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It is wel l -known that financial data sets exhibit  conditional heteroskedasticity. GARCH-  
type models are often used to model  this phenomenon.  Since the distribution o f  the rescaled 
innovations is generally far from a normal distribution, a sem,.'parametric approach is ad- 
visable. Several publications observed that adaptive estimation o f  the Euclidean parameters 
is not possible in the usual parametrization when the distribution o f  the rescaled innova- 
tions is the unknow~ nuisance parameter. However,  there exists a reparametrization such 
that the efficient score functions in the parametric model o f  the autoregres_sion parameters 
are orthogonal to the tangent space generated by the nuisance parameter, thus suggesting 
that adaptive estimation o f  the autoregression parameters is possible. Indeed, we con- 
struct adaptive and hence efficient estimators in a general GARCH in mean-type context 
including integrated GARCH models.  
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I.  Introduct ion  

It is a well-established empirical  fact in financial economics  that t ime series 
like exchange rates and stock prices exhibit  conditional heteroskedasticity.  Big 
shocks are clustered together. The original paper o f  Engle (1982)  proposes the 
A R C H  model to incorporate conditional heteroskedasticity in econometr ic  mod-  
eling o f  financial data sets. Bollerslev (1986)  introduces the G A R C H  model  as 
a generalization o f  ARCH.  This facilitates a pars imonious parametrization which 
is particularly useful when shocks are important  for a longer period (the idea 
corresponds to the generalization o f  AR to A R M A  models) .  Several variations 
and extensions have been proposed in the literature. Nelson (1991)  proposes the 
exponential  G A R C H  model  to capture the fact that the stock market  is smoother  
in upward directions than in the opposite case (because of  the leverage effect). 
Gourieroux and Monfort  (1992)  suggest  a nonparametr ic  approach. They do not 
restrict attention to conditional variances that depend only upon past squared 
observations,  but they try to estimate the functional form o f  the conditional het- 
eroskedastic variance from the data. Another  important  extension is the G A R C H -  
M-type model  (cf. Engle et al., 1987). According to the Capital  Asset Pricing 
Model  one expects higher  returns due to risk premia if  the asset is more  risky. 
To model  this phenomenon  the conditional variance is also included in the mean 
equation. Lots o f  applications have shown the strength o f  the G A R C H  type o f  
modeling.  In this paper we do not refer to original application papers but we want  
to draw attention to the monograph  o f  Diebold (1988)  and the survey paper o f  
Bollerslev et al. (1992).  

Despite the success o f  the G A R C H  history there are several topics that re- 
quire attention. In this paper we consider  the distributional assumptions on the 
rescaled innovations. The original formulations o f  GARCH- type  models  assume 
that these residuals are standard normal. Diebold (1988) ,  however,  shows that 
this assumption is often violated in empirical  examples.  Typically,  the innova- 
t ions have fat-tailed dis tntmtions and they are also non-symmetr ic  in several ap- 
plications. Drost  and Werker  (1996)  provide an explanation for high kurtosis i f  
the observations arise from a G A R C H  data-generating process in continuous t ime 
(see also Drost and Nijman,  1993; Nelson,  1990a). Diebold (1988)  suggests that 
the errors will be 'more  normal '  i f  the process is more  and more  aggregated.  De- 
spite the observed non-normali ty  o f  the error structure, Weiss  (1986)  and Lee and 
Hansen (1994)  have shown that quas i -maximum likelihood est imation ( Q M L E ) ,  
based upon the false assumption o f  normality,  yields x/f~-consistent estimators: see 
also Lumsdaine  (1989) .  However ,  the efficiency loss may be considerable.  There- 
fore, several authors try to avoid efficiency loss, allov, i n g  the error structure to 
belong to some flexible parametric  family o f  distributions. Student t-distributions 
are very popular,  cf., e.g., Baillie and Bollerslev (1989).  As a drawback o f  the 
introduction o f  such parametric models  o f  the innovation distribution, we mention 
that the results o f  Weiss  (1986)  and Lee and Hansen (1994)  do not carry over  
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to general error distributions. While Q M L E  based upon the normal distribution 
yields x/~-consistent estimators, Q M L E  based upon other distributions (e.g., the 
student distributions) generally even fails to be consistent i f  the true distribution 
is different. 

In the approaches mentioned above, the stochastic error structure is still de- 
scribed by some finite-dimensional statistical model.  To avoid the introduction 
o f  a wrong parametric family o f  innovation distributions leading to inconsistent 
estimators and to be more  flexible, a semiparametr ic  approach is to be preferred. 
We w~.nt to estimate the conditional heteroskedastic character o f  the G A R C H  
process but we do not want  t~ restrict the class o f  error distributions too much. 
Apart  from some regularity condit ions we  will assume the distribution o f  the 
innovations to be completely unknown.  In passing we will consider  the case o f  
symmetrical ly distributed innovations.  A~ first sight, these types o f  est imation 
problems seem to be much harder  than the corresponding parametric ones and 
one would  expect  that optimal semiparometric est imators are less pr .~ise asymp-  
totically than optimal parametric estimators. For lots o f  interesting econometr ic  
models  this presumption turns out to be too pessimistic.  Adaptive est imation is 
oRen possible. Adaptive estimatio~.l is just  a special instance o f  semiparametr ic  
efficient estimation. Just as in parametric models ,  in semiparametr ic  models  an 
efficient est imator is an asymptotical ly normal  est imator with minimal  variance. 
I f  this minimal  variance is the same as when  the error distribution is known,  one 
calls the efficient est imator adaptive since it adapts, so to say, to the underlying 
error distribution. Typically, an est imator  based on a (wrongly)  specified error 
distribution is not efficient in the semiparametr ic  sense. For i.i.d, observations a 
lot o f  adaptive and semiparametr ic  results are available [cf., e.g., Bickel et al. 
(1993)  (BKRW,  1993 from now on)  and the survey papers o f  Robinson (1988)  
and Newey (1990)] .  Rigorous results are sparse in a t ime-series context. A R M A  
models  are considered in detail by Kreiss (1987a,  b). Some ~ s u l t s  for G A R C H  are 
obtained in Engle and Gonz~lez-Rivera (1991)  and Steigerwald (1992)  (se¢ also 
P6tsA:her, 1995; Steigerwald, 1995). Linton (1993)  discusses the semiparametr ic  
properties o f  A R C H  models  in more  detail. However ,  these papers impose rather 
high momen t  conditions. The parameter  estimates obtained in empirical  work  
generally fail these momen t  condit ions and, therefore, the scope for application 
seems to be limited. 

In Drost et al. (1997)  (henceforth DKW,  1997) a general L A N  theorem for 
t ime-series models  is presented together with condit ions guaranteeing the exis- 
tence o f  efficient estimators. We  will apply these results to G A R C H  type models ,  
including, e.g., I -GARCH and G A R C H - M ,  thus avoiding severe momen t  condi- 
tions. We  do not r~ed the existence o f  moments  neither o f  the rescaled inno- 
vations in the GA:_CH model  (admitting, for example,  Cauchy errors)  nor  o f  
the observations (as is clear from the inclusion o f  imegrated G A R C H  models) .  
Since we only assume the existence o f  a stationary solution o f  the G A R C H  
equations, our  approach captures the models  commonly  used. A general  L A N  
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theorem for time-series models is also contained in Theorem 13, Section 4, of 
Jeganathan (1995). Based hereon is his Theorem 17, Section 4, which yields 
adaptive estimators for ARMA-type location models. However, this result is not 
directly applicable to GARCH scale models and, moreover, it heavily leans on 
symmetry of the innovations. 

To keep notation simple we restrict attention to the popular and most commonly 
used GARCH(I ,  1 )-type models. This preserves the essential difficulty of  GARCH 
(with respect to ARCH) since both the AR and the MA part are present in the 
conditional variance equation. All past observations show up (at an exponentially 
decaying rate). The statement of  our theorem with respect to GARCH(I ,1)  is 
easily generalized to the general case of  GARCH(p ,q) .  

The first semiparametric results in a GARCH context were only partially suc- 
cessful. Engle and Gonz_Alez-R/vera (1991) state "Monte Carlo evidence suggest 
that this semiparametric method (i.e. the discrete maximum penalized likelihood 
estimation technique o f  Tapia and Thompson, 1978) can improve the efficiency 
of  the parameter estimates up to 50% over QMLE, but it does not seem to cap- 
ture the total potential gain in efficiency. In this sense we say that the estimator 
is not adaptive' in the class of  densities with mean 0 and variance 1; that is, the 
estimator is not" fully efficient, and it does not achieve the Cram6r-Rao lower 
bound. The infornmtion matrix is not block-diagonal between the parameters of  
interest (the ones in the mean and in the variance equation) and the nuisance 
parameters (the know of the density). If  we choose the parametric form of  the 
model with a conditional parametric density defined by a shape parameter, this 
one being part of  the parameters to estimate, we can show easily that the expec- 
tation of  the cross-partial derivatives of  the log-likelihood function respects the 
parameter of  interest and the shape parameter is different from 0. In other words, 
the estimation of  the shape parameter affects the efficiency of  the estimates of  
the parameters of  interest" (pp. 355-356).  These statements imply that the finite- 
dimensional parameter describing the GARCH model (with the standardized error 
distribution as nuisance parameter) is not adaptively estimable. This is not sur- 
prising since the classical GARCH forml:lation contains a scale parameter, and 
in most models the variance is not adaptively estimable. Therefore, the scale 
parameter is often included into the (infinite-dimensional) nuisance parameter. 
For the GARCH model this procedure does not work: the scores w.r.t, the re- 
maining autoregression parameteis are still not orthogonal to the tar:gent space. 
Hence, complete adaptive estimation of  the conditional heteroskedastic character 
is not possible in GARCH models. This explains the efficiency loss observed by 
Engle and Gonzfilez-Rivera (1991). However, calculation of  the scores w.r.t, the 
parameters of  the GARCH model shows that there are several orthogonality re- 
lations between the score space and the tangent space generated by the unknown 
shape. Linton (1993) and Drost et al. (1994) (henceforth DKW, 1994) obtain 
alone different lines a reparmnetrization of  the ARCH and GARCH model, re- 
spectively, such that the autoregression parameters are adaptively estimable and 
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the location-scale parameters generate the most difficult one-dimensional sub- 
problems. So, knowledge of  the shape of  the error distribution does not help 
to construct better estimators of the conditional heteroskedastic character of  the 
GARCH process. This resembles the regression model with unknown location 
p E R, regression parameter fl E R k and completely unknown error distribution, 
where the regression parameter/~ is adaptively estimable if  the location parame- 
ter is included into the nuisance (see Bickel, 1982). 

The paper is organized along the followiwg lines. In Section 2 we state the 
LAN theorem for a large set of  GARCH(I,I ) - type models, including all sta- 
tionary classical GARCI] models such as, e.g., I-GARCH and GARCH-M. This 
LAN property is derived for the parametric model with the shape of  the inno- 
vations known, and it implies the Convolution Theorem of Hajek (1970) which 
we will state next. This Convolution Theorem yields a bound on the asymptotic 
performance of  estimators in the parametric model and is valid, afort iori ,  for 
the semiparametric model as well. Section 3 is devoted to the construction of  
an estimator of  the autoregression parameters on the assumption that the shape 
of  the innovations is unknown, i.e. within the semiparametric model. This es- 
timator happens to attain the bound from the parametric Convolution Theorem 
and therefore is asymptotically efficient in the parametric model and hence in the 
semiparametric model, since it does not use knowledge about the shape of  the 
innovations. Such an estimator, which attains the parametric bound in a semi- 
parametric model, is called adaptive. The proofs of  these results are based on 
DKW(1997) and most of  them are given in the appendix. 

A small simulation study is presented in Section 4. It turns out that the sug- 
gested optimal estimator performs as expected: the estimator performs better than 
QMLE and the difference with MLE (if  the error distribution is known) becomes 
negligible when the sample size is growing large. The empirical illustration in 
this section shows that the efficiency loss by using QMLE may be considerable. 
Some conclusions are drawn in Section 5. 

2. LAN and Convolution Theorem 

We consider a generalization of  the reparametrized GARCH(p ,q )  model as 
given in Linton (1993), with p - - 0 ,  and motivated by adaptation arguments in 
DKW(1994). For notational simplicity, we take p - - q =  I. It~ this manner the 
essential difficulty of  an infinite number of  lags is retained. To obtain the corre- 
sponding results for the general case (with p , q  E N fixed) a careful replacement 
of  coefficients by vectors suffices. 

Let p E R ,  a > O ,  or>O, and f l>O be parameters and let {~t: t ~ Z }  be an i.i.d. 
sequence of  innovation errors with location zero, scale one, and density g. Put 
~t = #  + o, t  and note that ~t is a random variable with location /~, scale a, 
and density c r - l g ( { - -  p}/e) .  We introduce the following convention: random 
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variables,  like e and ~, denote a typical e lement  o f  the corresponding sequences 
{e/: t ~ 7/} and {~t: t ~ 7/}. 

Consider  the model  with observations 

y t = h ~ / 2 ~ t  :l~nt" Lt/2 + ~rh~/2~t, (2 .1)  

where  the unobservable  heteroskedastici ty factors ht depend on the past via 

ht = 1 + / ~ h t - !  + ~YLl  = 1 + h t - 1 ( ~  + oc~Ll). (2 .2)  

Observe  that the Euclidean parameter  0--(g,~ff,/~, a ) '  is identifiable. Throughout  
we  assume that Eq. (2.2)  admits  a stationary solution {ht: t E ~'}. A necessary 
and sufficient condition is given by (Nelson,  1990b, Theorem 2): 

A s s u m p t i o n  A. 

E ln{/~ + ~ 2 }  < 0 .  (2 .3)  

Our  semiparametr ic  analysis treats the density g as an infinite-dimensional nui- 
sance parameter  and includes all strictly stationary G A R C H  models  o f  type (2.1),  
(2.2).  These equations contain, e.g., the classical Engle ( 1 9 8 2 ) - B o l l e r s l e v  (1986)  
G A R C H  model  with a different parametrizat ion and with finite second moments  
(fl -t- 0ccr 2 < 1  and / z : - 0 ) ,  and the I - G A R C H  model  o f  Engle and 
Bollerslev (1986)  (f l+0~o "2= 1 and /~- -0) .  Furthermore,  our model  resembles 
the G A R C H - M  model  o f  Engle et al. (1987) .  In the mean  equation (2 .1)  we 
have included the conditional standard deviation o f  Yt while Engle et al. (1987)  
include a kind o f  conditional variance. More precisely stated, their model  is 
given by zt -~ ¢Sht --k Yt and p -- 0, i.e., zt = ¢Sht + ah~/eet. Inserting /~ = 0 in (2.1)  
or/~----~ = 0 in the G A R C H - M  model  yields the classical G A R C H  model.  Gener-  
ally, risk aversion is stronger pronounced in the original G A R C H - M  model  than 
in our formulation.  

Suppose that we  observe Y l , . . . , y n ,  and some starting value h01 initializing 
(2.2).  It is not needed that h01 arises f rom the stationary solution o f  (2.2).  
W e  are considering est imation o f  0, based on h o l , y ,  . . . . .  Yn, in the presence 
o f  the infinite-dimensional nuisance parameter  [/. However ,  in this section we 
will fix the nuisance parameter  g and in the resulting parametric model  we will 
derive a bound on the asymptotic performance o f  regular est imators o f  0. a so- 
called Convolut ion Theorem. To that end we choose local submodels  and we will 
study est imation o f  0 locally asymptotically.  The above-ment ioned Convolut ion 
Theorem holds once the log-l ikelihood ratios o f  the observed random variables 
are locally asymptotical ly normal  (LAN) .  

Observe that the model  with the autoregression parameters  ~ and jff fixed too, 
corresponds to the location-scale model  for i.i.d, random variables since the in- 
formation provided by the observations h0~, y~ . . . . .  Yn is equal to the information 
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contained in the i.i.d, random variables £1 , . . . ,  ~n- Consequently,  the location-scale 
model  is a parametric submodel  o f  our  t ime-series model  and it makes  sense to 
assume that this submodei  is regular, i.e. (see Hfijek and Sid ,~ ,  1967): 

Assumption B. The distribution o f  e possesses an absolutely continuous Lebesgue 
density g with derivative g '  and finite Fisher information for location 

~(~) =/{o'/g}2o(c)d~ 
and for scale 

/ { l  4-Egt /g(e)}2g(e)de.  &(o)  = 

Moreover,  the random variable ~ has location zero and scale one. 

(2 .4)  

(2 .5)  

To be able to derive an asymptotic  lower bound  we have to rely on semi- 
parametric methods  as presented in, e.g., B K R W ( 1 9 9 3 )  and DKW(1994 ,  1997). 
So we fix 0 at 00 =(o~o, flo, l~o, oo)' and choose local parametrizat ions On = 
(ctn,fln, Pn, On)' and On=(~n, fln, fin, On) ' such that  ]On--Oo[--O(n-t/2),  [On--Ool:  
O(n--I/2), and even 

An -- v/'n(0n -- 0,,) ---* 2, as n --, oo. (2 .6)  

In the remainder  expectations, convergences,  etc., are implicitly taken under  On 
and O (unless otherwise indicated).  

To obtain a uniform LAN theorem we consider  the log-likelihood latio An o f  
h0x,Yl, . . . .  y,, for 0n with respect to On under  On (and O fixed). Observe that the 
residuals and the condit ional variances up to t ime t can be recursively calculated 
from 0 and the observations h01 ,Yl , . . . ,Yt :  with h l (O) - -ho l ,  obtain for t = 1 ,2 , . . .  

¢,(0) = y , /hy2(o ) ,  

c,(0)  = { ~ , ( 0 ) -  #}/o,  

h,+~(0) = l + # h , ( 0 )  + ~y2. 

(2 .7)  

(2.S)  

(2 .9)  

Condit ionally on hol the density of" Yt . . . . .  Yn under  On is 

f l  o~lh~t'/2g(tr~ ' {h~l/ayt -- / tn})  = f l  o~'h~'/2 g({~nt -- I~n}/On) 
t = i  t----I 

lg 
= 1-[ ¢r~'h~'/eg(~,,t), 

t=l 

where hnt = ht(On), ~nt = ~t(On), and ~nt -- ~t(On). 
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To enhance the interpretation of  this formula and to stress the link between 
the present time-series model and the i.i.d, location-scale model we introduce the 
notation L , t  = hi(On ), 

:{z,a}(x)= loga({x- z}/cr)- log#, 

Snt -__ Ell2 _ Lt/2 ' 
O n f l n l  ~ O n r # n l  

(2.10) 

and ~.t --~t(On)- With A s the log-likelihood ratio for h01, the log-likelihood ratio 
An may be written as 

n 

: , ~  {¢'{(/gn, trn) "4- txnn-l/2(Mnt, Snt)}(~nt) -- :{lan, tXn}(~nt)} -t- A s 
l = l  

n 

-- ~{:{(0, I ) --F n-'/2(Mnt, Snt)}(e.nt) -- :{0, 1 }(ent)} "-k A s. 
t = l  

(2.11) 

This expression resembles the log-likelihood ratio statistic tbr the i.i.d, location- 
scale model but here the deviations M.t  and S.t are random. In the i.i.d, case the 
LAN theorem is obtained with deterministic sequences. We will apply the results 
o f  DKW(1997)  which allow for such random sequences. 

To get rid of  the starting condition in the log-likelihood ratk~ statistic we 
will use the following regularity condition [compare aesump,),en (A.3)  of  
Kxeiss (1987a)  and Assumption A of  DKW(1997)] .  

Assumpt ion  C. The density if0 o f  the initia/ value hol satisfies, under  On, 

A s = log{~o,/~o,(hol )} ~ 0 as n ---+ oo. (2.12) 

To make an appropriate expansion of  An it will be handy to in::'oduce the 
notation ~,u for the four-dimensional conditional score at time t. To be more 
precise, denote the two-dimensional  vector derivative of  the conditional variance 
by 

0 ( Y~-! ) (2.13) Hi(O) = ~(~,fl---------------~ht(O)= flH,_t(O) -I- ht_l(O) 

w i t h / - / 1 ( 0 ) = 0 2 .  Define the (4 x 2)-derivative matrix Wt(O) [motivated by differ- 
entiation of  (Mnt,Snt) with respect to 0.  at 0.] by 

W , ( O ) = e r - ~ ( ½  hT~(O)HdO)(#'~r) ) 
I2 

(2.14) 



F. C. Drost, C. A.J. Klaassen / Journal o f  Econometrics 81 (1997) 193-221 

denote the location-scale score by (with 1'--g'/g) 

:'(et(O)) ) 
q/,(O)= - l + ~,(o):'(e, to)) ' 

2 0 1  

(2.15) 

and put 

:~(0) = w, (0 )~ (0 ) .  

Then, the conditional score at time t may be denoted by g'nt = g~(0n). Observe that 
/ is just  the heuristic score. An expansion o f  (2. I 1 ) shows that the log-likelihood 
ratio An may be alternatively written as 

An= A,n_,/2 ~ ~,  1 -- g n  -1 ~ {AtLt} 2 + Rn. (2.16) 
t=l t----I 

The LAN result for the parametric version o f  model (2.1), (2.2)  is stated in the 
following theorem. The proof  is deferred to Appendix A. 

Theorem 2.1 (LAN) .  Suppose that Assumptions A - C  are satisfied. Then the 
local log-likelihood ratio statistic An, as defined by (2.11 ) and (2.16), is asymp- 
totically normal. More precisely, under On, 

R n L O, A n D_D N(_½),l(Oo))..A,i(Oo).~ ) as n--~oo,  (2.17) 

where I(0o) is the probability limit o f  the averaged score products gntg~nt. 

We are now in a position to apply the Convolution Theorem of  Hfijek (1970);  
cf. Theorem 2.3.1 of  B K R W  (1993, p. 24). 

Theorem 2.2 (Convolution Theorem).  Under the assumptions o f  the L A N  The- 
orem 2.1, let { T n : n E N }  be a regular sequence o f  estimators o f  q(0) ,  where 

q" IR 4 --+ I~ k is differentiable with total differential matrL, c q. As  usual, regular- 
ity at 0 "-Oo means that there exists a random k-vector Z such that f o r  all 
sequences {On :nE N}, with nl/2(On - 0 0 ) = O ( 1 ) ,  

ni/2{Tn--q(On)} D Z as n--+cx~, (2.18) 

o I 
where the convergence is under On. Let Z=  q(Oo)l(Oo)- i(Oo) be the efficient 
influence function, then, under 0o, 

( ) ( )  n ' / 2 { r .  - -  q ( O o )  - -  n-~E,=l t ' t }  D Ao 
n-I/2y'7=! ~ Zo as n ---, cx~, (2.19) 
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o ! o 
where  Ao a n d  Zo are  independen t  a n d  Zo is N ( O , q ( O o ) l ( O o ) -  q (Ooy) .  Moreover ,  
{ Tn : n E N } is ef f icient i f  { Tn : n E ~ } is a s y m p t o t i c a l l y  l inear in the ef f icient  
in f luence f u a c t i o n ,  i.e. i f  Ao --  0 (a.s.). 

As a conclusion from the Convolut ion Theorem we obtain that a regular  esti- 
mator  ~), o f  0 satisfies, under  00, 

- 00)  `40 + z 0 ,  

i.e. the limit distribution o f  On is the convolut ion o f  the random vector `4o and 
a Gaussian random vector with mean zero and variance the inverse o f  the infor- 
mat ion matrix I (0o) .  Since `40 add~ noise to the Gaussian vector  Z0, it is cl¢,~r 
that d o -  0 would  be preferred. This motivates  the usual terminology (as lower 
bound,  etc.) because ,40 = 0 is attainable in the majori ty o f  situations. 

In the remainder  o f  this paragraph we simplify exposit ion by supposing that 
the scores given above are stationary such that we may restrict attention to jus t  
one specific element;  compare  DKW(1994) .  In this way it is easier to compre-  
hend the specific adaptiveness features in the G A R C H  model.  These results are 
der ived along the lines o f  Sections 2.4 and 3.4 o f  B K R W  (1993) .  This exposi- 
tory simplification will be suppressed again in the next section when  deriving a 
(semiparametr ic)  efficient estimator. This optimal est imator satisfies the properties 
obtained in ( 1 ) - ( I V )  below. 

In a stationary setting the Fisher information matrix defined in the LAN The- 
orem 2.1 simplifies to 

I (0o )  = E l i ' - -  EWd./@'W' - EWl l~(g )W' ,  

where lls(g) is the information matrix in the location-scale model,  

( E(E')2 E~:(f') 2 ) 

/is(g) -- E~b~b' -- e~:(~f') 2 E( l d- ~:~f,)2 " 

I f  the ioca t io ,  parameter  p is known to be zero, as in the classical G A R C H  case, 
this formula simplifies even further to 

I (0o )  = I~(g)EW~ W~', (2 .20)  

where  Ws is the three-dimensional  subvector  o f  W concerning the relevant deriva- 
t ives with respect to the scale parameter  cr and where Is(g)----E(I - t-eel)  2 is the 
information for scale in the i.i.d, scale model.  

(I)  I f  g is known and if  we want  to estimate the autoregression parameter  
v----(=,fl)' in the presence o f  the nuisance parameter  ~ / -  (l~, or)' then we see that 
the efficient influence function, as defined in the Convolut ion Theorem 2.2, equals 

g7 ._. (-/2, 02×2  ) [ e / ~ '  ] - I f  "-  ( /2 ,  0 2 x 2  ) I ( 0 0 ) - !  ~- 
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As in Proposition 2 .4 . I .A and formula (2.4.3) o f  B K R W  (1993, pp. 28,30)  we 
may write 

: =  [ E l f : l * ' ] - l : x  * , (2 .21)  

where the so-called efficient score function E~* o f  v is obtained by the compo-  
nentwise projection o f  ~ ,  the first two elements  o f  L, onto the or thocomplement  
o f  [~] ,  the linear span o f  the last two components  o f / .  Here the inner product  
is the covariance and the or thocomplement  is taken in the linear space spanned 
by all components  o f  ~'. It is easy to verify that  

:~ -- ½oF -I {(H/h ) -- E(H/h )}(Iz, a)~, (2 .22)  

and that ~'1" is orthogonal to ~ indeed, since H/h =Ht/h: depends on the past 
only and is independent  o f  the present innovation et. 

( I I )  I f  g is unknown and i f  we want  to estimate v i :  the presence o f  the nui- 
sance parameters  r/ and O then we obtain the same efficient influence function. 
To see this note that the components  o f  ~l* as given in (2 .22)  are orthogonal  
to every element  o f  L°(v) by the independence o f  present (~ and e) and past 
(h and H ) .  By (3.4.2)  and Corollary 3.4.1.A o f  B K R W  (1993, pp. 70,72) we  
obtain 

l(Po l v,.~)>~ E::'::' (2 .23)  

for all regular parametric submodels  .~ o f  our  semiparametr ic  model  ~ ,  i.e. the 
information at P0 in est imation o f  v within the parametric submodel  .~ equals at 
least the information at Po in est imation o f  v within the parametric model,  studied 
in (I) ,  with 0 known. In other words,  as far z:s est imation o f  v is concerned,  no 
parametric model  .~ is asymptotical ly more  d:,fficult to first order (contains less 
information)  than the model  f rom (I).  Consequently,  the semiparametr ic  model  

i tself is asymptotical ly to first order as difficult as the parametric model  with 
g known,  i.e. the information matrix with respect to v evaluated at P0 for the 
semiparametr ic  model  ~ equals the lower bound in the parametric model  with g 
ki~own (case ( I ) ) ,  

1(P01 v,~,)  = Et ;e ; ' .  

Once more,  the efficient influence function is given by (2.21).  Apparently,  
introduction o f  the nuisance parameter  g in the presence o f  the Euclidean nui- 
sance parameter  r/ does not change the efficient influence fimction for v. Hence, 
est imation o f  v is asymptotical ly as hard not knowing  g as knowing  0- One usu- 
ally calls this adaptivity. Observe,  however,  that the presence o f  the nuisance 
parameter  w/ is important  to derive this result. I f  r/ is known adaptive e~tima- 
tion o f  v is not possible! The same conclusion applies i f  ~/ is included into the 
'b ig '  infinite dimensional  nuisance parameter  0. So, the nuisance parameter  t/ is 
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treated in another way than the nuisance parameter  O- Since location-scale pa- 
rameters  are almost always present in econometric models a different treatment is 
not unreasonable and the usage of  the protected notion 'adaptivi ty '  is legalized. 
However,  with the comments  above in mind, a more appropriate way of saying 
this is to call the parameter  v r/-adaptive, explicitly referring to the remaining 
nuisance parameters present in the model. [Of course, a similar remark applies 
to, e.g., the non-synmletfic regression model as discussed in Bickel (1982),  
where the regression parameter  fl is not fully adaptively estimable. In fact fl is 
/~-adaptive.] 

( III)  Estimation o f  the remaining parameter  r/ is completely analogous to the 
location-scale problem for i.i.d, variables. Obtain the wel l -known lower bound for 
t/ in the semiparametric location-scale model. It suffices to construct a sequence 
o f  estimators {~ , ,n  E r~} for r/ attaining this bound. Let 0, be some initial v/J-  
consistent estimator of  0, calculate h,t = ht(0n) by plugging in On into (2.9) and 
obtain the residuals ~,t = ~ t ( 0 , ) -  yt/h,,t I/2, similarly. I f  one proceeds as if the 
~,t are i.i.d, observations from some location-scale model,  one obtains a semi- 
parametric efficient estimator for 17 in our model (as is easily verified from the 
Convolut ion Theorem 2.2 by choosing an appropriate function q). To be more 
explicit, we assume that O has finite second moment  and we define the location 
and scale parameters by standardizing g via the equations E ~ -  0, Ege 2 -- 1. Then 
the square root o f  the sample variance is optimal for tr both in the symmetric 
and non-symmetric  case. The sample mean is optimal for /~ if  no symmetry is 
assumed and under the assumption of  symmetry one has to use an efficient es- 
t imator for the symmetric location-problem (cf. Example 7.8.1 of  BKRW, 1993, 
p. 400).  I f  one wants  to avoid moment  conditions on e one may define the 
location-scale parameter  in another way, see the discussion o f  the M-est imator in 
Section 3. 

( IV)  Finally, when estimating the whole Euclidean parameter  0, the efficient 
score is simply obtained from (II)  and (IIl) .  Following the arguments  leading 
to (2.23) in (II)  this score function yields a lower bound indeed. Optimality of  
this bound follows from (III)  by choosing the most  difficult direction from the 
location-scale problem. 

Obvious substitutions in Theorems 2.1 and 2.2 show that the conclusions above 
are also valid for the classical GARCH model with /~ =Eq.~ = 0 .  An optimal 
estimator o f  tr in the non-symmetric case is given then by the square root of  (cf. 
Example 3.2.3 of  BKRW, 1-.',-93, pp. 53-55)  

En ~.3t 

, = ,  

In the symmetric case the l imiting behavior o f  this estimator and the square root 
o f  the sample variance are the same. 
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3. Adaptive Estimators 

In classical parametric models the maximum likelihood estimator is asymp- 
totically efficient, typically. In semiparametric models such an estimation princi- 
ple yielding efficient estimators does not exist. However, there exist methods to 
upgrade x/J-consistent estimators to efficient ones by a Newton-Raphson tech- 
nique, provided it is possible to estimate the relevant score or influence func- 
tions sufficiently accurately. In Klaassen (1987) such a method based on "sam- 
ple splitting" is described for i.i.d, models. Schick (1986) uses both "sample 
splitting" and Le Cain's "discretization', again in i.i.d, models. See, e.g., Sec- 
tion 7.8 of BKRW (1993) for details. Schick's (1986) method has been adapted to 
time-series models in Theorem 3.1 of  DKW(1997). We assume the existence of  
such a preliminary, x/~-consistent estimator. 

Assumption D. There exists a x/n-consistent estimator ~ of  On (under On and g). 

For our GARCH model a natural candidate for such an initial estimator is 
the MLE based on the assumption of  normality of  the innovations Yr. One often 
calls this estimator the quasi-MLE. Probably, this QMLE is v/~-consistent tmder 
every density O with Eg~ 4 <o¢ ,  this has been shown by Weiss (1986) for ARCH 
models and under restrictions by Lee and Hansen (1994) for GARCH models, 
which are slightly different from ours; see also Lumsdaine (1989). The additional 
moment condition on v is needed there since a quadratic term appears in the 
score function of  the scale parameter. To avoid moment conditions altogether, 
one could use, e.g., another preliminary M-estimator, instead. Let X : R --, R 2 be a 
sufficiently smooth bounded function with monotonicity properties. As an example 
we mention X = (Xm,X2)' with 

2 
X l ( x ) -  l + e x p { - - x }  - 1 '  x E R ,  

the location score function for the logistic distribution and 

fo x exp{--y} 
Xa(x)= 2Y(l + e x p { _ y } )  z d y -  1, x E R .  

The M-estimator will solve the equations [cf. (2 .7) - (2 .9)  and (2.13), (2.14)] 

Wt(0)X(~t(0)) -- 0. (3.1) 
t----I 

Use of this M-estimator implies that one standardizes g at location 0 and scale 
1 by the equation Egx(e)=0;  in the normal case with QMLE this yields /t as 
expectation and ~r as standard deviation. 
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To prove that e~imat ion  via (3.1) shows validity of  Assumption D we have to 
prove existence o f  this M-estimator and its x/~-consistency. It should be possible 
to show the existence along the lines o f  Scholz (1971) by studying the 4 by 4 
pseudo-information matrix E W z z ' W ' ;  see also Huber (1981, pp. 138-139).  Here 
we will not at tempt to do this, since the situation is much more complicated 
than the location-scale problem studied in the literature. At the cost o f  some 
generality we suppose here that x/~-consistent estimators ~,~ and /~n are given. 
The x/'~-consistency of  ~, and/~,  together with the contiguity obtained from the 
LAN Theorem 2.1 implies that we may treat the parameters 0t and fl as given. So, 
we are in fact in the |.i.d. location-scale model and the M-estimators for /~ and 
tr solving the latter two equations in (3.1) are x/~-consistent; see Huber (1981)  
and Bickel (1982).  We conjecture that the proof  o f  ;he more general M-estimator 
solving (3.1)  can be given along similar lines. 

Here we will focus on efficient and hence adaptive estiraation of  the autore- 
gression parameters ot and fl (cf. ( 1 ) - ( I V )  o f  Section 2); alternatively, in view 
o f  (2.14), note that the score f',,t satisfies the form discussed in Example 3.1 
of  DKW(1997) .  In the appendix we verify the. conditions of  Theorem 3.1 in 
DKW(1997) ,  this yields the following theorem. 

Theorem 3.1. Under A s s u m p t i o n s  A - D  adapt ive  es t imators  o f  ~ and  ~ do exist .  

To describe our adaptive estimator more accurately, let On = ( ~n, ~n, ~ln, ~n ) t be 
a x/-n-consistent estimator of  0 and compute Wt(0n) via (2.13) and (2.14). Let 
gn| . . . . .  ~nn be the residuals computed from h l , y l , . . . , y ~  and 0, using (2.8). Via 
a kernel estimate based on an| . . . . .  ~, ,  with the logistic kernel, say k(-),  and 
bandwidth b,~ we estimate 0 ( ' )  by 

0 : ' ( ' ) =  n , = |  b,, b,, 

and subsequently ~(- )  by ~,,(-); here bn--* 0 and nb 4 --~ oo. Now our estimator 
may be written as 

- - !  

x -  ~ Wt(On)- - ~ Ws(O,,) ~n(~,,t). (3.2)  
n 1=1 n $ = |  

With 0n the QMLE this is the estimator used in the simulations of  Section 4. 
To prove that such estimators are adaptive we need the following two technical 
modifications. 

Discret izat ion:  On is discretized by changing its value in (0, cx~) x (0, oo) × ~ x 
(0, oo) into (one of) the nearest point(s)  in the grid ( c / v / ' n ) ( ~  x ~ x Z × N) .  
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This technical trick enables one t o  consider 0n to be non-random, and therefore 
independent of  ~nt, Yt, and hi. 

Sample splitting: The set of  residuals ~,1, . . . .  ~-n is split into two samples, 
which may be viewed as independent now. For ~n~ in the first sample, the second 
sample is used to estimate 0(-)  by ~n2(') and 0n(~nt) in (3.2) is replaced by 
~,2(~,,). Similarly for ~nt in the second sample, the first sample is used to estimate 
~(-). In this way, again some independence is introduced artificially to make the 
proof work. 

This approach has been adopted in DKW(1997). It should be emphasized that 
both trick3 are merely introduced as a technical device to make proofs work. 
Other approaches have also been studied in the literature. Klaassen (1987) has 
shown that discretization may be avoided at the cost of  an extra sample splitting. 
Schick (1986) and Koul and Schick (1995) show that sample splitting may be 
avoided at the cost of some extra conditions. 

4. Simulations and an empirical example 

To enhance the interpretation and validity of  the theoretical results of  the 
previous sections we present a small simulation experiment. Furthermore, a case 
study concerning some exchange rate series is given. 

We simulated several GARCH( 1,I ) series of  length n ~- 1000, parameters (~f l ,  
o ) - - (0 .3 ,0 .6 ,1 ) ,  (0.1,0.8,1), and (0.05,0.9,1) (the parameter /~ is set to zero 
and is not estimated to allow for a better comparison with previous simulation 
studies), and eight different innovation distributions: normal, a balanced mixture 
of two standard normals with means 2 and - 2 ,  respectively, double exponen- 
tial, Student's distributions with v -  5, 7, and 9 degrees of  freedom, and (skew) 
chi-scluared distributions with v - - 6  and 12 degrees of  freedom. These densities 
are rescaled such that they have the required zero mean and unit variance. 

It is the purpose of  the simulations to evaluate the moderate sample properties 
of  the autoregression parameters ~ and /~ which are adaptively estimable, in 
principle. For each series we estimated these parameters with MLE, QMLE, and 
a one-step semiparametric procedure. For the latter estimation method we made 
two estimates: one under general assumptions on the innovation distribution and 
one under the extra assumption of  symmetry. The theoretical results imply that 
there should be no difference between these two semiparametric methods if the 
true m~derlying density is symmetric indeed but small sample properties may 
differ. In the semiparametric part we used standardized logistic kernels with a 
bandwidth of  h = 0.5. Reasonable changes of  the bandwidth, say 0.25 < h  40.75,  
or another kernel like the normal one do not alter the conclusions below. 

In the first part of the simulation experiment we compared the ML estimator 
with the semiparametric ones (with the MLE as initial starting value). Asymptot- 
ically both semiparametric estimators should behave as well as the MLE but one 
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may expect that the small sample properties o f  the semiparametric estimators are 
worse due to the inherent problems of  choosing the bandwidth. These results are 
not reported here but they are comparable to those given in Table 1, from which 
MLE can be compared to the semiparametric procedure with the less efficient 
Q M L E  starting value. 

O f  course, ML estimation is not feasible in practice since the underlying dis- 
tribution is not known.  Therefore, we  used the QMLE as starting point. Since 
/~ vanishes for the situation chosen here and act z + fl < I, Theorems 2 and 3 of  
Lee and Hansen (1994) are applicable and the Q M L E  is v/-n-consistent. This es- 
t imator has been improved by the one-step Newton method. For convenience we 
also report the behavior of  the unfeasible MLE in Table I. The mean values of  
the estimates in 2500 replications are given together with their sample standard 
deviations. 

To calculate the efficiency of  the QMLE,  observe that the asymptotic variance 
of  the QMLE is equal to the well-known variance fommla A - I B A  - n ,  where 
A is the expectation under  (~¢,fl,~r,O) of  the second derivative o f  the pseudo 
log-likelihood (with a wrongly specified normal densi ty)  and B the expectation of  
the squared first derivative. With Ws as defined just  below (2.20), straightforward 
calculations show 

A = 2EWs Ws', 

B = (K -- 1 )EW~Ws', 

where x = f e40(e)de. Except for the normal distribution, the matrices A -n and 
B-~ are generally not equal. Since the asymptotic variance o f  the QMLE is equal 
to the lower bound up to a constant, the asymptotic efficiency o f  each component  
o f  the Q M L E  is given by 

(~¢ - -  1 ) I s ( 0 )  

4 4 
= ~ 1 .  

f (e2  _ 1)2g(~)d~ f ( l  + ~:~t(~))2g(~:) dc 

The latter inequality follows from Cauchy-Schwarz  applied to the following iden- 
tit),: 

- - 2 - - E ( e  2 -  1)(1 + e~t(e , ) )  - -  f ( e  2 - I X I  + t ¢ ' ( c ) )g (e )de .  

Since the lower bound for 0t and fl does not change in the semiparametric setting, 
this expression also entails the loss in the semiparametric model and shows the 
(potential)  gain of  the semiparametric estimator (3.2). 

Except for the mixture distribution we can exactly calculate the effÉciency of  
Q M L E  with respect to MLE. For the standardized double exponential the relative 
efficiency is ~, for standardized Stud~.~t distributions with v degrees of  freedom 
it is 1 -  1 2 / v ( v -  1 ), and for standardized chi-squared distributions with v degrees 
o f  freedom it is ( v - - 4 ) / ( v + 6 ) .  For these heavy-tailed distributions the efficiency 
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Table ! 
Compar i son  o f  MLE,  QMLE,  and  two semipmmnet ,~c one-s tep est imators  in the  G A R C H ( I , I  ) mode l  
with eight different s tandardized innovat ion distributions. N u m b e r  o f  ob~,ervations n--- I000,  true pa- 
rameters ( ~ , ~ ) = ( 0 . 3 , 0 . 6 ) ,  (0.1,0.8) ,  and (0.05,0.9) ,  respectively.  The  sample  means  o f  2500  inde- 
pendent  replications and their  sample  standard deviat ions are given 

0.300 0 .600  0 .100  0 .800  0 .050  0 .900  

N M L = Q M L  0.298 0.593 0.071 0.056 0.099 0.786 0.035 0.073 0.047 0.891 0.022 0.051 
l -s tep 0.298 0.593 0.072 0.057 0.098 0.786 0.036 0.074 0.047 0.892 0.022 0.050 
I -s te lRsym) 0.298 0.593 0.072 0.056 0.099 0.786 0.036 0.073 0.047 0.891 0.022 0.051 

DE ML 0.299 0.592 0.080 0.070 0.099 0.782 0.038 0.083 0.048 0.885 0.023 0.061 
Q M L  0.303 0.588 0.089 0.079 0.100 0.776 0.043 0.094 0.048 0.880 0.026 0.073 
I-s tep 0.294 0.593 0.085 0.074 0.097 0.784 0.040 0.087 0.046 0.886 0.024 0.067 
I - s tep(sym)  0.295 0.592 0.083 0.073 0.097 0.783 0.039 0.086 0.046 0.885 0.024 0.065 

N M  ML 0.295 0.595 0.058 0.041 0.098 0.790 0.029 0.054 0.047 0.898 0.018 0.0.;0 
Q M L  0.295 0.595 0.059 0.042 0.097 0.790 0.030 0.054 0.046 0.897 0.018 0.032 
l -s tep  0.295 0.595 0.060 0.043 0.098 0.793 0.030 0.056 0.047 0.901 0.018 0.032 
I - s tep(sym)  0.295 0.595 0.059 0.042 0.0q9 0.793 0.030 0.056 0.047 0.901 0.018 0.032 

M L  0.295 0.592 0.076 0.067 0.100 0.787 0.036 0.071 0.048 0.888 0.021 0.054 
Q M L  0.296 0.586 0.098 0.086 0.101 0.777 0.047 0.I01 0.048 0.879 0.027 0.083 
l -s tep 0.284 0.594 0.080 0.071 0.094 0.791 0.037 0.081 0.044 0.890 0.022 0.064 
I - s tep(sym)  0.285 0.594 0.079 0.070 0.095 0.791 0.037 0.081 0.045 0.889 0.022 0.063 

ML 0.296 0.595 0.075 0.060 0.100 0.782 0.037 0.079 0,047 0.885 0.021 0.063 
Q M L  0.298 0.592 0.086 0.070 0.101 0.776 0.042 0.094 0.047 0.882 0.024 0.076 
I-s tep 0.291 0.597 0.078 0.064 0.096 0.784 0.038 0.082 0.045 0.886 0.022 0.068 
l - s t ep ( sym)  0.292 0.597 0.077 0.063 0.097 0.783 0.038 0.082 0.045 0.886 0.022 0.068 

ML 0.298 0.592 0.076 0.060 0.098 0.783 0.037 0.077 0.047 0.887 0.022 0.058 
Q M L  0.300 0.591 0.083 0.066 0.099 0.781 0.040 0.085 0.048 0.886 0.024 0.064 
l -s tep 0.295 0.593 0.079 0.062 0.096 0.785 0.038 0.080 0.046 0.889 0.022 0.057 
l - s t ep ( sym)  0.295 0.593 0.077 0.062 0.096 0.784 0.038 0.079 0.046 0 .9°9  0.022 0.037 

X 2 ML 0.297 0.596 0.042 0.034 0.099 0.796 0.{)20 0.036 0.050 0.899 0.012 0.022 
Q M L  0.299 0.589 0.091 0.073 0.101 0.780 0.042 0.096 0.048 0.884 0.024 0.072 
l -s tep 0.283 0.603 0.062 0.051 0.092 0.801 0.030 0.061 0.045 0.898 0.017 0.047 

~22 ML 0.298 0.596 0.057 0.045 0.099 0.794 0.029 0.048 0.048 0.893 0.016 0.036 
Q M L  0.299 0.592 0.084 0.064 0.100 0.782 0.041 0.079 0.047 0.881 0.023 0.071 
l -s tep 0.289 0.598 0.063 0.051 0.095 0.796 0.032 0.061 0.045 0.891 0.018 0.049 

losses o f  QMLE with respect to MLE show up in Table 1 and we  see that 
the semiparametric methods regain most  o f  the loss caused by the inefficient 
QMLE method. For light-tailed alternatives, as in the mixture case, the situation 
is less clear cut. There the efficiency is approximately 0 .94 and the performance 
o f  the estimators is not much different. For the normal distribution MLE and 
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Q M L E  are o f  course equivalent. The use o f  the additional symmetry information 
hardly improves the estimated standard deviation o f  the semiparametric estimator 
(maximal  0.002), just as expected from our general theory. In empirical data 
sets, one often observes outlier-type innovation distributions with high kurtoses. 
Therefore, it seems worthwhile to apply the semiparametric estimation programs 
in these situations. 

We conclude this section with a simple empirical example based on daily 
data. We applied our estimation methods to 15 logarithmic differenced exchange 
rate series for the period 1 January, 1980 to 1 April, 1994 (n----3719): Austrian 
Schilling (AS) ,  Australian Dollar (AD),  Belgium Franc (BF),  British Pound (BP),  
Canadian Dollar (CD),  Dutch Guilder (DG),  Danish Kroner (DK),  French Franc 
(FF),  German Mark (GM),  Italian Lire (IL), Japanese Yen (JY),  Norwegian Kro- 
ner (NK),  Swiss Franc (SF),  Swedish Kroner (SK),  and Spanish Peseta (SP),  all 
with respect to US Dollar. These data are taken from Datastream. To facilitate 
the interpretation o f  the autoregression parameters we have standardized the series 
such that the QMLE of  ¢r equals 1. In all series both the QMLE method and the 
scmiparametric procedure estimate the persistence ~ r  2 + fl less than one (for the 
semiparametric estimates this cannot be inferred from Table 2 since the semipara- 
metric estimate o f  ,7 is not constrained to equal 1). The estimates based on the 
original data sets are given in the first four columns of  Table 2. O f  course, we 
used the variance formula A - ~ B A - ~  for the direct estimate o f  the standard devia- 
tion o f  the QMLE.  As described above, the parameter estimates produced by the 
semiparametric procedure are not very sensitive to the choice o f  the bandwidth. 
However,  it turns out that the direct variance estimates change dramatically (even 
for small changes o f  the bandwidth). Therefore, these estimates are not reliable 
and they have been deleted from the table. 

For tile simulation study above the situation was quite different since we es- 
t imated the variance o f  the semiparametric one-step estimators from indepen- 
dent parameter estimates in the i-eplications. I Icre we have only one data seL 
Independent replications are not available. This leads to the following para- 
dox. On the one hand, one may have the imprecise QML estimate with quite 
large estimated standard deviations. So it may be possible that the hypotheses 
o f  integrated G A R C H  or no conditional heteroskedasticity cannot be rejected. 
On the other, one has the improved semiparametric estimate which allows for 
more powerful tests. But since the estimated standard deviations are unreliable 
one can get any answer one wants by changing the bandwidth. To avoid this 
paradox, we propose to use the bootstrap. I.e. simulate replications o f  the orig- 
inal data set with the estimated parameter and the estimated innovation distri- 
bution as inputs and proceed as in the case o f  simulations described above. 
Then we have several parameter estimates available from which we calculate 
the straightforward sample estimate o f  the variance. In this manner we only 
rely upon the parameter estimates and not on direct estimates o f  the variance. 
Hence, the variability o f  the variance due to different bandwidth choices is greatly 
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Table 2 
Comparison of  QMLE and a semiparametric one-step estimator for several logarithmic diffs:~c,~xl 
daily exchange rate series. Observation period I January 1980 to 1 April 1994 (n ---- 3719). The first 
part of  the table gives the estimates based on the original data set. Estimated standard deviations are 
deleted for the semiparametric estimators. The sample means and sample standard deviations o f  500 
bootstrap replications are given in the second half o f  the table 

Estimates based on 
Original data Bootstrap samples 

¢~., dp 

AD QMLE 0.129 0.843 0.075 0.034 0.116 0.828 0.044 0.063 
l-step 0.253 0.867 O. I 12 0.844 0.027 0.024 

AS QMLE 0.075 0.891 0.013 0.016 0.073 0.888 0.018 0.018 
l-step 0.113 0.897 0.072 0.890 0.014 0.013 

BF QMLE 0.068 0.902 0.01 ! 0.023 0.068 0.899 0.019 0.018 
l-step 0.093 0.906 0.065 0.903 0.0 i 3 0.0 i 4 

B P QMLE 0.052 0.932 0.008 0.0 ! 3 0.05 ! 0.93 ! 0.0 ! 5 0.012 
I-step 0.055 0.932 0.050 0.931 0.012 0.010 

CD QM LE 0.138 0.798 0.042 0.062 0.139 0.793 0.032 0.03 ! 
I -step 0. ! 69 0.809 0. ! 33 0.797 0.021 0.021 

DG QMLE 0.078 0.888 0.013 0.016 0.077 0.886 0.018 0.018 
I-step 0.107 0.916 0.076 0.887 0.015 0.014 

DK QMLE 0.067 0.902 0.011 0.016 0.065 0.898 0.015 0.016 
l-step 0.095 0.920 0.064 0.90 ! 0.012 0.0 i 4 

FF QMLE 0.088 0.873 0.0 ! 6 0.0 i 7 0.088 0.869 0.023 0.022 
i-step 0.119 0.913 0.085 0.872 0.017 0.017 

GM QMLE 0.073 0.894 0.012 0.013 0.073 0.891 0.017 0.018 
I-step 0.095 0.925 0.072 0.893 0.014 0.015 

IL QMLE 0.093 0.869 0.016 0.031 0.092 0.864 0.022 0.020 
l-step 0.109 0.896 0.090 0.867 0.019 0.017 

JY QMLE 0.059 0.89 ! 0.017 0.025 0.060 0.888 0.0 ! 6 0.026 
I -step 0.078 0.9 ! 2 0.057 0.891 0.0 ! 2 0.02 i 

NK QMLE 0.080 0.907 0.009 0.014 0.078 0.906 0.023 0.015 
I-step 0.092 0.9 ! 6 0.075 0.908 0.017 0.0 ! 0 

SF QM LE 0.059 0.904 0.012 0.0 ! 3 0.058 0.90 ! 0.0 ! 4 0.019 
i-step 0.064 0.922 0.057 0.903 0.012 0.0 ! 5 

SK QMLE 0.221 0.754 0.035 O. 119 0.210 0.75 i 0.049 0.038 
l-step 0. ! 85 0.839 0.209 0.756 0.032 0.020 

SP QMLE O. 106 0.871 0.014 0.032 0.1 04 0.868 0.027 0.020 
l-step 0.171 0.912 0.100 0.870 0.021 0.014 

r e d u c e d .  S o m e  s i m u l a t i o n  e x p e r i m e n t s  s h o w  t h a t  t h i s  p r o c e d u r e  w o r k s  q u i t e  w e l l .  

W e  a p p l y  t h e  b o o t s t r a p  p r o c e d u r e  to  o u r  d a t a  s e t s  a n d  w e  r e p o r t  t h e  s a m p l e  

m e a n s  a n d  s a m p l e  s t a n d a r d  d e v i a t i o n s  in  t h e  f ina l  f o u r  c o l u m n s  o f  T a b l e  2 .  

O b s e r v e  t h a t  t h e  e s t i m a t e d  s t a n d a r d  d e v i a t i o n s  o f  t h e  s e m i p a r a m e t r i c  e s t i m a -  

t o r s  o f  t h e  h e t e r o s k e d a s t i c  p a r a m e t e r s  a r e  b e t w e e n  f o u r  t e n t h  ( A I D )  a n d  n i n e  

t e n t h  ( I L )  o f  t h e  e s t i m a t e d  o n e s  f o r  t h e  Q M L E  m e t h o d .  T h i s  i m p l i e s  t h e  eff i -  

c i e n c y  o f  t h e  Q M L E  m e t h o d  l i e s  a p p r o x i m a t e l y  i n  t h e  i n t e r v a l  ( 0 . 1 5 ,  0 . 8 0 )  in  
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these special examples. The efficiency gain is also supported by the plots in 
Fig. 1 of  the nonparametric density estimates and the corresponding score esti- 
mates which are far away from the normal density and score. Although these 
figures suggest some skewness of  the exchange rate densities, they are close 
to the densities of  Student's t~-distributions with v between 4.1 and 5.4. If 
the true underlying density would be symmetric, we expect from the simula- 
tion study that the symmetric nonparametric procedure performs slightly better 
in moderate samples. However, in the exchange rate applications the latter pro- 
cedure yields somewhat larger standard deviations (0.003 for AS and less than 
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Fig .  ! .  C o m p a r i s o n  o f  e s t i m a t e d  dens i t i e s  a n d  s c o r e s  w i th  tv-clensities a n d  s c o r e s  fo r  seve ra l  l o g a -  
r i t h m i c  d i f f e r e n c e d  d a i l y  e x c h a n g e  ra te  ser ies .  O b s e r v a t i o n  p e r i o d  8 0 0 1 0 1 - 9 4 0 4 0 1  (n  = 3 7 1 9 ) .  
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Fig. !. Continued. 

0.002 for the others, these values are not reported here). This indicates that 
the true densities are not fully symmetric and hence the symmetric semipara- 
metric approach may lead to wrong conclusions.  Since the possible  moderate 
sample loss is very small it seems to be safer to use the ordinary non-symmetric  
improvement.  

Finally, w e  note that the simulation results o f  Table 1 show that all estinuttors, 
even the unfeasible MLE, tend to underestimate the heteroskedasticity parameters. 
This negative bias explains why  in Table 2, on average, the bootstrap estimates 
are less in value than the original estimates. 
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5. Conclus ions  

In this paper we studied the semiparametr ic  properties o f  (;.nteg~at:~.d) G A R C H -  
M-type models.  In this model ,  adaptive est imation is not possible. This fact is 
completely  caused by a location-scale parameter.  After  a suitable reparametriza-  
tion o f  the model  we s imwed that the est imation proble~l: o f  the parameters  
characterizing the conditional heteroskedastic character  o f  the process is equally 
difficult in cases where  the innovation distribution is known or unknown,  respec- 
tively. In that sense we  may call these parameters  still adaptively estimable. This 
property is der ived in a general G A R C H  context avoiding momen t  condit ions and 
including integrated G A R C H  models.  The simulations showed that this property 
is not only interesting from a theoretical point o f  view. In moderate  sample 
sizes with n = 1000 observations,  usually available in fin~,r, cial t ime-series,  the 
semiparametr ic  procedures work  reasonably well. Me~t c f  the loss caused by 
the Q M L E  method  (instead o f  the infeasible M L E  method)  is regained by the 
one-step est imator  in case o f  the interesting group o f  heavy-tai led alternatives. 
Moreover,  the empirical  example  showed that the efficiency loss caused by the 
Q M L E  method  may be considerable.  

It is clear from the exposit ion in this paper that the adaptivity results carry over  
to complicated models  with t ime dependent  mean  and variance structures, e.g., 
A R M A  with G A R C H  errors. The basic condit ions given in D K W ( 1 9 9 7 )  do not 
seem to put serious restrictions on the models.  However ,  a complete  verification 
o f  the technical details may  be much more  demanding.  

Appendix  

Proof  o f  the L A N  Theorem 2.1. Since the general G A R C H  mod~l (2 .1 ) , (2 .2 )  
is a location-scale model  in which the location-scale parameter  only depends on 
the past, our  model  fits into the general t ime-series f ramework  o f  DKW(1997) ,  
especially Section 4. Therefore,  it suffices to verify the condit ions (2.3 ' ) ,  (A.1) ,  
and (2 .4)  o f  DK'0.r(1997). In passing we also prove (3 .3 ' )  o f  D K W ( 1 9 9 7 )  which 
we will need in the p roof  o f  Theorem 3.1. I.e., with the notation introduced 
in (2.10),  (2.14),  and (2.15),  and hs(O) the expectat ion under  0 o f  the product  
~ ( 0 ) ~ ( 0 ) ' ,  we have to show, under  00, 

n - |  ~ Wt(Oo)Its(g)Wt(Oo)' P-~ I(0o) > O, 
t = l  

p 
n - l  IWt(00)121{a-,/,lW,(00)l>~} ~ 0, ( A . I )  

t = |  

n - !  ~ ,  Wt(Oo) P-~ W(Oo), (A.2)  
t = l  
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n-'  ~ [Wt(O~)- Wt(0o)] 2 ~ 0, (A.3) 
t = l  

and, under On, 

i n - t / 2 ( M m ,  N~t )  ' - -  W t ( O ~ ) ' ( O n  - -  0n)l 2 P 0, 
t = l  

(A.4)  

for some positive-definite matrix I(0o) and some random matrix W(Oo). Together  
with their Lemma A. I ,  these four relations yield the desired conclusions. We 
prepare the proof  by deriving some helpful results. 

Although W~(0o) is not stationary under  00, the following proposition shows 
that these variables can be approximated by a stationary sequence. 

Proposi t ion A. I .  Let ht(O), Ht(O), and Wt(0) be given by (2.9), (2.13),  and 
(2.14), respectively, and let hst(0), Hst(O), and W,.t(0) be their corresponding 
stationary solutions under 0, i.e. 

co j 
h,,(O) = E l-I {,e + ~ ¢ L ~ } ,  

j=Ok=l 
H~,fO) = ~ ,  ~ , . , - , - i (O)  1 " 

a :=O 

Wst(O ) = 6 - - 1 ( l h ~ t l ( O ) H s t ( O ) ( l J ' 6 ) )  
12 

Then, under  0o, 

n 
n -1 ~ IWt(00) - W~t(00)] 2 - -  0 (a.s.) as n --~ oo. (A.5)  

t = i  

Proof. We adopt the convention that empty sums are equal to zero while empty 
products are equal to one. Iterating ht(O) yields 

h,(0)  = I + #h,_~(O) + ~YL~ = l + h , _ , ( 0 ) { ~  + ~ ¢ L , ( 0 ) }  

~-I j i 
= ~ 1-I {P + ~ , 2 - k ( 0 ) t  + h,_,(O) 1-I {/~ + ~ L k ( 0 ) } ,  

j=Ok=t k=l 
O ~ i ~ t - - l ,  

(A.6)  

and hence 

i 
2 0 - ;  h,_i(O)/h,(O)~ 1"I {~ff + ~ t - k (  )} • 

k = l  
O ~ i ~ t - - l .  (A.7)  
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Under 0, the calculated variables ~t(O) simply are the true innovations ~t in (A.6) 
and (A.7). For the stationary random variables h s t ( O )  w e  obtain similar relatiop.s, 

i - I  j i 
h,,(O) = ~ H {/~ + o,~,%,} + h,,,,_,(0) 1-I { 8  + o:~,2-k}, 

j=Ok=-I k : l  
O<~i, 

i 

hs. t_ i (O) /hst (O)<<.  ]-I {8 + ~x~Lk} - l ,  0~ i ,  
k = l  

and hence, under O, we obtain 

i - - !  j 

Ihst(O)ht_i(O) - ht(O)hs.t-~(O)l = Ihs, t - i ( O )  - ht-i(O)! ~ l-I { 8  + o~2t-k} 
j = O k = l  

t - l - i  
< ~ h t ( O ) [ h s ~ ( O ) -  hz(0)l I-[ {8 + e~-z-k}  

k = l  

i t - - i  

= h t ( O ) l h , ~ ( O )  - h~(0)l I-[ {8 + ~x¢,2-k } - '  ]-I {8 + cx¢I}, O<~i<<.t  - 1. 
k=l  k=l  

With C some generic constant only depending on 0 we obtain, under O, 

IwA0) - w~,(0)l ~< C}Ht(O) /h , (O) -  Hst(O)/h,t(O)l 

,h,_,_,(o), h,(O) l <~ c ~ I - 
i---O 

I( )! +C E 8~h,,_~_~(O) ~2_~_, 
i=t-I hst(O) ! 

t--1 t - 2  i 8 

<~ Clh,~(O) - h~(0)[ 1-I {8 + ~ }  ~ 17[ 
k=l i=0 k--~ 8 + ~ 2 k  

+ c  ~2 
" ~  ~ , , I k=l 8 + ~ L k  

I - - I  

<~ CIh, m(O) - h~(O)l(t - 1) I-I {8  + ~ }  
k=l  

+ c  [1 ~ E 
i=-- i k=O 

By (2.3) the fight-hand side tends to zero (a.s.), as t ~ oo. Ces~ro's theorem 
completes the proof  of  the proposition. [] 

Intuitively it is clear that slight perturbations o f  the parameters yield solutions 
o f  Eqs. (2.1) and (2.2) that are close. The following proposition makes this more 
precise. Just as expected from heuristic formal calculations, the leading term o f  
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hnt/hnt- I is a linear combination of the components of Hnt/hnt which appears in 
the s c o r e  int. 

Proposition A.2. Let ht(O) and Hi(0) be given by ( 2 . 9 / a n d  (2.13), respectively, 
and define 

)I Qt(O) = Ht(O)/ht(O) = ~ ht(O) 
i=o ht-l-i(O) 

= t-2~iht-l-'(O)i=O ~ ht(O) (~P- I I i (O) )  

Rt(O,O) = ht(O)/ht(O) - 1 -- (~ -- o~,~ -- p)Qt(O) .  

Let On and O. satisfy the conditions just above (2.6). Put Q. t - -Q~(On)  and 
R . t  = Rt(  On, On ). Then, under On, 

n n 

n - !  ~ IQ.,I 2 - Op-( ! ) ,  n - !  Y~ IQ.,121{.- , :21O~1>~} ~ O. 
t = i  t=l 

(a.s.) as n --~ c~, (A.8) 

P r o o f  By Eq. (A.7) we obtain 

,-2 ++t p (<~p_~_+(O) ) 
Q,(0)~<I~-' E I-[ 

~=-o +=, # + ~,2_k(0) 1 " 

For n sufficiently large, this latter relation shows that, under On, [Qnt[ may be 
bounded by the product of  a constant depending on 00 only and the stationary 
sequence 

s,=EI-I , ~ • 
~=ok=l Po + ~o~t-k 

Note that all moments of  St exist. The relations concerning Qnt are easily ob- 
tained. 

To prove the result concerning the remainder term Rnt note that an explicit 
relationship for the difference of  ht(O) and ht(O) is given by [compare (2.3) o f  
Kreiss, 1987a] 

+_2 ( ) 
h,(O) - h,(O) = ~ IPh,-~-,(0X~- =,i~ - i~) ~'2-~-~(0) 

i = 0  l " 

n 2 
~, Rnt ---* 0, (a.s.) as n ---+ oo. (A.9) 
t=l 
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Hence, the remainder term Rt(O, O) is given by 

t - 2  ) h t - l - i ( 1 9 )  (~2_l_i(O) ) 
g , ( O , O )  = E ( ~ '  - 1~' (~ - ~ , ~  - p )  i=0 h i ( O )  1 " 

Chot,,e c > 1 such that Ecflo/( f lo4-  ~t0~21)< 1. By the mean value theorem, there 
exists a /~m in between /~n and fin such that, for n sufficiently large, 

Just as for Qm, we may bound R.t by the product o f  a constant times n -L and 
the stationary sequence 

i Cfl 0 
s . =  ~ , i  l-I , 2 • 

i=o k=! flo + ~to~,_k 

The proof of the proposition can bc easily completed. [] 

Now we are ready to prove (A.1)-(A.4).  Define 1(t9o) -- EooWsl(Oo)lts(g)W~,(19o) ' 
and W(Oo)  -- E00 Wsl(00) (the existence of these quantities can be obtained along 
the lines of the proof of Proposition A.2 since [W~t(Oo)l is bounded by the product 
of St and a constant depending on 00, only). Obviously, the relations (A. 1) and 
(A.2) hold, true if Wt(190) is replaced by the stationary ergodic sequence Wst(Oo). 
Consequently, Proposition A.! implies the validity of these relations for Wt(00) 
itself. 

To prove (A.4) we will use Proposition A.2. Writing An = (A~n, A~n)' with Aln 
(A2n) the first (latter) two components of An, and defining 

Z(X) : {--I .4- 2(vfi .4"X-- l)/x}l{x:>_l}, 

w e  s e e  

n 

I n - i / 2 ( g n t ,  Snt ) ' - WdOn)'(O. - 0.)l ~ 
t----l 

= ~;-2.-~ ,=1 ~ I (~"'e")' 

{' ' ' v:~"., } × g()qnQnt  .4- x/ '~Rnt)Z(n-i/2).~nQn ` .4- R,,,) .4- g 

..]_n_i/2~.2 n l t [2 g AlnQnt . 

Together with Proposition A.2, Lemma 2.1 of DKW(1997) (with Y,,t =).~nQnt, 
Xnt = AtlnQnt + x/'nRnt, and the function ~b- Z 2 as above) yields (AA). 
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Finally, we have to prove (A.3). Note that 

IWt(0~) - Wt(00)l 2 <<. ClQt(On) - Qt(Oo)l 2 + ClQt(Oo)12lOn - 0012 

and obtain contiguity o f  Po~ and Poo from (A. I )  and (A.4),  and Theorem 2.1 o f  
DKW(1997).  Then the required result is easily obtained from 

t-2 _ .  _,(O) ( ~t2 _,(O) ) Q,(O) - Qt(O) - ~ ([3' - [3i) h i - !  -~ 
i=0 h,(O) 1 

+ Q,(o){(O, - 6 ~ ) ' Q , ( # )  + R,(O, 0)} ( 0 ) 
-- t ~  ~ i h t _ l _ i ( O )  {(Ol - O1) 'Qt_l_ i (O)-~-  R t _ l _ i ( O , O ) }  

i = 0  h, (O)  

along the lines o f  the proofs of  the propositions above. This completes the proofs 
o f  the theorems in Section 2. [] 

P r o o f  o f  Theorem 3.1. It suffices to verify the conditions o f  DKW(1997) .  These 
reduce to ~A.1 ) - ( A . 4 )  above, which are verified there, and the existence of  an 
estimator ~n('), based on e l , . . . , c n ,  of  ~b(-) -- - (1 ' ( - ) ,1  .-b-I'(-)) ' ,  from (2.15), 
satisfying the consistency condition 

/ [~n(x) -- ~ ( x ) 1 2 0 ( x ) d x  P-~ O, under O- 

Indeed, such an estimator exists in view of  Proposition 7.8.1 o f  BKRW (1993) 
1~. 400, with k -  0 and k -  1; see also Lemma 4.1 of  Bickei (1982). The estimator 
~'n(') in Section 3 is based on these constructions. [] 
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