

No. 2007–16

BOUNDS FOR MAXIMIN LATIN HYPERCUBE DESIGNS

By Edwin R. van Dam, Gijs Rennen, Bart Husslage

February 2007

ISSN 0924-7815

Bounds for maximin Latin hypercube designs

Edwin R. van Dam • Gijs Rennen • Bart Husslage

Department of Econometrics and Operations Research, Tilburg University,

P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Edwin.vanDam@uvt.nl • G.Rennen@uvt.nl • B.G.M.Husslage@uvt.nl

Abstract

Latin hypercube designs (LHDs) play an important role when approximating computer simula-
tion models. To obtain good space-filling properties, the maximin criterion is frequently used.
Unfortunately, constructing maximin LHDs can be quite time-consuming when the number
of dimensions and design points increase. In these cases, we can use approximate maximin
LHDs. In this paper, we construct bounds for the separation distance of certain classes of
maximin LHDs. These bounds are useful for assessing the quality of approximate maximin
LHDs. Until now only upper bounds are known for the separation distance of certain classes
of unrestricted maximin designs, i.e. for maximin designs without a Latin hypercube struc-
ture. The separation distance of maximin LHDs also satisfies these “unrestricted” bounds.
By using some of the special properties of LHDs, we are able to find new and tighter bounds
for maximin LHDs. Within the different methods used to determine the upper bounds, a vari-
ety of combinatorial optimization techniques are employed. Mixed Integer Programming, the
Travelling Salesman Problem, and the Graph Covering Problem are among the formulations
used to obtain the bounds. Besides these bounds, also a construction method is described for
generating LHDs that meet Baer’s bound for the ℓ

∞ distance measure for certain values of n.

Keywords: Latin hypercube design, maximin, space-filling, mixed integer programming, trav-
elling salesman problem, graph covering.

1 Introduction

Latin hypercube designs form a class of designs that are often used for finding approximations of
deterministic computer simulation models on a box-constrained domain. This type of simulation
model is often used in engineering, logistics, and finance to analyze and optimize the design of
products or processes (see Driessen (2006) and Stinstra (2006)). The reason for approximating
these models is that a computer simulation run is usually quite time-consuming to perform. This
makes the model impractical when it comes to obtaining insight in the underlying process or in
optimizing its parameters. A common approach to overcome this problem is to determine a meta-
model that approximates the relation between the input and output parameters of the computer
simulation model. Such a meta-model is based on the information obtained from a limited number
of simulation runs. See e.g. Montgomery (1984), Sacks et al. (1989a), Sacks et al. (1989b), Jones
et al. (1998), Myers (1999), Booker et al. (1999), and Den Hertog and Stehouwer (2002). The
quality of the meta-model depends, among others, on the choice of the simulation runs. Each
simulation run can be represented by a vector containing the values of the input parameters.
When the simulation model has k input parameters, the simulation runs are therefore treated as
points in the k-dimensional space. A set of simulation runs is called a design and the number
of design points is denoted by n. As designs can be scaled to any box-constrained domain, the
designs in this paper are without loss of generality constructed on a hypercube.

As is recognized by several authors, a design should at least satisfy the following two criteria

1

(see Johnson et al. (1990) and Morris and Mitchell (1995)). Firstly, the design should be space-
filling. This means that the whole design space should be well-represented by the design points.
To accomplish this, we consider the maximin criterion, which states that the points should be
chosen such that the minimal distance between any two points is maximal. This minimal distance
is called the separation distance of the design. The maximin criterion is defined for different
distance measures. In this paper, we use the ℓ∞, ℓ1, and ℓ2-measure. Other criteria for space-
filling designs are minimax, integrated mean squared error, and maximum entropy designs. A
good survey of these designs can be found in the book of Santner et al. (2003). Secondly, the
design should be non-collapsing. When a parameter has (almost) no influence on the output,
then two design points that only differ in this parameter can be considered as the same point.
As each point is time-consuming to evaluate, this situation should be avoided. Therefore, non-
collapsingness requires that for each parameter the values in the design points should be distinct.

Latin hypercube designs (LHDs) are a particular class of non-collapsing designs. For LHDs on
the [0, n−1]k hypercube, the values of the input parameters are chosen from the set {0, 1, . . . , n−1}
and for each input parameter each value in this set is chosen exactly once. More formally, we can
describe a k-dimensional LHD of n design points as a set of n points xi = (xi1, xi2, . . . , xik) with
{xij |i = 1, 2, . . . , n} = {0, 1, . . . , n−1} for all j. In Santner et al. (2003), it is shown that maximin
LHDs generally yield good approximations.

Finding maximin LHDs can be time-consuming for larger values of k and n. Therefore, most
results in this field concern approximate maximin LHDs, although exact maximin LHDs are found
for some cases. For the distance measures ℓ∞ and ℓ1 for instance, Van Dam et al. (2007) derive
general formulas for two-dimensional maximin LHDs. Furthermore, they obtain two-dimensional
ℓ2-maximin LHDs for n ≤ 70 by using a branch-and-bound algorithm.

For approximate maximin LHDs more results are available. In Van Dam et al. (2007), ap-
proximate two-dimensional ℓ2-maximin LHDs are constructed for up to 1000 points by optimizing
a periodic structure. In Husslage et al. (2006), this is extended to more dimensions. Morris and
Mitchell (1995) use a simulated annealing approach to obtain approximate ℓ1- and ℓ2-maximin
LHDs for up to five dimensions and up to 12 points and a few larger values. Jin et al. (2005)
describe an enhanced stochastic evolutionary algorithm for finding approximate LHDs. The max-
imin distance criterion is one of the criteria which they consider. Ye et al. (2000) use an exchange
algorithm to obtain approximate maximin symmetric LHDs. The symmetry property is imposed
to reduce the computational effort.

In this paper, we construct bounds for the separation distance of certain classes of maximin
LHDs. These bounds are useful for assessing the quality of approximate maximin LHDs by com-
paring their separation distances with the corresponding upper bounds. Until now only upper
bounds are known for the separation distance of certain classes of unrestricted maximin designs,
i.e. for maximin designs without a Latin hypercube structure. Oler (1961), for instance, gives
an upper bound for two-dimensional unrestricted ℓ2-maximin designs. Furthermore, Baer (1992)
gives an upper bound for the separation distance of unrestricted ℓ∞-maximin designs. The sepa-
ration distance of maximin LHDs also satisfies the “unrestricted” bounds. By using some of the
special properties of LHDs, we are able to find new and tighter bounds for maximin LHDs. Table
1 gives an overview of the classes of maximin LHDs treated in each section of this paper. For
these classes, different methods are used to determine the upper bounds. Within the methods,
a variety of combinatorial optimization techniques are employed. Mixed Integer Programming,
the Travelling Salesman Problem, and the Graph Covering Problem are among the formulations
used to obtain the bounds. Besides these bounds, also a construction method is described for
generating LHDs that meet Baer’s bound for the ℓ∞ distance measure for certain values of n.

This paper is organized as follows. In Section 2, two methods are described that give bounds
for ℓ2-maximin LHDs. The first method is based on the average squared ℓ2-distance, which is
useful when k is relatively large compared to n. The second method gives a bound for two-
dimensional LHDs by partitioning the hypercube into smaller parts. Section 3 describes bounds
for ℓ∞-maximin LHDs. Using graph covering, a bound is obtained for k-dimensional maximin
LHDs. Furthermore, a method is described to construct LHDs meeting Baer’s bound. Also a
specific bound is given for three-dimensional maximin LHDs. The bound is found by projecting

2

ℓ2 ℓ∞ ℓ1

k = 2 Section 2.2
k = 3 Section 3.3

k large relative to n Section 2.1 Section 3.1 Section 4
n ≈ mk for k,m ∈ N Section 3.2

Table 1: Overview of the classes of maximin LHDs treated in this paper.

the three-dimensional hypercube onto two dimensions, and then partitioning it into strips. In
Section 4, a bound for ℓ1-maximin LHDs, which is based on the average ℓ1-distance, is obtained.
This method is similar to the first method for the ℓ2-distance. Finally, Section 5 gives some final
remarks and conclusions.

2 Upper bounds for the ℓ
2-distance

2.1 Bounding by the average

We obtain a bound for the separation distance of an LHD from the fact that the minimal squared
distance is at most the average squared distance between points of an LHD.

Proposition 1. Let D be an LHD of n points and dimension k. Then the separation ℓ2-distance
d satisfies

d2 ≤
⌊

n(n + 1)k

6

⌋
.

Proof. Let D = {x1, . . . ,xn}, with xi = (xi1, . . . , xik). The average squared distance among the
points of D is

1(
n
2

)
∑

i>j

∑

h

(xih − xjh)2 =
1(
n
2

)
∑

h

∑

i>j

(xih − xjh)2 =
1(
n
2

)
∑

h

∑

i′>j′

(i′ − j′)2 = kn(n + 1)/6. (1)

Since the squared separation distance is integer and at most equal to the average squared distance,
rounding (1) finishes the proof.

For fixed k, the separation distance of n points in a k-dimensional cube of side n − 1 is at most

order n
k−1

k (this can be seen by comparing the total volume of n pairwise disjoint balls of diameter
d to the total volume of the cube). It follows that the bound in Proposition 1 is not of the right
order to be tight if k is fixed and n grows.

Note that if an LHD would have separation distance close to the bound in Proposition 1,
then the separation distance and average distance are about the same, i.e. all points are at
approximately the same distance from each other. Supported by the fact that the maximal number
of equidistant points in a k-dimensional space is k + 1, we are led to believe that the bound in
Proposition 1 can only be close to tight if k is large with respect to n. Note that when n is fixed
the upper bound is linear in k (besides the rounding). The following lemma also provides a lower
bound that is linear in k, which shows that the bound is of the right order if n is fixed and k
grows.

Lemma 1. Let dmax(n, k) be the maximin ℓ2-distance of an LHD of n points and dimension k.
Then dmax(n, k1 + k2)

2 ≥ dmax(n, k1)
2 + dmax(n, k2)

2.

Proof. Let D1 = {x1, . . . ,xn} and D2 = {y1, . . . ,yn} be maximin LHDs in dimensions k1 and
k2, respectively. Let zi be the concatenation of xi and yi, for i = 1, . . . , n, then one obtains an
LHD D = {z1, . . . , zn} of n points in dimension k1 + k2 with squared separation distance at least
dmax(n, k1)

2 + dmax(n, k2)
2.

3

To show the strength of the bound in Proposition 1, we determine the maximin distance for LHDs
on at most 5 points in any dimension. For this purpose, we first formulate the maximin problem
as an integer programming problem.

Let D = {x1, . . . ,xn}, with xi = (xi1, . . . , xik), be an LHD. For each j = 1, . . . , k the map π
sending i to xij + 1 is a permutation of {1, 2, . . . , n}. Thus the maximin distance is the solution
of the following problem:

max d
s.t.

∑
π∈Sn

kπ(π(i) − π(j))2 ≥ d2, ∀ i > j∑
π∈Sn

kπ = k
kπ ∈ N0, ∀ π ∈ Sn

(2)

where Sn is the set of permutations of {1, 2, . . . , n}. Note that for any j, replacing xij by n−1−xij

for all i does not change the separation distance of the design. Thus we may restrict the set Sn to
its first half when ordered lexicographically. This reduces the number of variables in the program
to n!/2. Note also that we may assume that kπ∗ ≥ 1 for an arbitrary permutation π∗, since we
may reorder the points of the design as we wish.

Consider now the cases n = 3, 4, and 5 (for n = 2 the bound is trivially attained).

Proposition 2. For n = 3, the maximin ℓ2-distance satisfies dmax(3, k)2 = k + 3⌊k
3 ⌋.

Proof. The stated result follows from solving the above integer programming problem (2) by hand
(the number of variables is 3).

For n = 4 we have that d2 ≤ ⌊ 10k
3 ⌋. By solving the integer program (2) by computer for k ≤ 19

we obtain the following table.

dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

dmax(4, k)2 1 5 6 12 14 20 21 26 28 33 35 40 41 46 48 53 55 60 62
upper bound 3 6 10 13 16 20 23 26 30 33 36 40 43 46 50 53 56 60 63

Table 2: Squared maximin ℓ2-distance for LHDs on 4 points.

Proposition 3. For n = 4, the maximin ℓ2-distance satisfies dmax(4, k)2 = ⌊ 10k
3 ⌋ − 1 if k ≡ 1 or

5 (mod 6), dmax(4, k)2 = 10k
3 − 2 if k ≡ 3 (mod 6), and dmax(4, k)2 = ⌊ 10k

3 ⌋ if k is even, except
for the cases k ≤ 5, k = 7, k = 13. For these exceptions, see Table 2.

Proof. By recursively applying Lemma 1 (always with k2 = 6, and starting with k1 = 6, 8, and
10) one obtains maximin LHDs for all even dimensions at least 6 meeting the upper bound.

For the odd dimensions the upper bound ⌊ 10k
3 ⌋ cannot be attained. Even worse, for odd

k divisible by 3, d2 = 10k
3 − 1 cannot be attained. Suppose on the contrary that one of the

above values is attained, then the minimal squared distance is at least 10k−3
3 . Fix the point that

has the smallest average squared distance to the remaining points. Then this average squared
distance equals 10k−e

3 , where e equals 0, 1, 2, or 3. Now let k0 be the number of coordinates
where the fixed point is 0 or 3, and let k1 = k − k0 be the number of coordinates where it
is 1 or 2. It follows that the average squared distance of this point to the other points equals
12+22+32

3 k0 + (−1)2+12+22

3 k1 = 14
3 k0 + 2k1 = 10k−e

3 . It now follows that k0 = k
2 − e

8 , and hence k
should be even (and e = 0). Thus, if the upper bound is attained, then k cannot be odd, and for
odd k divisible by 3, the gap with the upper bound is at least 2.

Now by recursively applying Lemma 1 (always with k2 = 6, and starting with k1 = 9, 11, and
19) one obtains maximin LHDs for all odd k ≥ 21.

For n = 5 we have that d2 ≤ 5k. By solving the integer program (2) by computer for k ≤ 14 we
obtain the following table.

4

dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

dmax(5, k)2 1 5 11 15 24 27 32 40 43 50 54 60 64 70
upper bound 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Table 3: Squared maximin ℓ2-distance for LHDs on 5 points.

Proposition 4. For n = 5, the maximin ℓ2-distance satisfies dmax(5, k)2 = 5k − 1 if k is odd,
and dmax(5, k)2 = 5k if k is even, except for the cases k ≤ 4, k = 6, k = 7, k = 9. For these
exceptions, see Table 3.

Proof. We claim that the bound 5k can only be attained for even k. Indeed, if this bound is
attained, then all points of the design are at equal distance. Fix a point, let k0 be the number of
coordinates where this point is 0 or 4, let k1 be the number of coordinates where it is 1 or 3, and
let k2 be the number of coordinates where it is 2. It follows that the average squared distance of
this point to the other points equals 30

4 k0+ 15
4 k1+ 10

4 k2 = 5k. Since k0+k1+k2 = k, it follows that
3k1 +4k2 = 2k, and hence k1 is always even. We claim that this implies that the distance between
any two points must be even, and hence that k must be even. To prove the claim, consider two
points, and let kee and koo be the number of coordinates where both points are even and odd,
respectively. Also, let keo and koe be the number of coordinates where one point is even and the
other one is odd, and the other way around, respectively. From the above it follows that both
koe + koo and keo + koo are even (k1 is even), and hence koe + keo is even. But then the distance
between the two points is even, which proves the claim. Thus we may conclude that the bound
d2 ≤ 5k cannot be attained for odd k.

Besides the maximin designs obtained from integer programming, we obtain maximin designs
in even dimensions by recursively applying Lemma 1 with k1 and k2 both even and at least 8.
Then maximin LHDs for other odd dimensions are obtained by applying Lemma 1 with k1 = 5
and k2 even and at least 8.

Also for n = 6 we computed the integer programming problem (2) for some small values of k, see
the table below. For some values of k only a lower bound was obtained.

dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13

dmax(6, k)2 1 5 14 22 32 40 ≥ 47 ≥ 53 ≥ 61 ≥ 67 ≥ 74 ≥ 82 ≥ 89
upper bound 7 14 21 28 35 42 49 56 63 70 77 84 91

Table 4: Squared maximin ℓ2-distance for LHDs on 6 points.

Note that by simulated annealing better designs have been found for k = 8, 10, cf. Husslage
(2006). More specifically, dmax(6, 8)2 ≥ 54 and dmax(6, 10)2 ≥ 68.

2.2 Bounding by non-overlapping circles in two dimensions

2.2.1 Methods to determine upper bounds

To find a bound on the ℓ2-maximin distance for two-dimensional LHDs, we first look at the more
general class of unrestricted designs. An upper bound for the ℓ2-maximin distance of unrestricted
designs, derived with Oler’s theorem (Oler 1961), is:

d ≤ 1 +

√
1 + (n − 1)

2√
3
.

For LHDs, the value of d2 is always the sum of two squared integers. We can use this property to
define a slightly stronger upper bound. The Oler bound for LHDs is obtained by rounding down

(
1 +

√
1 + (n − 1)

2√
3

)2

5

to the nearest integer that can be written as the sum of two squared integers.
To determine a bound more tailored to the special characteristics of two-dimensional ℓ2-

maximin LHDs, we use the following properties. A two-dimensional LHD of n points can be
represented by a sequence y which is a permutation of the set {0, 1, . . . , n− 1}. The points of the
LHD are then given by {(x, yx)|x = 0, . . . , n − 1}. We can depict a two-dimensional ℓ2-maximin
LHD with separation distance d by n non-overlapping circles with diameter d and their centers
given by {(x, yx)|x = 0, . . . , n − 1}. We will call circles consecutive if they have consecutive
x-values.

The general idea for the new bound is the following. First, determine for each d how much
distance along the y-axis is at least needed to place ⌈d⌉ consecutive non-overlapping circles with
diameter d on the {0, 1, . . . , ⌈d⌉ − 1} × N+-grid. With this information, we can determine a lower
bound for the distance along the y-axis necessary to place n non-collapsing points with separation
distance d. The second step is to determine dn, which denotes the minimal d for which this
distance is larger than n − 1. By taking the largest sum of two squares that is strictly smaller
than d2

n, we have found an upper bound on the squared separation distance of two-dimensional
ℓ2-maximin LHDs of n points. In the remainder of this section, we describe these two steps in
more detail.

For the first step, fix x ∈ {0, 1, . . . , n−⌈d⌉} and consider a subset of ⌈d⌉ circles with consecutive
x-values x, . . . , x + ⌈d⌉ − 1 with y-values yx, . . . , yx+⌈d⌉−1. The distance along the x-axis between
any of these circles is less than d. This implies that the y-value of any circle in this set influences
the y-value of any other circle in the set, due to the non-overlapping criterion.

The first step is thus to determine the minimal distance along the y-axis necessary to place
⌈d⌉ consecutive non-overlapping circles with diameter d. This minimal distance is independent of
the fixed value x and equal to Y (d) in the following problem:

Y (d) = min (max{y1, . . . , y⌈d⌉} − min{y1, . . . , y⌈d⌉})
s.t. ‖(k, yk) − (l, yl)‖ ≥ d ∀ k, l ∈ {1, . . . , ⌈d⌉}, k 6= l

y ∈ N
⌈d⌉
+ ,

(3)

where y1, . . . , y⌈d⌉ represent the y-values of ⌈d⌉ consecutive circles.
For every k, l ∈ {1, . . . , ⌈d⌉}, k 6= l, we can calculate the minimal required difference between

yk and yl. When we take, without loss of generality, yk ≤ yl, applying Pythagoras’ theorem gives
that:

yl − yk ≥
⌈√

d2 − (l − k)2
⌉
≥ 1.

In this result, we can round up because yl and yk must be integer. Furthermore, the last inequality
holds because (l − k)2 < d2. This inequality implies that the points in the set are also non-
collapsing. Thus, adding non-collapsingness constraints will not influence the value of Y (d).

A drawback of solving Problem (3) is that it is very time-consuming for larger values of d.
Therefore, instead of solving Problem (3), we propose to solve the following problem:

Ỹ (d) = min yσ(⌈d⌉) − yσ(1)

s.t.
∥∥(σ(i + 1), yσ(i+1)) − (σ(i), yσ(i))

∥∥ ≥ d ∀ i ∈ {1, . . . , ⌈d⌉ − 1}
yσ(1) < yσ(2) < . . . < yσ(⌈d⌉)

σ ∈ S⌈d⌉

y ∈ N
⌈d⌉
+ ,

(4)

where S⌈d⌉ is the set of all permutations of {1, . . . , ⌈d⌉}. For Ỹ (d) the following holds:

Lemma 2. For any d, we have Ỹ (d) ≤ Y (d).

Proof. The difference between Problems (3) and (4) is only in the constraints. Problem (4) only
requires non-overlappingness of circles with consecutive y-values, whereas Problem (3) requires
that all circles are non-overlapping. As the constraints of Problem (4) are thus a subset of the

constraints of Problem (3), Ỹ (d) is at most Y (d).

6

Take for example d =
√

65. By total enumeration, we find that Y (
√

65) = 49 and Ỹ (
√

65) = 46.
Figures 1 and 2 show two settings for y that attain these values. As can be seen, the solution
to Problem (3) gives a solution where all circles are non-overlapping. Problem (4), on the other
hand, results in overlapping of circles with non-consecutive y-values.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

y

x
Figure 1: Setting for y that attains Y (

√
65) = 49.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

y

x

Figure 2: Setting for y that attains Ỹ (
√

65) = 46.

The following lemma shows that Problem (4) can be reformulated.

Lemma 3. Ỹ (d) in Problem (4) is equal to:

Ỹ (d) = min
σ

⌈d⌉−1∑

i=1

⌈√
d2 − (σ(i + 1) − σ(i))2

⌉
(5)

Proof. Clearly, yσ(⌈d⌉) − yσ(1) =
∑⌈d⌉−1

i=1 (yσ(i+1) − yσ(i)). For a given permutation σ, we must
choose y such that yσ(i+1) − yσ(i) is minimized for each i ∈ {1, . . . , ⌈d⌉ − 1} and satisfies the
constraints. This way, we also minimize the sum of these terms. Applying Pythagoras’ theorem
gives that the minimal difference between yσ(i+1) and yσ(i) that satisfies the constraints is:

⌈√
d2 − (σ(i + 1) − σ(i))2

⌉
.

We can round up because yσ(i+1) and yσ(i) must be integer. Using this result, we can rewrite Ỹ (d)
as stated in (5).

Determining Y (d) and Ỹ (d) can be done in a number of ways:

• Total enumeration. This can be done within reasonable time for d ≤ 10. For larger values
of d, computation time becomes very large, as the number of permutations is ⌈d⌉!. We can

use this method to determine both Y (d) and Ỹ (d).

• Mixed Integer Program (MIP). We can rewrite Problem (3) as a MIP as follows:

Y (d) = min ymax

s.t. ymax ≥ yi ∀ i ∈ {1, . . . , ⌈d⌉}
(yl − yk) + Mxkl ≥

⌈√
d2 − (l − k)2

⌉
∀ k, l ∈ {1, . . . , ⌈d⌉}, k 6= l

(yk − yl) + M(1 − xkl) ≥
⌈√

d2 − (l − k)2
⌉

∀ k, l ∈ {1, . . . , ⌈d⌉}, k 6= l

y ∈ R
⌈d⌉
+ , xkl ∈ {0, 1} ∀ k, l ∈ {1, . . . , ⌈d⌉},

(6)

with M = 2⌈d⌉. Note that we do not have to require y ∈ N
⌈d⌉
+ , as the constraints will enforce

this. We can also rewrite Problem (4) as a MIP problem, but we will omit this as the next
method is more suitable.

7

• Travelling Salesman Problem (TSP). It is possible to rewrite Problem (5) as a TSP problem.
Take a complete graph K⌈d⌉+1 and label the vertices 0, 1, . . . , ⌈d⌉. Define the weights of the
edges as follows:

w0,i = 0 ∀ i = 1, . . . , ⌈d⌉
wi,j =

⌈√
d2 − (j − i)2

⌉
∀ i, j = 1, . . . , ⌈d⌉.

A shortest tour in this graph now corresponds to a permutation that minimizes Problem (5).

We can thus determine a lower bound for the minimal distance along the y-axis, necessary to place
⌈d⌉ consecutive non-overlapping circles with diameter d. Step 2 is now to use Y (d) or Ỹ (d) to find
an upper bound for the maximin distance of a two-dimensional LHD. When we base our upper
bound on Y (d), define dn as follows:

dn = min d

s.t. Y (d) +
⌊

n
⌈d⌉

⌋
− 1 > n − 1

d2 ∈ N+.

(7)

Proposition 5. Let d∗2n be the largest sum of two squares that is strictly smaller than d2
n. Then

the value d∗n is an upper bound for the separation distance of a two-dimensional LHD of n points.

Proof. First determine for a given number of points n whether an LHD with ℓ2-distance d can
possibly exist. For given n and d, we do this as follows. The maximal number of mutually disjoint

subsets of ⌈d⌉ consecutive circles is given by
⌊

n
⌈d⌉

⌋
. For each subset, Y (d) is a lower bound for the

distance along the y-axis necessary to place the points in the subset. Due to the non-collapsingness
criterion, the y-value of the point in a subset with the smallest y-value must be different for each

subset. Therefore, we need at least Y (d) +
⌊

n
⌈d⌉

⌋
− 1 distance along the y-axis to construct an

LHD of n points with ℓ2-distance d. By solving Problem (7), we find the minimal d for which this

minimal required distance is larger than n − 1, i.e. for which Y (d) +
⌊

n
⌈d⌉

⌋
− 1 > n − 1 holds.

We thus know that dn is the minimal d for which our method shows that no LHD with maximin
distance dn exists. By taking d∗2n equal to the largest sum of two squares that is strictly smaller
than d2

n, we have an upper bound for the maximin distance of a two-dimensional LHD.

We can also determine an upper bound by replacing Y (d) in Problem (7) with Ỹ (d) or any other
lower bound on Y (d). By doing so, we will find an upper bound that is at most as good as the
bound based on Y (d).

As we expect that the separation distance of two-dimensional maximin LHDs is non-decreasing
in n, we would like the upper bound to have this same property. The following lemma shows that
the upper bound d∗n indeed has this property.

Lemma 4. The upper bound d∗n is non-decreasing in n.

Proof. To show that the bound is non-decreasing in n, we use the fact that dn is the smallest d

for which Y (d) +
⌊

n
⌈d⌉

⌋
− 1 > n − 1 holds. As d∗n < dn, we thus know that:

Y (d∗n) +

⌊
n

⌈d∗n⌉

⌋
− 1 ≤ n − 1,

which implies that:

Y (d∗n) +

⌊
n + 1

⌈d∗n⌉

⌋
− 1 ≤ Y (d∗n) +

⌊
n

⌈d∗n⌉

⌋
≤ n.

This means that d∗n does not satisfy the constraint of Problem (5) for n+1. Therefore, dn+1 > d∗n.
Recall that d∗2n+1 is obtained by rounding down d2

n+1to the largest sum of two squares that is

8

strictly smaller than d2
n+1. As d∗2n is a sum of two squares that is strictly smaller than d2

n+1, we
can conclude that d∗n+1 ≥ d∗n. Hence, the upper bound d∗n based on Y (d) is non-decreasing in
n.

The same holds for the upper bound based on Ỹ (d) or any other lower bound on Y (d).

2.2.2 Numerical results

The MIP formulation in (4) was used to determine Y (d) for d2 = 2, . . . , 144. To solve the MIP,
we implemented it in AIMMS (Bisschop and Entriken 1993) and used the CPLEX 9.1 solver. All
calculations were done on a PC with a 2.40-GHz Pentium IV processor. Small values of d2 required
less than a second to solve but the largest d2 required two days.

The TSP formulation was used to determine Ỹ (d) for d2 = 2, . . . , 665. The TSP problem is
symmetric, which enabled us to use the algorithm described by Volgenant and Jonker (1982).
Their exact algorithm is based on the 1-tree relaxation in a branch-and-bound algorithm. We
used the implementation provided and described in Volgenant (1990). Most cases were solved in
less than a minute, but a few of the larger cases required a few hours to solve.

With the obtained values for Y (d) and Ỹ (d), we determined upper bounds for n = 2, . . . , 114
and n = 2, . . . , 529, respectively. All bounds can be found in the appendix. For n = 2, . . . , 70,
Van Dam et al. (2007) determined optimal maximin designs using branch-and-bound techniques.
In Table 5 a comparison is made between the upper bounds and the d- and d2-values of these
optimal maximin LHDs.

Average % Average % Number of
above optimal d above optimal d2 tight cases

Oler bound 22.24 50.26 0
Bound based on Y (d) 5.77 12.04 12

Bound based on Ỹ (d) 6.44 14.47 12

Table 5: Comparison between bounds and optimal maximin LHDs for n = 2, . . . , 70, as given in
Van Dam et al. (2007).

The table shows that the new bounds are a considerable improvement when compared to the Oler
bound for smaller values of n. By definition, the bound based on Y (d) is always at least as good

as the bound based on Ỹ (d). For n = 2, . . . , 70, the bound based on Y (d) is tighter for 13 values
of n.

As we may not have optimal maximin LHDs for n > 70, we compare the upper bounds with
the approximate maximin LHDs in Van Dam et al. (2007). These designs are found by considering
periodic designs. Table 6 shows that the new bounds are still better than the Oler bound, but the
differences are smaller.

Average % above Average % above
best known d best known d2

Oler bound 18.49 41.16
Bound based on Y (d) 5.89 12.26

Bound based on Ỹ (d) 6.51 13.58

Table 6: Comparison between bounds and approximate maximin LHDs for n = 2, . . . , 114, as
given in Van Dam et al. (2007).

For n = 115, . . . , 529, we can only compare the Oler bound and the bound based on Ỹ (d). In
Table 7 the comparison is made for different intervals of n. We see that the Oler bound becomes
relatively better as n increases.

9

size n [2, 100] [101, 200] [201, 300] [301, 400] [401, 500] [501, 529]

Oler bound 22.40 10.45 7.75 6.46 5.74 5.66

Bound based on Ỹ (d) 6.65 6.31 5.85 5.72 5.70 5.95

Table 7: Average % above d of approximate maximin LHDs as given in Van Dam et al. (2007).

The bound based on Ỹ (d) is at least as good as the Oler bound for n = 2, . . . , 410. For n =
411, . . . , 415, sometimes one bound is better and sometimes the other. For values of n ≥ 416,
the Oler bound is at least as good as the Ỹ (d) based bound. This has two reasons. Firstly, the
LHD becomes more similar to an unrestricted design as n increases. Since the original Oler bound
is intended for unrestricted designs, it is to be expected that the Oler bound becomes better as
n increases. Secondly, the definition of Ỹ (d) allows certain circles to overlap. When d becomes

larger, this will occur more and more frequently. The bound based on Ỹ (d) is thus weaker for
large n. However, in practice LHDs are used for relatively small values of n (several dozens) which
makes this drawback less relevant.

3 Upper bounds for the ℓ
∞-distance

3.1 Bounding by graph covering

For the ℓ∞-distance we obtain a bound for the separation distance of an LHD as follows.

Proposition 6. Let D be an LHD of n points and dimension k. Then the separation ℓ∞-distance
d satisfies

k(n − d)(n − d + 1) ≥ n(n − 1).

Proof. In each coordinate (n− d)(n− d + 1)/2 pairs of points have distance at least d. Since each
pair of points must be separated by a distance at least d in at least one of the coordinates, it
follows that k(n − d)(n − d + 1)/2 ≥ n(n − 1)/2.

As for the bound for the ℓ2-case in Section 2.1, this bound does not seem to be of the right order
if k is fixed. For example, if k = 2, then the inequality in the proposition is satisfied if n ≥ 4d.
However, the maximin distance satisfies d = ⌊√n⌋, cf. Van Dam et al. (2007).

Rather than finding the maximin distance given n and k, it seems more convenient here to find
the smallest k = kmin(n, d) for which an LHD of size n and dimension k with separation distance d
exists. The proof of Proposition 6 suggests to formulate the problem as a graph covering problem.
Consider the complete graph on n vertices (representing the points of the design). Each edge of
this graph (representing a pair of points) must be covered by one of k subgraphs of a particular
form. For each coordinate this graph has as edges those pairs of points that are at distance at least
d in this coordinate. These subgraphs are all isomorphic copies of the graph that can be described
as follows: the vertices are the points 0, 1, . . . , n− 1, and two points are adjacent if their absolute
difference is at least d. Thus the problem can now be reformulated as to find the minimal number
of copies of a graph G(n, d) that cover all edges of the complete graph Kn. Such graph covering
problems are not studied much. However, graph partitioning problems, where the complete graph
must be partitioned into (the right number of) copies of a given graph, are, cf. Heinrich (1996).
Of course, if such a partitioning exists, then it is a minimal covering.

The graphs G(n, d) that are of interest to us depend only on the difference between n and d,
so it makes sense to fix this difference. To start off easy, let d = n − 1 (which is extremal). The
graph G(n, d) now consists of a single edge (and some isolated vertices that we may discard), and
it is clear that we can cover (partition) the edges of the complete graph Kn by

(
n
2

)
copies. Thus

the above bound is tight, and we have the following proposition.

Proposition 7. For d = n − 1, the smallest k = kmin(n, d) for which an LHD of size n and
dimension k with separation ℓ∞-distance d exists, satisfies kmin(n, n − 1) =

(
n
2

)
.

10

For d = n − 2, we have the following.

Proposition 8. For d = n − 2, the smallest k = kmin(n, d) for which an LHD of size n and

dimension k with separation ℓ∞-distance d exists, satisfies kmin(n, n − 2) = ⌈n(n−1)
6 ⌉.

Proof. Let d = n− 2, then the graph G(n, d) is a path P4 of 4 vertices (again we may discard the
isolated vertices). Bermond and Sotteau (1976) showed that if n(n − 1) is a multiple of 6, then
Kn can be partitioned into copies of P4. It is straightforward to extend their result to minimal

coverings, that is, Kn can be covered by kmin(n, n − 2) = ⌈n(n−1)
6 ⌉ copies of P4. Thus for LHDs

of size n and separation distance d = n − 2 we need precisely this many dimensions.

For d = n − 3 we were able to show the following. We omit the proof, which is similar (but more
technical) to the proof of the case d = n − 2.

Proposition 9. For d = n − 3, the smallest k = kmin(n, d) for which an LHD of size n and

dimension k with separation ℓ∞-distance d exists, satisfies kmin(n, n − 3) = ⌈n(n−1)
12 ⌉.

For smaller d the situation becomes more complicated. For large n we have the following: if
e = n− d is fixed, then by a result of Wilson (1976) there is a function N(e) such that a partition
of Kn into copies of G(n, n− e) exists if n(n− 1) is a multiple of (n− d)(n− d + 1) and n > N(e).

Thus in those cases kmin(n, d = n − e) = n(n−1)
e(e+1) .

For n ≤ 10 and all d it is possible to construct LHDs with dimension k meeting the lower

bound ⌈ n(n−1)
(n−d)(n−d+1)⌉, except in the cases n = 8, d = 3 and n = 10, d = 5. For the first exception,

k = 2 cannot be attained, since in two dimensions we have n ≥ d2, cf. Van Dam et al. (2007). For
the second exception, k = 3 cannot be attained, as was found by a complete search by computer
(see also Section 5.1).

3.2 Attaining Baer’s bound

Baer (1992) showed that the maximin ℓ∞-distance d for unrestricted designs of n points on [0, n−
1]k equals n−1

⌊(n−1)1/k⌋
. For n = mk +1, this maximin distance equals mk−1. In this section we shall

give a construction of maximin LHDs of n = mk points with separation distance mk−1, and show
that n cannot be smaller to achieve this separation distance. First, we need the following lemma.

Lemma 5. For the ℓ∞-distance, the maximin distance d for LHDs of n points and dimension k
is a non-decreasing function of n.

Proof. Consider an LHD D of size n and separation distance d. Let the point of D with first
coordinate n − d have remaining coordinates x2, x3, . . . , xk. Now construct D′ from D by in-
creasing by one all coordinates that are at least x2, x3, . . . , xk, respectively, and adding the point
(n, x2, x3, . . . , xk). Then D′ is an LHD of size n + 1 with the same separation distance d as D,
which proves the lemma.

From this lemma and the above observation it follows that an LHD of n = mk points and dimension
k has separation distance at most mk−1. We shall now give a construction of an LHD attaining
that upper bound.

Construction 1. Let m ≥ 2 and k ≥ 1 be integers, and let n = mk. For a = (a1, a2, . . . , ak) ∈
{0, 1, . . . ,m − 1}k and j = 1 . . . , k, let x(a) = (x1, x2, . . . , xk), where

xj =
k−1∑

i=k−j

ai+1−k+jm
i + mk−j − 1 −

k−j−1∑

i=0

ak−im
i,

and let D be the design D = {x(a) | a ∈ {0, 1, . . . ,m − 1}k}.

Examples of this construction are given in the following tables.

11

a1 0 1 0 1 0 1 0 1
a2 0 0 1 1 0 0 1 1
a3 0 0 0 0 1 1 1 1
x1 3 7 1 5 2 6 0 4
x2 1 3 5 7 0 2 4 6
x3 0 1 2 3 4 5 6 7

Table 8: Construction 1 for m = 2 and k = 3.

a1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
a2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
a3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
a4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x1 7 15 3 11 5 13 1 9 6 14 2 10 4 12 0 8
x2 3 7 11 15 1 5 9 13 2 6 10 14 0 4 8 12
x3 1 3 5 7 9 11 13 15 0 2 4 6 8 10 12 14
x4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 9: Construction 1 for m = 2 and k = 4.

Proposition 10. The design D from Construction 1 is an LHD of n = mk points and dimension
k with maximin ℓ∞-distance d = mk−1.

Proof. One can check that for each j, the map sending a to xj is a one-to-one map from {0, 1, . . . ,
m−1}k to {0, 1, . . . , n−1}. Thus D is an LHD on n points. Next, observe the recursive structure
of the construction. For fixed m, each point x′(a1, a2, . . . , ak−1) = (x′

1, x
′
2, . . . , x

′
k−1) of the LHD

in dimension k−1, and each value ak determines a point x(a1, a2, . . . , ak) = (x1, x2, . . . , xk) in the

LHD in dimension k, where xj = m(x′
j + 1)− ak − 1, for j = 1, . . . , k− 1, and xk =

∑k−1
i=0 ai+1m

i.
For an example, see the constructed designs in Tables 8 and 9. We shall use this recursion now
to prove by induction on k that the separation distance is d = mk−1. Of course this is trivial
for k = 1, the basis for induction. Now suppose that the statement is true for k − 1. Let a and
b ∈ {0, 1, . . . ,m − 1}k, and consider the corresponding design points x(a) = (x1, x2, . . . , xk) and
y(b) = (y1, y2, . . . , yk), respectively. If xk and yk differ by at least d, then we are done, hence we
may assume that they differ by at most d−1. Then it follows that ak and bk differ by at most one.
Since the points x′ = (1

m
(xj + ak + 1)− 1)j=1,...,k−1 and y′ = (1

m
(yj + bk + 1)− 1)j=1,...,k−1 are in

the LHD of dimension k − 1 (as explained above), which by assumption has separation distance
mk−2, it follows that if ak = bk, then x and y are at distance at least m · mk−2 = d. Moreover,
if ak and bk differ by one, say (without loss of generality) that ak = bk + 1, then the points x′

and y′ are at distance at least mk−2. If this distance is at least mk−2 + 1, then m(x′ + 1) and
m(y′ +1) have distance at least d+m, hence x and y are at distance at least d+m−1 ≥ d. If the
aforementioned distance between x′ and y′ is however exactly mk−2, then (a1, a2, . . . , ak−1) and
(b1, b2, . . . , bk−1) must differ (by one) in exactly one coordinate, say the t-th one. If at = bt − 1,
then yt−xt = mk−1−bk +ak = d+1; otherwise at = bt +1, and then xk = yk +mk−1 +mt−1 > d,
and so in any case x and y have distance at least d. The statement now follows by induction.

In fact, we can slightly generalize the above result.

Proposition 11. Let m ≥ 2, k ≥ 2, and t ≤ m be nonnegative integers, and let n = mk + t. Then
the maximin distance d for LHDs of n points and dimension k satisfies d = mk−1.

Proof. It follows from Lemma 5 and Proposition 10 that the maximin distance is at least as stated.
From Baer’s upper bound n−1

⌊(n−1)1/k⌋
(rounded down) it follows that it is at most as stated.

Observe also that if D is an LHD with separation distance d, and we remove an arbitrary point
(x1, x2, . . . , xk) from D, and from the remaining points in D we decrease by one all coordinates that
are larger than x1, x2, . . . , xk, respectively, then we obtain an LHD of size n − 1 with separation
distance at least d−1. Thus the maximin distance cannot increase by more than one as n increases
by one. We now show that the above construction is extremal in the sense that we cannot decrease
n and still achieve the same maximin distance.

12

Proposition 12. Let m ≥ 2 and k ≥ 2 be integers, and let n = mk − 1. Then the maximin
ℓ∞-distance d for LHDs of n points and dimension k satisfies d = mk−1 − 1 .

Proof. By the above observation and Proposition 10 it suffices to prove that an LHD on n points
cannot have separation distance d = mk−1. Suppose on the contrary that we have such an LHD.
Partition the set I = {0, 1, . . . , n−1} into m parts: Ii = {id, id+1, . . . , id+d−1}, i = 0, . . . ,m−2
(each of cardinality d), and Im−1 = {(m− 1)d, (m− 1)d + 1, . . . , (m− 1)d + d− 2} (of cardinality
d− 1). Accordingly, partition the set Ik into mk parts Ii1 × Ii2 × · · · × Iik

. In each of these parts
the points are at mutual distance at most d − 1, hence each part contains at most one design
point. Suppose now that the part Ii1 × Ii2 × · · · × Iik

does not contain a design point. Since
Ii1 × I ×· · ·× I then contains |Ii1 | points on one hand, and at most mk−1 − 1 = d− 1 on the other
hand, this implies that i1 = m− 1. Similarly it follows that i2 = · · · = ik = m− 1, hence all parts
except Im−1 × Im−1 × · · · × Im−1 contain precisely one point.

Now consider a slightly different partition of I, i.e., into parts Ji = Ii, for i = 0, . . . ,m − 3,
Jm−2 = Im−2 \ {(m− 1)d− 1}, and Jm−1 = {(m− 1)d− 1} ∪ Im−1. By considering the partition
of Ik into parts Ji1 × Ii2 × · · · × Iik

, it follows that Jm−1 × Im−1 × · · · × Im−1 contains precisely
one design point. Similarly Im−1 × Jm−1 × · · · × Im−1 contains precisely one design point. Since
Im−1 × Im−1 × · · · × Im−1 does not contain a design point, these two points must be distinct.
However, both are contained in Jm−1 ×Jm−1 × Im−1 ×· · ·× Im−1, which contradicts the fact that
also this part can contain at most one design point.

3.3 Bounding by projection and partitioning in three dimensions

Consider a three-dimensional LHD of n points (xi, yi, zi), i = 1, . . . , n, with ℓ∞-distance d. Now,
project all design points for which zi ≤ d − 1 onto the (x, y)-plane. Since the z-values of all these
design points differ less than d, the differences of the x- or y-values should at least be d for all
points, i.e. the projected points form a two-dimensional design with separation distance d. The
same holds for any other “layer” within the three-dimensional LHD for which the z-values of the
design points differ less than d. By taking the right layer and further analyzing the projected
design we obtain the following proposition.

Proposition 13. For integers n ≥ 3 and d ≥ 2, let N(n, d) be given by

N(n, d) =

⌊n
d ⌋∑

i=1

(⌊
n − ⌊n

d
⌋ − i + 1

d

⌋
+ 1

)
+ min

{
n − d⌊n

d
⌋,
⌊

n − 2⌊n
d
⌋

d

⌋
+ 1

}
. (8)

The maximal d such that d ≤ N(n, d) is an upper bound for the ℓ∞-maximin distance dmax for a
three-dimensional LHD of n points.

Proof. Consider the mutually disjoint “layers” Ii = {id, id+1, . . . , id+d−1}, i = 0, . . . , ⌊n
d
⌋−1, of

z-values of the LHD. Among these ⌊n
d
⌋ layers there must be at least one for which the corresponding

projected design (as described above) has all its x-values at most n − ⌊n
d
⌋ (since all x-values are

distinct). The projection of this layer will be onto the (n − ⌊n
d
⌋) × (n − 1)-grid; see Figure 3.

In Figure 3, one can identify ⌊n
d
⌋ mutually disjoint strips of size (n−⌊n

d
⌋)×(d−1). Furthermore,

since the differences in y-values within each strip are less than d, the x-values have to differ at

least d, and, hence, the first strip contains at most ⌊n−⌊n
d ⌋

d
⌋ + 1 points. Moreover, since all x-

values are distinct, the second strip contains at most ⌊n−⌊n
d ⌋−1

d
⌋+1 points, the third strip at most

⌊n−⌊n
d ⌋−2

d
⌋ + 1 points, et cetera.

When n is not divisible by d, the remaining “partial” strip contains at most ⌊n−2⌊n
d ⌋

d
⌋ + 1

points, but also at most n − d⌊n
d
⌋ points. Note that in case n is divisible by d (and there is no

remaining strip), the latter term is equal to 0 and the former term is non-negative (since d ≥ 2).
Thus, N(n, d) is an upper bound for the number of points in the projected design, and the result
follows.

13

•
•
•
•

•
•
•
•

0 n − ⌊n
d⌋ n − 1

x

0

d − 1

d

2d − 1

2d

3d − 1

d⌊n
d⌋

n − 1

y

Remainder

•
•

•
d

d

Figure 3: Strips within the projection onto the (x, y)-plane.

For values of n up to 165, the corresponding upper bounds are provided in Table 10. For many
values of n the bound is better than Baer’s bound. They also confirm Proposition 12 for k = 3
and m ≤ 5.

n ≤ 3 5 10 13 15 18 21 30 34 38 41 45 49 53 68
dmax ≤ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n ≤ 73 78 83 87 92 97 102 107 130 136 142 148 154 159 165
dmax ≤ 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 10: Upper bound for ℓ∞-maximin distance dmax for several n.

4 Upper bounds for the ℓ
1-distance

In this section we apply the ideas of Section 2.1 to the ℓ1-distance. Bounding by the average gives
the following bound.

Proposition 14. Let D be an LHD of n points and dimension k. Then the separation ℓ1-distance
d satisfies

d ≤
⌊

(n + 1)k

3

⌋
.

Proof. Let D = {x1, . . . ,xn}, with xi = (xi1, . . . , xik). The average distance among the points of
D is

1(
n
2

)
∑

i>j

∑

h

|xih − xjh| =
1(
n
2

)
∑

h

∑

i>j

|xih − xjh| =
1(
n
2

)
∑

h

∑

i′>j′

(i′ − j′) = k(n + 1)/3,

and rounding finishes the proof.

Similar remarks as in the ℓ2-case apply here. More evidence for the fact that the bound is not of
the right order to be tight if k is fixed is given by the case k = 2, where the maximin distance is
known to be ⌊

√
2n + 2⌋, cf. Van Dam et al. (2007). The analogue of Lemma 1 is the following.

Lemma 6. Let dmax(n, k) be the maximin ℓ1-distance of an LHD of n points and dimension k.
Then dmax(n, k1 + k2) ≥ dmax(n, k1) + dmax(n, k2).

14

We can write the maximin distance d as the solution of the following integer programming problem.

max d
s.t.

∑
π∈Sn

kπ|π(i) − π(j)| ≥ d, ∀ i > j∑
π∈Sn

kπ = k
kπ ∈ N0, ∀ π ∈ Sn

(9)

where Sn is the set of permutations of {1, 2, . . . , n}. As before, we may restrict the set Sn to
its first half when ordered lexicographically, and we may assume that kπ∗ ≥ 1 for an arbitrary
permutation π∗.

Also here we consider the cases n = 3, 4, and 5 to show the strength of the bound in Proposition
14.

Proposition 15. For n = 3, the maximin ℓ1-distance satisfies dmax(3, k) = ⌊ 4k
3 ⌋.

Proof. The stated result follows from solving the above integer programming problem (9) by
hand (the number of variables is 3). Alternatively, it also follows by using the upper bound and
recursively applying Lemma 6 starting from dmax(3, 1) = 1, dmax(3, 2) = 2 (both trivial), and
dmax(3, 3) = 4. The latter is attained by the design {(0, 1, 2), (1, 2, 0), (2, 0, 1)}.

Proposition 16. For n = 4, the maximin ℓ1-distance satisfies dmax(4, k) = ⌊ 5k
3 ⌋ − 1 if k ≡ 3

(mod 6), and dmax(4, k) = ⌊ 5k
3 ⌋ otherwise.

Proof. First, we show that the upper bound ⌊ 5k
3 ⌋ cannot be attained if k ≡ 3 (mod 6). Suppose

that k is a multiple of 3, and that an LHD with separation distance d = 5k/3 exists. This implies
that all points in the design are at equal distance. Fix one point, and let k0 be the number of
coordinates where this point is 0 or 3, and let k1 = k−k0 be the number of coordinates where it is
1 or 2. It follows that the average distance of this point to the other points equals 2k0 + 4

3k1 = 5
3k.

It now follows that k1 = k/2, hence k should be even. Thus, for k ≡ 3 (mod 6) the bound cannot
be attained.

By solving the integer programming problem (9) for k ≤ 6 by computer and using Lemma 6
(with k2 = 6), we then find that the upper bound ⌊ 5k

3 ⌋ is attained for all k except for k ≡ 3 (mod
6), and that for these exceptions the maximin distance is one less.

Proposition 17. For n = 5, the maximin ℓ1-distance satisfies dmax(5, k) = 2k − 1 if k ≤ 4 or
k = 7, and dmax(5, k) = 2k otherwise.

Proof. We first show that the bound 2k cannot be attained for k ≤ 4 and k = 7. If the bound
is attained, then all points of the design are at equal distance. Fix a point, let k0 be the number
of coordinates where this point is 0 or 4, let k1 be the number of coordinates where it is 1 or 3,
and let k2 be the number of coordinates where it is 2. It follows that the average distance of this
point to the other points equals 10

4 k0 + 7
4k1 + 6

4k2 = 2k. Since k0 + k1 + k2 = k, it follows that
k1 + 4

3k2 = 2
3k. For 2 ≤ k ≤ 4 and k = 7, there is a unique nonnegative integer solution (k0, k1, k2)

to these equations, and so each point has the same number k2 of coordinates where this point is
2. This implies that the total number of coordinates where a 2 occurs equals 5k2 on one hand,
and k on the other hand. This gives a contradiction in these cases.

By solving the integer programming problem (9) for k ≤ 9 by computer, and using Lemma 6
(with k2 = 5 or 6), we then find that the upper bound 2k is attained for all k except for k ≤ 4
and k = 7, and that for these exceptions the maximin distance is one less than the given upper
bound.

Also for n = 6 and n = 7 we computed the integer programming problem (9) for k ≤ 20, see the
tables below. Note that for some values of k only a lower bound was obtained. The tables show
that also here the upper bound is attained for many values of k. In particular it follows that for
n = 6, the upper bound ⌊ 7k

3 ⌋ is attained for all k ≡ 0, 1, 2, 5 (mod 6), except for k = 1, 2 and

15

possibly for k = 7. For n = 7, the upper bound ⌊ 8k
3 ⌋ is attained for all k ≡ 0, 1 (mod 3), except

for k = 1 and 3.

dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

dmax(6, k) 1 3 6 8 11 14 ≥ 15 18 ≥ 20 ≥ 22 25 28 30 32 ≥ 34 ≥ 36 39 42 44 46
upper bound 2 4 7 9 11 14 16 18 21 23 25 28 30 32 35 37 39 42 44 46

Table 11: Maximin ℓ1-distance for LHDs on 6 points.

dimension k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

dmax(7, k) 1 4 6 10 12 16 18 ≥ 20 24 26 ≥ 28 32 34 ≥ 36 40 42 ≥ 44 48 50 ≥ 52
upper bound 2 5 8 10 13 16 18 21 24 26 29 32 34 37 40 42 45 48 50 53

Table 12: Maximin ℓ1-distance for LHDs on 7 points.

5 Final remarks and conclusions

5.1 Final remarks

By a branch-and-bound algorithm we were able to find maximin LHDs in three dimensions for
small n and the three distance measures ℓ2, ℓ1, and ℓ∞. The maximin distances are given in the
following table.

size n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

squared maximin ℓ2-distance 3 6 6 11 14 17 21 22 27 30 36 41
maximin ℓ1-distance 3 4 4 5 6 6 7 8 8 8 9 10 10
maximin ℓ∞-distance 1 2 2 2 3 3 4 4 4 4 5 5 5 6

Table 13: Maximin distances for LHDs in three dimensions.

The corresponding maximin designs, and all other (approximate) maximin LHDs that appeared
in this paper can be obtained from the website http://www.spacefillingdesigns.nl.

In two dimensions the ℓ∞-maximin distance is equal to ⌊n 1

2 ⌋, cf. Van Dam et al. (2007). The

results in three dimensions suggest that the corresponding ℓ∞-maximin distance equals ⌊n 2

3 ⌋. A

natural extension would be that the ℓ∞-maximin distance in k dimensions equals d = ⌊n k−1

k ⌋.
However, this is not the case in general, since for example for the case n = 17 and k = 23 the
optimal distance is smaller than ⌊17

22

23 ⌋ = 15 according to Proposition 6. The expression for d
may, however, still provide an upper bound for the maximin distance.

Another interesting point is that we conjecture, but were unable to prove, that the analogue
of Lemma 5 holds for the ℓ2- and ℓ1-distance measure, i.e. that also for these distance measures
the maximin distance is non-decreasing in n.

5.2 Conclusions

We have obtained bounds for the separation distance of LHDs for several distance measures.
These bounds are useful to assess the quality of approximate maximin LHDs by comparing their
separation distances with the corresponding upper bounds. For the ℓ2- and ℓ1-distances we obtain
bounds by considering the average distance. These bounds are close to tight when the dimension
k is relatively large. For the ℓ2-distance in two dimensions we obtain a method that produces a
bound that is better than Oler’s bound if the number of points of the LHD is at most 400. For the
ℓ∞-distance we obtain a bound by looking at it as a graph covering problem. Besides this bound
we construct maximin LHDs attaining Baer’s bound for infinitely many values of n (the number
of points) in all dimensions. Finally, we present a method to obtain a bound for three-dimensional
LHDs that is better than Baer’s bound for many values of n.

16

Acknowledgements

The authors thank Dick den Hertog for the many inspiring conversations on the topic of this
paper, and Dolf Talman for his comments on an earlier version.

References

Baer, D. (1992). Punktverteilungen in Würfeln beliebiger Dimension bezüglich der Maximum-
norm. Wiss. Z. Pädagog. Hochsch. Erfurt/Mühlhausen, Mathematik-Naturwissenschaften
Reihe, 28, 87–92.

Bermond, J.C. and D. Sotteau (1976). Graph decompositions and G-designs. In Nash-Williams
and Sheehan (Eds.), Proc. 5th British Combinatorial Conf. 1975, 53–72. Utilitas Mathematica
Publ.

Bisschop, J. and R. Entriken (1993). AIMMS: The Modeling System. Haarlem, The Netherlands:
Paragon Decision Technology.

Booker, A.J., J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset (1999).
A rigorous framework for optimization of expensive functions by surrogates. Structural and
Multidisciplinary Optimization, 17(1), 1–13.

Dam, E.R. van, B.G.M. Husslage, D. den Hertog, and J.B.M. Melissen (2007). Maximin Latin
hypercube designs in two dimensions. Operations Research, 55. (to appear).

Driessen, L.T. (2006). Simulation-based Optimization for Product and Process Design. Ph. D.
thesis, CentER for Economic Research, Tilburg University.

Heinrich, K. (1996). Graph decompositions and designs. In Colbourn and Dinitz (Eds.), Handbook
of Combinatorial Designs, 361–365. CRC Press.

Hertog, D. den and H.P. Stehouwer (2002). Optimizing color picture tubes by high-cost nonlinear
programming. European Journal of Operational Research, 140(2), 197–211.

Husslage, B.G.M. (2006). Maximin Designs for Computer Experiments. Ph. D. thesis, CentER for
Economic Research, Tilburg University.

Husslage, B.G.M., G. Rennen, E.R. van Dam, and D. den Hertog (2006). Space-filling Latin hyper-
cube designs for computer experiments. CentER Discussion Paper 2006-18 . Tilburg University.

Jin, R., W. Chen, and A. Sudjianto (2005). An efficient algorithm for constructing optimal design
of computer experiments. Journal of Statistical Planning and Inference, 134(1), 268–287.

Johnson, M.E., L.M. Moore, and D. Ylvisaker (1990). Minimax and maximin distance designs.
Journal of Statistical Planning and Inference, 26, 131–148.

Jones, D., M. Schonlau, and W.J. Welch (1998). Efficient global optimization of expensive black-
box functions. Journal of Global Optimization, 13, 455–492.

Montgomery, D.C. (1984). Design and Analysis of Experiments (Second ed.). New York: John
Wiley & Sons.

Morris, M.D. and T.J. Mitchell (1995). Exploratory designs for computer experiments. Journal of
Statistical Planning and Inference, 43, 381–402.

Myers, R.H. (1999). Response surface methodology – Current status and future directions. Journal
of Quality Technology , 31, 30–74.

Oler, N. (1961). A finite packing problem. Canadian Mathematical Bulletin 4 (2), 153–155.

Sacks, J., S.B. Schiller, and W.J. Welch (1989a). Designs for computer experiments. Technomet-
rics, 31, 41–47.

Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn (1989b). Design and analysis of computer
experiments. Statistical Science, 4, 409–435.

17

Santner, Th.J., B.J. Williams, and W.I. Notz (2003). The Design and Analysis of Computer
Experiments. Springer Series in Statistics. New York: Springer-Verlag.

Stinstra, E. (2006). The META-model Approach for Simulation-based Design Optimization. Ph.
D. thesis, CentER for Economic Research, Tilburg University.

Volgenant, A. (1990). Symmetric traveling salesman problems. European Journal of Operational
Research, 49(1), 153–154.

Volgenant, A. and R. Jonker (1982). A branch and bound algorithm for the symmetric traveling
salesman problem based on the 1-tree relaxation. European Journal of Operational Research, 9,
83–89.

Wilson, R.M. (1976). Decompositions of complete graphs into subgraphs isomorphic to a given
graph. In Nash-Williams and Sheehan (Eds.), Proc. 5th British Combinatorial Conf. 1975,
647–659. Utilitas Mathematica Publ.

Ye, K.Q., W. Li, and A. Sudjianto (2000). Algorithmic construction of optimal symmetric Latin
hypercube designs. Journal of Statistical Planning and Inference, 90(1), 145–159.

18

Appendix: Upper bounds on two-dimensional ℓ
2-maximin LHDs

n Oler d∗2
n

(Y (d)) d∗2
n

(eY (d)) d2 n Oler d∗2
n

(Y (d)) d∗2
n

(eY (d)) d2 n Oler d∗2
n

(eY (d)) d2

2 5 2 2 2∗ 59 85 73 73 61∗ 120 162 148 128
3 5 2 2 2∗ 60 85 73 73 65∗ 130 173 160 145
4 8 5 5 5∗ 61 85 74 74 65∗ 140 185 173 149
5 10 5 5 5∗ 62 89 74 74 65∗ 150 200 185 170
6 10 5 5 5∗ 63 90 74 74 65∗ 160 212 202 178
7 13 8 8 8∗ 64 90 74 74 65∗ 170 225 208 185
8 13 8 8 8∗ 65 90 80 80 68∗ 180 234 225 202
9 17 10 10 10∗ 66 90 80 80 68∗ 190 245 234 208
10 18 13 13 10∗ 67 90 80 82 74∗ 200 261 250 218
11 20 13 13 10∗ 68 97 80 85 74∗ 210 274 261 241
12 20 13 13 13∗ 69 98 85 85 74∗ 220 281 274 245
13 20 13 13 13∗ 70 98 85 85 74∗ 230 298 290 250
14 25 17 17 17∗ 71 100 85 85 74 240 306 298 269
15 26 17 17 17∗ 72 101 85 89 74 250 320 314 277
16 26 18 18 17∗ 73 101 85 89 74 260 333 325 292
17 29 20 20 18∗ 74 104 89 89 74 270 346 338 305
18 29 20 20 18∗ 75 106 89 90 80 280 360 349 320
19 32 25 25 18∗ 76 106 90 90 85 290 370 365 320
20 32 25 25 18∗ 77 106 97 97 85 300 377 373 338
21 34 25 25 20∗ 78 109 97 97 85 310 394 388 346
22 34 26 26 25∗ 79 109 97 97 85 320 405 401 356
23 37 29 29 26∗ 80 109 97 97 85 330 416 410 370
24 37 29 29 26∗ 81 113 100 100 85 340 433 425 386
25 40 29 29 26∗ 82 113 100 101 85 350 445 442 401
26 41 29 29 26∗ 83 116 100 104 90 360 457 450 409
27 41 32 32 26∗ 84 117 100 104 90 370 468 464 410
28 41 34 34 29∗ 85 117 100 106 90 380 481 477 425
29 45 34 34 29∗ 86 117 104 106 97 390 493 490 442
30 45 34 34 29∗ 87 117 106 106 97 400 505 505 450
31 45 34 37 32∗ 88 122 106 106 97 410 514 514 461
32 45 37 40 32∗ 89 122 106 109 97 420 522 530 466
33 50 40 40 34∗ 90 125 109 109 98 430 541 544 485
34 52 41 41 37∗ 91 125 109 109 98 440 549 549 490
35 53 41 41 37∗ 92 125 113 113 98 450 565 565 509
36 53 41 41 37∗ 93 128 113 116 100 460 578 580 509
37 53 45 45 37∗ 94 130 116 116 100 470 586 592 533
38 53 45 45 41∗ 95 130 117 117 100 480 601 601 545
39 58 45 45 41∗ 96 130 117 117 101 490 613 617 549
40 58 45 50 41∗ 97 130 117 117 101 500 626 629 565
41 61 45 52 41∗ 98 130 117 122 101 510 637 641 578
42 61 50 52 41∗ 99 136 117 125 101 520 650 656 586
43 61 52 52 41∗ 100 137 117 125 109 529 661 661 586
44 65 52 52 50∗ 101 137 117 125 109
45 65 52 53 50∗ 102 137 125 125 113
46 68 53 53 50∗ 103 137 125 125 113
47 68 58 58 50∗ 104 137 125 130 117
48 68 58 58 50∗ 105 137 128 130 117
49 72 58 58 50∗ 106 145 130 130 117
50 73 61 61 52∗ 107 146 130 130 117
51 74 61 61 52∗ 108 146 130 130 117
52 74 61 65 58∗ 109 149 130 136 117
53 74 61 65 58∗ 110 149 130 136 117
54 74 61 65 58∗ 111 149 136 136 128
55 80 65 65 58∗ 112 149 136 137 128
56 80 65 68 58∗ 113 153 137 137 128
57 82 68 68 58∗ 114 153 137 137 128
58 82 68 73 61∗

Table 14: Oler bound, bounds based on Y (d) and Ỹ (d), and d2 of the best know LHD. When an
optimal maximin LHD is known, the corresponding d2 is marked with ∗.

19

