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Much macroeconomic research has focused on the evidence for and the implications of unit roots in aggre-

gate output. Well-known examples of this work include the contributions of John Campbell and N. Gregory

Mankiw (1987), Peter Clark (1987), John Cochrane (1987), Steven Durlauf and Peter Phillips (1986), Charles

Nelson and Charles Plosser (1982), and Mark Watson (1986). Many have taken away from this discussion the

view that business cycles, relative to secular changes, are small and insignificant: output does not fluctuate

around trend.

This paper has two main objectives. The first is pedagogical: it makes technically precise the relation

between the presence of unit roots and the phenomenon of (lack of) cycle around trend in a way more

explicit than is currently available in the macroeconomic literature. Most studies almost instinctually take

the key characteristic to be the implied path of an impulse response function. (See for instance Campbell

and Mankiw, 1987. In the empirical literature, a notable exception is Francis Diebold and Glenn Rudebusch,

1987.) The impulse response may be a sensible statistic to examine for many purposes, but it is ill-suited

to represent the absence of cycle about trend. The reason is that the presence of fluctuations about trend

is a property of the sample path behavior of a time series, not of its impulse response function. The latter

is at best a conditional expectation, and in general not even that, but only a linear least-squares predictor.

Nevertheless, there is a precise sense in which the presence of unit roots is inconsistent with fluctuations

about trend: average cycle length is infinite when a linear time series process has a unit root.

The first objective therefore serves to sharpen discussion on what exactly are the implications of a

process having a unit root. That the points made here are important is illustrated by the second goal

of the paper. We construct a simple model of employment growth and learning-by-doing. In the model,

the conditional expectation of output is at least as explosive as that for a unit root process; however the

sample path for output always displays well-behaved finite length cycles about trend. Thus the finding that

estimated ARMA representations for output have a unit root should not be identified with a view that there

are no business cycles about trend. Some summary statistical evidence for aggregate output in the US is

also presented that suggests that the distinction here is not empirically irrelevant.

The plan of the paper is as follows. Section i is a technical section that relates the presence of unit roots

to observable sample path behavior. This contains arguments that would normally be omitted, except for
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the fact that impulse response functions have been so convincing to so many. Section II presents a simple

economic model where unit roots are consistent with well-behaved finite length cycles about trend. Further

necessary technical results are also developed here. Section III report8 informal summary statistics that

suggest some empirical basis for the main message of Section II. The paper concludes with a brief Section

IV. Technical proofs are presented in an Appendix.

I. Unit Roots and Sample Paths.

For the most part, this section will formally consider a pure random walk with drift. The main conclusions

carry over to where the first difference is a serially correlated stationary sequence. Throughout the discussion,

the reader should keep in mind the distinction between difference stationary and trend stationary sequences

emphasized by Nelson and Plosser (1982) and Campbell and Mankiw (1987).

For t � 1, let Y(t) be an observed sequence generated by

Y(t) = fi+Y(t— 1) +e(t),

where e is a zero mean covariance stationary sequence, with spectral density bounded away from zero. The

sequence Y is therefore difference-stationary, in the terminology of Nelson and Plosser (1982).

For any time trend coefficient a, the deviations process

W(t; a) = Y(t) — at = Y(O) + (fi — a) . t + (t)

remains a difference stationary sequence:

W(t; a) = ($ — a) + W(t — 1; cr) + 6(t),

W(O;a) = Y(O).

Thus, removing any deterministic time trend from a difference stationary sequence only produces yet another

difference stationary sequence. The probability law for the first-differenced sequence remains completely

unchanged, except possibly in mean. The first lesson can therefore be stated as follows: unless to begin

with, there is a presumption that some difference stationary sequence should display cyclicality, arbitrary

Thear detrending cannot induce spurious cycicality. (This may of course fail if the "trend" coefficient is

continually being re-chosen when a given finite sample is growing through time.)
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Next, write

Y(t) = p. >2 + Y(O).

Notice that the right hand side contains terms of different asymptotic order. The deterministic part t, for

different from zero, is of mean square asymptotic order 0(n3) whereas the stochastic component is only of

mean square asymptotic order 0(n), where n is the sample size. Thus, the more likely avenue for deviation

from cyclical behavior is the dominant deterministic trend part. However, this component is shared as well

by trend-stationary sequences (data that is covariance stationary about a linear trend). Thus we will ignore

this part in the subsequent discussion, and concentrate on the purely stochastic component. But then this

is exactly a zero drift unit root sequence.

To fix ideas and to simplify the calculations, suppose that is an ild sequence, which takes the values

1 and -1 with equal probability. If anything, one would imagine that this assumption severely restricts

the possible cyclical behavior of the accumulation e(j): once the sum gets sufficiently distant from an

arbitrary starting point, it takes a special sequence of events for the process to return to its origin. If e were

to have infinite support (such as for a normally distributed random variable), E(5) can always return to

its origin in one step. The assumption of serial independence makes the calculations easier; relaxing it would

change none of the conclusions.

Let W(t; ) = W(t) = e(j): this may be interpreted as the deviation of the economy from trend.

We study its sample path properties through the following set of questions. First, for W(t) 0, what is the

behavior of the sequence of conditional expectations E [W(t + vn) IW(t)], for m � 1? In words, given that

the economy has deviated from trend, what are expectations regarding its future path? Next, for W(t) = 0,

what is the probability that at time t+ vn, the economy will return to trend, W(t + rn) = 0? What is the

average waiting time until such a return to trend? The average cycle length would then be twice this average

waiting time.

For the process here, the conditional expectation E[W(t+ ni) W(t)1 is just W(t), for all m 1. More

to the point, when W(t) 0, the conditional expectation of future W(t + m) is bounded away from zero

forever. If e is serially correlated, the exact pattern for the conditional expectations of future W changes

somewhat. However, provided does not have a spectral density that vanishes at frequency zero, the main
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conclusion that the process is never expected to return to trend holds. Mean reversion, or trend reversion,

in this expectation sense, only has to do with whether W has a unit root, not whether the first-difference

sequence is serially correlated. Campbell and Mankiw (1987) interpret this to mean that there should be no

presumption that an economy should return to its natural rate.

What is the likelihood that the economy does return to trend at some future time t + m? For the simple

example here, this probability is not difficult to calculate. Starting on trend at W(t) say, there is a return

to trend at time t + m = t + 2n if W(t + n) = W(t). The probability of each possible sample path with

W(t+2n) = W(t) is (i/2)' . (1/2)": this happens when there are n +1's and n-i's in 2n independent draws

from the distribution of e. However there is more than one such path where W(t + 2n) = W(t). The total

number of different, and therefore mutually exclusive, paths with W(t + 2n) = W(t) is simply the binomial

coefficient () = (2n!)/(n!)2. The probability of a return to trend in 2n periods is therefore:

.P2n = (2n) . (1/2)2T, for n � 1.

Defining P0 = 1, the probability generating function for a return to trend is:

P(s) = Ps2",

where s is a dummy variable. (The reader who is unfamiliar with these kinds of calculations is referred to

William Feller, 1968, Ch. 13.) But then by Newton's binomial formula,

P(s) = > () (1/2)" s" = (1 2)_i/2

This function diverges to infinity as the variable s tends to unity. This divergence is significant because we

can now state the following: Even in the presence of a unit root, the economy returns to trend infinitely

often with probability 1. In any time period, no matter how far the economy has wandered from trend, the

probability is always positive of a return to trend some time in the future.

But this is a relatively weak sense in which shocks to a unit root economy are not permanent. To see

why this is, we turn to the final question posed above. What is the average time between returns to trend?

Let the probability of a first return to trend in 2n periods be denoted Q2n. Then the sequence

{Q2n, n � i} satisfies:

= > Q for n � 1.
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The right hand side is simply the sum of probabilities of n mutually exclusive events. For each , the

representative term Q2, P2(_) is the probability of a first return to trend in periods, followed by another

return in 2(n — 5) periods. Taken together, this collection of disjoint events is simply the event that there is

a return to trend in 2n periods, the probability of which has been computed above.

Multiplying both sides by summing over n � 1, and utilizing a fundamental property of convolu-

tions, the equation above becomes:

P(s)—i=Q(s)P(s),

where Q(s) has been defined as Qs2". The average waiting time for a return to trend is then

E[2nIW(t+2n) = W(t) = 0, W(t+j) 0, 1 � < 2n]=

—.i ds

But, we also have:

Q(s) = 1— P(s)1 = 1 — (1 —

which implies

=s(1_s2)_h/2+ooas s1.ds

Thus, the average length of a cycle in a unit root economy is infinite.

Therefore, if business cycles are defined to be fluctuations about trend, a unit root economy will not

have business cycles of average length equal to the 50 months given by conventional wisdom.

In summary, this section has made precise the sense in which unit roots and business cycles may

be viewed as inconsistent. As far as I know, this is the first discussion where these different notions of

persistence and business cycles have been explicitly related to the presence of unit roots. (Although again,

in the empirical literature, Diebold and Rudebusch, 1987, have taken steps in this direction.) Typically,

it is taken for granted that the conditional expectation, or more accurately, the impulse response function

is a sufficient measure for persistence. That the distinction between sample path behavior and that of the

conditional expectation sequence is important is highlighted in the analysis of the next section.
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II. A Model with Unit Roots and (Finite Length) Business Cycles.

This section develops a simple model where aggregate output is linearly represented by a unit (or explosive)

root process, but nevertheless output fluctuations about a deterministic trend have finite average length.

The model itself is not complicated; however its dynamic properties will need to be studied by using ideas

that may be unfamiliar. Thus we first analyze a sequence of examples to build intuition.

There are two papers related to the discussion of this section. James Hamilton (1987) presents a careful

empirical investigation of stochastic nonlinearities in aggregate output. His model is substantively different

from that in this paper, although both share the feature that there is a discreteness in output growth.

Technically, we will show below that a random sequence can be strictly stationary with fluctuations of finite

average length, even if it has the conditional expectations behavior of a unit root process. Daniel Nelson

(1987), in a different context, has also constructed strictly stationary unit root sequences. The mechanism

that produces stationarity in his work are quite different from that used here. Taken together however, this

suggests that there may be other examples of stochastic sequences that have a unit root but nevertheless

remain strictly stationary.

The examples here draw on a generalization of a process that first appeared (as far as I know) in work

by Olivier Blanchard (1979). He does not establish any properties for the special case; we do so now for the

generalization.

A. Some Technical Results.

Let X(t) evolve as

X(t) = -1(t)X(t — 1) + (t)

where (,t7) is iid, with independent of ,, Ej= r, Et1 = 0. Suppose also that ri � 1, while

Pr((1) = 0)> 0.

This can be rewritten as follows:

x(t) = rx(t —
1) + I((t) — r) x(t — 1) + (t)]

=X(t)= TX(t—1)+s(t)
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Notice that while not independent, e(t) turns out to be uncorrelated with X(t — 1), and in fact, is orthogonal

to all lagged X's. This fact allows us to conclude that the equation immediately above is a regression, and

that r is the population regression coefficient. Thus X(t) is a stochastic process that has explosive roots;

when r = 1, X has a unit root.

When Pr(-y(1) = 0) > 0, as we assume here, it will be convenient to call X a clinging process. The

reason for this is that no matter how small this probability is, we have the following property:

Theorem 1 (Stationarity). A clinging process is strictly stationary, and has mean zero and infinite

variance.

Proof: Appendix.

While X has a linear regression representation that appears explosive (in Box-Jenkins terminology, it

does not have a stationary ARMA representation), it is actually stable: its joint unconditional distributions

are time-invariant and are independent of initial conditions. Further, as is clear from the arguments in the

Proof, X displays fluctuations about its mean that have finite average length.

Next consider any distributed lag function of X, where the lag distribution is stable (i.e., the lag

distribution has no zeroes inside the unit circle). The resulting random sequence is again strictly stationary,

and again, has an 'explosive' linear autoregressive representation. But now the transformed clinging sequence

will display much richer dynamics as well.

Without a distributed lag, X displays much sharper returns to its mean, than movements away from

the mean. Thus a sample path analysis may uncover evidence of asymmetry. However, conditional on X(t)

and y(t), X(t + 1) is symmetrically distributed provided that ,' is symmetrically distributed. Since the

effects of initial conditions vanish eventually, provided that the accumulated sequence in is dominant, X

will also unconditionally have a symmetric distribution. Next, a clinging sequence will display cycles (in the

sense of returns to a neighborhood of its mean) persistently and infinitely often. As mentioned above, these

cycles turn out to have finite average length. If a time trend is added to a clinging sequence, this example

would reconcile a number of seemingly contradictory findings: J. Bradford DeLong and Lawrence Summers

(1985) find that after detrending, business cycles are actually 'symmetric' in unconditional distribution. In
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opposition to this, Salili Neftci (1984) concludes that certain features of economic fluctuations do display a

kind of asymmetry. Campbell and Mankiw (1987) and Nelson and Plosser (1982) find evidence for a unit root

in linear representations for output; however it also a wide-spread belief that fluctuations are persistently

recurring events. 1.1 the clinging model is correct, these statements are not inconsistent.

The conclusion from this discussion is that the presence of unit roots alone is not evidence against

well-behaved finite length business cycles. Further, in the sense that the joint distributions are independent

of initial conditions, disturbances do not persist indefinitely even in the presence of unit roots.

The question that remains is the following: Is there a plausible economic mechanism that will produce

a clinging sequence for output in equilibrium? We turn to this next.

B. A Simple Economic Model.

The model to be described here relates employment, learning-by-doing, and output growth. Output is

produced with two factors of production: capital K and labor N. In any time period t, the measured stock

of labor comprises skilled and unskilled employees:

N(t) = N0(t) + N1(t).

Skilled labor N0 is labor that has been employed for at least one period. Unskilled labor N1 comprises

new entrants. We make the extreme assumption that only skilled labor is productive; unskilled labor is in

training and is completely unproductive in the apprenticeship period.

Skilled labor evolves as follows:

N0(t) = min[N(t —
1)

— N2(t), 01,

where N2(t) is the labor withdrawn in period t. This would include factors such as retirements, a reduction

of market-wide skills due to the introduction of new technology, or possibly sectoral shifts between industries,

so that the average skill level falls. This equation states that skilled labor this period is equal to skilled labor

last period minus any decumulation due to labor withdrawals; at worst, skilled labor falls to zero.

For simplicity, we assume N2 and N1 have the same expectation, so that on average, the number of new

entrants just equals the number of withdrawals. Also assume that both N2 and N1 are serially independent
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and to rule out uninteresting degeneracir, we assume N2 and N1 have strictly positive variances. (The

arguments below become a little more complicated and subtle if these don't hold, but the main substantive

conclusions can be made to remain intact.)

We then have the following result:

Theorem 2 (Eventual Loss of all Skilled Labor). For an arbitrary initial quantity of skilled labor

No(O) > 0, the probability is positive that at some period t > 0, there is a total loss of skilled labor:

N0(t) = o.

Proof: Appendix.

This is not a deep result: it says that it will be unusual to come upon situations where the stock of labor

is always productive. One suspects that small deviations from the assumptions here will leave the major

conclusion unmodified. Notice that the result allows the variation in withdrawals N2 to be arbitrarily small.

If labor entrants on average exceed withdrawals, then the result may not hold, as there is then a positive

drift in the stock of labor. However for population growth rate not too different from zero, the difference

must be small, so that equality of the two means is a good approximation. Further, most would agree that

aggregate demographic factors cannot be too much related to economic fluctuations. Thus a nongrowing

labor force is probably the natural assumption to use here.

The rest of the model economy is trivial. Let the production function be such that (the logarithm of)

output is described by Y(t) = N0(t) K(t) + t7(t), where is a technology shock. Capital decays completely

after one period; however there is no consumption, and all output is invested, so that K(t) =Y(t — 1).

Thus the model displays high persistence in output when N0(t) exceeds 1. Given a technically skilled

work force, output evolves as a highly positively correlated sequence. Productivity shocks that increase

output this period, i7(t) > 0, tend to increase output persistently in the near future. Increased output

implies a higher capital stock; with skilled labor, this increase in output is transmitted to increased output

in future periods as well. By Theorem 2 however, no matter how small the fluctuations in withdrawals

from the labor force, at some stage, the economy is sure to lose all its skilled labor. When this happens,

the accumulated capital is "useless", except to train labor for the next period. In this case, the effects of
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productivity shocks are completely transitory.

The model therefore quite easily produce8 a process for output that is (close to) a clinging sequence.

The crucial property that the random coefficient on lagged output periodically realizes as zero is borne by

our assumptions on the process followed by skilled labor. The model has quite reasonable assumptions; we

see that no very special feature is needed to produce persistently recurring short-lived fluctuations despite

the possible existence of a unit root linear representation. Slight variations in the assumptions on capital

decay can be accommodated by the fact that distributed lag transformations of a clinging sequence leave its

key properties unchanged. The fact that the loss of all of the skilled labor force is technically a key factor

in producing the result should not detract from the plausibility of the effects here. (As an example on a

smaller scale, consider a department's loss of a senior econometrician. Even if he or she is one among a few

and the loss occurs only for a short period of time, it may sufficiently slow the flow of graduate students in

that field that the loss is felt for several generations hence.)

In summary, we describe again informally the characteristics of the model. Productivity shocks both

have a persistent long-run effect (on average), and also an eventually transitory effect. The persistence

comes from a feedback between capital and output. Increased output leads to a high capital stock. With

a highly skilled labor force, this produces even higher output in the next period. The transitoriness comes

from the fact that the slight (exogenous) variation in labor withdrawals and entrants leads periodically to a

completely unskilled labor force that needs some length of time to become re-trained. Given an economy-wide

low-skilled labor force, no amount of beneficial productivity shocks is immediately persistent in increased

output. Under these circumstances, productivity shocks have a transitory effect. Of course, this effect is

again only temporary for the skilled labor force will come online again sometime in the future. Thus in a

low output period, the capital stock is only apparently unproductive; it serves to tool up the labor force

for subsequent periods. This example has therefore embedded the dynamics of a clinging sequence in an

economic setting: we see that it is in fact quite plausible to model output as a clinging sequence.

The next section is empirical: it attempts to obtain some evidence on whether the kinds of effects

described here are present in actual aggregate measures of output.
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IlL Some Empirical Evidence.

The clinging sequence above produces a meaningful distinction between 'hard' and 'soft' unit roots. The

first kind of unit root describes the processes of Section I; the second describes those of Section II. We now

present some summary statistical evidence on distinguishing the two.

Let Y(t) be (the natural logarithm of) some measure of aggregate output. The null hypothesis is that

Y contains a hard unit root:

Y(t+1)+Y(t)+A(L)'ri(t+1), fort�O,

where ,, is lid 11(0, o-). Defining W(t; Y(0), fi) = Y(t) — Y(0) — fi t, this can be rewritten:

W(t+1; Y(0),fl) = W(t; Y(0),6) +A(L)1r1(t+ 1)

Next, let X(t) A(L)W(t), so that:

X(t; Y(0), ) = X(t — 1; Y(0), fi) + (t).

The alternative hypothesis that Y contains a soft unit root is most concisely expressed as follows. In

the definition of W, substitute fib in place of Y(0), where fib is a free parameter. Then write

X(t) = 1(t) X(t —
1) + i(t),

where are pairwise and serially independent, is N(0,a), E = 1, Pr( = 0) p � 0, and X is defined

exactly as above.

In words, a filtered version of deviations from trend Y(0) + fit is hypothesized under the null to be

a pwe random walk with no drift. Under the alternative, the same filtered version of trend deviations is

hypothesized to be a clinging sequence with a soft unit root. The difference stationary model is strictly

nested within the clinging alternative: that null hypothesis model obtains by setting the variance of to

zero and fib to Y(0).

Estimation under the null proceeds as follows. First difference (the log of) observed output, and estimate

the regression

Y(t) — Y(t — 1) = flA(i) — [L1A(L)] (Y(t — 1) — Y(t — 2)) + p7(t).
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The model is just identified. Under our assumptions, ordinary least squares is equivalent to maximum

likelihood. Estimation under the alternative is a little more complicated. We parametrize i as the product

of serially and pairwise independent Bernoulli and normal random variables:

= b(t) .

where b is Bernoulli with probability p of equalling unity, E is N (p', or). Setting c to zero and p to unity

recovers the property implied by the null hypothesis that = 1 for all t. The likelihood function for this

alternative model can be written in a way close to that of an unobserved switching regression modeL Call the

vector of parameters in the model 6; the likelihood of the t—th observation on X(t) conditional on X(t — 1)

X(t- 1); 6) (x(t)
-p'X(t- 1/2) + (1-

(X(t — 1)2o + o)

where is the density of a standard normaL The likelihood of the entire sample conditional on X(0) is seen

to be simply the product of these conditional likelihoods. Since X is strictly stationary under the alternative,

the impact of the initial condition X(O) vanishes asymptotically. Parameter estimates obtained under the

null are used as starting points for the maximum likelihood observation.

Tables 1 and 2 display estimates of the model for two measures of aggregate output, quarterly GNP and

monthly industrial production. Results are presented for A(L) chosen to be first through third order; that

is, A(L) = a,L1 where a0 is always 1 and k varies from 1 through 3. The GNP series is measured in

1982 dollars and industrial production is seasonally adjusted.

There are three restrictions under the null: fib =Y(0), p = 1, and o = 0. Thus, twice the difference in

log-likelihoods is asymptotically distributed x2 with three degrees of freedom. For GNP, this test-statistic

takes values 2.614, 3.842, and 1.532 with marginal significance levels of 0.46, 0.28, and 0.67, respectively,

when A is set to first, second, and third order lag polynomials. Therefore, the null hypothesis that CNP is

difference stationary, rather than trend stationary cannot be rejected. GNP has a hard unit root.

Turning to the industrial production data in Table 2, the null hypothesis of a hard unit root is now seen

to be soundly rejected. For second and third order polynomials, the differences in log-likelihoods is around

50, with associated marginal significance levels well below the standard cutoff points.



Table I 0NP82, 1947,1 to 1986,1
(In,x10)

1-lag 2-lag 3-lag

OLS MLE OLS MJZ
6962.7 * 6963.64 (2127) 6962.7 ' 6980.22 (22.84) 6962.7 * 6963.37 (21.34)

B 7.909 (0.61) 8.784 (0.54) 7.946 (0.47) 7.884 (0.27) 7.886 (0.72) 8.795 (0.35)
p 1.0 * 0.991 (0.11) 1.0 * 0.990 (0.12) 1.0 * 0.991 (0.11)
a2 109.29 100.07 (1.21) 107.70 94.38 (120) 105.56 97.21 (1.20)

a2 0.0 * 0.0 (0.09) 0.0 * 000 (0.14) 0.0 * 0.00 (0.10)
-0.366 (0.08) -0.408 (0.07) -0.315 (0.08) -0.369 (0.08) -0.338 (0.08) -0.376 (0.08)

02 — — — -0.138 (0.08) -0.113 (0.08) -0.189 (0.08) -0.176 (0.08)
a3 — — +0.161 (0.08) +0.140 (0.08)
in L -438.439 -437.132 -434.469 -432.548 -430.104 -429.338

* Fixed in the Resticted Estimation. Numbers in Parentheses are numerical standard errors.

Table 2 Industial Production, 1947,1 to 1986,3
(In, x 10)

1-lag 2-lag 3-lag

01.5 MLE 01.3 MLE OLS MLE
33534.0 * 33534.0 * 35141.8 (241.3) 3353.4.0 * 35278.0 (237)

.8 31.12 (0.40) 30.94 (036) 30.13 (0.99) 31.57 (034) 29.80 (0.53)
p 1.0 * 1.0 * 0.990 (0.72) 1.0 * 0.989 (0.73)

c2 11032 10909 6272.9 (7.23) 10904 6171.0 (7.14)

0.0 * 0.0 * 0.01 (0.03) 0.0 * 0.01 (0.04)

a1 -0.437 (0.04) -0.397 (0.05) -0.499 (0.04) -0.393 (0.05) -0.497 (0.04)
02 -0.093 (0.05) -0.099 (0.04) -0.075 (0.05) -0.073 (0.04)
03 — — -0.046 (0.05) -0.071 (0.04)
In L -2412.20 -2404.44 -2353.25 -2399.17 -2346.70

* Fixedin theResictedEstimation. Numbers in Parentheses are numerical standard errors.t Un:hgedfrom Restiicted Estimates.
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Examining the results more closely, we see that individually the probability p is not significantly different

from 1, and that is not significantly different from zero. Thus the reason for rejection appears to come

mainly from the o intercept term. However, the estimates for these three parameters are correlated and so

the individual t-statistics may be misleading. Testing for the significance of all three is essentially equivalent

to examining the likelihood-ratio statistic, which is what we have done here. Evidently, allowing for the

possibility that 1 — p and c may differ from 0 is sufficient to pin down the intercept term quite precisely.

But it is one of the important implications of the hard unit root hypothesis that the intercept in the 1'trend"

line changes for every different initial condition. More precisely, OLS estimates for this intercept diverge as

the sample size grows arbitrarily large (see for example Durlauf and Phillips, 1986). Our results indicate

that, contrary to this, for our sample of industrial production data, the intercept, and consequently the trend

line, is in fact quite precisely estimated.

A plot of the likelihood function for industrial production (not presented here) shows a distinct and

unique peak in p at 0.99. This implies a realization of -y(t) = 0 every 91 months on average. This is

approximately twice the consensus length of a business cycle. However, notice that A(L) is a further source

for cyclical dynamics. In the second order case, this polynomial has roots of 0.65 and 0.16. These roots are

well inside the unit circle, and serve to enrich the estimated cycicality.

IV. Conclusion

This paper has undertaken two tasks. The first and pedagogical objective in Section I makes clear why unit

root processes and the notion of persistently recurring business cycles are at odds with each other. The

analysis in terms of the relation between sample path behavior and the presence of unit roots appears not

to have been made explicit thus far in the macroeconomic literature.

That it is important to make this connection becomes clear in Section II where a simple model is con-

structed that displays persistently recurring fluctuations in the sample paths of output despite the presence

of a unit root. Summary statistical evidence presented in Section III suggests that the effects described in

the model are not without empirical basis for measures of aggregate output in the US.
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Appendix.

This appendix proves the technical results in the paper.

Proof of Theorem 1. We verify that the joint distribution of subsequences of X is invariant across time

shifts. Fork � 1, let t1, t2, .. ., tj be some collection of integers, assumed increasing without loss of generality.

We wish to show that for all integer s:

F(X(t1), X(t2), .. ., X(t,)) = F(X(t1 + s), X(t2 + s),. .. X(t, + s)),

where F denotes the joint distribution function. From the form of the clinging sequence, it suffices to

establish equality of the unconditional distributions of X(t1) and X(t1 + s). Let in, M be integer with

M> 1. Iterating on X(m) = -y(m)X(m — 1) + i(m), we have

X(m) = ( fJ i(5))
X(m-M)+(m)+ >1 (ii (k)) ,(J).

m+1-M jm-4-1—M k=,+1

If y(j) vanishes for some 5 between in + 1 — M and in, X(m) becomes independent of X(rn — M). In that

case, X(m) can be written entirely in terms of the (-is ,) partial sequence between epochs rn + 1 — M and

in. Setting in to t1 and t1 + $ in turn, we see that the distributions of X(t1) and X(t1 -1- s) are identical,

conditional on a zero realization for '(5), for some 5 between in + 1 — M and in. More explicitly, if for some

5, 0 � 5 < M, we have y(t1 — 5) = (t1 + s —5) = 0, then

F(X(t1), X(t2), . . . , X(t)) = F(X(t1 + s), X(t2 + s),. .. , X(t,, + s)).

Let p denote Pr(7(0) = 0), with p> 0. The conditioning event

{y(t1 — 5) = -y(t1 + 3 — j) = 0, for some 5 between 0 and M — i}

occurs with probability bounded from below by 1 — (1 — p2)M. But this tends to 1 as M — oc, hence

establishing strict stationarity. To show that EX is zero, write for n in � 0:

E (X(t) I — in), (t — in — 1), .. . , (t — n), X(t — n — 1)) = rtm (fl (t—

i)) X(t
— — i).

Define to be this conditional expectation: it is a well-defined random variable as it is simply a finite

product of random variables. Since y Is lid and places positive probability on 0, for fixed in the random



15

sequence {m,n, n � m} converges almost surely to the degenerate random variable at 0. By the lawof

iterated expectations, E(1im_. 'im,n) = 0 uniformly in m which implies E(X(t)) = 0. The infinite variance

property is obvious. QED

Proof of Theorem 2. Suppose that contrary to the conclusion of the theorem, N(t) > 0 for all t. But

then N is a zero drift random walk. Thus, from any starting point, N will take on arbitrarily negative values

infinitely often with probability 1. This is a contradiction as N is restricted to be always nonnegative. QED
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