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Abstract

This paper discusses the robusitness and the computational stability of the
singular value decomposition algorithm used at the NBER Camputer Research
Cneter. The effect of perturbations on input data is explored. Suggestions
are made for using the algorithm to get information about the rank of a
real square or rectangular matrix. The algorithm can also be used to
campute the best approximate solution of linear systems of equations in the
least squares sense, to solve linear systems of equations with equality
constraints, and to determine dependencies or near dependencies among the
rows or colums of a matrix. ,

A copy of the subroutine that is used and same examples on which it has

been tested are included in the appendixes.
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The singular value decamposition of a matrix is one of the most elegant algorithms
in numerical algebra for exposing quantitative information about the structure of
a system of linear equations. It can be used to get information about the rank of
a square or rectangular matrix, to compute the best approximate solution of a
linear system of equations in the least squares sense, to solve systems of linear
equations with equality constraints, and to determine dependencies or near-
dependencies among the rows or colums of a matrix. Occasionally the singular
value decomposition is used in the iteraticons of linear systems that tend toward
" the solution of nonlinear systems of equations. The condition number of a matrix
with respect to the solution of a linear system of equations is a by-product of
the singular value decomposition as is the production of the pseudo-inverse and
the solution of homogeneous systems of equations.

The condition number of a matrix with respect to the solution of a linear

system of equations shows how well the vector x is defined by the transformation

o
Ax=b. The condition number k(A) of the nonsingular matrix A is the ratio E—EL

min
where o and o _. are, respectively, the maximum and minimum singular values

of A (i.e., the non-negative square roots of the eigenvalues of AiA where AT denotes

the transpose of A). For example, if K(A)=106, a perturbation of =20

0

in the ele-
ments of A can change the computed solution ; by a factor of 2—2 -106, that is
to say, even the leading digit may be changed. For a more rigorously detailed

.
explanation, see [91.”

*Numerals in square brackets refer to entries in the Reference section, p. 15.



In the discussion that follows, we seek to compute directly the best
approximate solution to the possibly over—determjned or under-determined
system of equations

Ax = b.
The singular value decomposition is used to obtain this solution.
Frequently a user, or a problem originator, poses a problem from which
he wants to obtain a solution vector x in the sense of least squares
from the system of equations

ATAx=ATb.

Possibly he thinks the information he needs comes from the solution
x=(aTA)TaTh,

Classically, (1) if the data matrix A and the vector b are exact (that

is to say, there is no uncertainty in the data A and b), (2) if the

precision of the arithmetic of the machine is such that ATA can be formed

and stored exactly, and (3) if ATA is of full rank, the solution x could

be obtained from (ATA) IATb. However, given that these three conditions

are seldom attainable in practice, the solution should not be computed

in this way because of the extra precision that is required. Furthermore,

unless there is a priori exact information known about the rank of A, the

solution x cannot be obtained from the pseudo-inverse of A with any more




authenticity than from (A?A)I. That is to say the rank should be determined
during the course of computing the singular value decomposition. Reliable
information about rank deficiency cannot be obtained from triangular
factorization.

Sylvester wrote an article on the singular value decamposition of real
nxn matrices in 1889 [10]. Eckert and Young extended the work to general
matrices in 1936 [1]. The definitive paper on calculating the singular
value decomposition was written by Golub and Kahan [2]. Though the paper
was published in 1965, it is fair to say that its use as a robust tool of
mathematical software is recent and, as of now, is not very widespread (see
(4] and [51).

The singular values of the matrix A and the non-negative square roots
of the eigenvalues of the symmetric matrix ATA are mathematically equal,
but may be different computationally. Singular values correct to working
accuracy for the matrix A can often be computed when certain small
eigenvalues cannot be computed for ATA. This fact is not startling. It
is caused by the perturbation of an exact ATA introduced in the multiplication
of AT by A. There are many examples of such matrices, one of which is

illustrated in [9], assuming a Y4-decimal-place machine, as

A =] 1.005 0.995

.995 1.005
having singular values 2.0 and .0l. The matrix ATA in Y-decimal arithmetic
is

ATA = | 2.000 2.000

2.000 2.000



with eigenvalues 4.0 and 0.0. Attrition in forming ATA has obscured all

information about the smaller singular value.
The subroutine MINFIT, using the notation in [2], reduces the system
of equations

Ax = b

where A has m rows and n columns (m can be less than, equal to, or greater

than n) to the form

Uz vV

b

giving z VTx = UTb.

The columns of V are the orthonormal eigenvectors of ArA. The transformation

Tb is formed directly =-- U is not computed explicitly. The columns

U
of U are the orthonormal eigenvectors of AAT. If one needs the explicit
colunns of U he should append the identity matrix Im to the right-hand side b.
There is no restriction, at the subroutine level, on the number of columns of bj
it can be zero.

The diagonal matrix, I, contains the singular vélues of A. The
transformations used to obtain the decomposition preserve unitarily invariant

norms, thereby assuring that the norm of £ is that of A. The diagonal

elements of I, when ordered, are 0] 20, 2 Oy « + » 20, 2 0. MINFIT does

not order the singular values, Given information about the certainty of the
data A and b, one can choose the best approximating matrix Ar of full rank

that is nearest, in the norm sense, to the matrix A. From.Ar the best

candidate solution x for Ax=b can be computed. If o, is chosen such that




01202---?_0 >0, 0

L] L] > L] L] L]
” 2 0 whereby Opp] 2 s O

r+1 % %p+2° n

are effectively considered to be zero, the condition number of A is the

(o)
ratio, gl- . If the matrix A is equilibrated, i.e., scaled, so that
r

ol=1, o, should be not less than the square root of the machine precision,
or a constant representing the uncertainty in the data, whichever is larger.
To be arbitrary about the choice of o, relative to oy is difficult. At the
NBER Computer Research Center we have chosen a rank tolerance equal to the

26, the square rocot of the machine

floating point representation of 2~
precision, 2_52. There is an obvious danger that this range rolerance may be
inadequate for some problesm. For example suppose that A=U I VT such that

B -

52 < -26

where 2~ e <2 °°, say.

The arbitrary rank tolerance would leave o, unchanged but set Og to zero.

i
Thus Au would be deemed to have full rank whereas a more judicious choice of rank is 3.

This example, though artificial. is given to encowrase all users to display

the diagonal matrix, I, to see his particular oroblem's distribution of the

Teo
1



Given an appropriate choice of o,

n
2,1/2
Hall - 1ALl s €2 ()9
1=r+l
where ||+|| indicates the Frobenius norm, i.e. ||A||=( & (a..)HY? .
i=1,m
j=1,n

Noting that UTU = VTV = VVT = In and that the pseudo-inverse of I is

the diagonal matrix

[ ]

4

- -

the pseudo-inverse of A is

INER AR

There is seldom any reason to form a pseudo-inverse explicitly. MINFIT
accumulates Householder transformations to broduce a bidiagonal matrix
having the same singular values as A, and continues, by a variant of the

QR algorithm (see [3]), to diagonalize the bidiagonal form to give




IVx=UD=c
from which
+
X = VI c.

Various candidate solutions x can be provided by different choices of a rank
tolerance to fix o See [6], chapters 25 and 26.
For suitably chosen o consider those columns of V associated with

Oppy0ppps+« <Oy @S Vv, namely the columns of V that span the null space of A. Then

AV = 0.
v

When such columns Vv exist, they constitute the non-trivial solutions of

the homogenous system of equations
AX = 0.

The elements of the columns of V can be inspected to reveal dependencies
or near dependencies among the colums, i.e., the variables of the
coefficient matrix A. Analogously, the columns of U can reveal dependencies
among the equations, i.e., the rows of A,
In using MINFIT, and providing it to other users, we are concerned with
three distinct but related items, (1) the stability of the algorithm
from the standpoint of numerical algebra, (2) the robustness of the
mathematical software that implements the algorithm, and (3) the
documentation that provides information on the use of the mathematical software.
The numerical stability of an algorithm usually means that the solution
that is computed is the exact solution of a neighboring problem and that
the neighboring problem can be defined in the sense of a backward error

analysis. Such analysis for the singular value decomposition has been



published in [2], [11], [12], and [13]. The singular value decamposition
is stable in the sense that the camputation of eigensystems of Hermitian

matrices is stable. In general, we expect

1la - v’
| 1A]

to be the order of machine precision, as is corroborated for the matrices
in Appendix C. If this criterion should not be met for some matrix, A,
the authors would like to know about it. For computational convenience we
T
Lall - [[uzv_||
[all

Robustness of this mathematical software is established to the extent

for the test matrices.

computed

. of exposing test matrices on which the algorithm has performed correctly.
Professor Gene Golub suggested two additional tests. These are

1) Decampose A to give UZVT. Permute 955 reform A=UZVT,

and recampute the decamposition. This gives the

effect of a perturbation on A in the sense that the
resulting decamposition will show a permutation of

the columns of U and V, yet give the same singular

values of A. As additional tests we have taken ortho-
normal matrices U and V, particular 945 formed U(ZVT)=A
and computed A=UZVT. Denote the maximum singular value by

.. . o_. .
Orax and the minimum singular value by Omin’ If "min 1is

“max
less than the relative machine precision, the computed

Onin May not be less than the relative precision of the
52

machine on which it is computed, i.e. 2" °° for long




2)

precision, p=20

for short precision, on the IBM 360/370
machines.
Calculate the residuals r= Ax-b to observe the error

between the true solution x and the computed solution x.

From Golub's formulation

J—'%—HSH < ec(d) + exlay Uzl
X x|

[0}
in which the condition mumber k(A) = X |

min
The second term on the right-hand side is dominant
for least squares problems. In seeking the candidate

solution ﬁk of least norm we compute

b= 2y LR
1%
for different choices of k. We could campute My
directly by forming §k and r, - However, taking
advantage of ||U|| = ||V]]| = 1 it follows that
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where c = UTb. This formulation permits the

appropriate choice of the best approximating matrix

Ar = U):PVT from the minimum W without explicitly
computing the candidate solutions ék’ The best approximate
solution is obtained when is minimum.

Frequently the questioﬁ is raised about using
iterative methods for computing the singular value
decomposition. There is an excellent discussion of
such issues in [8] along with suggestions for
constructing matrices with exact singular values.

Informally, we suggest certain guidelines for
using MINFIT, Whenever possible one should avoid
forming the product of a matrix by its transpose.

Note that the eigenvalues A and eigenvectors X for the real

symmetric matrix eigenproblem
AX = XA

are immediately available from MINFIT without ever
forming A?A. However, if the original problem is
to obtain the eigensystem of a real symmetric

positive definite, negative definite, or indefinite
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matrix, SYMEIG (see [7]) should be used. One should,
however, be warned that the appearance of zero or
negative eigenvalues for a matrix believed to be
positive definite signals the need to analyze the
original data or the construction of the problem
more carefully by obtaining the singular value
decomposition of the original data matrix.

MINFIT can be used to obtain the solution
of a linear system of equations. However, if the
matrix of coefficients is known to have full rank, and,
if the condition number of this matrix is small relative
to the uncertainty in the data, one of the matrix
factorization methods should be used. Such matrix
factorization methods are 1) the Choleski factorization,
2) the LU decomposition with partial or complete pivoting
where the elementary transformations have been stabilized
by row and/or column interchanges, and 3) the orthogonal
factorization with column pivoting. However, such
factorizations cannot be guaranteed to give definitive
information about the condition number of a matrix.
Consider from [14] the bidiagonal matrix of order 100

.501 -1

.600
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This matrix is extremely ill-conditioned with respect to the solution
of a linear system of equations. Its smallest singular value is approximately

10—22

despite the fact that its smallest eigenvalue is .501. This matrix also
shows that computation of the smallesf eigenvalue is limited by the relative
finite precision of the machine on which it is camputed. That is to say,
the small singular value, 10_22 will appear camputationally to be no smaller
than the order of machine precision. This result is not attributable tobthe
construction of the algorithm, but rather to the finite precision of the
‘machine's arithmetic.

We suggest everywhere the use of long precision on the IBMv360/370
machines to compute the solutions of linear systems of equétions, eigen-
systems, and the singﬁlar value decamposition. Even so, we urge extreme

caution wherever the number of rows, m, or the number of columns, n, of a

matrix is of more than modest size, say 200, if the matrix is dense.

T
The quantity [la - uCzv)]| should be the order of machine precision.
| |A] | smax(m ;n)

However, the camputational algorithms are, in general, 0(n3) or 0(m?)
processes. We advise a rigorous analysis of the structure of a matrix
of high dimensions before any of the numerical algebra algorithms are used.
See Appendix C for some timing results on random matrices.

The singular values of a matrix can be substantially altered by scaling
the original data matrix as is shown by the examples in Appendix C.
Deliberately, MINFIT does not include scaling of the rows or columns
of the matrix A or right-hand sides b. For the best performance of the

algorithm we suggest that columns of A be equilibriated such that the sums

of their elements be as nearly equal as possible. Exact powers of
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16 for the 360/370 machines should be used for scaling factors so that
the data is not perturbed in trailing digits. Row scaling will have the
effect of introducing weights on the data in a least squares problem and
therefore should be done at a user's discretion. An excellent discussion
of scaling is in [6].

Lawson further points out in [6] that it is important to take advantage
of information about the certainty of data. For example, if data is known
to have uncertainty in the third decimal place, that digit and all that

follow are arbitrary. The matrix

1.02 1.09

1.05 1.01

if uncertain in the third figure could lead to

1.00 1.00

1.00 1.00

The eigenvectors of a symmetric matrix, and therefore, the singular
vectors U and V from MINFIT are known only to within a constant multiplier
of modulus 1. If anyone should attempt to recompute the results in
Appendix C on a machine whose arithmetic is different from that of -
the IBM 360/67 he may observe a change in sign on the columns of U or V.

The Fortran IV subroutine MINFIT, imbedded in TROLL (see [7]), that
forms the singular value decomposition and obtains a best approximate solution
vector x is an adaptation of ANLF233S from the Argonne National Laboratory.
ANLF233S written by Burton Garbow, ANL, is a Fortran IV translation, with

certain modifications, of the Algol 60 procedure MINFIT [3]. We have augmented
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ANLF233S by adding comments and producing the numerically

best approximate solution x based on a particular rank tolerance chosen for

the IBM 360/370 long precision arithmetic., The.machine epsilon, that is, the
smallest number, e > 0, for which 1 + ¢ > 1 is the floating point representation
of 16-13 = 2—52 for the IBM 360/370 machines. The comments and the Fortran IV
listing of the subroutine used at the Center is given in Appendix A. The
description of the parameters for the TROLL interface is given in Appendix B.
Appendix C contains selected matrices, computed solutions, and residual

‘norm checks obtained fram driver programs that use the singular value
decomposition. These results were camputed on the IBM 360/67. Comments,

questions, or criticims of this subroutine should be brought to the

attention of the authors of this working paper.
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APPENDIX A: Listing of the Fortran IV Program MINFIT

SUBROUTINE MINFIT(NMyMyNyAyWyIP,By IERR,RV1,RETX)

INTEGER TyJoKyLyMyNyITgIPyT1oKKyK1lgLLyoLLyMLyNMyITS,IERR
REAL®8 A(NMyN),W(N)yB(NMyIP),RVL(N)

REAL*8 CyFyGoyHySyXyY9ZyEPSy,SCALE,MACHEP,RKTOL

REAL*8 DSQRT,0OMAX1,DABS,DSIGN

LOGICAL RETX

THIS SUBROUTINE DETERMINES, TOWARDS THE SULUTION OF THE LINEAR
T

SYSTEM AX=By THE SINGULAR VALUE DECOMPOSITION A=USV OF A REAL
T

M BY N RECTANGULAR MATRIX, FORMING U B REATHER THAN U. HUUSEHOLDER

BIDIAGONALIZATION AND A VARIANT OF THE QR ALGORITHM ARE USED.

THIS SUBROUTINE COMPUTES A CANDIDATE SOLUTION X WHEN THE

LOGICAL INPUT PARAMETER RETX IS SET .TRUE. THIS CANDIDATE

SOLUTION IS BASED ON THE RANK TOLERANCE SET TO

2,000%%(-26), THE SQUARE ROOT OF THE MACHINE PRECISION

2.0D0%x(-52),

ON INPUT:

NM MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT, NOTE THAT NM MUST BE AT LEAST
AS LARGE AS THE MAXIMUM UF M AND N;

M IS THE NUMBER OF ROWS OF A AND B

N IS THE NUMBER OF COLUMNS OF A AND THE ORDER OF V3

A CONTAINS THE RECTANGULAR CUEFFICIENT MATRIX OF THE SYSTEM;
IP IS THE NUMBER OF COLUMNS OF B. IP CAN BE ZEROD:

B CONTAINS THE CONSTANT COLUMN MATRIX OF THE SYSTEM
IF IP IS NOT ZERO., OTHERWISE B IS NOT REFERENCED.

RETX MUST BE SET .TRUE, IF THE CANDIDATE SOLUTION X IS TO
BE CUOMPUTED., IF ONLY THE SINGULAR VALUE DECOMPOSITION 1S
DESIREDy SET RETX .FALSE.

ON 0OUTPUT:

A HAS BEEN OVERWRITTEN BY THE MATRIX V (ORTHOGONAL) OF THE
DECOMPOSITION IN ITS FIRST N ROWS AND COLUMNS. IF AN
ERROR EXIT IS MADE, THE COLUMNS OF V CORRESPONDING TO
INDICES OF CORRECT SINGULAR VALUES SHOULD BE CORRECT:

W CONTAINS THE N (NON-=NEGATIVE) SINGULAR VALUES OF A (THE
DIAGONAL ELEMENTS OF S), THEY ARE UNURDERED., IF AN
ERROR EXIT IS MADE, THE SINGULAR VALUES SHOULD BE CORRECT
FOR INDICES TERR+14IERR+2y400yN3

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
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T
B HAS BEEN UVERWRITTEN BY U Be. IF AN ERROR EXIT IS MADE,
T
THE ROWS OF U B CORRESPONDING TO INDICES OF CORRECT
SINGULAR VALUES SHOULD BE CORRECT;

IF RETX IS TRUE, W WILL CUNTAIN THE DIAGONAL OF THE PSEUDOINVERSE
OF THE DIAGONAL MATRIX S. ANY SINGULAR VALUES THAT
ARE LESS THAN RKTOL TIMES THE LARGEST SINGLUAR VALUE ARE
SET TO ZERO IN THE PSEUDOINVERSE,
T
ALSOy THE SOLUTION X IS RETURNED IN By REPLACING U B,

IERR IS SET TO -

ZERO FOR NORMAL RETURN,

K IF THE K-TH SINGULAR VALUE HAS NOT BEEN
DETERMINED AFTER 30 ITERATIONS,

-1 IF THE MAXIMUM SINGULAR VALUE IS ZERO (INDICATING

A ZERO A MATRIX ON INPUT), ONLY SET IF
RETX IS +TRUE..

RVl IS A TEMPORARY STORAGE ARRAY,

- SHE I B MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC
MACHEP = 16,0D0*%{-13) FOR LONG FORM ARITHMETIC

ON S360 sssssssscssess
HEP/23410000000000000/

HH RKTOLy FOR THESE APPLICATIONS, IS THE SQUARE
ROOT OF MACHEP :e:sssscsssscs

e O
>
e =
e D
X
>
e O

DATA RKTOL/Z3A40000000000000/
ssttssssss HOUSEHOLDER REDUCTION TO BIDIAGUNAL FORM :ssescssscsss
IERR = 0
G = OoODO
SCALE = 0,0D0
X = 0,000
D0 300 1 = 14 N
L=1+1
RV1I{I) = SCALE % G
G = 0,000
S = 0,000

SCALE = 0.,0DO
IF {1 .GT, M) GO TO 210

DO 120 K = [, M
SCALE = SCALE + DABS(A(KsI))

IF {SCALE .EQ. 0.0D0) GO TO 210
DO 130 K = [y M

A(Kyl) = A(KyI) / SCALE
S = S + A(K,I)%%2




130

140

150

160

170

180

190
200

210

220

230
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CONT INUE

F = A(I,1)

G = -DSIGN{(DSQRT(S),F)
H=F *x G - S

A(l+I) = F -G

IF

(

I «EQ. N) GO TO 160

DO 150 J = Ly N

S = 0,000
DO 140 K = 1, M
S =8 + A(KyI) % A(KyJ)
F =S/ H
DO 150 K = 1, M
A(KyJd) = A(KyJ) + F %= A(K,1])
CONT INUE

IF (IP +EQ. O0) GO TO 190

DO 180 J = 1,1P

S

0.000

DO 170 K = [y M
S = 8 + Al(K,I) % B(K,yJ)

F

S/ H

DO 180 K = I, M

B

(Kyd) = BIKyJ) + F % A(K,I)

CONTINUE

DO 200 K = I, M
A(KyI) = SCALE * A(K,I)

W(l) = SCALE * G
G = 0.,0D0
S = 0.000

SCALE = 0.000

IF

(

I .6T. M .OR. I .EQ. N) GO TO 290

D0 220 K = Ly N
SCALE = SCALE + DABS(A(I,4K))

IF

(

SCALE .EQ. 0.0D0) GO TO 290

DU 230 K = Ly N

A(I,K) = A(I,K) / SCALE

S =S + A(I,K)%%2
CONTINUE

A(I,L)

F
G

-DSIGN(DSQRT(S),yF)
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H=F % G - §
A(lyL) = F -G

C
DO 240 K = Ly N
240 RV1{(K) = A(I,K) / H
C
IF (1 EQ. M) GO TO 270
C
DO 260 J = Ly M
S = 0,0D0
c .
DO 250 K = Ly N
250 S = S + A(JyK) %= A(],K)
c
DO 260 K = Ly N
AlJeK) = A(JyK) + S % RV1I(K)
260 CONT INUE
C
270 DU 280 K = Ly N
280 A{l4K) = SCALE * A(],K)
C
290 X = DMAX1{(XyDABS(W(I))+DABS(RVL(I)))
300 CONTINUE
o seeesessts ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS ::s:sscese
C t2edsdi: FOR I=N STEP -1 UNTIL 1 DO =-- :ss3sssssse
DO 400 II = 1y N
I =N+ 1 =11
IF (I <EQe N) GO TO 390
IF (G .EQ, 0.,0D0) GO TU 360
H = A(l,L) % G
C
DO 320 4 = Ly N
320 A(Jyl) = A{l4d) / H
C
DO 350 J = Ly N
S = 0,0D0
C
DO 340 K = Ly N
340 S = S + A(l,K) % A(Kyd)
C
DO 350 K = Ly N
A(KyJd) = A(Kyd) + S % A(K,])
350 CONTINUE
C
360 DO 380 J = Ly N
A(l,J) = 0.0D0
A(JyIl) = 0,0D0
380 CONT INUE
C
390 A{l,I) = 1.0D0
G = RVI(I)
L =1
400 CONTINUE
c

IF (M .GE« N .OR. IP .EQ., O) GO TO 510
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540

550
560
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ML = M + ]
DO 500 I = M1, N
DO 500 J = 1, IP
B(lyJ) = 0.0D0
CONTINUE

EEREEERER
EPS = MACHEP * X

$eessssss: FOR K=N STEP =1 UNTIL 1 DO --
DO 700 KK = 1, N
Kl = N - KK
K = K1 + 1
ITS = 0
$823283s228 TEST FOR SPLITTING.

FOR L=K STEP -1 UNTIL 1 DO =-- :

DO 530 LL = 1, K
Ll = K - LL
L =Ll +1
IF (DABS(RV1(L)) .LEes EPS) GO TO 565
sz RVI(1) IS ALWAYS ZERO, SO THERE
THRUUGH THE BOTTUM OF THE LOOP
IF (DABS(W(L1)) .LE. EPS) GO TO 540
CONTINUE '
$sse2essss CANCELLATION OF RV1(L)
C = 0,0D0
S = 1,000
DO 560 I = L, K
F = S *= RVI(I])
RV1(I) = C * RVI(I)
IF (DABS(F) o.LE. EPS) GO TO 565
G = W(Il)
H = DSQRT(F*F+G%*G)
W(Il) = H
C=6G/H
S ==F / H
IF (IP .EQ. 0) GO TO 560
DO 550 J = 1, IP
Y = B(L1,J)
Z = B(1,J)
B{Llyd) =Y % C + 2 % §
Bl{IyJ) = -Y * S + Z % (C
CONTINUE
CONT INUE
sesssdsses TEST FOR CONVERGENCE ssssssssses
1 = W(K)
IF (L +EQ. K) GO TO 650
tssitsees: SHIFT FROM BOTTOUM 2 BY 2 MINOR
IF (ITS .EQ, 30) GO TO 1000
ITS = ITS + 1
X = W(L)
Y = W(K1)

[N ]
LR 2R R

IS

(3
.

NO

DIAGONALIZATION OF THE BIDIAGONAL FORM

e M

XIT

IF L GREATER THAN 1
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RV1(Kl)
RV1(K)
(Y = Z) * (Y + Z) + (G = H) * (G + H)) / (2.0D0 * H % Y)
DSQRT(F*F+1,0D0) '
((X = Z) % (X + Z) + H *

( DSIGNI(GyF)) = H)) / X
8¢ NEXT QR TRANSFORMATION : HH

N H N NN
.0

1

I

*

*
SQRT(FxF+H*H)
1) Z

/

/

*

<
n N nn
ONNIEL-HOO

< TITOTULODINOI<XD

DO 570 J = 14 N
X = A(J,I1)
L = A(J,1)
AlJyeIl) = X %
A(JyI) = =X %
570 CONTINUE

NN
3t 3t
O w

C +
S +

SQRT(F#F+H%*H)

1) = 2

¢ ROTATION CAN BE ARBITRARY IF Z IS ZERO :sssssssss:
(I +EQe 0.0D0) GO TOU b80

F /7 2

H/ Z

C = G + S %Y

-S * G+ C %Y

IF (IP ,EQ. 0O) GO TO 600

- O

580

X TV O oo
nnanu

DO 590 J =
Y = B8(I1
Z = B(I,
B(11l,J) Y %
Bl(IyJ) = =Y %
590 CONTINUE

1, IP
vJ)
J)

= C
S

Own

+
+

NN
3t 3

600 CONT INUE

RVLI(L)
RV1(K)

= 0.000
W(K) = X
2

[g N~}
(@]
Z
<
m
p.
[}
m
P4
(@]
m
..
.
..
.
.
.
.




(@]

.

650

690

700

750

790
800

8l0

850

890
900
999

1000
1001

- A7 -

IF (Z +GE, 0.0D0) GO TO 700
sttt W(K) IS MADE NON-NEGATIVE
WiK) = =2

DO 690 J = 1, N
A(JeK) = =A(J,K)
CONT INUE

IF («NOT. RETX) GO 7O 1001

$d2s2s82: FIND MAXIMUM ELEMENT OF W :ssssssess

Z = 0,000
DO 750 J = 14 N

X = W(J)

IF (X .LE. Z) GO TO 750

Z = X
CONTINUE
IF (Z .EQ. 0) GO TO 999
$1ss22222te FORM PSEUDO INVERSE UF DIAGI(W) 23
D0 800 J =1y N

X = WilJ) / 2

IF (X oLEe RKTOL) GO TO 790

W(J) = 1,000 / wW(Jd)

GO TO 800

wiJ) = 0,000
CONTINUE
st FORM X (RETURNED IN B) sezssessses
DO 900 4 =1, IP

DO 810 I = 14 N

RVI(I) = W(I) = B(1,J)
CONT INUE

DO 890 I = 1, N

X = 0,000
DO 850 I1 = 1, N
X = X + A(I,11) = RVI(Il)

CONTINUE
B(l,J) = X
CONTINUE
CONTINUE
GO TO 1001
sds3di3ss: ERROR IF MAX SINGULAR VALUE = 0O ::
Ke=1
$3:32232223:¢: SET ERROR == NO CUNVERGENCE TO A
SINGULAR VALUE AFTER 30 ITERATIONS
1ERR = K
RETURN
$822:s82i: LAST CARD OF MINFIT sesssszzes:



APPENDIX B: TROLL Implementation of MINFIT and Associated Output

The calling sequence for using the singular value decamposition
within the TROLL environment is considerably different than that for
the Fortran subroutine listed in Appendix A. This is @ consequence
of the basic design features of TROLL. However all computations are
actually performed by the routine listed in Appendix A.

The TROLL version of the singular value decomposition is a function
named MINFIT. Since it is a function, it returns a single data file as its
result,and by TROLL convention it may not modify any of its arguments.

The format of the TROLL call to MINFIT is
result = MINFIT (A-matrix <, B-matrix <, code >>)

where the <> indicate optional arguments.

Since we may desire several matrices as output from MINFIT, the data
file returned as result may be made up of several matrices. The precise
result returned by MINFIT is controlled by the code parameter as described

in the following table for the linear system:



_B2_

A X =B where A = ULV®
mxn nNXp and W = diagonal of I
Code B-matrix omitted B-matrix present
0 illegal X (nxp) (default)
1 V (nxn) (default) V (nxn)
2 W (nx1) W (nx1)
. T
3 illegal U'B (nxp)
4 W| { 1xn
V
(U B)

The correspondence between the TROLL parameters and the Fortran

parameters is as follows:

Immediately prior to TROLL call to Fortram routine

TROLL Fortran parameter

Max (number of rows of A-matrix, NM
nunber of columns A-matrix)

Number of rows of A-matriz M
Number of columns of A-matriz N
A-matrix A
free storage W

if B-matrixz omitted then 0 IP
else number of columns of B-matrizx

not set TERR

free storage RVl

if code = 0 or code omitted and B-mafrix is RETX
present then .TRUE. else .FALSE,



- Ba -

After call of Fortran routine

If IERR is not zero then print appropriate error message, otherwise

For more details on the use of the TROLL function, see [7].

of MINFIT on the Longley data described in Appendix C.

matrix contains W, rows 2 through 8 contain the V matrix, and row 9 is

Code

Fortran variable to be used as result

w = >

(the solution X is formed in B)

The following output is the result of performing the TROLL version

T,

MINFITOLONGLEY Xl ONGLEY_Y,4)

CXw>rTdoNv=

RUOW

CULUMN ]

1.h637F+06
=-2.3417F-06
~2.4376F=004
-9,6034F-01
~T7.7736F-034
-6,2675F-0%
~?.71R61F-D}
-4.,5794F-03%
—2.5750F+05

cuoLtimn 2

A, 3900F+04
1., 0798E=-0%
Ao lRHIF =04
=2.1878F-01
1l.0345%F=02
1e3622F=-02
Y.949945E-01
2.0892F-02
4,A093F+006

Ciy_timn 3

4,409 7FH403
=49,73)16K=-0h
-4 HRHLF-04
=2.21749F=-013

7.85%44F-01
—helRAAR=D]
~4BOGEF=-05
-1.84A7Tr=-02
—7.RA32F+03

1 W llxn
M op if B-matrix was specific | A [ nxn
nxm
B J nxp
Row 1 of the
CriLlimN &4 COLIIMN 5 COLIMn A CrH_timn 7

1.9K4nr-4+03
2.R1AUFE=0A
-1.4370F=-03
4,6324F-013
-6, 185%6F=~01
~7.R548F~-01
1 .RBAZF=-02
4 R IRE=DT
1.6039+403

41 ,A54200
=9.103Rk=00
=1 .0442F-01]
-1,35%05%F=-03%
-1 .7084¢F-07

R,0722k-03
2.1381F=02
-4,49412+-01
~1.7736E+0734

3,6323F=-N4
-1.0000F+00
1.9307F=-0%
~4.NKRHEF=-NK
—4,5778F=-NT7
=1.3094F-N7
1,Na3nkF=-N7
9. 113KF=Na
1.1R90F+03

3, Kh04EF+D0
3,41R1F=05
=4 ,9453F=-01
1.9R71F=Na
23003403
ALNRLTF=N4"
-1,A0RAKF=N3
1.0639F=0]
210,.4940000



APPENDIX C: Selected Matrices, Camputed Solutions, and Illustrative Examples

This appendix displays a representative sample of matrices on which

the subroutine MINFIT has performed satisfactorily. The input matrices

and the output computations have been retained on magnetic tape. The

format of the printing was chosen for convenience and does not include

the full fifteen decimal place output that was produced by the long

Recision computation on the machine. If anyone should attempt to reproduce
these results on a machine whose arithmetic or relative precision is different
from that of the IBM 360/67 he may get output that is different from that
which we display. However, such results should be correct to the order

of machine precision on which the computation is performed.

Though we include certain matrices of the Hilbert segments, we do not
encourage their use as test matrices for software validation. The Hilbert
segments are not representable exactly in a computing machine unless
appropriate multipliers are used to preclude a perturbation on input of the
data. We have used such multipliers.

Other matrices exhibited are a 3x3 matrix that is contrived to display
information about near dependencies of rows or columns, a test matrix from
[l]* and [2] and a matrix suggested by Ed Kuh. The matrix from [1] is exactly
representable in the machine though it is ill conditioned with respect to
the solution of linear systems of equations. The matrix in [3] shows the
dependence of the solution vector x on the rank tolerance that is chosen.

On the output that is displayed, V has its usual meaning, W contains
the unordered singular values from MINFIT, P is an integer vector that
indicates the descending order of the singular values, MU contains
My for i=1,2,...,n for each right-hand side and C contains UTb. X contains
the candidate solution of Ax=b. IERR is the error indicator from MINFIT; it is

non-zero if the computation of any singular value requires more than 30

iterations or if the maximum singular value is zero.

*Numerals in square brackets refer to entries in the Reference section, p. Cli.



This 3x3 matrix shows output that indicates rank 2 if the smallest
singular value is treated as zero.

1 and 2 are linearly dependent.

of the V matrix.

As

( ROW 1)
0.,10101000 O1
{ ROW 2 )t
0,1009R000 01
{ ROW 3 )
0,98000000 00
K=

{ COLUMN 1)
0.,10000000 01
{ CiJLUMN 2)
0.0 ,
(COLUMN 3)
0,0

IEKR = 0

vV =
[ COILUMN 1)
=0,%7927490) 00
{COLOMN 2)
-0,70801190 00
{COLUMN 3)
=0.,4039305D 00

W=
0.7990101H 01

=

{ COLLUMN i)
=0.5792749) 00
(COLUMN 2)

=~N0e57933400H 00
{COLUMN 3)
-0.573472300 00

Mi)=

{CULUMN 1)
"0.,44150140D 02
{ COLUMN 2)
0.4614551D 02
{ CINLUMN 3)
0,46A2111H 02

USING MACHEP,
{ COLUMN 1)
0411186300 04
{ COLUMN ?)
-0.11073571) 04
(COLUMN 3)
-0,10943610 02

USING RKTUL,
(CULUMN 1)
0.11186301) 04
(COLUMN 2)
-0.1107352D 04
(COLUMN 3)
~0s10943610 02

- C2

0.1009R00N 01
0.,10104000 01

1,98000000 OO0

0.0
0.1000000H 01

00

~0.57933300 00
0.70619830 00

=0«40701010 DO

(1 444980T76~-03

-0, 70801190 00
0. 70619830 00

0,17604610-02

N.BRGOTHOD 00
0.B773H91D 00U

0.4359498D0 00

X=

-0.11073520 04
0.1112991D 04

-0.5471H803D 01

X=

~0.11073520 04
0.1112991D 04

-N.5471803D 01

Given this interpretation, columns

This information is contained in column 2

0.9800000D 00
0,.,98000001 VO

0.10100000H 01

0.V
0.0

0.10000000 01

-0e57342300 00
Ual76U461D-02

U.81925761 00

(e 3994HBRIN-01

-0.4039305N O
~).40701010) 00

0«B1925761 UU

0.5680011Nh=-u2
0.5694295U-02

0.42822180 00

-0.1094361D 02
-0,5671H03D 01

0.16917920 02

~0.109436110 02
-0U.5471803D 01

0,16917920 02




‘ The matrix whose data is displayed on the following page was suggested

by Ed Kuh. The matrix is 32x10 and has singular values, to 4 decimal places,

4821, 41.89, 30,33, 18.71, 8.573, 2.491,
. 4.763, 5.532, 6.162, 6.091,

The indicated rank determination is that the matrix is of rank 10
if the data is certain in all digits, of rank 1 if the third digit is
doubtful.

The residual checks for the decomposition are

MAX-RUOW=SUM RESIDUAL 0.1818241327D-14
EUCLIDIAN RESIDUAL = 0.2402697593D-14
MAX=COIL-SUM RESINDUAL 0.1378022275D-14

Truncation of the data to integers 234,231,...,3]1 gives singular values

to 4 decimal places.

4911, u41.10, 30.07, 18.59, 8,356, 3,403,

6.299, 5.727, 4.963, 5.198
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Data for A Right-hand side B
346.6 Row 32 214 .6
342.1 | T | Row 31 216.7
337.9 [Row 30 225.0
337.9 : 228.4
331.2 230.1
326.7 231.0
321.8 230.3
314.5 232.3
312.2 234.6
311.7 | 237.3
311.6 : 241.8
307.4 247.7
303.8 252.7
300.8 256.8
294.6 260.4
290.7 262.0
286.4 264 .4
283.2 267.5
278.9 272.8
272.6 277.2
266.2 279.3
262.4 ‘ 283.8
257.3 285.4
254.7 284.5
255.3 287.4
254.0 292.2
253.8 296.2
253.4 304.0
249.2 309.8
245.8 314.8
240.8 316.3
234.4 [Row 1 321.1
231.7

231.2

227.9

226.0

220.8

214.7

209.0

201.5

202.2




The Hilbert matrix of order 7, generated in long precision, 7

-CH -

of which are given for each element,is inexact in the machine.

A= .
{ ROW 1 )3
0.10000000 O1
{ ROW 2 )
0,50000000 00
{ ROW 3 ):
0.3333333D0 00
( ROW 4 :
0.2500000D0 00
{ ROwW 5 )
0,2000000D0 00
{ RUW 6 ):
0.1666667D 00
{ ROW 7 )
0.14785710 00

Its singular values are

W=
0.16608851D 01

0,50000000
0.3333333D
0.25000000
0.2000000D
0.1666667D
0.,1428571D

0.12500000

00

Q0

00

00

00

00

00

0.27192020 00

0.3333333D
0.25000000
0,20000000
0.1666667D
0.1428571D
0.12500000

0.11111110

00

00

00

00

00

00

00

0.2128975D-01

0,25000000

0.20000000
0.1666667D
0.142R85710H
0.12500000
0.11111110

0.10000000D

00
00
00
00
00
00

00

0.100R5881)-02

0.,2000000D
0.1666667D
0,1428571D
0.12500000
0.11111110

0.10000000

0.9090909D-

00

00

00

00

00

00

01

0.293R637H-04

0.1666667D 00
0.142R571D 00
0.1250000D 00
0.1111111D 00
0.10000000 00
0.90909090-01

0.8333333D-01

0.48567630-06

digits

0.1428571D 06
0.12500000 0O .
0.1111111D 00
0.1000000D 00
0.90909090-01
0.R333333D-01

0.76923080-01

0.3493744D-08



Multiplication of the Hilbert matrix of order 7 by the constant

360360 allows a machine representation that is exact.

A=
( ROW 1)
0,3603600D 0
{ ROw 2 )
0.18018000 O
{ ROUW 3)
0.12012000 0
{ ROW 4 )
0.90090000 0Q
{( ROW 5 )
0,7207200D0 O
{( ROW 6 )
0.60060000 0
( ROW 7))
0.5148000D0 O

Its singular values are

W=
0.59851660 06

0.18018000
0.12012000
0.9009000D
0.72072000D
0.6006000D
0.5148000D

0.4504500D

06

06

05

05

05

05

05

0.9798916D 05

0.1201200D V6
0.9009000D 05
0,72072000 05
0.60060000 05
051480000 05
0,4504500D 05

0440040000 05

0.7671976D 04

0.90090000
0472072000
0.60060000
0.5148000n
0445045000
0.4004000)

0.36036000

05

05

05

05

05

05

05

0.3634546D) 03

0,7207200D
0.,6006000D
0.514B000D
0445045000
0.4004000D
0.3603600D

0.32760000

05

05

05

05

05

05

05

0.10589670D 02

0.6006000D
0.5148000D
0.45045000D
0,40040000
0.36036000
0.3276000D

0.3003000D

05
05
05
05
05
05

05

0.1750183D 00

N, 514R000D
0.4504500D
0.4004000D
0.3603600D
0.327600ND
0.30030000

0.27720000

05

0s

05

05

05

05

as

0.12590610-07




Am
{ RUW 1
0.10000000
{ ROW 2
0.10000000
{ ROW 3
0.10000000
{ ROW 4
0.,10000000
{ RDW 5
0.1000000D
(' RUW 6
0,10000000
{ ROW 7
0.10000000
{ ROW 8
0.10000000
{ ROwW 9
0.10000000D
{ RUW 10
0.10000000
{ RDW 11
0.10000000
{ RUW 12
0,10000000
{ RDLW 13
0.10000000
{ ROW 14
0,10000000
{ RUW 15
0.10000000
{ RUW 16
0.,10000000

):
01
)3
01
)3
01
s
01
):
01
)
01
)3
01
)
01
):
01
):
01
):
01
):
01
)i
01
e
01
)
01
)
01

E]

(COLUMN 1)
0.,60323000 05
0.63761000 05
0.69331000 0%

IERR = 0
vV s

(COLUMN 1)
~0.23417280-05
(COLUMN 2)
0.10797810-0¢
(COLUMN 3)

=0.97316110-0%
{COLUMN “)
0.28160440-05
{ COLUMN 5)
-~0.51038040~03
(COLUMN 6)
=0,99999990 00
{COLUMN 7)
0¢34180980-04

Wa
0.16636680 07

C=

(COLUMN 1)
~0.15328510 00
~0.48465290~01
=0.2974020D 00

MU=
{COLUNMN 1)
0.19577650 20

USING MACHEP,
(COLUMN 1)
=0.34642690 07

USING RKTOL,
(COLUMN 1)

0.,23724110-01 -0,53035530 02

- C7

Longley data matrix [3] with its associated output is

0.83000000 02

0.88500000 02
0.88200000 02
0.3;500000 02
096200000 02
0.98100000 02
0.99000000 02
0.1000000D 03

0.10120000

)3

0.1046000 03

0.10840000 03

N.11080000 03

0.11260000 03

0.1142000D 03

0.11570000 03

0.11690000 03

0.6112200D
0.66019000
0.70551000D

05
05
05

=0,24375680-03
0.61668600-03
~0.49653610-03
=0.14370220-02
=0,10441850 00
0.19307120~04

~0.99453210 00

0.83899620 05

0.45378580 00
=0.40209480-02
~0,46626980 00

0.3334570D 18

X=

0.,13849520 02 -0,35278390-01 =~0,20094190 01 ~0.10251330 01 =0.52347820-01

Xm

0423428900 06

0.25942600 06
0,25805400 06
0e2845990D 06
0,32897500) 0&
043469990 06
0.36538500 06
0.36311200 06
0e39746900 06
0.4191800N0 06
0a442764900 V6
0e 444654600 06
0.48270400 06
0.50260100 06
0.51817300 06

0.55489400 04

0.60171000
0.67857000

05
05

-0.96034010 00

-«0,27878070 00
~0.22179310n-02
0.46323930-02
«0,1350474D~02
-0.30687980-07

0,19871480-03

0,34056740 04

0.89857260-01
=0.1943373D0 00

0.66973630 17

0.71033030-01 -0.4235556D 00 ~0,57151010 00 -0.41366870 DO

0.23560000) 04
0.2325000D) 064
0.3AR2000N 04
0433510000 04
0.,2099000N 04
0.19320000) 04
0,1870000n 04
035740000 V&
0,29040000 04
0.,2R220000 04
04293600UH 04
0.46810000 04
0.38130000 04
0.39130000 04
0.,4R06000D 06

0440070000 04

0.61187000 05
0.6816900D 05

-0.77733770-02
0,)0334770=-01
0.78543941) 00

~0.6185634D 00

-0.,17083690-01

~0.4577772D-06

0.23036081)-02

0,15847880 04

0.26517570 00
~0.,34302910 00

0.10643310 17

0.15900000) 04
0.14560001 0«
0.1616000) O«
0a16500000 04
0.3099000h D&
0.35940000 04
0,3547000D0 04
0.3350000D0 O«
0.30480001H 04
0.2857000N 0&
0.,2794000h) 0«
0.26370000 04
0.25520000 04
0.25140000 04
0,2572000D n&

0.24270000 O«

0.63221000 05
0,66513000 05

~0.62675480=-D2
0.136421640-01
~0.h61865891) 00
~-0.74547830 00
0,H40721570=02
-0.1309433n=-n6

0.60617260~03

0.41656200 02

0.30558470 00
~U.H976866D~01

0.24581320 15

0.1076080D 06

0.10463200) 04
N0.1097730D 0K
0.11092900 06
0.11207%00 06
0.1132700) 06
N.1150940D 0&
0.11621900 04
0.,1173880D DA
N.1187340N 06
0.1204450D 06
0.12195000 06
N.12336600 06
0,12536R00 06
0,12785200 06

0.13008100 Ok

0.6363900D
0.68655000

05
05

-0.,27861480 00
0.9599779n0 00
=0,4R065R9D~04
0.188R2820=-01
0.21381020-01
0,10429930-06

-0.1608563D=-02

0.,36432289D0-03

0.11393900-01
-0.11988820 NO

0.42386460D 14

0.19470000 04

0,19480000) 04
0.1949000D N4
N,19500001) 04
0.1951000) 04
0.,19520000) 04
0.1953000D 04
0,19540000) 04
0.19550000) 04

0.19560000) N4

0,19570000) N4

D.1954000N

~

)4
0.,19590000 04
0,19600000 04
0.19610000 04

0,1962000D 04

0.64989000
0,69564000

05
05

~0+45794090-02
N.2089197N=N1
«0.,186466820~01
0,48025910-02
~0.99412300 00
0.51137880-03

0.10439200 00

N.36503800 01

0.1530207D 00
-0,.,2986208D 00

0.54338150 11

0.,18199480 04

0.48394360 02
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The Bauer matrix with its associated output is

As
{ RUW 1
-0, 74000000
( ROW 2
0,14000000
{ ROW 3 )
0.6600000D
{ ROW 4 )
-0,1200000D
{ ROW 5
0.3000000D
{ ROW 6
0.,40000000

Rw
{COILUMN 1)
0.%5100000D 02
(COLUMN 2)
-0,56000000 02
{ COLUMN 3)
=-0,5000000D0 01

{ERR = 0

V =

{ COLUMN 1)
0,53159%90 00
{COLUMN 2)
-0.62509500 00
(COLUMN 3)
0.33696200 00
{ COLUMN &)

-0.40824830 00
{ COLUMN 5)
0.71539230 00
{ COLUMN 6)
0,76299726D-02

s

0,17383930 03

Cs=

{COLUMN 1)
-0.,11457290 03
(COLUMN 2)
0,37040050-03
{COLUMN 3)

-0.,1145726D0 03

P = 1

MU=

(COLUMN 1)
0.5514312D 07
(COLUMN  2)
0.23068100 15
(COLUMN  3)

0,74578680 09

USING MACHEP,
(COLUMN 1)
0,10000000 01
(COLLUMN 2)
~0,26157640 07
(COLUMN 3)
-0,26157630 07

USING RKTOL,
(COLUMN 1)

0.10000000 01
{COLUMN 2)
-0,2615764D 07
(COLUMN 3)
-0.,2615763D 07

0.80000001) 02
-0.469000000 02
-0, 72000000 02

0, 66000000 02

0.8000000N 01

-0,1200000D0 02

-0.61000000 02

0,52000000 02 .

-0,90000000 01

~-0,R2429H4D 00
~0.29H15740 00
0.1042175h 00
-0,4082483) 00
0.2325174H 00

-0,64905331~02

0.64861870 02

~-0.35669610 02
0.16174950-03

-0,3566945D 02

0,42339880 07
0,14984950 15

0,57262870 09

Xs

0,.,20000000 01
0,22251420 07

0.22251440 07

X=

0,20000000 01
0,2225142D 07

0,22251440D 07

0. 18000000 02
0.21000000 V7
-0.5000000D Oi
-0,30000000 02
-0.7000000H V1

0, 40000000 01}

-0.,56000000) 02
0. 76400001} 03

0.70H0000D O3

-0.3824286D-01
0,62845080 00
0.65658480N 00
-0.40824R3D 00
~0,70459190-11

-0.29192670-01

0.1066716D 02

-0.79211710 01
-0,31773030-01

-0,795%2944D 01

0,3202064D 07
0416501570 12

0.,43232170 09

-0,10000000 01
0.10008100 08

0.10008100 08

~0,10000000 01
0.10008100 08

0.10008100 08

-0.11000000
0, 24000001
0,70000000

=0.23000000

—0. 4000000

0.40000000

V.6900000D
0.,40960000

De.41650000N

L017949250)
U.3481670N
=0,523H1900
-0,40824830
0.60620R831

0,1949RRK7D

0.10000000

-0.40824R30D
-0,4042483D

~0.81649660

0.30130790
0,12039250

0435115200

0,.30000000
~-0.66R47850

-0.66847850

0,3000000D
~0.6484TR5D

-0.,6684785D

~

2

)2

1

)1

02

06

04

00

00

0

00

)0

00

)1

0o
00

00

o7

09

o8

08

01
08

08

)1,

-0,40000000 01
0.0
0,10000000 0}

0430000001 01

0, 10000000 01

0.0
0.10000000 02
-0.13276000 05

-0.1326600D0 05

0,10576910=-01
-0.63856900-01
~0.23501730 00
-0.40R24R30D 00
-0.6389627) 00

0,60467950) 00

0.1752477D 00

0,89420800 00
-0.,19669080 01

-0.10687000 01

0.69023290 06
0.4376396D O0R

0,78558700 08

-0.40000000 O1
-0,20730180 09

-0,2073018D 09

~0+40000000 01
-0,20730180 09

-0.20730180 09

-0.8000000D 01

0.70000000 01
N.40000000 01
-0.30000000 01
0.0

0,10000000 01

-0.,12000000 02

0.84210001H 04

0,8409000D0 D&

0.564390190D-01
0.1049137D-01
-0.33892A0D 00
-0.4082433D DO
-0.3446961D 0O

-0.7716149D 00O

0.47441820~04

~0.8586544D-04
~0.1626444D 05

~0.1626444D 05

0.,6527464D 06
0.14336980 01

0,1433737D 01

-0,1224938D-09
0.26453220 09

0.26453220 09

-0,1224938D0-09
0.,2645322D0 09

0,26453220 09
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The condition number of a nonsingular matrix may be improved by

row or column scaling. The Bauer matrix, scaled as

A=

( RUW 1 ):
-0.7400000D O 0.R000000 02 0.,36000000 02
{ ROW 2 )2

0.1400000D0 02 -0,69000000 02 0,4200000D 02
{ ROwW 3 )

0.6600000D0 02 -0,7200000D0 02 -0.1000000D0 02
{ RUW 4 )
-0.12000000 02 0,6600000D 02 -0,60000000 02
{ ROW 5 )2

0.2400000D 02 0.6400000D 02 -0.11200000 03
( RUW 6 )

0.72800000D 02 -0.84000000 02 0.56000000 02

with singular values

W=
0.2959449D 03

0.1816570D 03

0.4893780D V2

-0.33000000 02

0.84000000 02
0.21000000 02
~0.6900000D 02
-0.96000000 02

0.84000000 02

0.128R217D 02

-0.40000000 02 -0,R000000D0 02
0.0 0.7000000h 02
0.1000000D 02 0.,40000000 02
0.3000000D0 02 -0,30000000 02
0.8000000D0 02 0.0
0.0 0.7000000H 02

0.7095995D 00 0.1397107D-02



.

The singular value decomposition provides UZVT as the decomposition

of a matrix A. Given the orthonormal columns U and V one can form another

matrix UZVT for arbitrary Z.

of order 7, the reformed matrix

THE REFURMEO A =

{ ROW 1
0.2010649D
( ROW 2
~0.11191230

LU ROW 3

0.2325041D
( ROW 4
-0.2489384D
( ROW 5
0.1477433D
( ROW 6
-0.4637337D
( ROW 7
0.6040208D

where the o, are 10~

):
02
)3
03
)z
03
|
03
):
03
|
02
):
01

-0.11191230
0.1320994D
=0.4728001D
0.78498420
~0.67653190
0.2949071D

-0.5155581D

03

04

04

04

D4

04

03

8

0.,23250410 03 -0.2489384D 03
-0.4728001D 04 0.7849842D D4
0.2536401D 05 -0.5888948BD 05
-0.5888948D 05 0.1R005690) 06
0.6799662D0 05 -0.2636029D 06
-=0.3855889D 05 0.18470440D 06
0.85824910 04 -0.4986B68D 05
, 1077, 107, 1075, 10

0.14774330
-0,67653190
0.67996620
-0.26360290D
0.4713941D
-0,3930209D

0.12386200

-4 -3

The computed o5 from the reformed A are

W=

0.10000000 07

0.10000000 06

MAX-ROW-SUM RESIDUAL =

EUCLIDEAN RESIDUAL =

MAX-COL-SUM RESIDUAL =

0.1000000D 05

0.12283R9490D-14

0.9990491258D-15

0,12283894900-14

0.10000000 04 0,1000000D0 03

03 -0,46373370
04 0,2949D710
05 -0.3855889D
06 0.1847044D
06 -0.39302090
06 0,3792650D
06 -0.13550680D
and 1072,

0.1000000D0 01

02

0,6040208D

D4 -0.51555810

05

0,85824910

06 -0,4986868D

06

0.1238620D

06 -0.1355068D

06

0.5368992D

Using U and V from the inexact Hilbert matrix

01

03

04

05

[¢1.

06

05

0.10000000 02
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However, choosing o, = lOzu, 1020, 1016, 1012, 108, lOu, 100 gives

W=
0.1000000D0 25 0,10000000 21 0.10000000 L7 0.2608234H 08 0.1000001D 13  0.21895020 08 0.3546465D 07
MAX-ROW~SUM RESIDUAL = 0.60675626030-15

EUCI_IDEAN RESIDUAL = 0.469762064570-15

MAX-COL=-SUM RESTUVUAL = 0.,4064506117350-1%

The singular values smaller than 1012 are effected by the order

of machine precision relative to Orax’
0 -u

Choosing o; =107, 10 7, 10 '12, 10_16, 1077, 10 gives

w=

0.,100000 01 0V, 1V00000N=0 s  ULlULOULVOD=0T U 99995 12D-12 0,1104UR2N=15 (1, 1K92770=16 0,253071460=17
MAX—ROW-SUM RESIDUAL = 0el3160510700=14

EOCLIDEAN RESINUAL = O HHHLTHGL53~15

MAX=CUL=Stm ReSTn, = Ue2h42102139D~15
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The order 100 matrix

.501 -1

.600 -1

has a maximum singular value ~1.587 and a minimum singular value ~10~22.
The minimum singular value computed on the IBM 360/67 is .3329410 x107%5,
Using long precision on the IBM 360/195 at Argonne National Laboratory,
Jack Dongerra computed the same singular values as those from the 67
except for the minimum singular value which was .33292721x10-15. The
arithmetic of the 195 is not the same as that of the 67. Multiplying
this matrix by 103 (so that the input was internally representable as
exact integers) gave the smallest singular value .33294095x10_12.
Brian Smith suggested running this matrix on the 195 using short
precision from which the smallest singular value was .1287991)(10_5 and
.13423073x10™° for the matrix scaled by 10°.
We have done some timing tests on the singular value decomposition.
In general, accessing data is more costly than computing the singular value
decomposition, so we would expect the use of Fortran H (opt=2) -to reduce the
computation times listed below by about 50%. Fram a Fortran IV G compilation
on the 360/67 computer, the computation time for U, V, and I using SVD from

[2] on randam square matrices of dimension N is as follows:
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N Time in seconds
5 074

10 L6l

20 ' 3.490

40 25.010

60 79.353

80 185.653

These times were obtained from the interval timer on the 67 which
gives épproximate microseconds at 13 microsecond intervals. These
timings were obtained at the NBER Computer Research Center by Harry Bochner.

The time required by MINFIT is approximately that of SVD if U, V, and
I are computed, However, in general, U is not needed. The time that is
used to form V, I, and UTb is therefore reduced by almost 50% of the times
listed here.

The time for computation of the singular value decomposition will be
matrix dependent in that fewer iterations may be required when there are

multiplicities or clusters of singular values.



- Cl¥ -

References

1. Bauer, F. L., "Elimination with Weighted Row Cambinations for
Solving Linear Equations and Least Squares Problems," in
J. H. Wilkinson and C. Reinsch (eds.) Handbook for Autamatic

Computation, Volume II: Linear Algebra, Springer Verlag, 7,
338-352 (1965).

2. Golub, G. H. and Reinsch, C., "Singular Value Decomposition and
Least Squares Solutions," in J. H. Wilkinson and C. Reinsch (eds.)
Handbook for Autamatic Computation, Volume II: Linear Algebra,
Springer Verlag, 13u4-151 (1971); prepublished in Numer. Math.

14, 403-420 (1970).

3. Longley, James W., "An Appraisal of Least Squares Programs for
the Electronic Computer from the Point of View of the User,"
JASA 62, 819-84l, 1967.




