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tion problems for a class of delay equations has 
been proposed in [7], but this approach does not, 
in general, lead to compensators of the standard 
finite-order type. 

We show that the 'direct approach', developed by the 
author for stabilization of certain classes of distributed parame- 
ter systems, can be extended to cover regulation problems as 
well. An iterative design algorithm is presented, together with 
proof that the algorithm will converge after a finite number of 
steps. The procedure is illustrated with an example of a con- 
stant disturbance acting on a delay system. 

Keywords: Distributed parameter systems, Regulation, Finite- 
order controllers, Design methods. 

1. Introduction 

In [1], a so-called 'direct approach'  has been 
developed to deal with the stabilization problem 
for distributed parameter  systems. In this ap- 
proach, the intricacies of the 'spillover'  phenome- 
non [2] are avoided by working directly with the 
infinite-dimensional model as given, and a special 
design method is used to obtain controllers of 
finite order. It  is the purpose of this note to show 
that the 'direct approach'  can be extended to 
regulation problems, where the issue is not only 
stabilization of the controlled system, but also 
cancellation of disturbance signals of known 
frequency, or tracking of certain reference signals. 
Such problems have been studied before in an 
infinite-dimensional context by Pohjolainen [3-5] 
and Bhat [6]. Pohjolainen obtains controllers of 
finite order, but he requires the open-loop system 
to be stable. Bhat considers possibly unstable de- 
lay equations, but his compensators are of infinite 
order. We shall obtain finite-dimensional con- 
trollers even for open-loop unstable Systems. On 
the other hand, we shall not discuss the robustness 
issue, which is a central theme for both cited 
authors. A frequency-domain approach to regnla- 

2. Problem setting 

We shall consider linear systems described by 
the equations 

J q ( t ) = A n x i ( t  ), x l ( t ) ~ X l ,  (1) 

~2 ( t )  = A2,x,( t)  + A22x2( t) 

+B2u(t ), x 2 ( / ) ~ X  2 , u ( t ) E U ,  (2) 

_ ,/xl(t). ) 
y ( t ) =  (C 1 C2)~x2(t) , y ( t )  ~ Y, (3) 

( x ' ( t ) ) z ( t ) ~ Z ,  (4) z ( t ) =  (D, D2) x2( t  ) , 

which are understood as follows. The space X I is 
finite-dimensional; the variable x, ( t )  represents an 
'external '  (disturbance or reference) signal. The 
space X 2 is a Banach space, and the mapping 

A u 2 : D ( A 2 2 ) ~ X 2  

is the generator of a strongly continuous semi- 
group 

(T2( t)lt >~ O) 

of bounded linear operators on X 2. The variable 
y(t)  is the 'observation'  and is finite-dimensional, 
as well as t h e '  variable-to-be-controlled' z( t )  which 
we try to stabilize. The mappings A21, B 2, Ct, C 2, 
D l, and D 2 are all bounded linear mappings be- 
tween their respective spaces. This set-up repre- 
sents disturbance cancellation problems (A21 * 0, 
D I = 0) as well as reference following problems 
(A21 = 0, D I * 0) (of. also [8], or [9]). 

We shall need some further assumptions. These 
are largely the same as in [1] and we refer to this 
work for comments.  We suppose that a number  
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~0 < 0 has been given which represents the desired 
'degree of stability'. We shall call a semigroup 
T( t )  (or its generator) simply 'stable' if there is a 
constant C > 0 such that 

IIT(t)ll~< C e  '° '  forall  t>~0. (5) 

We assume: 
(i) The spectrum of A22 is discrete• 

(ii) There exists 8 > 0 such that the half-plane 

(X ~ CIRe X > ~o - 8 )  

contains only finitely many eigenvalues of A22. 
This assumption implies, in particular, that there 

is a 'spectral decomposition' X 2 = Xff • X] (cf. 
[10], p. 178), where X~ is the subspace spanned by 
the generalized eigenvectors of A22 that have real 
parts larger than ~0. The following self-explaining 
notation will be used: 

A = 

B_- 

A2t 

0 

0 

A~2 

0 

0 

0 , 

A~2 

C = (C,, C~, C~). (6) 

(iii) The (finite-dimensional) pair (A~2 , B~) is 
controllable. 

(iv) The (finite-dimensional) pair 

( (AI 0)) 
is observable. 

(v) The generalized eigenvectors of Az2 are 
complete in X 2. 
In this paper, we shall consider only compensators 
of the standard form; i.e. a compensator will have 
the form 

fv( t ) = Acw( t ) + G j (  t ), 

w ( t )  ~ W, dim W <  oo, 

u ( t )  = Few(t ) + K y ( t ) .  

(7) 

(8) 

When (7)-(8) is connected to (1)-(3), one obtains 

a closed-loop system that has the form d(x,) x2 (t) 
W 

All 
= A21 + B2KC I 

GcC, 

iXx ) • ( t ) .  

0 0) 
A22+ B2KC 2 B2Fe 

c c2 Ac 

(9) 

Let -s A22 be the 'stable' part obtained via spectral 
decomposition with respect to. ~o - 8 (8 as in (ii)), 
rather than ~o. Let I"2~(t) denote the sernigroup 

"$ 
generated by A22. Our final assumption is: 

(vi) lim e-'°'ll]'~(/)ll-- 0. 
I ~ C O  

This assumption is only needed to guarantee that 
the stability of the closed-loop system (9) can be 
judged from the location of its eigenvalues (which 
is, unfortunately, not always true in infinite di- 
mensions: [I 1] (p. 665), [12]). If this can be verified 
directly, the condition (vi) can be dispensed with• 

A compensator of the form (7)-(8) will be 
called a regulator (of finite order) for the system 
(1)-(4), if the following conditions hold. There 
exists a subspace V c D ( A e )  (where A~ is the 
operator appearing in (9), and D ( A e ) =  
X 1 ~ D ( A )  • W),  of dimension equal to dim Xp 
such that A ~ V c  V. This subspace is also contained 
in Ker D e, where 

De: X, e X2 ~ W--,  Z 

is defined by 

D e = (Z), D2 0). (10) 

Finally, if Te(t ) denotes the semigroup generated 
by A e, the quotient semigroup induced by Te(t ) on 
the factor space ( X  • W ) / V  is stable• These con- 
ditions mean that the closed-loop system is stable 
modulo the external signal dynamics (stabilization 
property), and that the variable-to-be-controlled 
z ( t )  depends only on the stable part of the system 
(regulation property). 

3. Main  result 

Theorem 3.1. Let the system (1)-(4) satisfy the 
assumptions mentioned in the preceding section• I f  
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there exists a linear mapping S : X I ~ X 2 such that 

I m S c D ( A 2 2  ), (11) 

Im(  A22S - -  S A I l  + A21 ) C Im B2,  (12) 

D I ÷ D 2 S  = 0, (13) 
then there exists a regulator of finite order for the 
given system. 

Prooi .  First, we const ruct  a m a p p i n g  

F = ( F ,  F2): XI ~ X2 ~ U, 

as follows. By L e m m a  4.5 of  [1], we can find a 
m a p p i n g  F 2 : X 2 ---, U such that  A22 + B2F 2 is sta- 
ble and  has discrete spectrum,  and such that  the 
eigenvectors  of A22 + B2F 2 are comple te  in X 2. Let  
(x  I . . . . .  xr)  be  a basis for X v By (12), there exist 
um . . . . .  ur such that  

( A 2 2 S - S A  n + A 2 , ) x i = B 2 u i  ( i =  1 . . . . .  r ) .  

De te rmine  F 1 : X I ~ U by  

Fixi = - u i - F 2 S x  i ( i = 1  . . . . .  r ) .  

Def ine  the subspace  V I c X by 

V , = { ( s X ) I x ~ X , } .  (14) 

N o t e  that  V l c D(A)  (by ( I f ) )  and V I c Ker  D (by 
(13)). Also, V I is (A + BF)- invar ian t .  

By L e m m a  4.3 of  [1], there exists a l inear m a p -  
p ing  G : Y ~ X, and a constant  ~ > 0, such that  for 
every G: Y ~  X with IIG - (~11 < ~, the semigroup 
genera ted  by  A + t~C is stable. Since X - -  V I • X 2, 
we can write G =  G I + G 2 with I m  G I c V~ and 
I m  G 2 c V 2. By L e m m a  4.4 of  [1], there exist a 
subspace  V 2 of X 2, spanned  by a finite n u m b e r  of 
general ized eigenvectors of  A 2 z + B 2 F  2, and a 
m a p p i n g  G2: Y ~  )(2, such that  IIG2 - G211 < *1 and 
I m  G 2 c V 2. Wri te  G = G I + G2, and set V 3 = Yl + 
V 2. Since IlG - GII < ~, it follows that  A + GC is 
stable. No te  that  V 3 is invar iant  for A + BF and 
also, because I m  G c I,'3, for A + BF + GC. We 
now define a compensa to r  of  the fo rm (7)-(8),  in 
the following way. Let  W be a vector  space iso- 
morph ic  to V 3, and let R:V3 ~ W provide  the 
i somorphism.  Set 

K = 0 ,  F ~ = F R - ' ,  G ~ = - R G ,  

and 

Ae = +  c)R 

I t  remains  to show that  this compensa to r  is a 
regulator,  i.e. that  a subspace  V c X • W exists 
having certain propert ies  (see the end of Section 
2). Def ine  

The  following facts are s t ra ightforward to verify: 

d im V =  dim X 1, V ~ D( Ae), 

AeV c V, V c Ker  D e. 

We  are left only with the p roof  of the stabili ty of  
the closed-loop semigroup modulo  V. Let  Q : v~ ---) 
V3/V I denote  the factor  mapping ,  and define a 
m a p p i n g  

J:  ( X ~ W ) / V - - ,  X ~ ( V3/V,) 

by  

x-R-Iw/. [()]x_. Q -,w : J :  (16) 

I t  is easily verified that  J is well defined and that  it 
gives a bijection between 

( X ~  W ) / V  and X ~  (V3/VI).  

Assuming,  wi thout  loss of  generality, that  R : V a 
W is an isometry,  we can make  the following 
est imates  for  any x I ~ V I, w ~ IV, and x ~ X: 

Ilx - R-Iwll  ~ Ilx - xlll + IlR-Iw - xdl 

= IIx - xd l  + IIw - R x l l l ,  ( 1 7 )  

IlQR-lwll <, . l lR-Iw- x l l l = l l w -  Rxdl . (18) 

Us ing  the no rm 

(Xw) = max(l[xl[, [Iwll) (19) 

on X • W, we obta in  

x - R - I w  xl Jl(0-w)lL- ( x)l 
Since this holds for  all x I ~ VI, we get 

x -  R - Iw  _< 

or, J is bounded.  By the Banach open mapp ing  
theorem ([13], p. 212-213),  J - I  is also bounded.  
So J is a Banach space i somorphism between the 
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spaces 

( X ~ W ) / V  and X e (V3/VI).  

Let us write A~ for the mapping induced by A e on 
( X e W ) / V ,  and A + B F  for the mapping in- 
duced by A + BF On V3/V v It is straightforward 
to verify that the following relation holds for all 
x ~ X a n d  w e  W: 

By construction, both A + OC and A + BF are 
stable. It follows that the semigroup generated by 
A~ is stable as well. 

A sufficient condition for the existence of a 
mapping S that satisfies (11)-(13) is given by the 
following proposition. 

Proposition 3.2. Consider the system (1)-(4). I f  All 
is diagonalizable, if the spectra of Aij and A22 do 
not overlap, and if the matrix 

W(X) = D2(X - A22)-'B~ 
: U ~ Z  ( h ~ a ( A 2 2 ) )  (23) 

has a right inverse W÷(h ) for each X ~ a(AH), then 
there is a mapping S: X t ~ X 2 such that (11)-(13) 
hold. 

Proof. Let (x 1 . . . . .  Xr) be a basis for X 1 consisting 
of eigenvectors of An, and let (h t . . . .  , At) be the 
corresponding eigenvalues. Define u i ~  U ( i =  
1 . . . . .  r) by 

Ui= W+(hi)(D2(~ki-a22)-la21 + DI)X i. (24) 

Define S: X 1 ~ X 2 by 

Sx, = ( x , -  - S 2 u , )  

(i = 1 . . . . .  r) .  (25) 

By straightforward calculation, one verifies that S 
satisfies (11)-(13). 

as the variety of goals. More general results on the 
equations (11)-(13) appear in [14], p. 316, be it 
still under the assumption of disjoint spectra of AIr 
and A22. There are simple examples in which the 
disjointness does not hold, but still a mapping S 
satisfying (11)-(13) can easily be found (cf. [15], p. 
150). 

4. Design procedure 

The proof of the theorem is constructive, at 
least in principle. An outline of an actual design 
algorithm could be the following. 

Step 1. Find a mapping S which satisfies (11)-(13). 
Step 2. Determine F:  X---, U as in the proof of 
the theorem. 
Step 3. Select G such that A + GC is amply stable. 
Step 4. Compute V I (as defined in (14)), and write 
G = G  I + G  2 w i t h l m G  I C V  l a n d l m G  2 C V  2. 
Step 5. Select k eigenvectors of A22 + B~F 2, and 
find an approximation G i to G I, with Im G t con- 
tained in the subspace spanned by the selected 
eigenvectors. 
Step 6. Find out, by a direct method (for instance 
'Weinstein-Aronszajn',  cf. [1]), if A + GC is sta- 
ble. If this is so, construct the k-th order com- 
pensator as ' in  the proof of the theorem. If not, 
repeat step 5 with an enlarged value of k. 

This algorithm avoids the calculation of the 
constant ~/that appeared in the proof of the theo- 
rem. The algorithm is, therefore, iterative, and 
Theorem 3.1 takes the form of a convergence 
result, guaranteeing that success will be obtained 
after a finite number of steps, without recourse to 
any particular smartness on the part of the desig- 
ner. 

5. Examples 

The matrix W(.) is, of course, the transfer 
function from the control input u to the variable- 
to-be-controlled z; it can only be right invertible if 

dim U >~ dim Z, 

i.e. the variety of controls must be at least as large 

Consider the following delay system, on which 
a constant disturbance acts: 

~ l ( t ) - -  0, (26) 

5c2(t)-- -½~rx2( t -  1 ) + x l ( t ) + u ( t  ), (27) 

10 
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z(t) = y ( t )  = x2(t ). (28) 

Even without the disturbance xj(t)-xl(O), the 
open-loop equation (27) is unstable, with oscilla- 
tory eigenvalues at + ½~ri. So we want both to 
stabilize the system and to reject the constant 
disturbance. 

The system can be brought into the standard 
form (1)-(4) by making the following definitions. 
Let the spaces X~, U, Y, and Z all be equal to R, 
and set 

X 2 = 3,/2(- 1,0) = a X L 2 ( -  1,0). 

Elements of M 2 ( -  1, 0) are written as row vectors 
((ho,(~) with ~0 ~ R  and g ) ~ L 2 ( - 1 , 0 ) .  Let 
H i [ - - I ,  0] be the Sobolev space of functions on 
[ -  1, 0] whose first derivative is in L 2 ( -  1, 0) ([16], 
p. 44). Define various mappings by 

,4,, = 0, (29) 

D(A22) = ((~0, ~) ~ M 2 ( -  1,0)l 

~ H ' [ - 1 , 0 l , ~ b ( 0 ) = ~ 0  ), (30) 

A22(%, ~) = ( -  ½~rO(- 1), 4,), 

A2,: 1 ~ (1, 0), (31) 

B2:1 ~ (1,0) ,  (32) 

q,o  R ;  (33 )  

Under these definitions, the system (1)-(4) is a 
representation of (26)-(28) (cf. [17]). Let us define 
the notion 'stable' with respect to a growth con- 
stant w = - 1  (cf. (5)). Using standard results on 
delay equations ([17-241, [61), one can prove that 
all conditions of Section 2 hold. So we can start 
the design procedure. 

Step 1. We can use Proposition 3.2; this gives 

S:  1 ~ (0, 0).  (34) 

Step 2. By the construction of Lemma 4.5 in [1], 
there exists F 2 : X 2 - ,  U such that A22 + B2F 2 has 
the same eigenvalues as A22, except for those at 
_+ ½,hi, which can be relocated to, say, - 1 _-4- ½1ri. 
Completeness of eigenvectors is retained in this 
operation. There will be no need to compute F 2 
explicitly. The mapping F I : Xj --, U is found im- 
mediately as F I : 1 - ,  - 1. 
Step 3. Via spectral decomposition (cf. [1]), we 

find that 

G : I - - ,  ( - 2 ~ , ~ )  ' 

( o )  = - cos½ O - sin½ O - (35 )  

shifts the eigenvalues at 0 and 4-½,~i of A to new 
eigenvalues at - ½1r (double) and -~r of A + GC, 
while the other eigenvalues of A remain un- 
changed. 
Step 4. We find 

a , : l ~  ( 0 , 0 ) ] '  a 2 : l ~  (-21r,~b) " 

Step 5. We select the two eigenvectors of A22 + 
B2F 2 corresponding to the eigenvalues at - 1  
+ ½~i. A basis for the space spanned by these 
vectors is given by (of. [1]) ((1, ~l), (0, ~2)), with 

~b,(#) = e-acos½,nO, ~k2(0) = e-°sin½~r0. (37) 

By computing the best L 2 ( - 1 ,  0) approximation 
of ~k by ~k L and ~k2, we arrive at the following trial 
mapping G: 

0 : 1  ~ (a , ,  a,tk I + a2t~2 ) ' 

a I = - 3.666, a 2 = - 1.990. (38) 

Step 6. By numerical computation of the right- 
most eigenvalues of A + GC (as discussed in [1]), it 
is verified that A + GC is stable. So we can put our 
compensator together; the result is 

-4 .666 1.571 i )  
~ ( t ) =  -3.561 - 1  w(t) 

-4 .935 0 

[ 3.666 
+ | 1.990 y(t), (39) 

4.935 

u ( t ) =  -wl(t)-2.699w2(t)-w3(t) .  (40) 

The stability of the closed-loop system can be 
verified by direct calculation. The pole at 0 of the 
compensator transfer function, evident from (39), 
will appear as a zero in the closed-loop transfer 
function from x~ to x 2. This shows that the above 
compensation scheme does, indeed, reject the con- 
stant disturbance. 

Further examples can be found in [15]. 

11 
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6. Conclusions 

U n d e r  a ce r ta in  ' r e g u l a t i o n  c o n d i t i o n ' ,  as g iven  
in  the  s t a t e m e n t  of  T h e o r e m  1, we have  b e e n  ab le  

to  prove  the  ex is tence  of  f i n i t e - d i m e n s i o n a l  regula-  
tors  for a class of  i n f i n i t e - d i m e n s i o n a l  l inear  sys- 

tems.  The  m a i n  fea tures  of  this class are: b o u n d e d  
i n p u t  a n d  o u t p u t  m a p p i n g s ;  f in i teness  of  the n u m -  

be r  of  u n s t a b l e  e igenvalues ;  a n d  comple t enes s  of  
e igenvectors .  A n  obv ious  q u e s t i o n  for fu r the r  re- 
search  is, to wha t  ex ten t  these res t r ic t ions  can  be  
relaxed,  F o r  the s tab i l i za t ion  p r o b l e m ,  s o m e  re- 

sui ts  in  this d i rec t ion  c an  be  f o u n d  in [25-27]  
( u n b o u n d e d  i n p u t s  a n d  o u t p u t s )  a n d  [28] ( n o n l i n -  
ear  systems).  Also,  fur ther  ana lys i s  o f  the des ign  

a lgo r i t hm is r equ i r ed  wi th  respect  to n u m e r i c a l  
a n d  r o b u s t n e s s  proper t ies .  
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