2}+k_{3}-1-\lambda_{3}$. Similarly, we find that $2 \pi_{23}^{1}=-\left(k_{1}-1-\lambda_{1}\right)+k_{2}-\mu_{2}+k_{3}-\mu_{3}$, and $2 \pi_{13}^{2}=k_{1}-\mu_{1}-$ $\left(k_{2}-1-\lambda_{2}\right)+k_{3}-\mu_{3}$. After plugging these into the equation $\pi_{23}^{1} \pi_{31}^{3}=\pi_{13}^{2} \pi_{23}^{3}$, replacing the parameters by the eigenvalues $\left(k_{i}-\mu_{i}=-r_{i} s_{i}\right.$ and $\lambda_{i}-\mu_{i}=r_{i}+$ s_{i}), and using that $r_{3}=-1-r_{1}-r_{2}$ and $s_{3}=-1-s_{1}-s_{2}$, we find an equation which is equivalent to the equation $\left(r_{1} s_{2}-s_{1} r_{2}\right)\left(r_{1}-s_{1}+r_{2}-s_{2}\right)=0$ (this argument is similar to that of [7, Lemma 4.5]). We mentioned before that the second factor in nonzero, hence we have that $r_{1} s_{2}=s_{1} r_{2}$. But then also $k_{1} r_{2}=-f_{1} r_{1} r_{2}-g_{1} s_{1} r_{2}=$ $-f_{2} r_{1} r_{2}-g_{2} r_{1} s_{2}=k_{2} r_{1}$, and so r_{1} and r_{2} have the same sign. Similarly r_{1} and r_{3} have the same sign, which gives a contradiction to the fact that $r_{1}+r_{2}+r_{3}=-1$. Thus this final case cannot occur, and so in all possible cases we have an association scheme.

In Section 5 we shall prove that also any decomposition into (possibly more than three) strongly regular graphs of Latin square type, and any decomposition into strongly regular graphs of negative Latin square type forms an amorphic association scheme.

5. Decompositions of (negative) Latin square type

It was shown in [7] that in an amorphic association scheme (with at least three graphs) all graphs are of Latin square type, or all graphs are of negative Latin square type. We will show that there are no other strongly regular decompositions of a complete graph in which all graphs are of Latin square type, or in which all graphs are of negative Latin square type. This extends the result by Ito et al. [9] who showed that any association scheme in which all graphs are strongly regular of Latin square type, or in which all graphs are strongly regular of negative Latin square type, is amorphic.

Theorem 3 Let $\left\{G_{1}, G_{2}, \ldots, G_{d}\right\}$ be a strongly regular decomposition of the complete graph on v vertices, such that the strongly regular graphs $G_{i}, i=1,2, \ldots, d$ are all of Latin square type or all of negative Latin square type. Then the decomposition is an amorphic association scheme.

Proof: Let A_{i} be the adjacency matrix of G_{i}, which has valency k_{i} and restricted eigenvalues $r_{i}>s_{i}$, for $i=1,2, \ldots, d$. We shall give a proof for the case where all graphs are of Latin square type. The case of negative Latin square type is similar; only the roles of r_{i} and s_{i} have to be interchanged.

First we note that the all-ones vector \mathbf{j} is a common eigenvector of the strongly regular graphs G_{i} with respective eigenvalues k_{i}, for $i=1,2, \ldots, d$.

The Latin square type graph G_{i} has the property that the restricted multiplicity of the positive resticted eigenvalue r_{i} is equal to the valency k_{i} of the graph; the negative restricted eigenvalue s_{i} has multiplicity $l_{i}=v-1-k_{i}$.
Now we fix j. Then $v-1-k_{j}=\sum_{i \neq j} k_{i}=(d-1)(v-1)-\sum_{i \neq j} l_{i}$, so $\sum_{i \neq j} l_{i}=$ $(d-2)(v-1)+k_{j}$. From repeatedly using the observation that $\operatorname{dim}(A \cap B)=\operatorname{dim}(A)+$ $\operatorname{dim}(B)-\operatorname{dim}(A+B) \geq \operatorname{dim}(A)+\operatorname{dim}(B)-(v-1)$ when A and B are subspaces of \mathbf{j}^{\perp}, it thus follows that $\operatorname{dim}\left(\bigcap_{i \neq j} E\left(s_{i}\right)\right) \geq k_{j}$, where $E\left(s_{i}\right)$ denotes the restricted eigenspace of s_{i} as eigenvalue of A_{i}, for $i=1,2, \ldots, d$. In other words, the matrices $A_{i}, i \neq j$ have a common eigenspace of dimension at least k_{j} with respective eigenvalues s_{i}. On this common eigenspace the matrix $A_{j}=J-I-\sum_{i \neq j} A_{i}$ has eigenvalue $-1-\sum_{i \neq j} s_{i}$, which must be equal to r_{j} (since $s_{i} \leq-1$ for all i), and which has restricted multiplicity k_{j}. Hence the dimension of the common eigenspace is exactly k_{j}. Since the above holds for all $j=1,2, \ldots, d$, it follows that \mathbb{R}^{v} can be decomposed into $d+1$ common eigenspaces, and that the decomposition $\left\{G_{1}, G_{2}, \ldots, G_{d}\right\}$ is commutative. It then follows from Lemma 1 that the decomposition is an association scheme.

Since, by Corollary 1, the union of any two commuting edge-disjoint Latin square type (or negative Latin square type) graphs is again a Latin square type (negative Latin square type, respectively) graph, it follows from the above that any fusion of the association scheme is again an association scheme, hence the original association scheme is amorphic.

It would be natural to ask if a mixture of Latin square type graphs and negative Latin square type graphs is possible in a decomposition of a complete graph, and if so, if these (can) form an association scheme. In the next section we shall see examples of (commutative) decompositions which indeed contain such a mixture. These decompositions are not association schemes.

6. Decompositions into four strongly regular graphs

A decomposition of a complete graph into three strongly regular graphs necessarily is an association scheme. Next, we consider the case of decompositions of a complete graph into four strongly regular graphs.

6.1. Three disconnected graphs

First, we shall classify the decompositions in which at least three of the four strongly regular graphs are disconnected. First of all, we have the Latin square schemes $L_{1,1,1}(n)$, for $n>2$. Such an amorphic association scheme is constructed from a Latin square of side n as follows. The vertices are the n^{2} cells of the Latin square. In the first graph, two cells are adjacent if they are in the same row, in the second graph if they are in the same column, and in the third graph if they contain the same entry. The fourth graph is the remainder.

Secondly, there is a family of examples consisting of the following: one graph is the complete multipartite graph $K_{4,4, \ldots, 4}$, and the other three graphs are matchings. These four graphs form an association scheme, the wreath product of a complete graph and $L_{1,1,1}(2)$. We note that this association scheme is not amorphic.
Finally, there is one example on 6 vertices, in which all four graphs are disconnected: three of the four are matchings, and the fourth is the disjoint union of two triangles. In this example the matchings do not commute, hence it does not give rise to an association scheme.

Theorem 4 Let $\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ be a strongly regular decomposition of the complete graph on v vertices into four strongly regular graphs, of which at least three are disconnected. Then the decomposition is the above example on 6 vertices, or the wreath product (association scheme) of a complete graph and $L_{1,1,1}(2)$, or a Latin square association scheme $L_{1,1,1}(n), n>2$.

Proof: Without loss of generality we assume that G_{1}, G_{2}, and G_{3} are disconnected, say G_{i} is the disjoint union of t_{i} complete graphs on n_{i} vertices, for $i=1,2,3$, where $n_{1} \geq n_{2} \geq n_{3} \geq 2$. The union of G_{1}, G_{2}, and G_{3}, i.e. the complement of G_{4}, is also strongly regular, say with parameters ($v=t_{i} n_{i}, k=n_{1}+n_{2}+n_{3}-3, \lambda, \mu$), and restricted eigenvalues r and s. By considering two adjacent vertices in G_{i} it follows that λ equals n_{i}, $n_{i}-1$, or $n_{i}-2$, for $i=1,2,3$, hence it follows that $n_{3} \geq \lambda \geq n_{1}-2$.

The cases with $n_{3}=2$ are easily checked: using the fact that $k \lambda$ is even and the condition that $\mu=\frac{k(k-1-\lambda)}{v-1-k}$ is an integer (at most k) reduces the number of cases substantially. Since there are no strongly regular graphs with parameters $(8,5,2,5),(16,5,2,1),(12,7,2,7)$, or $(36,7,2,1)$, and since the unique strongly regular graph with parameters $(10,3,0,1)$, the Petersen graph, does not decompose into three matchings, it subsequently follows that the only possibilities are the cases $n_{1}=n_{2}=n_{3}=2, \lambda=0, v=6$ and $n_{1}=3, n_{2}=n_{3}=2$, $\lambda=2, v=6$, which both give rise to the stated example on 6 vertices; and the cases $n_{1}=n_{2}=n_{3}=2, \lambda=2, v=4 m, m>1$, which give rise to the wreath product of a complete graph and $L_{1,1,1}(2)$.
Next, we assume that $n_{3} \geq 3$. The graph G_{i} has eigenvalue -1 with multiplicity $v-t_{i}$, for $i=1,2,3$. Let V_{i} be the corresponding eigenspace of G_{i} for this eigenvalue -1 . Since $\operatorname{dim}\left(V_{1} \cap V_{2} \cap V_{3}\right) \geq \operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)+\operatorname{dim}\left(V_{3}\right)-2 \operatorname{dim}\left(\mathbf{j}^{\perp}\right) \geq v+2-3 t_{3}=$ $\left(n_{3}-3\right) t_{3}+2>0$, it follows that G_{1}, G_{2}, and G_{3} have a common eigenvector with eigenvalue -1 , hence their union has an eigenvalue $s=-3$. From the equations $\lambda-\mu=r+s$ and $\mu-k=r s$ we now derive that $\mu=\frac{3 \lambda-k+9}{2}$, and hence that $k+\lambda$ is odd.

The case $n_{1}=n_{2}=n_{3}=n(k=3 n-3), \lambda=n$ gives $\mu=6$. From the equation $\mu(v-1-k)=k(k-1-\lambda)$ we now find that $v=n^{2}$. It is clear now that in this case
G_{1}, G_{2}, and G_{3} commute, and that the four graphs form a Latin square association scheme $L_{1,1,1}(n), n>2$.

The case $n_{1}=n_{2}=n_{3}=n(k=3 n-3), \lambda=n-2$ gives $\mu=3$, and $v=2 n^{2}-n$. This case leads to a contradiction as follows. Here the concepts adjacency and neighbour refer to the union of G_{1}, G_{2}, and G_{3}, unless otherwise specified. Let x, y, z be mutually adjacent in G_{1}. Let x_{2} be adjacent to x in G_{2}. Since y and x_{2} are not adjacent (otherwise x and y have more than $n-2$ common neighbours), they have $\mu=3$ common neighbours. One of these is x, the other two are, say, y_{2} and y_{3} which are adjacent to y in G_{2} and G_{3}, respectively. It follows that y_{3} and x_{2} must be adjacent in G_{1}, and y_{2} and x_{2} must be adjacent in G_{3}. Similarly x_{2} and z have three common neighbours, one of them being x, and the other two being, say, z_{2} and z_{3}, which are adjacent to z in G_{2} and G_{3}, respectively. Also here it follows that z_{3} and x_{2} are adjacent in G_{1} (and hence y_{3} and z_{3} are adjacent in G_{1}), and z_{2} and x_{2} are adjacent in G_{3}. Since y_{3} and z are not adjacent (otherwise y and z have too many common neighbours), they should have three common neighbours. This gives a contradiction, since y_{3} and z can have at most two common neighbours, z_{3} and y : any other common neighbour should be adjacent to both y_{3} and z in G_{2}, and hence y_{3} and z should themselves be adjacent in G_{2}, a contradiction.

The case $n_{1}=n_{2}=n, n_{3}=n-1(k=3 n-4), \lambda=n-1$ gives $\mu=5$ and $v=\frac{6}{5} n^{2}-n+\frac{1}{5}$. On the other hand, since $v=t_{1} n=t_{3}(n-1)$, it follows that v is a multiple of $n(n-1)$. This gives a contradiction, as is easily verified. The remaining three cases go similarly.

Thus in any other example of a strongly regular decomposition with four graphs at least two of these must be connected. We conjecture that except for amorphic association schemes there are no strongly regular decompositions of a complete graph into four graphs of which exactly two are connected.

6.2. Commuting strongly regular graphs

For a commutative strongly regular decomposition of a complete graph into four graphs we have the following.

Theorem 5 Let $\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ be a commutative strongly regular decomposition of the complete graph on v vertices. Let G_{i} have valency k_{i} and restricted eigenvalues r_{i} and s_{i} (where we do not assume that $r_{i}>s_{i}$), for $i=1, \ldots, 4$. Then $\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$ is (i) an amorphic association scheme; or (ii) an association scheme in which three of the graphs, say G_{2}, G_{3}, G_{4}, have the same parameters and which has eigenmatrix given by

$$
P=\left(\begin{array}{lllll}
1 & k_{1} & k_{2} & k_{2} & k_{2} \tag{1}\\
1 & s_{1} & r_{2} & r_{2} & r_{2} \\
1 & r_{1} & s_{2} & s_{2} & r_{2} \\
1 & r_{1} & s_{2} & r_{2} & s_{2} \\
1 & r_{1} & r_{2} & s_{2} & s_{2}
\end{array}\right)
$$

or (iii) it is not an association scheme, in which case the eigenmatrix is given by

$$
P=\left(\begin{array}{lllll}
1 & k_{1} & k_{2} & k_{3} & k_{4} \tag{2}\\
1 & s_{1} & s_{2} & r_{3} & r_{4} \\
1 & s_{1} & r_{2} & s_{3} & r_{4} \\
1 & s_{1} & r_{2} & r_{3} & s_{4} \\
1 & r_{1} & s_{2} & s_{3} & r_{4} \\
1 & r_{1} & s_{2} & r_{3} & s_{4} \\
1 & r_{1} & r_{2} & s_{3} & s_{4}
\end{array}\right),
$$

where possibly one row is removed.

Proof: Let G_{i} have adjacency matrix A_{i}, for $i=1, \ldots, 4$. First we assume that the restricted eigenvalues satisfy $r_{i}>s_{i}$ for $i=1, \ldots, 4$. During the proof we shall see that this assumption is not necessary, i.e. that we can interchange the role of the r_{i} and s_{i} (for all i simultaneously).

By using only the possible eigenvalues for A_{1}, A_{2}, and A_{3} we obtain the following eigenmatrix for the decomposition:

$$
P=\left(\begin{array}{ccccc}
1 & k_{1} & k_{2} & k_{3} & v-1-k_{1}-k_{2}-k_{3}=k_{4} \\
1 & s_{1} & s_{2} & s_{3} & -1-s_{1}-s_{2}-s_{3}=\theta_{1} \\
1 & s_{1} & s_{2} & r_{3} & -1-s_{1}-s_{2}-r_{3}=\theta_{2} \\
1 & s_{1} & r_{2} & s_{3} & -1-s_{1}-r_{2}-s_{3}=\theta_{3} \\
1 & s_{1} & r_{2} & r_{3} & -1-s_{1}-r_{2}-r_{3}=\theta_{4} \\
1 & r_{1} & s_{2} & s_{3} & -1-r_{1}-s_{2}-s_{3}=\theta_{5} \\
1 & r_{1} & s_{2} & r_{3} & -1-r_{1}-s_{2}-r_{3}=\theta_{6} \\
1 & r_{1} & r_{2} & s_{3} & -1-r_{1}-r_{2}-s_{3}=\theta_{7} \\
1 & r_{1} & r_{2} & r_{3} & -1-r_{1}-r_{2}-r_{3}=\theta_{8}
\end{array}\right) .
$$

Since G_{4} is strongly regular, many of the eigenvalues θ_{j} should coincide, and/or some of the multiplicities $m_{j}=\operatorname{dim} V_{j}(j=0,1, \ldots, 8)$ should be zero (in which case some of the rows in P are deleted), where V_{j} is the eigenspace corresponding to the eigenvalue θ_{j} of G_{4} (more precisely, V_{1} is the intersection of the restricted eigenspaces of s_{1} (of A_{1}), s_{2} (of A_{2}), and s_{3} (of A_{3}), etc.). On the other hand, by Lemma 1 at least five of the multiplicities m_{i} must be positive (one of them being $m_{0}=1$); and if exactly five multiplicities are positive, then the four graphs form a 4-class association scheme.

Now we assume without loss of generality that $r_{1}-s_{1} \geq r_{2}-s_{2} \geq r_{3}-s_{3} \geq r_{4}-s_{4}>0$. Assume first that $r_{1}-s_{1}=r_{2}-s_{2}=r_{3}-s_{3} \geq r_{4}-s_{4}>0$. Then $\theta_{1}>\theta_{2}=\theta_{3}=\theta_{5}>$ $\theta_{4}=\theta_{6}=\theta_{7}>\theta_{8}$. Since we must have two distinct values (r_{4} and s_{4}) among the θ_{j} with positive multiplicity m_{j} (of which there are at least four), there are a few possibilities.

- The positive multiplicities are $m_{1}, m_{2}, m_{3}, m_{5}$. After removing the rows of P corresponding to the zero eigenspaces $\left(V_{4}, V_{6}, V_{7}, V_{8}\right)$, this gives eigenmatrix

$$
P=\left(\begin{array}{ccccc}
1 & k_{1} & k_{2} & k_{3} & k_{4} \\
1 & s_{1} & s_{2} & s_{3} & \theta_{1}=r_{4} \\
1 & s_{1} & s_{2} & r_{3} & \theta_{2}=s_{4} \\
1 & s_{1} & r_{2} & s_{3} & \theta_{3}=s_{4} \\
1 & r_{1} & s_{2} & s_{3} & \theta_{5}=s_{4}
\end{array}\right) .
$$

From the eigenmatrix of this association scheme it follows that fusing any two of the strongly regular graphs gives another strongly regular graph. From this it easily follows that the association scheme is amorphic (case (i)). Similarly the case where the positive multiplicities are $m_{4}, m_{6}, m_{7}, m_{8}$ leads to an amorphic association scheme (with the roles of the r_{i} and s_{i} interchanged).

- The positive multiplicities are $m_{1}, m_{4}, m_{6}, m_{7}$. But now $r_{4}-s_{4}=\theta_{1}-\theta_{4}=r_{2}-s_{2}+r_{3}-$ $s_{3}>r_{4}-s_{4}$, which is a contradiction. Similarly the case where the positive multiplicities are $m_{2}, m_{3}, m_{5}, m_{8}$ leads to a contradiction.
- The positive multiplicities are among $m_{2}, m_{3}, m_{5}, m_{4}, m_{6}, m_{7}$. After removing the rows of P corresponding to the zero eigenspaces V_{1} and V_{8}, we obtain eigenmatrix

$$
P=\left(\begin{array}{ccccc}
1 & k_{1} & k_{2} & k_{3} & k_{4} \\
1 & s_{1} & s_{2} & r_{3} & \theta_{2}=r_{4} \\
1 & s_{1} & r_{2} & s_{3} & \theta_{3}=r_{4} \\
1 & s_{1} & r_{2} & r_{3} & \theta_{4}=s_{4} \\
1 & r_{1} & s_{2} & s_{3} & \theta_{5}=r_{4} \\
1 & r_{1} & s_{2} & r_{3} & \theta_{6}=s_{4} \\
1 & r_{1} & r_{2} & s_{3} & \theta_{7}=s_{4}
\end{array}\right),
$$

which is of the form (2) (case (iii)). From this we derive that $r_{4}-s_{4}=r_{1}-s_{1}=$ $r_{2}-s_{2}=r_{3}-s_{3}$. Now the multiplicities m_{2}, \ldots, m_{7} can be expressed easily in terms of the other parameters. For example, m_{7} is the dimension of the intersection of the restricted eigenspaces of r_{1} and r_{2}, hence $m_{7}=\frac{v s_{1} s_{2}-\left(k_{1}-s_{1}\right)\left(k_{2}-s_{2}\right)}{\left(r_{1}-s_{1}\right)\left(r_{2}-s_{2}\right)}$, according to Lemma 2.

Now suppose that in this case we have an association scheme. Then two of the multiplicities m_{2}, \ldots, m_{7} must be zero. Without loss of generality we may take one of these to be m_{7}. Since, again by Lemma 2, any eigenvalue r_{i} has a common eigenvector with $s_{i}, j \neq i$, it follows that the other zero multiplicity must be m_{2}. But in this case the eigenmatrix of the association scheme would be singular, which is a contradiction.

Hence, in this case at most one of the multiplicities m_{2}, \ldots, m_{7} can be zero, and we do not have an association scheme. We remark that this case is symmetric with respect to the roles of the r_{i} and s_{i}.

Next, assume that $r_{1}-s_{1}=r_{2}-s_{2}>r_{3}-s_{3} \geq r_{4}-s_{4}>0$. Then $\theta_{1}>\theta_{2}>$ $\theta_{3}=\theta_{5}>\theta_{4}=\theta_{6}>\theta_{7}>\theta_{8}$. Since at least four multiplicities must be positive, these
must be $m_{3}, m_{5}, m_{4}, m_{6}$. Hence this case would give an association scheme. However, the corresponding eigenmatrix is singular, which is a contradiction.

Finally, we assume that $r_{1}-s_{1}>r_{2}-s_{2} \geq r_{3}-s_{3} \geq r_{4}-s_{4}>0$. Then $\theta_{1}>\theta_{2} \geq \theta_{3}>$ $\theta_{5}, \theta_{4}>\theta_{6} \geq \theta_{7}>\theta_{8}$. Also here at least 4 multiplicities must be positive, which gives the following possibilities.

- The positive multiplicities are $m_{2}, m_{3}, m_{6}, m_{7}$, and $\theta_{2}=\theta_{3}$ and $\theta_{6}=\theta_{7}$. But then $r_{4}-s_{4}=\theta_{2}-\theta_{6}=r_{1}-s_{1}>r_{4}-s_{4}$, which is a contradiction.
- The positive multiplicities are $m_{4}, m_{5}, m_{6}, m_{7}$, and $\theta_{4}=\theta_{5}$ and $\theta_{6}=\theta_{7}$. From this it follows that $r_{1}-s_{1}=r_{2}-s_{2}+r_{3}-s_{3}$ and $r_{2}-s_{2}=r_{3}-s_{3}=r_{4}-s_{4}$.

Since s_{1} and s_{j} have no common eigenvector, for $j=2,3,4$, we find that $v r_{1} r_{j}=$ $\left(k_{1}-r_{1}\right)\left(k_{j}-r_{j}\right)$, for $j=2,3,4$ (see Lemma 2). From this we can derive that

$$
\frac{r_{2}}{k_{2}}=\frac{r_{3}}{k_{3}}=\frac{r_{4}}{k_{4}} .
$$

Moreover, it follows that

$$
\begin{aligned}
m_{4} & =\frac{v r_{1} s_{j}-\left(k_{1}-r_{1}\right)\left(k_{j}-s_{j}\right)}{\left(r_{1}-s_{1}\right)\left(r_{j}-s_{j}\right)}=\frac{v s_{h} s_{j}-\left(k_{h}-s_{h}\right)\left(k_{j}-s_{j}\right)}{\left(r_{h}-s_{h}\right)\left(r_{j}-s_{j}\right)} \text { for } \\
j, h & =2,3,4, j \neq h
\end{aligned}
$$

From this it follows that

$$
\begin{aligned}
& v r_{1}\left(s_{i}-s_{j}\right)=\left(k_{1}-r_{1}\right)\left(k_{i}-s_{i}-\left(k_{j}-s_{j}\right)\right) \quad \text { and } \\
& v s_{h}\left(s_{i}-s_{j}\right)=\left(k_{h}-s_{h}\right)\left(k_{i}-s_{i}-\left(k_{j}-s_{j}\right)\right)
\end{aligned}
$$

for $\{i, j, h\}=\{2,3,4\}$. Since the signs of the right hand sides of these two equations are the same, while the signs of the left hand sides are opposite, it follows that in one of the equations both sides must be zero. If $k_{i}-s_{i} \neq k_{j}-s_{j}$, then $k_{1}-r_{1}=0$, and then $s_{i}=s_{j}$, but then $k_{h}=s_{h}$, a contradiction. Thus $k_{i}-s_{i}=k_{j}-s_{j}$, and then also $s_{i}=s_{j}$, and $k_{i}=k_{j}$. Hence $k_{2}=k_{3}=k_{3}, s_{2}=s_{3}=s_{4}$, and also $r_{2}=r_{3}=r_{4}$. Now the eigenmatrix is of the form (1) (case (ii)).

- The last case, the one with positive multiplicities $m_{2}, m_{3}, m_{4}, m_{5}$ is similar to the previous one, and leads to the eigenmatrix (1) (case (ii)), where the r_{i} and s_{i} are interchanged.

Examples of commutative strongly regular decompositions with four graphs which are not association schemes can be constructed as follows. Let $G F\left(3^{2 m}\right)$ be the vertex set, where m is even, and let α be a primitive element in this field. Consider the cyclotomic amorphic 4-class association scheme on $G F\left(3^{2 m}\right)$. Two distinct vertices are adjacent in G_{j} if their difference is of the form $\alpha^{4 i+j}$ for some $i(j=1, \ldots, 4)$. The graphs G_{1}, \ldots, G_{4} are (isomorphic) strongly regular graphs of negative Latin square type with valency $\frac{3^{2 m}-1}{4}$, and restricted eigenvalues $\frac{3^{m}-1}{4}$ and $\frac{3^{m}-1}{4}-3^{m}$. The union of G_{2} and G_{4} is the Paley graph on $3^{2 m}$ vertices: two vertices are adjacent if their difference is a square.

Next, let $d=3^{m}+1$, and consider the cyclotomic amorphic d-class association scheme on $\operatorname{GF}\left(3^{2 m}\right)$. Two distinct vertices are adjacent in H_{j} if their difference is of the form $\alpha^{d i+j}$ for some $i(j=1, \ldots, d)$. The graphs H_{1}, \ldots, H_{d} are (disconnected) strongly regular graphs of Latin square type with valency $3^{m}-1$, and restricted eigenvalues $3^{m}-1$ and -1 . The union of $H_{2}, H_{4}, \ldots, H_{d}$ is the same as the union of G_{2} and G_{4} (the Paley graph on $3^{2 m}$ vertices).

It is easy to show that all graphs G_{i} and H_{j} (i.e., their adjacency matrices) commute, hence $\left\{G_{1}, G_{3}, H_{2}, H_{4}, \ldots, H_{d}\right\}$ is a commutative strongly regular decomposition of a complete graph. Moreover, so is any of its fusions of the form $\left\{G_{1}, G_{3}, K_{1}, K_{2}\right\}$. Note that such a fusion consists of two strongly regular graphs of negative Latin square type (G_{1} and G_{3}), and two of Latin square type (K_{1} and K_{2}).

For $m=2$ there are two possible fusions of $\left\{H_{2}, H_{4}, \ldots, H_{10}\right\}$ consisting of two graphs. For the corresponding decompositions $\left\{G_{1}, G_{3}, K_{1}, K_{2}\right\}$, the respective P-matrices (of the form (2) with one row deleted since $m_{2}=0$) are the following.

$$
P=\left(\begin{array}{ccccc}
1 & 20 & 20 & 8 & 32 \\
1 & -7 & 2 & -1 & 5 \\
1 & -7 & 2 & 8 & -4 \\
1 & 2 & -7 & -1 & 5 \\
1 & 2 & -7 & 8 & -4 \\
1 & 2 & 2 & -1 & -4
\end{array}\right) \quad \text { and } \quad P^{\prime}=\left(\begin{array}{ccccc}
1 & 20 & 20 & 16 & 24 \\
1 & -7 & 2 & -2 & 6 \\
1 & -7 & 2 & 7 & -3 \\
1 & 2 & -7 & -2 & 6 \\
1 & 2 & -7 & 7 & -3 \\
1 & 2 & 2 & -2 & -3
\end{array}\right)
$$

An example of a non-amorphic association scheme with four strongly regular graphs was already given by the wreath product of a complete graph and $L_{1,1,1}(2)$. Indeed, its eigenmatrix

$$
P=\left(\begin{array}{ccccc}
1 & v-4 & 1 & 1 & 1 \\
1 & -4 & 1 & 1 & 1 \\
1 & 0 & -1 & -1 & 1 \\
1 & 0 & -1 & 1 & -1 \\
1 & 0 & 1 & -1 & -1
\end{array}\right)
$$

is of the form (1). We remark that this association scheme is a counterexample of A.V. Ivanov's conjecture [10, Problem 1.3] that any association scheme in which all graphs are strongly regular must be amorphic. Already in [5] counterexamples of this conjecture were found, and it was suggested that maybe Ivanov had intended to conjecture the above for primitive association schemes. We shall show next that also this weaker conjecture is false.

If a counterexample for the conjecture has four graphs, then the eigenmatrix must be of the form (1). We found by computer that there are only 7 "feasible" parameter sets for a primitive association scheme of the form (1) on at most 2048 vertices, the smallest one having 288 vertices. Besides these we found an infinite series of "feasible" parameter sets:
it has 8^{t} vertices and eigenmatrix

$$
P=\left(\begin{array}{ccccc}
1 & 2^{3 t}-4-3 \cdot 2^{2 t}-3 \cdot 2^{t} & 2^{2 t}+2^{t}+1 & 2^{2 t}+2^{t}+1 & 2^{2 t}+2^{t}+1 \\
1 & -4-3 \cdot 2^{t} & 1+2^{t} & 1+2^{t} & 1+2^{t} \\
1 & -4+2^{t} & 1-2^{t} & 1-2^{t} & 1+2^{t} \\
1 & -4+2^{t} & 1-2^{t} & 1+2^{t} & 1-2^{t} \\
1 & -4+2^{t} & 1+2^{t} & 1-2^{t} & 1-2^{t}
\end{array}\right) .
$$

We shall construct an association scheme which has this eigenmatrix for $t=4$. It is obtained as a fusion scheme of the 45 -class cyclotomic scheme on $G F(4096)$. Consider in this field a primitive element α satisfying $\alpha^{12}=\alpha^{6}+\alpha^{4}+\alpha+1$. Two distinct vertices are adjacent in H_{j} if their difference is of the form $\alpha^{45 i+j}$ for some $i(j=1, \ldots, 45)$. De Lange [11] found that $G_{2}=H_{45} \cup H_{5} \cup H_{10}$ is a strongly regular graph with valency $k_{2}=273$ and restricted eigenvalues $r_{2}=17$ and $s_{2}=-15$. Clearly $G_{3}=H_{15} \cup H_{20} \cup H_{25}$ and $G_{4}=H_{30} \cup H_{35} \cup H_{40}$ are isomorphic to G_{2}. Moreover, the union of these three graphs is one of the graphs in the 5-class cyclotomic amorphic association scheme on $G F(4096)$. Hence the complement G_{1} of this union is strongly regular, and it has valency $k_{1}=3276$ and restricted eigenvalues $r_{1}=12$ and $s_{1}=-52$. Since $r_{1}-s_{1} \neq r_{2}-s_{2}$ it now follows from Theorem 5 that the four strongly regular graphs G_{1}, \ldots, G_{4} form a primitive 4-class association scheme which is not amorphic.

Acknowledgments

The author would like to thank Misha Klin and Misha Muzychuk for several stimulating conversations.

References

1. E. Bannai and T. Ito, Algebraic Combinatorics I: Association schemes, Benjamin/Cummings Publ., Menlo Park, 1984.
2. L.D. Baumert, W.H. Mills, and R.L. Ward, "Uniform cyclotomy," J. Number. Th. 14 (1982), 67-82.
3. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Heidelberg, 1989.
4. A.E. Brouwer and J.H. van Lint, "Strongly regular graphs and partial geometries," in Enumeration and Design, D.M. Jackson and S.A. Vanstone (Eds.), Academic Press, Toronto, 1984, pp. 85-122.
5. E.R. van Dam, "A characterization of association schemes from affine spaces," Des. Codes Crypt. 21 (2000), 83-86.
6. E.R. van Dam, M. Klin, and M. Muzychuk, "Some implications on amorphic association schemes," in preparation.
7. Ja.Ju. Gol'fand, A.V. Ivanov, and M. Klin, "Amorphic cellular rings," in Investigations in Algebraic Theory of Combinatorial Objects, I.A. Faradžev et al. (Eds.), Kluwer, Dordrecht, 1994, pp. 167-186.
8. M. Hall Jr., "Affine generalized quadrilaterals," in Studies in Pure Mathematics, L. Mirsky (Ed.), Academic Press, London, 1971, pp. 113-116.
9. T. Ito, A. Munemasa, and M. Yamada, "Amorphous association schemes over the Galois rings of characteristic 4," Europ. J. Combinatorics 12 (1991), 513-526.
10. A.A. Ivanov and C.E. Praeger, "Problem session at ALCOM-91," Europ. J. Combinatorics 15 (1994), 105112.
11. C.L.M. de Lange, "Some new cyclotomic strongly regular graphs," J. Alg. Combin. 4 (1995), 329-330.
12. T.S. Michael, "The decomposition of the complete graph into three, isomorphic strongly regular graphs," Congr. Numerantium 85 (1991), 177-183.
13. P. Rowlinson, "Certain 3-decompositions of complete graphs with an application to finite fields," Proc. Royal Soc. Edinburgh 99A (1985), 277-281.
14. J.A. Thas, "Generalized polygons," in Handbook of Incidence Geometry-Buildings and Foundations, F. Buekenhout (Ed.), North-Holland, Amsterdam, 1995, pp. 383-432.

[^0]: *The research of E.R. van Dam has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

