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ABSTRACT

The relationship between economic growth and the environment is not well understood: we have

only limited understanding of the basic science involved and very limited data. Because of these

difficulties it is especially important to develop a series of relatively simple theoretical models that

generate stark predictions. This paper presents one such model where societies implement "the

Kindergarten rule of sustainable growth." Following the Kindergarten rule means implementing zero

emission technologies in either finite time or asymptotically. The underlying simplicity of the model

allows us to provide new predictions linking the path of environmental quality to pollutant

characteristics (stocks vs. flows; toxics vs. irritants) and primitives of the economic system. It also

provides a novel Environmental Catch-up Hypothesis.
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1.  Introduction 

The relationship between economic growth and the environment is, and will likely 

remain, controversial.  Some see the emergence of new pollution problems, the lack of 

success in dealing with global warming and the still rising population in the developing 

world as proof positive that humans are a short-sighted and rapacious species.  Others 

however see the glass as ha lf full.  They note the tremendous progress made in providing 

urban sanitation, improvements in air quality in major cities and marvel at continuing 

improvements in the human condition made possible by technological advance.  The first 

group focuses on the remaining and often serious environmental problems of the day; the 

second on the long, but sometimes erratic, history of improvements in living standards.    

 These views are not necessarily inconsistent and growth theory offers us the tools 

needed to exp lore the link between environmental problems of today and the likelihood 

of their improvement tomorrow.  But since the relationship between economic growth 

and the environment is complex and we have such limited data, it is important to develop 

theoretical models with stark and readily testable predictions.  This paper presents one 

such model where societies implement “the Kindergarten rule of sustainable growth.”1   

 We provide conditions under which long run economic growth with rising 

environmental quality is both feasible and optimal; describe the transition path of 

environmental quality from short to long run; and link features of the path to both the 

primitives of pollutants (stocks vs. flows; toxics vs. irritants) and primitives of the 

economic system (technologies and preference).  In doing so we develop a novel 

                                                 

1 We define sustainable growth as continuous economic growth with non-decreasing environmental quality.   
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Environmental Catch-up Hypothesis: initially poor countries experience greater 

environmental degradation than rich countries and a worse environment at all levels of 

income; despite this, differences in the quality of their environments diminish over time.   

The paper differs from others in the literature in two important ways.  First, we 

treat the pollution production and abatement process at a more detailed level than earlier 

authors.  This proves to be absolutely critical.  We assume both goods and abatement 

production functions are linearly homogenous and exhibit diminishing returns; moreover, 

pollution is a joint and inescapable output of both the production and abatement process.  

Technological progress is an indirect consequence of production and abatement efforts 

and our assumptions lead to a specification with constant returns to reproducible factors.2   

These assumptions rule out situations where sustainable growth is achieved by 

either accumulating perfectly clean factors of production, or by employing abatement 

technologies that exhibit increasing returns. They ensure that assumptions we make 

regarding knowledge spillovers that eliminate diminishing returns to capital 

accumulation, are also consistently applied to abatement where they eliminate 

diminishing returns to lowering emissions per unit output.  Together they generate 

sustainable growth when the intensity of abatement is chosen to satisfy what we dub “the 

Kindergarten rule.”  This rule is adopted is adopted in finite time or approached 

asymptotically.  In either case, its implementation generates continuing economic growth 

                                                 

2 To focus our efforts on the implications of ongoing technological progress for the environment and 
growth, we adopt the very direct link between factor accumulation and technological progress employed by 
Romer (1986), Lucas (1988) and others.     
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and rising environmental quality without imposing the typical, but restrictive, 

assumptions ensuring the demand for a clean environment rise rapidly with incomes.   

For example, Stokey (1998), Aghion and Howitt (1998), Lopez (1994), etc. all 

require a rapidly declining marginal utility of consumption to generate rising 

environmental quality and ongoing growth. 3  This restriction is troublesome for several 

reasons.  As Aghion and Howitt note: 

“Thus it appears that unlimited growth can indeed be sustained, but it not 
guaranteed by the usual sorts of assumptions that are made in endogenous growth theory.  
The assumption that the elasticity of marginal utility of consumption be greater than unity 
seems particularly strong, in as much as it is known to imply odd behavior in the context 
of various macroeconomics models…” (p. 162.)   

 

This restriction is also troublesome on the empirical front because it implies a 

large income elasticity of marginal damage and many question whether the demand for a 

clean environment can be so income elastic.4 Moreover, a rapidly declining marginal 

utility of consumption is required in earlier work because, with diminishing returns to 

abatement, increasingly large investments in abatement are required to hold pollution in 

check.  This implies the share of pollution abatement costs in the value of output 

approaches one in the limit.5  This is inconsistent with available evidence.  

Our formulation removes the tension between the ubiquitous empirical finding of 

declining pollution levels with theoretic rationales that require very strong income 

effects.  It does so by introducing a direct role for technological progress in abatement.  

                                                 

3 Also see Chapter 3 of Copeland and Taylor (2003) where they present the leading explanations for the 
EKC showing that many rely on this same restriction.  
4 See our discussion of marginal damage in Section 4.3 where this link is made explicit.  For example, 
McConnell (1997) argues that current empirical estimates from contingent valuation and hedonic studies do 
not support the very strong income effects needed.   
5 See the discussion in Aghion and Howitt (1998, page 160-161) and our discussion of abatement in 
Section 5.   
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This ensures that all economies capable of continuing growth will, at some point, 

experience falling pollution levels and rising environmental quality.   

The simplicity of our specification also enables us to develop several predictions 

that open new avenues for empirical investigation.  This is our second contribution.  

Earlier theoretical work has shown very little interest in developing the empirical 

implications of their work, apart from generating the inverse U-shaped relationship found 

in empirical studies of the Environmental Kuznets Curve.  This is unfortunate, and in 

stark contrast to the history of scientific progress in growth theory more generally.  

Kaldor’s stylized facts, the Solow residual, real business cycle theory and recent 

empirical debates over convergence have all played a major role in the evolution of 

thought regarding growth.  In many cases, theoretical advance opened up new channels 

of empirical investigation that then led to further refinement of theory.   

Until the discovery of the EKC however, theoretical research examining the 

growth and environment link proceeded with little or no guidance from empirical work.6  

Since then, researchers have developed a set of possible explanations for the EKC, but no 

new hypotheses have been offered.  As a consequence the productive give-and-take 

characteristic of growth theory more generally has been largely absent.  In recognition of 

this fact we develop two types of predictions: predictions holding at or near the balanced 

growth path; and predictions concerning the overall transition from initial conditions 

through to balanced growth.  We develop our Environmental Catch-up Hypothesis and 

relate it to the Environmental Kuznets Curve.  Throughout we distinguish between 

                                                 

6 There is of course a large literature on green accounting but this is  quite different.  See Chapter 11 of   
Heal (2000) or Dasgupta and Maler (2000).   
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parameter changes altering the level of environmental quality and those affecting its rate 

of change.   

For example, we find the rate of income growth can be uncorrelated with the rate 

of environmental improvement even though there is a strong relationship between the 

levels of environmental quality and income.  Similarly, we find that the income elasticity 

of marginal damage has no effect on the rate of environmental improvement, but does 

play a role in determining the level of environmental quality and the time when countries 

shift to active abatement.  Variation in other pollutant characteristics such as speed of 

dissipation in the environment, convexity of damages and abatement cost are shown to 

have both level and rate of change effects.   The level versus rate of change distinction is 

of course basic to most discussions of growth, but as yet absent from work in this area.       

Our formal model is related to many others in the literature.  It is similar to the 

one sector models discussed in Smulders (1993), Smulders and Gradus (1996), Stokey 

(1998) and Aghion and Howitt (1998) but differs from each of these significantly because 

of our explicit treatment of abatement.  It is also related to work seeking to explain the 

EKC (Andreoni and Levinson (2001), Jones and Manuelli (2000), Lopez (1994), and 

John and Pecchenino (1994)) but differs from these both in purpose and in many 

specifics.  Its closest connection may be to the much earlier work of Keeler, Spence, and 

Zeckhauser (1972) that sought to understand the growth and environment link quite 

generally and adopted several alternative formulations for abatement and pollution.     

The rest of the paper proceeds as follows.  In section 2 we detail the model 

assumptions paying close attention to how individual abatement and production functions 

aggregate.  Section 3 then investigates the balanced growth path of the model and 
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presents our balanced growth predictions.  Section 4 examines the two stages of 

economic growth and develops predictions concerning transition paths and our 

Environmental Catch-up Hypothesis. Since our detailed treatment of abatement, 

production and knowledge spillovers is critical to the novelty of our results, in the 

penultimate section of the paper we relate our specificatio n to those of earlier authors.  A 

short conclusion sums up.  All lengthy proofs are relegated to an appendix.    

 2.  The Model 

We adopt the conventional infinitely lived representative agent model.  There is 

one aggregate good, labeled Y, which is either consumed or used for investment or 

abatement purposes.  There are two factors of production: labor and capital.  We assume 

zero population growth and hence L(t) = L.  In contrast the capital stock accumulates via 

investment and depreciates at the constant rate δ.   

2.1 Tastes 

Our representative consumer maximizes lifetime utility given by:  

 
0

( , ) tW U C X e dtρ
∞

−= ∫  (1.1) 

   where C indicates consumption, and X is the pollution stock.  Utility is 

increasing and quasi-concave in C and –X and hence X= 0 corresponds to a pristine 

environment.  When we treat X as flow, X = 0 occurs with zero flow of pollution.  When 

we allow pollution to accumulate in the biosphere we assume the (damaging) service 

flow is proportional to the level of the stock.  Taking this factor of proportionality to be 

one, then X is the damaging service flow from the stock of pollution given by X.  
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A useful special case of U(C,X) is the constant elasticity formulation where:  

 

( )1 ,
( , ) 1

1

( , )
( , ) ln 1

B L XC
U C X for

B L X
U C X C for

γε

γ

ρ
ε

ε γ

ρ
ε

γ

−

= − ≠
−

= − =
 (1.2) 

where 1γ ≥ , ε > 0 and Β measures the impact of local pollution on a representative 

individual.  We follow Copeland and Taylor (1994) and assume exposure and hence 

disutility depends positively on population density ρ, and negatively on the physical size 

of country indexed by population L. 7 For the most part we assume countries are identical 

in terms of size and density, and suppress the arguments of Β in what follows.  We 

consider the impact of changes in these variables in Section 4.6.   

2.2 Technologies 

 Our assumptions on production are standard.  Each firm has access to a strictly 

concave and CRS production function linking labor and capital to output Y.  The 

productivity of labor is augmented by a technology parameter T taken as given by 

individual agents.  Following Romer (1986) and Lucas (1998) we assume the state of 

technology is proportional to an economy wide measure of activity.  In Romer (1986) this 

aggregate measure is aggregate R&D, in Lucas (1988) it is average human capital levels; 

in AK specifications it is linked to either the aggregate capital stock or (to eliminate scale 

effects) average capital per worker.  We assume T is proportional to the aggregate capital 

                                                 

7 This assumes a country is comprised of many identically sized communities, so that an increase in L 
taking ρ as given implies either an increase in the physical size of the country or the creation of a new 
community that suffers only from its own pollution.  See Copeland and Taylor (1994) for further details.  
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to labor ratio in the economy, K/L, and by choice of units take the proportionality 

constant to be one.8   

2.3 From Individual to Aggregate Production 

Although we adopt a social planning perspective, it is instructive to review how 

firm level magnitudes aggregate to economy wide measures since this makes clear the 

assumptions made regarding the role of knowledge spillovers.  We aggregate across firms 

to obtain the AK aggregate production function as follows: 9   

 

( , )

( , )

( / ,1)

(1,1)

i i i

i i
i

Y F K TL

Y F K TL

Y TLF K TL

Y KF AK

=

=

=
= =

∑
 (1.3) 

where the first line gives firm level production; the second line sums across firms; the 

third uses linear homogeneity and exploits the fact that efficiency requires all firms adopt 

the same capital intensity.  The last line follows from the definition of T.   

Summarizing: diminishing returns at the firm level are undone by technological 

progress linked to aggregate capital intensity leaving the social marginal product of 

capital constant.     

 We now employ similar methods to generate the aggregate abatement technology.  

To start we note pollution is a joint product of output and we take this relationship to be 

                                                 

8 As is well known, one-sector models of endogenous growth blur the important distinction between 
physical capital and knowledge capital and force us to think of “capital” in very broad terms.  Extensions of 
our framework along the lines of Grossman and Helpman (1991) or Aghion and Howitt (1998) seem both 
possible and worthwhile.  These extensions would however add additional state variables making our 
examination of transition paths difficult.   
9 Implementing our planning solution by way of pollution taxes and subsidies to investment and abatement 
should be straightforward.  We leave this to future work.   
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proportional. 10  By choice of units we take the factor of proportionality to be one.   

Pollution emitted is equal to pollution created minus pollution abated.  Denoting 

pollution emitted by P, we have:  

 GP Y abatement= −  (1.4) 

Abatement of pollution takes as inputs the flow of pollution, which is proportional to the 

gross flow of output YG, and abatement inputs denoted by YA.  The abatement production 

function is standard:  it is strictly concave and CRS.  Therefore we can write pollution 

emitted by the ith firm as:  

 ( , )G G A
i i i iP Y a Y Y= −  (1.5) 

note that in this formulation, the abatement activity pollutes since it is counted in YG.     

 Now consider a Romeresque approach where individual abatement efforts provide 

knowledge spillovers useful to others abating in the economy.  To do so we again 

introduce a technology shift parameter T, and assume it raises the marginal product of 

abatement.  To be consistent with our earlier treatment of technological progress in 

production we assume T is proportional to the average abatement intensity in the 

economy, YA/YG.  Then much as before we have the individual to aggregate abatement 

technology transformation as:  

 

( , )

[1 (1, / )]

[1 (1, / )]

[1 (1,1)], (1,1) 1

[1 (1,1)], /

G G A
i i i i

G A G
i i i i

G A G
i i i i

i i

G

G A G

P Y a Y T Y

P Y Ta Y Y T

P Y Ta Y Y T

P Y Ta a

P Y a Y Yθ θ

= −

= −

= −

= − >

= − ≡

∑ ∑  (1.6) 

                                                 

10 Nothing is lost if we assume pollution is produced in proportion to the services of capital inputs.  The 
service flow of capital is proportional to the stock of capital, and the stock of capital is proportional to 
output.      
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where the first line introduces the technology parameter T; the second exploits linear 

homogeneity of the abatement production function; the third aggregates across firms; the 

fourth recognizes that efficiency requires all firms choose identical abatement intensities, 

uses the definition of T and notes that for abatement to be productive it must be able to 

clean up after itself.  The fifth line defines the intensity of abatement, /A GY Yθ ≡ .  Since 

abatement can only reduce the pollution flow we must have 1/ (1,1)aθ ≤ .11   

 It is important to note that the aggregate relationship between pollution and 

abatement given by the last line in (1.6) is consistent with empirical estimates finding 

rising marginal abatement costs at the firm level.  Each individual firm has abatement 

costs given by foregone output used in abatement, and hence partially differentiating the 

second line of (1.6) and rearranging we find:        

 
2 2/ 1/[ / ] 0, / 0A A A

i i i i iY P a Y Y P∂ ∂ = − ∂ ∂ < ∂ ∂ >  (1.7) 

Marginal abatement costs are rising at the firm level.   

 Marginal abatement costs at the society level, are however, constant.  To see why 

totally differentiate (1.6) allowing T and individual abatement to both vary.  We find:  

 
[ / ]

/ 1/[ / ]
[ / ]

G G
A A i i

i i i A
i i

a Y Y dT
dY dP a Y

a Y dP
∂ ∂= − ∂ ∂ −

∂ ∂
 (1.8) 

T is the average abatement intensity in the economy, which given identical firms, is just 

the abatement intensity for the typical ith firm.  Using / [1/ ][ / ]G A
i i i idT dP Y dY dP= and 

rearranging we obtain:  

                                                 

11 Adding the possibility of investments in restoration would probably strengthen the case for sustainable  
growth.  Abatement of pollution and restoration are however distinct activities.  We imagine that a 
restoration production function would take as an input the current damage to the environment – our stock 
variable X – and then apply inputs to restore it.  This is quite different from abatement which operates to 
lower the current flow of pollution by use of variable inputs.    
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/
[[ / ] [ / ] ]

1
0

( , ) (1,1)

A
A i

i i A A G G
i i i i

A
i

A G
i i

Y
dY dP

a Y Y a Y TY

Y
a Y TY a

= −
∂ ∂ + ∂ ∂

= − = − <
 (1.9) 

where the first line follows from rearrangement and the second by CRS in abatement.  

Note the result given in (1.9) is identical to what we find by differentiating the aggregate 

relationship between pollution and abatement given in the last line of (1.6).   

Summarizing: diminishing returns at the firm level, that lead to rising marginal 

abatement costs, are undone by technological progress linked to aggregate abatement 

intensity leaving the social marginal cost of abatement constant.     

 Putting these pieces together our planner faces the aggregate production relations 

for output and abatement given by the last lines of (1.3) and (1.6) together with the 

atemporal resource constraint linking gross output, abatement and net production:  

 G AY Y Y= −  (1.10) 

2.4 Endowments 

 We treat pollution as a flow that either dissipates instantaneously – such as noise 

pollution – or a stock that is only eliminated over time by natural regeneration – such as 

lead emissions or radioactive waste.  When X is a stock we have:  

 [1 ]X AK a Xθ η
•

= − −  (1.11) 

where η > 0 represents the speed of natural regeneration, and where for economy of 

notation we have denoted a(1,1) by a.  When X is a flow we have:  

 [1 ]X AK aθ= −  
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3.  The Kindergarten Rule 

 We focus first on the possibility of balanced and continual growth, leaving to the 

next section a discussion of transition paths.  Consider the following problem:  

 

0

0 0

( , )

. . (0) , (0) , 1/

[1 ]

[1 ]

tMaximize U C X e dt

s t K K X X and a

K AK K C

X AK a X

ρ

θ

θ δ

θ η

∞
−

•

•

= = ≤

= − − −

= − −

∫

 (1.12) 

where we adopt U(C,X) from (1.2).  Recall the fraction of gross output allocated to 

abatement is θ and since the flow of pollution into the environment cannot be negative 

this will never exceed 1/a.  We can write the Hamilton-Jacobi-Bellman equation as:  

1

1 2( , ) [ [1 ] ] [ [1 ] ]
1
C BX

W K X Max H AK K C AK a X
ε γ

ρ λ θ δ λ θ η
ε γ

− 
= = − + − − − + − − − 

(1.13) 

where ρW(K,X) is the maximized value of the program for the given initial conditions 

{K0, X0}, and H is the current value Hamiltonian for our problem.  The controls for this 

problem are consumption, C, and abatement intensity, θ.  

Observe the term involving our control variable, θ,  

 { }1 2[ ] . . 0 1/Max AK a s t aθ λ λ θ− − ≤ ≤  

where λ1 is the positive shadow value of capital and λ2 is the negative shadow cost of 

pollution.  Since the Hamiltonian is linear in θ, the value of the term S = [-λ1-aλ2] will 

largely determine the optimal level of abatement.  When S > 0, the shadow cost of 

pollution is high relative to that of capital.  In this case abatement is relatively cheap and 

maximal abatement will be undertaken.  Conversely when S < 0 the shadow value of 
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capital is high relative to that of pollution.  In this case abatement is relatively expensive 

and zero abatement will occur.  Finally, when S=0, the shadow values are equated and 

active, but not necessarily maximal, abatement will occur.  Therefore, the value of S 

determines when and if the economy switches from a zero-to-active-to-maximal 

abatement regime.  We deal with these possibilities in turn.   

Regardless of the value of S, the optimal level of consumption will always satisfy  

 1 0
H

C
C

ε λ−∂ = − =
∂

 (1.14) 

although the shadow value of capital and its dynamic path may differ across regimes.   

When S > 0, maximal abatement occurs and the dynamics are given by:    

 
1 1

1/
1 0 1 1

1
2 2

0

0

, 1/

, [1 ]

[ ] ( ), (0) , ( )

[ ]

, (0)

K K

K

S

a

g g A

K g K C K K C

BX

X X X X

ε

γ

θ θ θ

λ λ θ δ ρ

ρ λ λ λ

λ λ ρ η

η

•

•
−

•
−

•

>

= ≡

= − ≡ − − −

= + − = ≡

= + +

= − =

 (1.15) 

By choosing the intensity of abatement θ = θK there are no net emissions of pollution and 

the environment improves at a rate given by natural regeneration.  We dub θK “the 

Kindergarten rule” because when economies adopt the Kindergarten rule pollution is 

cleaned up when it is created. 12    

Alternatively, S may be exactly zero.  In this case we have an interior solution for 

abatement, with the following dynamics: 
                                                 

12 This is one of the most common rules taught in Kindergarten.  For a list of common Kindergarten rules 
see All I Really Need to Know I Learned in Kindergarten: Uncommon Thoughts on Common Things 
by Robert Fulgham.  Fulgham argues that the basic values we learned in grade school such as "clean up 
your own mess" (in effect our Kindergarten rule) and "play fair" are the bedrock of a meaningful life.  
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[ ]

1 1

1/
1 0 1 1

1
2 2

0

0

[0, ]

[ [1 ] ] ( ), (0) , ( )

[ ]

1 , (0)

K

S

g

K A K C K K C

BX

X AK a X X X

ε

γ

θ θ

λ λ

θ δ λ λ λ

λ λ ρ η

θ η

•

•
−

•
−

•

=

∈

= −

= − − − = ≡

= + +

= − − =

 (1.16) 

In this situation pollution is not completely abated, and hence the evolution of 

environmental quality reflects both the level of active abatement and natural regeneration.  

And finally, with no abatement at all we must have S < 0 yielding:   

 
1 1 2

1/
1 0 1 1

1
2 2

0

0

0

[ ] ,

[ ] ( ), (0) , ( )

[ ]

, (0)

S

A A

K A K C K K C

BX

X AK X X X

ε

γ

θ

λ λ δ ρ λ

δ λ λ λ

λ λ ρ η

η

•

•
−

•
−

•

<
=

= − − − −

= − − = ≡

= + +

= − =

 (1.17) 

Consider growth paths with active abatement.  Then from (1.16) and (1.15) we 

find the shadow value of capital falls over time at a constant exponential rate:  

 1

1

[1 ] 0,Kg A
λ

θ ρ δ
λ

•

 − ≡ = − − − − <   (1.18) 

provided the net marginal product of capital, at the Kindergarten rule level of abatement, 

A[1-θK], can cover both depreciation and impatience.  We leave for now a detailed 

discussion of what this requires and assume it is true: g > 0.  Then it is immediate that 

consumption rises at the constant rate gC=g/ε>0.   
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From the capital accumulation equations in both (1.15) and (1.16) we can now 

deduce that capital and output must grow at the same rate as consumption if θ is constant 

over time.  To determine whether the intensity of abatement is constant over time, 

consider the accumulation equation for pollution: 

 [1 ]X AK a Xθ η
•

= − −  (1.19) 

There are two ways (1.19) can be consistent with balanced growth.  The first possibility 

is that we have a maximal abatement regime where S > 0 holds everywhere along the 

balanced growth path.  In this situation, K grows exponentially over time and θ is set to 

the Kindergarten rule level.  Using (1.15), this balanced growth path must have:  

 KX X andη θ θ
•

= − =  (1.20) 

In this scenario, the environment improves at the rate η over time and abatement is a 

constant fraction of output 1 > θK > 0.  As time goes to infinity the economy approaches a 

pristine level of environmental quality.  Therefore the balanced growth path exhibits 

constant growth in consumption, output, capital and environmental quality.  Consumption 

is a constant fraction of output and we have:  

 / 0, 0C K Y Xg g g g gε η= = = > = − <  (1.21) 

A second possibility is that abatement is active but not maximal.  Define the 

deviation of abatement from the Kindergarten rule as D(θ) =(θK-θ)/θK.  Using this 

definition rewrite (1.19) to find:  

 
[ ( )]X AK D

X X
θ

η

•

= −  (1.22) 
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It is apparent that if the deviation of abatement from the Kindergarten rule fell 

exponentially, then it may be possible for X to fall exponentially while K rises.  That is, 

in obvious notation, a possible balanced growth path would have:  

 0K D Xg g g+ = <  (1.23) 

In this situation abatement is at an interior solution at all times and becomes 

progressively tighter over time approaching the Kindergarten rule asymptotically.  The 

inflow of pollution from production into the environment is always positive but 

environmental quality improves nevertheless.  This intuitive description suggests that the 

possibility of this outcome must rely on both the pace of economic growth and the ability 

of the environment to regenerate.  This is indeed the case as we now show.     

To do so it proves useful to assume S=0 and explore its implications.  When S = 

0, the shadow values for capital and pollution are related by:  

 1 2aλ λ= −  (1.24) 

which implies, since a is constant, that the rate of change of the shadow cost of pollution 

must fall over time at the same rate the shadow value of capital falls over time.  From 

(1.18) this rate is g.  Now using (1.16) and the fact that the time rates of change and 

levels of the shadow prices are pinned down by (1.24), we can show that the 

instantaneous marginal rate of substitution between consumption and pollution must 

remain constant along the balanced growth path.  That is, we have:13 

 
11 BX C

a g

γ ε

η ρ

−

=
+ +

 (1.25) 

                                                 

13 Note this is just the equality between marginal abatement costs, 1/a, and the marginal damage from 
pollution.  We show that this implies a unique K for every X at the start  of Stage II and call this relationship 
the Switching Locus.  See (1.32).  
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Therefore, when abatement is active, but not maximal, we must have:  

 0
1 1

X C g
X C

ε
γ γ

• •

= = <
− −

 (1.26) 

As consumption rises along the balanced growth path the environment improves.  The 

only question remaining is whether the growth rate given by (1.26) is in fact consistent 

with remaining in the S=0 abatement regime.    

To investigate solve the state equation for X from (1.16) to find the transition of θ 

towards the Kindergarten rule.  Manipulating the state equation from (1.16) and 

exploiting our definition of D(θ), we find:  

 
( 1)

( )
( 1)

X g
D

AK
η γ

θ
γ

 − −=  − 
 (1.27) 

D(θ) must be non-negative while X and K are always positive.  Together these imply that 

a necessary condition for us to remain in a S=0 regime is simply:  

 ( -1)>g  η γ  (1.28) 

This condition reflects two different requirements.  The first is simply that γ cannot equal 

one.  If it did then the (instantaneous) marginal disutility of pollution is a constant and 

λ2 is a constant as well.  To see this manipulate (1.25) and (1.24) to find:  

 
1

2

( )
( ) 0

BX t
t

g

γ

λ
η ρ

−

= − <
+ +

 (1.29) 

hence when γ is one, the shadow cost of pollution is independent of time.  This would 

also imply, if S=0 from (1.24), that consumption be fixed as well.  This is inconsistent 

with growth of any sort.  
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 Assuming γ not equal to one is necessary for balanced growth with an interior 

solution for abatement.  But a second condition must also hold.  Natural regeneration, η, 

must be sufficiently large relative to the growth rate g.   If the rate of regeneration is high 

and growth rates quite low, then the optimal plan is to use nature’s regenerative abilities 

to partially offset the costs of abating because the shadow value of foregone output is 

high in slow growth situations.  Conversely, if regeneration is low and the growth rate g 

relatively high, then no amount of abatement short of the Kindergarten rule will hold 

pollution to acceptable levels.   

Finally we need to rule out a zero abatement balanced growth path.  To do so we 

assume balanced growth occurs and use this to generate a contradiction.  Note the last 

equation of (1.17) shows balanced growth in X requires equal growth in both capital and 

pollution.  Since positive growth in the economy requires gK > 0, it also implies:  

 / , 0X X K

AK
g X X g g

X
η

•
≡ = − ⇒ = >  (1.30) 

But gX > 0 implies a monotonically rising shadow cost of pollution that moves us towards 

an active abatement regime.  To complete the argument use S < 0 to find:  

 1 1 1 2[ ( ) ] 0 , ( ) [ ] / 0g t t A a aλ ξ λ ξ λ λ
•

= − + < ≡ − >  (1.31) 

where g > 0 is required for growth.  The shadow value of capital is falling while the 

shadow cost of pollution is rising and S < 0 is contradicted in finite time.  Summarizing: 

Proposition 1.  Assume g > 0, then sustainable economic growth with an ever improving 
environment is possible and optimal. 
   

i) If η(γ−1)> g, then the intensity of abatement approaches the Kindergarten rule 
level of abatement, θK, asymptotically.   

 
ii) If η(γ−1)< g, then θ = θK everywhere along the balanced growth path.   
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iii)  Balanced growth with zero abatement is not optimal. 
 
Proof: See Appendix.  

Proposition 1 suggests a natural corollary for the case of flow pollutants.  If 

pollution has only a flow cost it is “as if” the environment is regenerating itself infinitely 

fast.  This intuition suggests that as we let η get large, our results in the stock pollutant 

case should replicate those for a flow.  This intuition is, in fact, correct.   

Proposition 2.  Assume g > 0 and X is a flow pollutant, then sustainable economic growth 
with an ever improving environment is possible and optimal. 
   

iv) If (γ−1)>0, the intensity of abatement approaches the Kindergarten rule level 
of abatement, θK, asymptotically.   

 
v) If (γ−1)=0, θ = θK everywhere along the balanced growth path.   

 
Proof: See Appendix.  

Propositions 1 and 2 are important in showing how the Kindergarten rule 

generates sustainable growth.  The requirement for sustainable growth, g > 0, is very 

similar to that in standard endogenous growth models.  The assumption g > 0 requires the 

marginal product of capital, adjusted for the ongoing costs of abatement, be sufficiently 

high.  A necessary condition is that A[1-θK] be positive, but this is guaranteed as long as 

abatement is a productive activity.  Recall that abatement, like all other economic 

activities, pollutes.  One unit of abatement creates one unit of pollution, but cleans up a > 

1 units of pollution.  It is only this surplus between costs and benefits, 1-1/a = 1- θΚ > 0 

that makes abatement useful at all!   

Given abatement is productive, we still require the adjusted marginal product of 

capital, A[1-θK], to offset both impatience and depreciation.  If abatement is not very 

productive, then 1/a will be close to one and growth cannot occur. If capital is not very 
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productive or if the level of impatience and depreciation are high then ongoing economic 

growth cannot occur.  These are however very standard requirements for growth under 

any circumstances; therefore our addition of the further requirement that abatement be 

productive seems both innocuous and natural in our setting.14   

4.  Empirical Implications  

The model we have presented relies heavily on the assumed role of technological 

progress in staving off diminishing returns to both capital formation and abatement.  It is 

impossible to know apriori whether technological progress can indeed be so successful 

and hence it is important to distinguish between two types of predictions before 

proceeding.  The first class of predictions are those regarding behavior at or near the 

balanced growth path.  This set has received almost no attention in the empirical 

literature on the environment and growth, although balanced growth path predictions and 

their testing are at the core of empirical research in growth theory proper (see the review 

by Durlauf and Quah (1999)).  The second set of predictions concern the transition from 

inactive to active abatement and these are related to the empirical work on the 

Environmental Kuznets Curve (See Grossman and Krueger (1993,1995) and the review 

by Barbier (2000)).   

                                                 

14 In Keeler, Spence and Zeckhauser (1972) a similar condition describes their Golden Age capital stock.  
In their model with no endogenous growth the Golden Age capital stock is defined by (in our notation) the 
equality f’(K)[1-1/a]-δ = ρ; simulations of the model assume a to be 12 (see p.22).  Chimeli  and Braden 
(2002) assume a similar condition.  Both studies assume abatement or clean up is a linear function of effort 
thereby ignoring the reality of diminishing returns and the necessity of ongoing technological progress.    
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4.1 Balanced Growth Path Predictions 

Using our previous results it is straightforward to show that near the balanced 

growth path we must have: convergence in the quality of the environment across all 

countries sharing parameter values but differing in initial conditions; the share of 

pollution abatement costs in output approaching a positive constant less than one; overall 

emissions rates falling and environmental quality rising; and emissions per unit output 

falling as production processes adopt methods that approach zero emission technologies.    

An especially sharp prediction is that the rate of change in per capita income is 

uncorrelated with the rate of change in environmental quality when pollutants are long-

lived.  They are negatively correlated when they are short- lived.15  To see why let η be 

small.  In this case, the fast growth scenario arises, and the environment improves at rate 

η.  If we now vary g, but remain in the fast growth scenario, this has no effect on the pace 

of environmental improvement.  Note however that countries with higher g’s produce 

greater income gains over any period of time.   

This result is counter- intuitive since, as we will show subsequently, higher levels 

of income are always associated with higher levels of environmental quality along the 

balanced growth path.  Nevertheless the logic is simple: in the fast growth scenario, the 

constraint on environmental improvement is not income, but rather technology.  Since we 

have assumed that net inflows of pollution cannot be negative – and hence no restoration 

activities can occur - improvement can at most occur at rate η.   This result highlights the 

fact that income growth may not be the constraining factor in some circumstances.  The 

                                                 

15 The reader should note that in most cases the ratio of η/g is critical in determining these results, and not 
the level of either η or g.       
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rate of environmental improvement can be limited by other factors – such as the 

availability of better technologies - so that the rate of income growth can be uncorrelated 

with the rate of environmental improvement even though income levels and 

environmental quality are positively related. 16  

Conversely, when η is large, the slow growth scenario arises and environmental 

improvement occurs at rate g/(γ-1).  In this case, faster growth implies faster 

environmental improvement.  This faster growth could occur from a higher marginal 

product of capital or abatement, or increased patience.  This result is surprising since we 

would normally associate fast growth with large increases in pollution unless there was a 

very strong demand for a clean environment (which we have not assumed).  Faster 

growth is linked with faster environmental improvement in this case because income 

growth is the limiting factor. When g rises the shadow value of capital falls very quickly 

and this is, of course, the opportunity cost of abatement.   

Whether these predictions are borne out by empirical work is as yet unknown but 

an examination of US data shows the model’s strongest predictions – those regarding 

falling emissions and improving environmental quality - are not grossly at odds with 

available U.S. data.  For example, the U.S. EPA reports that over the 1971 to 2001 

period, total emissions of the 6 criteria air pollutants (Nitrogen Dioxide, Ozone, Sulfur 

Dioxide, Particulate matter, Carbon Monoxide, and Lead)17 decreased 25%.  Over this 

                                                 

16 A suggestive plot of growth rates versus the rate of improvement in an environmental index can be found 
in Figure 2.3, p. 27 of the World Bank’s 2003 Development Report.  The index aggregates across measures 
of deforestation, water pollution and CO2 emissions.  The plot shows no relationship between the two rates 
of change. In contrast, Carson et al. (1997) finds a negative and significant relationship between the rate of 
state income growth and the rate of decline in emissions of air toxics.      
17 All US figures are taken from the EPA’s Latest Findings on National Air Quality, 2001 Status and 
Trends, available at http://www.epa.gov/air/aqtrnd01/ published September 2002.  Corresponding measures 
of environmental quality (ground level concentrations of these same pollutants) have also been improving.    
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same period, gross domestic product rose 161%.  Looking at the individual pollutants 

only nitrogen oxide emission rose over the 1971 period and that by only 15%.  In contrast 

emissions of carbon monoxide fell 19%, volatile organic compounds 38%, sulfur dioxide 

44%, particulates 76% and lead 98%.  Moreover, abatement costs as a fraction of output 

are both small and exhibit no strong trend over time as our analysis would suggest.  For 

example, if we consider the size of pollution abatement costs specifically directed to air 

pollutants and scale this by real US output, the ratio is incredibly small – approximately 

one half of one percent of GDP - and has remained so for over twenty years (See Vogan 

(1996)).  Moreover, the share of pollution abatement costs in manufacturing value-added 

has remained a relatively small 1-2%.  Changes in the composition of U.S. output surely 

play some role in these figures, but it is difficult to eliminate the inference we draw: 

abatement efforts have become much more productive over time.    

This partial snapshot of the US environmental record is not meant to imply that 

environmental quality is always and everywhere rising in the US or elsewhere.18  Nor 

should it be as our framework suggests that some environmental problems will be 

addressed while others are left ignored.  Looking across pollutants we would expect this 

variability whenever pollutants differ in their abatement costs, their rates of dissipation in 

the environment and their marginal damage.19  Active regulation of the six criteria 

                                                 

18 One important omission from the above is any discussion of air toxics such as benzene (in gasoline), 
perchloroethylene (used by dry cleaners), and methyl chloride (a common solvent).  These are chemicals 
are believed to cause severe health effects such as cancer, damage to the immune system, etc.  At present 
the EPA does not maintain an extensive national monitoring system for air toxics, and only limited 
information is available.  Figures from the US National Toxics Inventory show emissions nationwide have 
fallen 24% from the  baseline (1990-1993) to 1996.  Emissions of 33 toxics, believed to be the most 
deleterious to human health, have fallen 31%.  See U.S. EPA, Toxic Air Pollutants, available at 
www.epa.gov/airtrends/toxic.html. 
19It will become clear as we proceed that if we treat the damage from different pollutants separately in 
utility and assume abatement is separable in pollutants, then for each pollutant the planner solves a problem 
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pollutants would not imply abatement of all pollutants everywhere.  Our point is simply 

that the historic trends of these most regulated pollutants are roughly consistent with our 

model’s balanced growth path predictions.       

4.2 The Environmental Catch-up Hypothesis 

We have so far focused on balanced growth paths and these always exhibited 

active abatement.  It is however natural to ask whether abatement is always undertaken 

even off the balanced growth path.  The analysis suggests quite strongly that it is not.   

To start we present several trans ition paths in Figure 1.  One of these paths is that 

of a Poor country having small initial capital KP but a pristine environment.  The other is 

the path of a Rich country starting again with a pristine environment but with a much 

larger initial capital KR.  Each economy starts with a pristine environment in stage I and 

grows.  During this stage the environment deteriorates, X rises, and the capital stock 

grows until the trajectory hits the Switching Locus labeled SL.  Once the economy hits 

the Switching Locus it begins stage II.  The exact position and shape of the locus depend 

on whether parameters satisfy the fast growth or slow growth scenario.  For the most part 

we will proceed under the assumption that economic growth is fast relative to 

environmental regeneration; that is (1.28) fails strongly and we have η(γ−1)< g.  This 

implies θ(t) = θK everywhere along the balanced growth path (Figure 1 implicitly 

assumes this result).   For illustrative purposes we will sometimes discuss the parallel 

flow case (where we can think of η approaching infinity but (1.28) failing because γ = 1).   

                                                                                                                                                 

identical to the one we discuss here.  This would generate a theory of optimal sequencing of abatement 
across pollutants with different characteristics.    



X

K

Figure 1
Transition Paths
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KRKP
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It is apparent from the figure that the Poor country experiences the greatest 

environmental degradation at its peak, and at any given capital stock, (i.e. income level) 

the initially Poor country has worse environmental quality than the Rich.  Moreover, 

since both Rich and Poor economies start with pristine environments, the qualities of 

their environments at first diverge and then converge.  This is our Environmental Catch-

up Hypothesis.   

Divergence occurs because the opportunity cost of abatement (and consumption) 

is much higher in capital poor countries.   A high shadow price of capital leads to less 

consumption, more investment and rapid industria lization in the Poor country.  Nature’s 

ability to regenerate is overwhelmed.  The quality of the environment falls precipitously.  

In capital rich countries the opportunity cost of capital is lower: consumption is greater 

and investment less.  Industrialization is less rapid and natural regeneration has time to 

work.  The peak level of environmental degradation in the Rich country is therefore much 

smaller.     

But once we enter Stage II abatement is undertaken and since abatement is an 

investment in improving the environment, it is only undertaken when the rate of return on 

this investment equals (or exceeds) the rate of return on capital.  Since economies are 

identical, except for initial conditions, rates of return are the same across all countries in 

Stage II.  Equalized rates of return require equal percentage reductions in the pollution 

stock.  Therefore absolute differences in environmental quality present at the beginning 

of Stage II disappear over time.   

To verify these assertions we start with Stage II.      
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4.3 Stage II 

Stage II starts at the moment the economy’s shadow prices for capital and pollution 

satisfy (1.24) and abatement begins.  Denote this transition time t=t* and the associated 

capital and pollution stocks at the moment of transition K* and X*.  Recall the shadow 

values in (1.24) are partial derivatives of the value func tion W(K,X) evaluated at K*, X*.  

Where W(K*,X*) is the maximized value of the program starting from capital and 

pollution stocks {K*, X*} over the period t = t* until t = ∞ .  This implies the set of  {K*, 

X*} at which a transition to active abatement occurs must satisfy: 

   1

2

( *, *)/ ( *, *)
( *, *)/ ( *, *)

W K X K K X
a

W K X X K X
λ
λ

∂ ∂− = =
∂ ∂ −

 (1.32) 

We refer to the set of {K*,X*} satisfying (1.32) as the Switching Locus, since any 

trajectory of the economy switches from inactive to active abatement when it crosses it.20  

The Switching Locus represents the set of points where the equality of marginal 

abatement costs, MAC, and marginal damage, MD(K,X), yields an interior solution for 

abatement.   

To go further we need to solve for the shadow values as functions of capital and 

pollution stocks and then impose (1.24) to find the Switching Locus.  We have denoted 

the switching time as t*, and hence at t* the S > 0 set of dynamics come into play.   Using 

(1.15) solve the differential equation for the shadow value of capital.  Eliminate 

consumption and then solve for the capital stock.  This yields:  

                                                 

20 Trajectories in the fast growth case cross the Switching Locus; trajectories in the slow growth case enter 
a similar Switching Locus and then follow it thereafter.  We discuss the slow growth case in section 4.5.   
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where both K* and λ1(t*) are unknowns.  We can eliminate one of these unknowns by 

using the transversality condition, TVC, 1lim[exp[ ] ( ) ( )] 0
t

t t K tρ λ
→∞

− = .  Subbing (1.33) into 

the TVC we find it requires: 
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Integrating and solving (1.34) gives us the solution for λ1(t*) as: 

 1( *) [ *] , (1 1/ ) 0t hK h gελ ε ρ−= ≡ − + >  (1.35) 

and using (1.35) in (1.33) solves for λ1(t).  It is important to note the shadow value of 

capital is only a function of K* and not {K*,X*}.  This is because, in the fast-growth-

slow-regeneration case, the economy’s shadow value of capital falls so rapidly that 

abatement efforts are always maximal.  Since abatement is maximal, the {K, λ1} part of 

the problem separates and solves a simple AK model with power utility.  Not surprisingly 

it is now possible to show that the condition h > 0 is equivalent to the standard sufficient 

condition for existence of an optimum path for an AK model with power utility.21   

  With the λ1(t*) in hand we now turn to solve for the shadow cost of pollution, 

λ2(t*).  Assuming we remain in S > 0 forever, we can solve the state and co-state 

equations in this case to yield:  

                                                 

21Denote the growth rate in an AK model with power utility by g*, then in terms of our parameters we have 
g* =g/ε and the standard condition is ρ+(ε−1)g∗>0.  Τhis is equivalent to h>0. See Aghion and Howitt 
(1998, Equation (5.3)).   
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where λ2(t*) and X* are unknowns. We can again use a transversality condition to 

eliminate one unknown.  Using 2lim[exp[ ] ( ) ( ) ] 0
t

t t X tρ λ
→∞

− =  and manipulating yields: 

 1
2 2 2( ) ( *)exp[[1 ] ( *)], ( *) * /[ ]t t t t t BX γλ λ γ η λ ρ γη−= − − = − +  (1.37) 

The shadow cost of pollution falls at rate η(γ−1), which in the fast growth case, is less 

than g, the rate the shadow value of capital falls.  This implies we have abatement at its 

maximum – the Kindergarten rule level – because MAC < MD(K(t), X(t)) for t > t*. 

We can now employ (1.35) and (1.37) in (1.24) and set t = t* to find a closed form 

expression for the Switching Locus.  Manipulating to obtain familiar terms we find:   
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which is a downward sloping and convex relationship between pollution and capital.  The 

left hand side of (1.38) represents marginal abatement costs.  The right hand side is 

marginal damage evaluated at {K*,X*}.  Marginal damage is increasing in the pollution 

stock provided γ exceeds one, and since the flow of national (and per-capita) income Y is 

always proportional to K, it is apparent that the income elasticity of marginal damage 

with respect to flow income is given by ε > 0.  Large values of ε correspond to the strong 

income effects referred to earlier.      

 The discussion thus far is incomplete because it has implicitly assumed two key 

points yet to be proven.  The first is simply that a country starting in a situation below the 

Switching Locus – such as the natural initial conditions K0 > 0 and X0 = 0  – will indeed 

reach the Switching Locus and make the transition to Stage II.  Proposition 1 indicates a 
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balanced growth path is not possible with S < 0 but this does not imply every country 

must cross the Switching Locus in finite time.  The second is that the locus does indeed 

represent an irrevocable change so that once we cross over to Stage II we remain there 

forever.  These points are possible to establish and hence we record:  

 

Proposition 3.  Assume g > 0 and g > η(γ−1), then: 

i) every economy starting in Stage I must enter Stage II in finite time 

ii) every economy in Stage II remains in Stage II. 

iii)  The locus of {K, X} at which Stage I ends is given by (1.38) 

Proof: See appendix 

It is possible to extend this result to flow pollutants.  To remain in the relatively 

fast growth case with η(γ-1) <  g we now assume γ=1 and find:  

 Proposition 4  Assume g > 0 and γ = 1, then: 

iv) every economy starting in Stage I must enter Stage II in finite time 

v) every economy in Stage II remains in Stage II. 

vi) The Switching Locus is vertical at a finite K* > 0.   

Proof: See appendix 

4.4 Slow Growth and Fast Regeneration 

The previous analysis was undertaken under the fast-growth-slow-regeneration 

assumptions because this case illustrates the various forces at work very clearly.  Since 

many of the same conclusions hold when growth is relatively slow we only provide a 

sketch here of some differences, leaving a complete analysis to the interested reader.   
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We can again solve for a Switching Locus which divides Stage I from Stage II.  If 

we let W(K,X) represent the state valuation function the new Switching Locus is again 

defined by (1.32).  The interpretation given to the Switching Locus remains the same.  

The most important difference is that once a trajectory of the system hits this new 

Switching Locus it remains within it forever.  This implies the economy’s choice of 

abatement remains interior; i.e. the trajectory follows along the Switching Locus 

maintaining MAC = MD(K,X) throughout.  As time progresses the intensity of abatement 

approaches the Kindergarten rule in the limit.   

Our transition path predictions remain virtually unchanged except that the model 

now predicts an especially strong form of convergence.  All transition paths remain on 

the Switching Locus once active abatement begins; therefore policy active countries 

share the same path for environmental quality and income levels in Stage II.   

Solving for the Switching Locus involves similar steps and is left to the appendix.  

The Switching Locus again defines a unique X* that is declining in K*.  If the economy 

is below this locus then abatement is inactive and K rises at a rapid rate.  X increases 

rapidly until the Switching Locus is reached in finite time.  If the initial (K,X) is above 

the locus, maximal abatement is undertaken but this drives down the shadow cost of 

pollution very quickly and we again hit the locus, this time, from above.  Once on the 

locus, countries remain trapped within it thereafter.    

4.5 The ECH and the EKC  

Proposition 3 and 4 prove that all economies follow the stage I – stage II life cycle.  

We have assumed g > 0 and the standard sufficient condition required in models of 

endogenous growth given here as h > 0 in (1.35).  We have met the Aghion and Howitt 
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test of generating sustainable growth while adopting the usual sort of assumptions made 

in endogenous growth models.   

The model also presents an interesting new prediction, the ECH: countries 

differentiated only by initial capital exhibit initial divergence in environmental quality 

followed by eventual convergence.22 Moreover, as Figure 1 makes clear countries make 

the transition to active abatement at different income and peak pollution levels.  This of 

course throws into question empirical methods seeking to estimate a unique income-

pollution path.  More constructively it suggests that an important feature of the data may 

well be a large variance in environmental qua lity at relatively low-income levels with 

little variance at high incomes.  Empirical work by Carson et al. (1997) relating air toxics 

to U.S. state income levels is supportive of this conjecture: 

“Without exception, the high- income states have low per-capita emissions while 
emissions in the lower- income states are highly variable.  We believe that this may be the 
most interesting feature of the data to explore in future work.  It suggests that it may be 
difficult to predict emission levels for countries just starting to enter the phase, where per 
capita emissions are decreasing with income”, p. 447-8.     

 
In some cases however, (initially) Rich and Poor will make the transition at the same 

income level but still exhibit our Catch-up Hypothesis.  Let γ approach one.  Then the 

slope of the Switching Locus approaches infinity and all countries attain their peak 

pollution levels at the same K*.  From (1.38), at γ equal to one, we have:  
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22 It is possible to show X is rising throughout Stage I and this ensures points along the Switching Locus do 
indeed represent peaks in pollution levels.     
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Even with a common turning point differences in environmental quality remain.  

Moreover, these are not simple level differences because countries initially diverge and 

then converge after crossing K* as shown in Figure 2.   

To eliminate our catch-up hypothesis we must assume regeneration is infinitely fast: 

X is a flow.  The Switching Locus is now vertical at K* and given by:23  
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 (1.40) 

Since pollution is proportional to production before K*, and policies are identical after 

K*: initial conditions no longer matter.   

This tells us that when pollution is strictly a flow, all countries share the same 

income pollution path.  We have generated an EKC, and empirical methods used to 

estimate a unique income-pollution path are appropriate.  But when pollution does not 

dissipate instantaneously, initial conditions matter.  We have the Environmental Catch-up 

Hypothesis, and empirical methods must now account for the persistent role of initial 

conditions.24  It is easy to see the two hypotheses are mutually exclusive and exhaustive.   

We now ask whether the process of catch-up begins at low or high- income levels.  

One important consideration is the income elasticity of marginal damage.  To illustrate its 

role consider the fast growth regime and let the gross marginal product of capital, A, rise.  

                                                 

23 The turning point in the flow case is related to that of the stock in a transparent manner.  Recall from 
(1.37) that the shadow cost of pollution is equal to the perpetuity value of the constant marginal disutility of 
– B (when γ=1).  The perpetuity value arises since any unit of pollution has a constant instantaneous cost of 
–B but this cost is discounted by time preference, ρ, and eliminated by natural regeneration at rate η from 
the present time until infinity.  Therefore, the perpetuity value of any unit of pollution is simply –B/[ρ+η].  
Once pollution is a flow, it is eliminated immediately from the environment and has only a current flow 
cost of –B.  Not surprisingly then (1.40) only differs from (1.39) by the absence of the perpetuity term.   
24 This result may explain why empirical research investigating the EKC has been far more successful with 
air pollutants like SO2, than with water pollutants or other long lasting stocks (see the review by Barbier 
(2000)). 
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This necessarily raises g and if ε > 1, the Switching Locus shifts in.  Abatement is 

hastened.  The same result holds with constant marginal damage, (1.39), and with a pure 

flow pollutant (1.40).  In terms of Figure 2, peak pollution levels shift left.  When ε < 1, 

abatement is delayed and peak pollution levels shift right.25 A similar set of results holds 

for increases in the productivity of abatement although there is an additional conflicting 

force.   From (1.39) it is clear that an increase in abatement productivity, holding g 

constant, necessarily lowers K* and hastens abatement.  This is direct impact of higher 

productivity on marginal abatement costs.  But to this we must add the income response 

created by the resulting change in g.  When the income elasticity of marginal damage is 

greater than one both forces work to hasten abatement.  When it is less than one, the 

result appears ambiguous.  Therefore, in contrast to earlier work we find that while the 

income elasticity of marginal damage has an important role to play in determining the 

income level at which abatement occurs and the resulting pollution level, it plays virtually 

no role in determining if the environment will improve nor its rate of improvement.     

4.6 Pollution Characteristics 

The ECH focuses on cross-country comparisons in pollution levels, but says little 

about how predictions vary with pollutant characteristics.  There is however good data in 

the U.S. and elsewhere that could be fruitfully employed to test within country but across 

pollutant predictions.  We have already examined the role of income effects and the 

productivity of abatement, therefore we focus on the remaining pollutant characteristics: 

permanence in the environment, marginal disutility, and convexity of marginal damages.   

                                                 

25 Our use of the terms delayed or hastened does not refer to calendar time, but rather to whether actions 
occur at a higher or lower income level. 
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Consider regeneration and start from a position where η = 0 (radioactive waste).  

Then it is immediate from (1.38) that the Switching Locus shifts outwards as we raise η.  

The response is to delay action and allow the environment to deteriorate further.  Delay is 

obvious when the marginal disutility of pollution is constant, because (1.39) shows K* 

necessarily rises with η.  Once we raise η sufficiently the economy enters the fast 

regeneration regime and here we find abatement delayed in another manner – it is 

introduced slowly by the now gradual implementation of the Kindergarten rule. Faster 

regeneration then implies that countries either begin abatement at higher income levels or 

allow their environments to deteriorate more before taking action.  Surprisingly, fast 

regeneration will be associated with lower and not higher environmental quality  - at least 

over some periods of time or ranges of income.26     

A change in regeneration rates also affects the pace of abatement.  If a pollutant has a 

long life in the environment, then once abatement begins it is clear that natural 

regeneration can play only a small role.  Consequently the optimal plan calls for an initial 

period of inaction before starting a very aggressive abatement regime – the Kindergarten 

rule.  Putting these two features together we find that very long-lived pollutants should be 

addressed early with their complete elimination compressed in time.  It is optimal to 

delay action on short- lived pollutants and adopt only a gradual program of abatement. 

This description of optimal behavior is of course consonant with the historical record in 
                                                 

26 An especially colorful example of delay in abatement caused by rapid natural regeneration is that of the 
City of Victoria in British Columbia. Every day, the Victoria Capital Regional District (CRD) dumps 
approximately 100,000 cubic meters of sewage into the Juan de Fuca Strait.  Scientific studies have long 
argued that since the sewage is pumped through long outfalls into cold, deep, fast moving water there is no 
need for treatment. The CRD has always used these studies to delay building a treatment facility.  Current 
plans are for secondary treatment to begin in 2020, but until then over 40 square kilometers of shoreline 
remains closed to shell fishing.  Background information can be found at the Sierra Legal Defense fund site 
http://www.sierralegal.org/m_archive/1998-9/bk99_02_04.htm 
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several instances where long- lived chemical discharges and gas emissions were 

eliminated very quickly by legislation, whereas short- lived criteria pollutants have seen 

active regulation but not elimination over the last 30 years.      

Pollutants also differ in their toxicity.  The marginal disutility of toxics could exceed 

those classified as irritants, and damages from toxics may rise more steeply with 

exposure.  The first feature of toxics implies their abatement should come early.  This is 

clear from (1.38)-(1.40) where increases in B hasten abatement. Note that since exposure 

is rising with population density and falling with country size it is now also apparent that 

abatement should come early when population is dense and late when pollutants can be 

spread over large geographic areas.  Surprisingly very convex marginal damages call for 

the gradual and not aggressive elimination of pollution.  The logic is that any reduction in 

the concentration of toxics has a large impact on marginal damage.  Therefore, only by 

lowering emissions slowly can we match a steeply declining value of marginal reductions 

with a falling opportunity cost of abatement.  Therefore, although toxics may have large 

absolute negative impacts on welfare, this argues for their early, but not necessarily 

aggressive, abatement.   

5.  Alternative Approaches to Abatement 

Despite several articles examining one-sector models it remained unclear whether 

sustained growth with non-decreasing environmental quality was possible in an AK 

framework.  Early work in a one-sector framework by Smulders (1993) and Smulders and 

Gradus (1996) demonstrated how continuing economic growth and constant 

environmental quality are compatible.  In constrast, Stokey (1998) demonstrated how 

continuing growth and constant environmental quality are not possible within a one-
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sector model.  The difference lies in their assumptions on abatement.  To verify this 

assertion start with (1.5), ignore knowledge spillovers, and work forward using now 

familiar steps to find:  

 (1 ), ( ) [1 (1,1 )]G
i iP Y aφ θ φ θ θ= − ≡ − −  (1.41) 

Stokey employs the specific function form for φ given by (1-θ)β for β  > 1, and this 

implies a CRS abatement production function given by:  

 ( , ) [1 (1 / ) ]G A G A G
i i i i ia Y Y Y Y Y β= − −  (1.42) 

Using (1.41) it is now easy to show abatement is subject to diminishing returns:  

 2 21/ (1 ) 0, / 0AA
i i i iP Y P Yββ θ −∂ ∂ = − − < ∂ ∂ >  

which implies marginal abatement costs are rising at the aggregate level.  Setting θ = 0 

we find the first unit of abatement lowers pollution by the amount β  > 1, somewhat 

similar to our formulation where a(1,1) > 1.  If we now combine (1.41) with (1.3), recall 

net output is (1-θ) times gross output, and introduce the variable z = 1-θ, we find the 

specification employed in Stokey (1998).  

 ,Y AKz P AKzβ= =  (1.43) 

Therefore, Stokey’s (1998) result that growth is not possible follows from 

matching an AK aggregate production function with strictly neoclassical assumptions on 

abatement adopted from Copeland and Taylor (1994).   

Comparing our approach to Smulders is more difficult because abatement is not 

specifically modeled and he considers a variety of formulations.  By specializing his 

framework to the AK paradigm we find:  

 , [ / ]Y K P K A γα= =  (1.44) 
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The first element is just a standard AK production function.  The second relates what 

Smulders refers to as net or emitted pollution to the capital stock and abatement.  If we 

employ (1.44) and solve for emissions per unit of gross output we find:  

 / [ / ] /P Y K A Kγ α=  (1.45) 

If the economy allocates a fixed fraction of its output to abatement, K/A is 

constant, and emissions per unit of gross output fall with the size of the economy.  This 

reflects a strong degree of increasing returns.  Moreover, the reader may note from (1.44) 

that pollution emitted goes to infinity as abatement goes to zero, which is inconsistent 

with pollution being a joint product of output.  Therefore, Smulders and Gradus (1993, 

1996) match AK aggregate production with assumptions on abatement ensuring 

increasing returns; and, in contrast with our specification, assume pollution is not a joint 

product of output.   

6.  Conclusion 

The relationship between economic growth and the environment is not well 

understood: we have only limited understanding of the basic science involved – be it 

physical or economic – and we have very limited data.  Because of these difficulties it is 

especially important to develop a series of relatively simple theoretical models to 

generate stark predictions testable with currently available data.  To do so we developed a 

model relying on technological progress to drive long run growth and showed how 

growth is sustainable whenever the planner implements the Kindergarten rule – clean up 

your messes as they are created.  This rule may be implemented in finite time or 

approached asymptotically.   
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We provided predictions concerning the path of environmental quality for pollutants 

differentiated by their toxicity, their permanence in the environment, and their immediate 

disutility.  We have shown that changes in abatement productivity, the convexity of 

marginal damages, and regeneration rates all affect both the level and rate of change in 

environmental quality. Conversely changes in disutility and changes in the income 

elasticity of marginal damage have only level effects. These predictions can be evaluated 

by exploiting available data for the U.S. and other developed countries.  We also 

introduced a novel Environmental Catch-up Hypothesis predicting eventual convergence 

in environmental quality across both Rich and Poor countries.  Together these predictions 

widen the scope for empirical research considerably while offering a theoretically based 

alternative to the presently dominant EKC methodology.            

To generate these results much simplification was required.  Some of our strongest 

assumptions produced features that some may find undesirable; nevertheless the model’s 

simplicity is a virtue since it has laid bare previously unknown features of the growth and 

environment relationship.  And by paying special attention to abatement we demonstrate 

how sustainable growth need not rely on strong income effects, increasing returns to 

abatement, or the assumed existence of perfectly clean factors of production.     
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7. Appendix 

Proof of Proposition 1  

Start with part ii) and assume η(γ-1)< g then given our analysis in the text all that 

remains to prove is that the first order condition dynamics of S > 0 and θ = θK remain in 

the S > 0 set forever.  To start write out the state/co-state equations for S > 0 to find:  

 

1 1

1/
1 0 1 1

1
0 2 2

, (1 )

[ ] ( ), (0) , ( )

/ / , ( ) (0)exp[( / ) ]

, (0) [ ]

kg g A

K g K C K K C

C C g C t C g t

X X X X BX

ε

γ

λ λ θ δ ρ

ρ λ λ λ

ε ε

η λ λ ρ η

•

•
−

•

• •
−

= − ≡ − − −

= + − = ≡

= =

= − = = + +

 (A.1) 

In Section 4 of the text we solve these to obtain the switching locus and the shadow 

values.  In doing so we implicitly assumed:  

 2 1( ) ( ), Sa t t for t tλ λ− > ∀ >  (A.2) 

where ts is the switching time.  Solving (A.1) for the shadow value of capital we have:  

 1 1 1( ) (0)exp{ }, (0) [ (0)]t gt hK ελ λ λ −= − =  (A.3) 

where the initial value can be found by using the transversality condition (see section 4 in 

the text).  Similarly solve for the shadow cost of pollution to find:  

 
1

2

(0) exp{(1 ) }
( )

BX t
t

γ γ η
λ

ρ γη

−− −=
+

 (A.4) 

where again we have employed a transversality condition to pin down the initial value of 

the shadow price in terms of X(0).  Hence using (A.3) and (A.4) we find that (A.2) 

requires:  
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( 1)(0)

exp{[ [1 ] ] }
[ ][ (0)]

BX
g t

hK

γ

ε
γ η

ρ γη

−

−
> − − −

+
 (A.5) 

for all t > tS.  By definition (A.5) is an equality when t = ts.  Using the definition of  ts and 

multiplying both sides of (A.5), we obtain:  

 1 exp{ [ ( 1) ][ ]}sg t tγ η> − − − −  (A.6) 

which is true for t > ts if and only if  

 ( 1) gη γ − <  (A.7) 

This is of course what we have assumed and this parameter restriction defines the fast 

growth-slow regeneration scenario.  Note that when (A.7) fails – so we are in the fast 

regeneration-slow growth situation – and initial conditions put us above the switching 

locus so that S > 0, then (A.6) also implies the S > 0 dynamics drive the system to the 

switching locus and S=0 in finite time.  This ends the proof to part ii).  

Consider part i).  The text does not show the economy approaches a balanced growth path 

with capital, output and consumption growing.  To do so solve (1.19) for θ and substitute 

into the capital accumulation equation to obtain:  

 [ ] [ (0)/ ]exp{(( /(1 )) } (0)exp{( / ) }K g K X a g t C g tρ γ ε
•

= + + − −  (A.8) 

where use has been made of the solution for λ1(t) and the solutions for C(t) and X(t) 

given by:  

 
( ) (0)exp{( / ) }

( ) (0)exp{( /( 1) }

C t C g t

X t X g t

ε
γ

=
= − −

 (A.9) 

Now integrate (A.8) to find:  

1 2 3

1 2

( ) (0)exp{(( /(1 )) } (0)exp{( / ) } exp{( ) }

( 1)
0, 0

(1 ) (1 )

K t X g t C g t g t

g g

γ ε ρ

γ ε
γ ρ γ ρε ε

=−Π − + Π + Π +

   −Π ≡ > Π ≡ >   − − − −   

(A.10) 
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Μultiply (A.10) by exp{-ρt}λ1(t) and invoke the transversality condition, that:   

 1lim ( ) ()exp{ } 0
t

t K t tλ ρ
→∞

− =  (A.11) 

This in turn implies  

1 1

2 1 3

(0) (0)exp{( /(1 ) ) }
0 lim

(0) (0)exp{( (1 ) / ) } exp{ }t

X g t

C g t gt

λ γ γ ρ

λ ε ε ρ→∞

−Π − − 
=  +Π − − + Π 

 (A.12) 

The limit of the term multiplying X(0) goes to zero as its exponent is negative.  The limit 

of the term multiplying C(0) goes to zero as long as: g(1-ε)/ε -ρ < 0 which is a standard 

condition for the transversality condition to be met in AK models.  Together they imply  

Π3 must be zero in (A.10).  We can rewrite this condition in a useful way to find:  

 [ ]1 2( ) exp{( / ) } (0)exp{ /( 1) } (0)K t g t X t Cε ε γ= Π − − + Π  (A.13) 

First note the term in square brackets approaches Π2C(0) as time goes to infinity.  This 

implies the growth rate of capital approaches that of consumption, gC, in the limit.  As the 

growth rate of capital and consumption converge, the abatement intensity must be 

approaching the Kindergarten rule.  Therefo re, for a given rate of consumption growth, 

gC, the speed of convergence of θ(t) to the Kindergarten rule level is greater the larger is 

ε and the larger is γ.  This makes a great deal of sense.  In situations where ε is large, the 

marginal utility of consumption falls very rapidly and hence the sacrifice of marginal 

units of consumption for greater abatement is relatively painless.  Similarly, when γ is 

large the marginal disutility of pollution is quite high and hence it is important to reduce 

it quickly.  This is achieved by approaching the Kindergarten rule rapidly.  Finally we 

must ensure the TVC for X(t) holds as well along this balanced growth path.  Solving for 

λ2(t) we find:      
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 1
2 2

0

( ) exp{( ) } (0) ( ) exp{ ( ) }
t

t t BX s s dsγλ ρ η λ ρ η− 
= + + − + 

 
∫  (A.14) 

The TVC requires the limit of X(t)λ2(t)exp{-ρt} go to zero as t goes to infinity.  The 

solution for X(s) is given in (A.9).  Substituting this into (A.14) and integrating shows the 

TVC requires: 

[ ]
1

2

(0)
lim (0)exp{( /( 1)) } (0) 1 exp{ ( ) 0
t

BX
X g t g t

g

γ

η γ λ η ρ
ρ η

−

→∞

 
− − + − − + + = + + 

(A.15) 

Τhe first term multiplying the brackets goes to plus infinity since the exponent is positive 

in the fast regeneration-slow growth scenario we are investigating.  Therefore, we are 

going to need the initial value of pollution to be given by:  

 
1

2

(0)
(0)

BX
g

γ

λ
ρ η

−

= −
+ +

 (A.16) 

 Finally we need to prove that a balanced growth path with no abatement is not possible.  

To do so, recall from the text that this requires a growth rate of pollution equal to that of 

capital.  By solving for the shadow value of pollution we obtain:  

    

 ( 1)
2 2

0

( ) exp{( ) } (0) (0) exp{[ ( 1) ( )] }
t

Kt t BX g s dsγλ ρ η λ γ ρ η− 
= + + − − + 

 
∫  (A.17) 

and invoking the transversality condition yields:  
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1

(0)
(0)exp{( ) } (0)

( 1)
lim 0

(0)
(0)exp{( ) }

( 1)

K
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t

K
K

BX
X g t

g

BX
X g t

g

γ

γ

η λ
γ ρ η

γ ρ
γ ρ η

−

−→∞

  
+ −  − − −   =   + −  − − −   

 (A.18) 
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Hence a necessary condition for the TVC to be met is gKγ<ρ as this sends the second 

term in brackets to zero.  An additional condition is that λ2(0) take on a specific value to 

make the first term in the brackets zero.  This in turn, implies, since this shadow value 

must be negative, that gK(γ-1)<ρ+η.  Using this information we can now write out the 

solution for the shadow value completely as:  

 
1

2

(0)
( ) exp{ ( 1) } 0

( 1) ( )K
K

BX
t g t

g

γ

λ γ
γ ρ η

− 
= − < − − + 

 (A.19) 

and now note that it rises with t.  Therefore, if S < 0 at some t, it will be contradicted in 

finite time since the shadow values move in opposite directions – exponentially.  

This completes the proof of Proposition 1.  

Proof of Proposition 2 

The problem in the flow case is given by:  

 

1

0

0

1

. . (0) , 1/

(1 )

[1 ]

tC BX
Maximize e dt

s t K K and a
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X AK a
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θ δ

θ

∞ −
−

•

 − − 
= ≤

= − − −
= −

∫
 (A.20) 

Forming the Hamiltonian we obtain: 

1

{ , }

[ [1 ]]
( ) [ [1 ] ]

1C

C B AK a
W K Max H AK C K

ε γ

θ

θ
ρ λ θ δ

ε γ

− −
= = − + − − − − 

 (A.21) 

with first order conditions,  

 0
H

C
C

ε λ−∂ = − =
∂

 (A.22) 
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[ [1 ]]

[1 ], . . 1/
B AK a

Max AK s t a
γ

θ

θ
λ θ θ

γ
 −
− + − ≤ 

 
 (A.23) 

 1[ [1 ] ] [1 ]
H

A BX A a
K

γλ ρλ λ θ δ θ
•

−∂  − = − = − − − − − ∂
 (A.24) 

Define the sets, S-, S0, S+ as follows:  

 

1

1
0

1

{( , ) '( 0) ( ) 0

{( , ) '( 0) ( ) 0
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−
+

= = = − <

= = = − =

= = = − >

 (A.25) 

Then note that when S- is relevant, no abatement would occur at all.  When S0 is relevant 

abatement is just worthwhile.  And when S+ is relevant some abatement is necessary.   

We start with the simple γ = 1 case.  Assume {K,λ} are in S+.  Then, under this parameter 

restriction, we obtain from the above that:  

 '( 0) 0, kif G aB thenθ λ θ θ= = − > =  (A.26) 

 since marginal damage from pollution is a constant, abatement is either nothing, or it is 

set to the Kindergarten rule.  When θ = θK we have:  

 1/

0

( ) (0)exp{ }

( ) exp[( ) ][ (0) (0) exp{ [ (1 1/ ) ] } ]
t

t gt

K t g t K g s dsε

λ λ

ρ λ ε ρ−

= −

= + − − − +∫
 (A.27) 

Using the TVC we find λ(0)=[hK(0)]-ε where h=g(1-1/ε)+ρ > 0 is again the standard 

sufficient condition for the TVC to hold.  To show that ongoing growth is possible in this 

situation, note that λ(t) is a strictly decreasing function of K(0).  Therefore choosing K(0) 

large enough we obtain must be in S+.  Once in S+, the dynamics in (A.27) indicate that λ  

falls.  Hence the dynamics are forward invariant.  Balanced growth in consumption, 

capital and output occur at rates:  
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 / [ [1 ] ( )]/ 0k
Y K Cg g g g Aε θ δ ρ ε= = = = − − + >  (A.28) 

Suppose instead that K(0) puts us in S-.  Then θ = 0 from (A.25), and (A.27) holds if we 

replace [1-θk] with 1.  Since the solution for λ shows it must fall exponentially over time 

approaching zero, there exists a finite time t at which S+ is entered at which the dynamics 

shift to the case previously discussed.  This ends the γ=1 proof.  

Let γ not equal one, and assume we start in S+.  Then from (A.25) we have  

 1( [1 ]) 0aB AK a γθ λ−− − =  (A.29) 

and θ=θK is never optimal if λ is positive.  Using G’(θ) = 0, we can now write the state-

co-state equations as:  

 
1/( 1) 1/( 1)

,

( ) ( ), (1/ )[1/ ]

g

K g K D C D a aBγ γ

λ λ
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•

•
− −

= −

= + + − ≡
 (A.30) 

Using the TVC we can now obtain a relationship between the initial shadow value of 

capital and the initial capital stock.  Manipulation of the TVC yields an implicit 

relationship between these two variables: 

 
1/( 1) 1/
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(0) (0) / (0) / ,

( ) /( 1),

K D
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α ρ γ α

− −+ =
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 (A.31) 

Straightforward differentiation shows that λ(0) is a decreasing function of K(0).  

Therefore, for K(0) large we must be in S+.  Once in S+, the dynamics given above shows 

λ falls exponentially over time leaving the solution in S+.  Note from (A.30) that 

consumption grows at rate gC=g/ε > 0; and from the solution for λ(t) that as t goes to 

infinity, θ goes to θK as required.  The growth rates of capital and output approach those 

of the γ equal to one case.  Finally, suppose our initial conditions put us in S-.  Then it is 
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again straightforward to show λ falls exponentially over time until some finite time t, 

such that S+ is entered.  This completes the proof for Proposition 2.  

Proof of Proposition 3 

Part ii) has already been proven in Proposition 1.  Part iii) is proven in the text.  We prove 

part i) by contradiction.  Assume it is never optimal to leave Phase I.  This requires we 

stay in S < 0 for all t, or that:   

 2 10 ( ) ( )a t tλ λ≤ − <  (A.32) 

The difficulty in proving this is false arises from the fact that when S < 0 we cannot solve 

for either shadow va lue independently.  Accordingly we adopt an indirect approach by 

bounding λ1(t) from above and bounding λ2(t) from below and then showing these 

bounds violate (A.32) generating the contradiction.  Note since S < 0 is assumed 

throughout we must have an upper bound on λ1(t) given by:  

 1 1( ) (0)exp{ }t gtλ λ< −  (A.33) 

To bound λ2(t) we start with its solution which is given by:  

 1
2 2

0

( ) exp{( ) } (0) ( ) exp{ ( ) }
t

t t BX s s dsγλ ρ η λ ρ η− 
= + + − + 

 
∫  (A.34) 

Use the TVC to solve for the constant and find:  

 
1

2
0

(0) ( ) exp{ ( ) }BX s s dsγλ ρ η
∞

−= − − +∫  (A.35)  

And hence the solution becomes:  

 1
2( ) exp{( ) } ( ) exp{ ( ) }
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∞

− 
= + − − + 
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∫  (A.36) 
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The solution for X(t) involves λ1(t) so we bound λ2(t) without solving for X(t) by noting 

that when S < 0:  

 ,

( ) (0)exp{ }

X AK X X

X t X t

η η
η

•
= − ≥ −
⇒ ≥ −

 (A.37) 

Now substitute this solution into (A.36) since this bounds λ2(t) from below.  That is, we 

now have constructed the fictitious λ2(t)* where:  
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∫
 (A.38) 

Now employing the inequality in (A.32), substituting using (A.33) and (A.38), and 

manipulating slightly we see that staying in S < 0 requires that for all t  
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−
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 (A.39) 

which is false for t sufficiently large since g > η(γ-1).   

Proof of Proposition 4 

Τhe proof of Proposition 2 demonstrates that λ(t) is monotonically falling during Stage II.  

This is shown by (A.27).  Moreover when γ=1 we can find the unique capital stock at 

which Stage II begins.  Note when Stage II begins we must have from (A.25) and γ=1, 

that λ = aB.  By definition then, K* must satisfy λ=aB = [hK*]-ε� Therefore, once K* is 

reached the Stage II dynamics will keep it in stage II since λ(t) falls monotonically.  

Since K* is uniquely determined, the Switching Locus is vertical.  To show that every 

economy must enter Stage II in finite time locate the dK/dt = 0 locus during Stage I.  This 
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locus must have λ1(t) = [(A-δ)Κ]-ε where we have denoted the shadow value in Stage I by 

the subscript 1.  In stage II the dK/dt = 0 locus is given by λ2(t) = [(Azk-δ)Κ]-ε where 2 

stands for Stage II.  Construct a phase diagram in {λ,K}space and note while both loci 

are necessarily downward sloping the Stage II dK/dt = 0 locus lies everywhere above that 

of the Stage I dK/dt = 0 locus.  Also draw in the horizontal line λ=aB.  K* is defined by 

the intersection of this horizontal line and the Stage II dK/dt = 0 locus.  Notice for any 

K(0)  < K*, a λ(0) can be found such that Stage I dynamics carries the point (K(0), λ(0)) 

in finite time T to the point (K*, λ*).  This is true because the steady state value of λ 

assuming we stay in Stage I, is less than aB when g > 0 which we have assumed.  For t > 

T the Stage II dynamics apply as discussed above.  To prove that this constructed 

candidate solution in (K,λ) space, that joins the two candidate Stage I and Stage II 

dynamics, is optimal, apply the sufficiency theory of Arrow and Kurz (1970, pp. 43-49).  

First the candidate solution satisfies the state/co-state equations by construction.  The 

TVC is met in Stage II by construction of the Stage II solution of the state/costate 

equations.  It is easy to see that the projection of the graph of Stage I in (K,λ) space 

covers the set (0,K*) on the K-axis as can be seen by the relative location of the 

switching locus aB = λ and dλ/dt = 0 in Stage I and by the construction of Stage I by 

running the Stage I state/costate dynamics backwards in time from the point (K*, 

λ*=aB).  Thus we have a well-defined candidate solut ion for all positive initial K(0).  

Using the location of the locus aB = λ it is easy to see that θ = 0 in Stage I and θ = θK
 
 in 

Stage II.  Thus the control θ actually optimizes H.  The control C optimizes H.  Hence we 

are done by sufficiency theory.   
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Switching Locus in the Slow Regeneration Case 

 We have from (A.16) one relationship between the shadow value of pollution and the 

pollution level when we move to Stage II.  Along the Switching locus we also have from 

(1.32) in the text that:  

 / [1 ] ( ) *exp{ }X XdX dt X AK a g X g tη θ η+ = − = +  (A.40) 

And the accumulation equation for capital gives us:  
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 Integrate (A.41) and use the transversality condition to obtain: 
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Along the Switching Locus we have λ1=-aλ2 and using this and (A.16) we obtain: 
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Now recall gX=g/(1-γ) < 0.  Since η(γ-1) > g together they imply gX + η > 0 and the right 

hand side of (A.43) is an increasing function of X*.  The left hand side is a declining 

function of X* since h > 0.  Therefore we obtain a unique X* > 0 for each K*>0.  

Rearranging (A.43) yields the more friendly form:  
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 (A.44) 

The optimal solution may now be sketched.  If (K,X) lies below the SL we put θ = 0 and 

the FOC is increasing in K at rapid rate.  X increases rapidly until SL is reached in finite 

time.  If (K,X) lies above SL we put θ = 1/a.  The FOC values of K and C grow slowly.  
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Since η(γ−1)>g, the shadow value aλ2 is falling faster than the shadow value of capital on 

the FOC solution above SL.  Therefore SL will be hit in finite time and which θ is 

adjusted to keep the FOC dynamics in SL.   
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