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1870-1998 reveals that embodied productivity growth is large for many of the technologies in our
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1 Introduction

Most cross-country differences in levels of output per capita are due to differences in the level of total

factor productivity (TFP), rather than differences in the levels of factor inputs.1 These cross-country TFP

disparities can be divided into two parts: productivity differences from countries using different ranges of

technologies and different levels of efficiency with which technologies are operated.

In this paper, we assess the relative importance of the economic mechanisms that influence the range

of technologies a country uses. In particular, we answer the following two questions: ‘What are the key

economic aspects that differ across technologies that influence the speed of diffusion?’ and ‘What are the

key cross-country differences in endowments, institutions, and policies that impinge on technology diffusion?’

We answer these questions by developing and estimating a model of one of the key determinants of

technology diffusion, the level of productivity embodied in the capital goods associated with a technology.

In our model, agents adopt technologies at two different levels. First, a capital good producer decides whether

to incur the fixed cost of adopting a capital good that embodies a new vintage of the particular technology

(e.g. the Pentium as a new vintage of microprocessor). As in Parente and Prescott (1994), the size of the

adoption costs determine the adoption lag at the country level.

In addition, each worker that uses a given technology (e.g. microprocessors) decides which of the vintages,

associated with this technology and available in the country, to use in production (i.e. Pentium vs. Intel

IV). Heterogeneity across workers in the productivity of each vintage introduces a smooth adoption of new

vintages at the micro level.

These adoption decisions endogenously determine the level and evolution of productivity embodied in

the technology. The introduction of vintages with higher embodied productivity raises the overall level of

productivity. It also increases the range of vintages available for production. As this range increases, workers

obtain a gain from variety, which also raises the average level of productivity embodied in capital.

When the number of available vintages is very small, an increase in the number of varieties has a relatively

large effect on embodied productivity. As this number increases, the productivity gains from such an increase

decline. This leads to curvature in the embodied productivity level.

This curvature in embodied productivity translates into similar non-linearities in the evolution of available

measures of technology, such as the number of units of capital that embody a given technology or the output

produced with these units. For each of these technologies, this allows us to estimate the growth rate of

productivity embodied in new vintages, as well as the determinants of the costs of adopting new vintages

that generate adoption lags.

We estimate the model taking advantage of the historical data set on technology measures from Comin

and Hobijn (2004). This data set covers 19 types of technologies, for 21 industrialized countries, over the

1Klenow and Rodŕıquez-Clare (1997), Hall and Jones (1999), and Jerzmanowski (2004).
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period 1870 - 1998.

To explore the determinants of adoption lags, we assume that the costs of adopting new vintages are

functions of the following variables: human capital, in line with Nelson and Phelps (1966) and Chari and

Hopenhayn (1991), the degree of trade openness, as emphasized by Coe and Helpman (1995) and Holmes

and Schmitz (2001), the degree of democracy, as proposed by Hall and Jones (1999) and Acemoglu, Johnson,

and Robinson (2005), as well as income per capita as a proxy for relative factor endowments, consistent with

Basu and Weil’s (1998) appropriate technology hypothesis.

We find that for several of our technologies, such as computers, robots, planes, electricity and steel, new

vintages embody significantly more productivity than old vintages. In terms of the determinants of the

adoption lags, we find that technologies such as PC’s, robots and electricity are complementary to human

capital in the sense that human capital reduces the adoption lags for these technologies. Trade openness

tends to reduce the adoption lags of transportation technologies, such as passenger and cargo aviation as

well as sail and motor shipping. Other factors, such as the degree of democracy, do not seem to be very

important for explaining the variation in the range of vintages used, but might still affect the intensity with

which technologies are used.

Our model of endogenous embodied productivity generates a diffusion path that fits the data quite closely

for most of the technologies in our sample. The R2s are high, even after filtering out the exogenous trends,

country fixed effects and interest rate effects that the technology adoption mechanism in our model does not

account for.

We find that the average growth rate of embodied productivity over the periods studied is large for

most of the technologies in our sample. The relative importance of the two adoption margins, however,

varies substantially across technologies. This heterogeneity in the results emphasizes the importance of the

multi-technology character of our analysis. On average, the increase in the number of available varieties is

a more important source of growth in embodied productivity than the actual productivity embodied in the

best adopted vintages.

This paper is related to various strands of the literature. It is closely related to the empirical diffusion

literature (Griliches 1957, Mansfield, 1961, Gort and Klepper 1982, among others) which has estimated

logistic diffusion curves for a relatively small number of technologies and countries. Our model is consistent

with this micro evidence because the workers adoption decisions generate a (quasi) logistic diffusion pattern

at the micro level.

The logistic diffusion curve in our model differs from that in the empirical literature because it results

from the optimizing behavior of agents. There are two other important factors that differentiate our paper

from this literature. First, our approach only requires the use of widely available aggregate data to estimate

the diffusion processes. Therefore, our analysis covers more technologies and countries than if we had to
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rely on scarce micro data.2 Second, by embedding the micro adoption decisions in a macro model, we can

explore their aggregate implications.

This paper is also related to the macro technology adoption literature (i.e. Parente and Prescott 1994,

and Basu and Weil, 1998). Contrary to our model, these studies are not based on models of adoption that

are sufficiently rich to be brought to the data. As a result, empirical analyses conducted with these models

are restricted to calibration exercises.

The rest of the paper is organized as follows. Next we present the model and derive analytical expressions

for the diffusion curves that we estimate. Section 3 contains the empirical analysis. Section 4 summarizes

our findings and presents directions for future research. For the sake of brevity, many of the mathematical

derivations are relegated to the Appendix.

2 Model

The aim of our model is to explain the paths of aggregate measures of capital and output associated with

particular types of embodied technologies. For this purpose, we develop a model of endogenous technology

in which adoption occurs at two different levels. First, capital goods producers determine when to adopt

and start producing capital goods that embody a given level of productivity. Second, workers decide which

of the adopted capital goods to use in production.

The model incorporates the following notion of technology. Each type of technology is used to produce a

particular good or service. For example, sail ships are used to provide sail shipping services. Of course, not

all sail ships are the same. Some sail ships, like clippers, belong to a more advanced technological vintage

than others, like schooners. Goods or services produced with similar technologies are aggregated into sectoral

output. For example, merchant shipping services are the result of the shipments provided with sail ships, as

well as steam and motor ships.

In terms of notation, workers are indexed by l, technology vintages are inxed by v, technology types are

indexed by τ , sectors are indexed by s, and time is indexed by t. For example, Y
(v)
l,t denotes the output

worker l produces using technology vintage v at time t, Y
(τ)
v,t is the level of output of technology vintage v

of technology type τ , Y
(s)
τ ,t is the output produced with technology type τ in sector s, and Ys,t is the output

of sector s, Yt is aggregate output (i.e. GDP).

We structure the presentation of the model as follows. First, we set up and solve the technology choice

problem of the worker. Then we analyze the adoption decision of the capital goods suppliers. Next we

2Another strand of the literature has also used more aggregate measures of diffusion to explore the determinants of adoption

lags (Saxonhouse and Wright, 2000, and Caselli and Coleman, 2001) or the shape of technology diffusion (Manuelli and Seshadri,

2004) for one technology. Our paper differs from these three studies in that (i) it develops a different approach to modeling and

estimating the forces that shape technology diffusion and (ii) it covers a wider range of technologies and countries.
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explore the aggregate implications of these technology adoption decisions. Finally, we derive the reduced

form equations that we estimate and describe our identification strategy.

2.1 Worker’s technology choice

A worker that uses technology type τ has to choose which of the available vintages, v, of that type to use.

Output is homogenous across vintages of the same technology type. Because this technology choice is essen-

tially a discrete choice, we base our model on the discrete choice problem that is used as the microfoundation

of the multinomial logit model. 3

Let the set of technology vintages among which the worker can choose be given by v ∈
h
v
(s)
τ , v

(s)
τ ,t

i
= V

(τ)
t .

Here, v
(s)
τ reflects the first vintage of technology type τ that was ever introduced and v

(s)
τ ,t reflects the most

recent and modern vintage of technology type τ provided to workers at time t. Let the level of output that

worker l would produce using vintage v at time t equal

Y
(v)
l,t =

³
Z(τ)v eε

(v)
l,t

´1−α ³
K
(v)
l,t

´α
, where 0 < α < 1 (1)

where K
(v)
l,t is the number of units of the vintage specific capital good, Z

(τ)
v is the level of productivity

embodied in capital of vintage v and ε
(v)
l,t is an idiosyncratic, time, worker, and vintage specific productivity

shock.

Capital goods of vintage v are rented at the rental rate R
(τ)
v,t and the technology type specific price of

output is given by P
(s)
τ ,t . Conditional on the productivity shock ε

(v)
l,t , the technology level, Z

(τ)
v , the rental

rate, R
(τ)
v,t , and the output price, P

(s)
τ ,t , a worker using technology vintage v chooses the level of the capital

input, K
(v)
l,t , to maximize revenue minus rental expenses, which we denote by

Π
(v)
l,t = P

(s)
τ ,t Y

(v)
l,t −R

(τ)
v,tK

(v)
l,t (2)

The profit-maximizing level of the capital input is such that rental expenditures exhaust a fraction α of

revenue.

Therefore, the surplus that the worker produces when he uses technology vintage v (i.e. Π
(v)
l,t ) is a

fraction (1− α) of total revenue. Hence, the worker will choose that technology that maximizes revenue.

The worker’s technology choice is assumed to not affect the equilibrium price level, so this is equivalent to

choosing the technology vintage that maximizes output.

Mathematically, this means that, conditional on the sequence of productivity shocks
n
ε
(v)
l,t

o
v∈V (τ)

t

, the

vintage productivity levels and rental rates
n
Z
(τ)
v , R

(τ)
v,t

o
v∈V (τ)

t

, and the output price P
(s)
τ ,t , a worker l em-

ployed in technology type τ chooses the vintage v that satisfies

Y
(v)
l,v ≥ Y

(v0)
l,v0 for all v0 ∈ V (τ)t (3)

3This is commonly referred to as the ARUM, or Additive Random Utility Model (Anderson, de Palma, and Thisse, 1992).
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This implies that the worker-specific productivity shock for the technology that the worker chooses, i.e. v,

has to satisfy

y
(τ)
v0,t + ε

(v0)
l,t ≤ y

(τ)
v,t + ε

(v)
l,t for all v

0 ∈ V (τ)t (4)

where

y
(τ)
v,t =

α

1− α
lnα+

α

1− α
p
(s)
τ ,t −

α

1− α
r
(τ)
v,t + z

(τ)
v (5)

and small letters denote natural logarithms. Y
(τ)

v,t is the worker’s supply function at ε
(v)
l,t = 0.

The actual distribution of choices made depends on the distribution of the shocks. We assume that the

worker-specific technology shocks are identically distributed for all workers, vintages, and points in time,

according to a double exponential distribution. That is,

F (x) = Pr
h
ε
(v)
l,t ≤ x

i
= exp

µ
− exp

µ
−x
µ

¶¶
, where µ > 0 (6)

where the variance of the shocks is increasing in µ.

The probability that vintage v satisfies (4) and that the associated productivity shock equals ε
(v)
l,t is

π
³
v, ε

(v)
l,t

´
=
1

µ
exp

"
−
ε
(v)
l,t

µ
− exp

Ã
−
ε
(v)
l,t

µ

!Z
v0∈V (τ)

t

exp

Ã
−
y
(τ)
v,t − y

(τ)
v0,t

µ

!
dv0

#
(7)

Because there is a continuum of vintages, this is not a proper probability but can better be interpreted as

our continuous vintage approximation to the finite number of vintages case.4

This interpretation gives the probability that a worker will choose technology v as

S
(τ)
v,t =

Z ∞
−∞

π
³
v, ε

(v)
l,t

´
dε
(v)
l,t =

³
Y
(τ)

v,t

´ 1
µ

R
v0∈V (τ)

t

³
Y
(τ)

v,t

´ 1
µ

dv0
(8)

By the law of large numbers, this probability equals the share of workers using technology τ who choose

vintage v, which is why we denote it by S
(τ)
v,t . These share equations are the same as those implied by

the optimal demand of each technology vintage when the production function is a CES aggregate of the

continuum of vintages.5

In this context, 1/µ can be interpreted as the elasticity of substitution of technology vintages. Intuitively,

the smaller the variance of the idiosyncratic productivity shocks, the more the demand responds to changes

in the relative average productivity level Y
(τ)

v,t of vintage v and the more quickly workers substitute away

toward other technology vintages in response to a change in Y
(τ)

v,t relative to that of other vintages.
4In practical applications, discrete choice models consider the choice over a finite number of choices, and the choice for which

the random utility is maximized is well-defined. Because we aim to implement the worker’s technology choice decision into a

more general equilibrium framework, our model is such that the set of available vintages contains a continuum of choices and,

because of that, in principle, the worker obtains an unbounded level of productivity.
5In this sense, we are using the production function equivalent of the result that aggregate CES preferences can be interpreted

as the result of underlying individual agents facing a discrete choice problem. See Feenstra (1995) and Anderson, de Palma,

and Thisse (1992) for both applications and derivations of this result on the consumer side.
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Let L
(s)
τ ,t be the number of workers who use technology type τ in sector s at time t. The number of

workers that use vintage v is then given by

L
(τ)
v,t = S

(τ)
v,t L

(s)
τ ,t (9)

The corresponding level of output produced with vintage v is

Y
(τ)
v,t = CL

(s)
τ ,t

³
Y
(τ)
v,t

´³
S
(τ)
v,t

´1−µ
(10)

where the constant C depends only on µ.

As we show in Appendix A, output produced using a particular technology type is represented by a CES

production function in the sense that

Y
(s)
τ ,t =

³
CL

(s)
τ ,t

´"Z
v∈V (τ)

t

³
Y
(τ)

v,t

´ 1
µ

dv

#µ
(11)

= α
α

1−α

³
CL

(s)
τ ,t

´³
P
(s)
τ ,t

´ α
1−α

"Z
v∈V (τ)

t

µ
Z(τ)v

.³
R
(τ)
v,t

´ α
1−α

¶ 1
µ

dv

#µ

This equation illustrates the three sources of productivity growth in our model: (i) The increasing number

of varieties, as in Romer (1990), is reflected by the size of the set of technology vintages, V
(τ)
t , adopted in the

country; (ii) investment specific technological change, similar to Greenwood, Hercowitz, and Krusell (1997)6,

is reflected by the increases in output due to declines in R
(τ)
v,t ; and (iii) embodied technological change is

reflected in the different levels of total factor productivity for different vintages, Z
(τ)
v .

2.2 Adoption at the aggregate level

Every instant, a constant number of new technology vintages is invented in the world. The most recently

invented vintage, which we denote by v
(s)
τ ,t, is the world technology frontier. Without loss of generality we

assume that v
(s)
τ ,t = t. As in Johansen (1959) and Solow (1960), newer vintages are technologically superior

to older ones. In particular, the productivity embodied in vintage v is

Z(τ)v = Z(τ)vτ
exp

³
γ(s)τ

³
v − v(s)τ

´´
, (12)

where γ
(s)
τ > 0 denotes the growth rate of embodied productivity.

A newly invented vintage is not available for production in the economy until a capital good supplier

adopts it. Let v
(s)
τ ,t be the most advanced vintage adopted, then the adoption lag in technology τ is

6Under the assumptions in Greenwood, Hercowitz, and Krusell (1997), embodied technological change and investment-

specific technological change are not separately identifiable, and capital can be defined in terms of quality-adjusted units such

that there is only investment specific technological change. Because we measure particular types of units of capital, like cars,

telephones or merchant ships, such quality adjustment assumptions are not applicable to our empirical analysis. Therefore, we

will explicitly distinguish between these two types of technological progress in our model.
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D
(s)
τ ,t = t− v

(s)
τ ,t ≥ 0 (13)

and the set of vintages available for production is

V
(τ)
t =

h
v(s)τ , v

(s)
τ ,t

i
. (14)

Producers of capital goods have a patent on the technology that enables them to produce a particular

vintage of capital good, v, at the unit production cost Q
(τ)
v,t . This production process is assumed to be

reversible. We assume that the production cost, Q
(τ)
v,t , is the same across technology vintages and that Z

(τ)
v,t

distinguishes these vintages. More specifically, we assume that

Q
(τ)
v,t = Q

(s)
τ ,t and Q̇

(s)
τ ,t/Q

(s)
τ ,t = −q(s)τ (15)

The producers choose the path of rental rates R
(τ)
v,t to maximize the present discounted value of their

profits, which equals Z ∞
t

e−
R s
t
rs0ds

0
³
R(τ)v,sK

(τ)
v,s −Q(s)τ ,sI(τ)v,s

´
ds (16)

subject to the capital accumulation equation

K̇
(τ)
v,t = I

(τ)
v,t − δ(s)τ K

(τ)
v,t (17)

and the demand function for K
(τ)
v,t implied by the capital input decisions made by the workers that use

technology type τ .

As we show in Appendix A, the monopolist chooses a rental price that equals a gross markup times the

technology-vintage-specific user cost of capital. That is, the capital good supplier sets

R
(τ)
v,t =

1 + η

η
Q(s)τ ,sUC

(s)
τ ,s, where η =

1

µ

α

1− α
and UC

(s)
τ ,t =

³
rt + δ(s)τ + q(s)τ

´
(18)

Here, 1/η is the net markup of the rental price over the vintage-specific user cost.7

The resulting market value of the patent holder for a capital good of vintage v for technology τ at time

t is

M
(τ)
v,t =

1

η

Z ∞
t

e−
R s
t
rs0ds

0
K(τ)
v,sQ

(s)
τ ,sUC

(s)
τ ,tds =

³
Z(τ)v

´ 1
µ fM (s)

τ ,t (19)

where fM (s)
τ ,t is technology type but not vintage specific and is derived in Appendix A.

The rental cost decision of the capital good supplier allows us to simplify (11) and write

Y
(s)
τ ,t =

³
Z
(s)
τ ,tL

(s)
τ ,t

´1−α ³
K
(s)
τ ,t

´α
(20)

where

Z
(s)
τ ,t = C

"Z
v∈V (τ)

t

³
Z(τ)v

´ 1
µ

dv

#µ
(21)

7The user cost, UC
(s)
τ ,t , is the same as that derived in Jorgenson (1963).
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Thus, we obtain an aggregate Cobb-Douglas production function for the output produced using technology

type τ in sector s.8 The random productivity model at the worker level yields a factor of labor augmenting

technological progress Z
(s)
τ ,t that is a CES aggregate of the underlying vintage specific productivity levels.

2.3 Entry into sector

The idiosyncratic productivity shocks cause uncertainty about an individual worker’s labor productivity.

Firms act as insurers that insure the workers’ idiosyncratic labor productivity risk.by offering a continuum

of workers a contract at the competitive wageWt. Because the firm employs a continuum of workers, it pools

their idiosyncratic risks and thus faces no risk over the average labor productivity. Free entry of firms into

the sector implies that, in equilibrium, the competitive wage rate equalizes the average profit per worker.

That is

Wt = (1− α)
P
(s)
τ ,t Y

(s)
τ ,t

L
(s)
τ ,t

(22)

Combining this free entry condition with (20), we find that the implied price level of output of technology

type τ in sector s satisfies

P
(s)
τ ,t =

Ã
1

Z
(s)
τ ,t

Wt

(1− α)

!1−αÃ
R
(s)
τ ,t

α

!α

(23)

which corresponds to the unit production cost function of the Cobb-Douglas production function with factor

prices Wt for labor and R
(s)
τ ,t for capital and a level of labor augmenting technological change equal to Z

(s)
τ ,t .

2.4 Aggregation

To consider the relationship between the adoption of the technologies in our sample and aggregate economic

conditions, we need to make some assumptions about how output produced with various technologies ag-

gregates into sectoral output and how sectoral output aggregates into aggregate output. We assume a CES

production function for sectoral output, Ys,t.
9 That is

Ys,t =

"
nX

τ=1

³
Y
(s)
τ ,t

´ θs−1
θs

# θs
θs−1

, where θs > 1 (24)

Given the technology type production functions that we derived before, we can write the unit production

cost of sectoral output as

Ps,t =

⎡⎣ nX
τ=1

Ã
1

P
(s)
τ ,t

!(θs−1)⎤⎦− 1
(θs−1)

=

µ
Wt

(1− α)Zs,t

¶1−αµ
Rs,t
α

¶α
(25)

8This is an application of the result in Fisher (1965), who proves the existence of an aggregate capital stock in case of an

underlying vintage specific Cobb-Douglas production function.
9Note that we could have derived this from first principles as we have done for the technology type production function.

This would yield a nested logit.
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where

Zs,t =

"
nX

τ=1

³
Z
(s)
τ ,t

´(1−α)(θs−1)# 1
(1−α)(θs−1)

, Rs,t =
1 + η

η
Qs,tUCs,t, (26)

and UCs,t and Qs,t are similar CES aggregates.

The second aggregation level determines how sectoral output is related to aggregate output. We assume

that aggregate output, is produced using a constant returns to scale production function with the outputs of

each of the individual sectors as inputs. We also assume that demand for output of sector s is characterized

by a constant elasticity of substitution with respect to aggregate output. That is, the demand function is of

the form

Ys,t =

µ
Ps,t
Pt

¶−ρs
Yt = P

−ρs
s,t Yt (27)

where ρs is the elasticity of substitution, and the price of aggregate output, Pt, has been normalized to 1.

Cost minimization and free entry in the production of the final good implies that, in equilibrium, final

good producers make zero profits and total revenue of the final good producers equals their costs of buying

sectoral output as intermediate inputs. Because the share of labor equals (1− α) for each intermediate input,

so does the aggregate share of labor. As a result,

Wt = (1− α)
Yt
Lt
. (28)

2.5 Equilibrium technology adoption

Technology adoption in our model occurs at two levels. The first is at the aggregate level. That is, capital

goods suppliers face a cost of adopting a technology vintage and only choose to incur this cost when the

present discounted value of their flow profits is greater than or equal to the adoption cost.

At time t, the present discounted value of the capital good monopolist supplying vintage v is given by

(19). We denote the cost of adopting technology vintage v at time t by A
(τ)
v,t and assume they are equal to

A
(τ)
v,t =

³
1 + b

(s)
τ ,t

´Ã Z(τ)v

Z
v
(s)
τ,t

! 1+ν
µ ³

Z
v
(s)
τ,t

´ 1
µ fM (s)

τ ,t , where b
(s)
τ ,t, ν > 0 (29)

This formulation of the adoption costs contains four terms. The second and third terms reflect the higher

cost of adopting technologies that are more sophisticated both relative to the world technology frontier and

in absolute terms. The fourth term, fM (s)
τ ,t , is related to the market value for the technology type and makes

the model tractable. For our purposes, the most important term is the first. It reflects additional factors

that affect the cost of adopting new technology vintages.

When estimating the model, we make b
(s)
τ ,t a function of several variables that have been proposed in the

literature as important determinants of the size of adoption barriers at the aggregate level. By identifying

how b
(s)
τ ,t depends on these variables, we can understand how these variables affect both the cross-country

and the time series costs of technology adoption.
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As we show in Appendix A, the best vintage for which A
(τ)
v,t ≤M

(τ)
v,t , which is the best vintage that will

be adopted by a capital good supplier at time t is given by

v
(s)
τ ,t = v

(s)
τ ,t −D

(s)
τ ,t = t−D

(s)
τ ,t , where D

(s)
τ ,t =

µ

νγ
(s)
τ

ln
³
1 + b

(s)
τ ,t

´
(30)

Hence, if b
(s)
τ ,t = 0 then technology type τ is operated at the world technology frontier. The higher b

(s)
τ ,t, the

further the adoption of technology type τ lags behind the frontier.10

The second level of technology adoption is the technology choice is the individual worker’s technology

decision. As we derive in Appendix A, in equilibrium, the share of workers who use vintages that are more

advanced than v ≥ v(s)τ in technology τ equals

Σ
(τ)
v,t =

Ψ
³
t−D(s)

τ ,t − v
(s)
τ ;

γ(s)τ

µ

´
Ψ
³
t−D(s)

τ ,t − v; γ
(s)
τ

µ

´ , where Ψ (t; g)=
1

1− e−gmax{t,0} (31)

when

v(s)τ ≤ t−D
(s)
τ ,t (32)

and zero otherwise.

This is an approximately logistic adoption curve at the individual worker level. The difference between

this and an actual logistic adoption curve is the starting date term in our curve

Ψ

Ã
t−D(s)

τ ,t − v;
γ
(s)
τ

µ

!
(33)

which implies that the share of workers who use the technology before it is invented is zero. This term is

absent in an actual logistic curve.

An actual logistic adoption curve, therefore, cannot be the reduced form adoption curve from this model,

since it implies that the adoption share is positive at any point in time (it asymptotes to zero for t→ −∞).
This would counterfactually imply that technologies are adopted before they are actually invented.11

The measure Σ
(τ)
v,t is very similar to the adoption share measures that are commonly studied in empirical

technology adoption studies, like Griliches (1957), Mansfield (1961), Gort and Klepper (1982) and Skinner

and Staiger (2005). The crucial difference is that, while the logistic curves used in empirical applications are

assumed, the (quasi) logistic evolution of Σ
(τ)
v,t results from the optimizing behavior of workers confronted

with a technology choice.

10This formulation does not preclude a corner solution where ∂v
(s)
τ ,t/∂t < 0. This would mean that the best vintage adopted

at time t is actually determined by the best vintage adopted before time t and not by v
(s)
τ ,t . We abstract from this case and

assume that b
(s)
τ,t is such that in every period ∂D

(s)
τ,t/∂t = (µ/νγ

(s)
τ (1 + b

(s)
τ,t))(∂b

(s)
τ ,t/∂t) < 1.

11Comin, Hobijn, and Rovito (2006) estimate logistic adoption curves for many technologies and countries and find that the

implied 1% adoption date is often before the actual invention date of the technologies.
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2.6 Measures of technology diffusion

The main goal of this paper is to estimate γ
(s)
τ and the determinants of D

(s)
τ ,t to obtain a better understanding

of what the key economic mechanisms that influence the diffusion of technology are and what consequences

this has for growth and development. Attempts to answer this question using the share measures developed

in the empirical diffusion literature and in (31) are likely to be unsuccessful because there is no cross-country

data set that reports these measures for a significant number of technologies.

Our approach to estimating γ
(s)
τ and D

(s)
τ ,t instead takes advantage of the model’s implications for other

measures of technology for which we have data. In particular, we have two technology measures: the number

of units of capital goods of a particular technology type, K
(s)
τ ,t , and the amount of output produced with a

particular technology type, Y
(s)
τ ,t .

As we derive in Appendix A, our model yields that the logarithms of these measures satisfy

y
(s)
τ ,t = c(s)y + θs

³
(1− α) z

(s)
τ ,t − αq

(s)
τ ,t − αuc

(s)
τ ,t

´
(34)

+ (ρs − θs) ((1− α) zs,t − αqs,t − αucs,t)

− (1− α) ρs (yt − lt) + yt

and

k
(s)
τ ,t = c

(s)
k + (θs − 1)

³
(1− α) z

(s)
τ ,t − αq

(s)
τ ,t − αuc

(s)
τ ,t

´
− q(s)τ ,t − uc

(s)
τ ,t (35)

+ (ρs − θs) ((1− α) zs,t − αqs,t − αucs,t)

− (1− α) (ρs − 1) (yt − lt) + yt

where c
(s)
y and c

(s)
k are measure- and sector-specific constants.

These equations are driven by the technology-type-specific levels of embodied productivity, z
(s)
τ ,t , investment-

specific technological change, q
(s)
τ ,t , and the user costs, uc

(s)
τ ,t. Our model of adoption presents mechanisms

that endogenize z
(s)
τ ,t and relate it to the terms we want to estimate (i.e. γ

(s)
τ and D

(s)
τ ,t). The other two

driving forces in equations (34) and (35) are exogenous from the perspective of our model.

In equilibrium, the log-level of embodied productivity in technology type τ in sector s at time t equals

z
(s)
τ ,t = c

(s)
τ ,z + z

(τ)

v
(s)
τ

+ γ(s)τ

³
t−D(s)

τ ,t − v(s)τ
´

| {z }
Embodiment

+ µ ln

"
1− e−

γ
(s)
z,τ
µ

³
t−D(s)

τ,t−v(s)τ

´#
| {z }

Variety

(36)

At the heart of our analysis are two mechanisms by which the agents’ adoption decisions affect the

level of embodied productivity, z
(s)
τ ,t . These are represented by the third and fourth terms in (36). First,

as newer vintages with higher embodied productivities are adopted in the economy, the level of embodied

productivity increases. The Embodiment term in (36) reflects the productivity embodied in the best vintage

adopted in the economy. Second, as the range of technology vintages available for production increases,
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workers are more likely to sample a high ideosyncratic productivity shock, which raises the average level of

productivity embodied in capital. The Variety term in (36) reflects this variety effect. This term is central

to our estimation and identification strategy because it governs the curvature in the embodied productivity

level and in the observable measures of technology.

To better understand the different natures of the embodiment and variety effects, it is worthwhile to

consider Figure 1. It depicts the profile of vintage productivity levels z
(τ)
v available on the world technology

frontier. Of these vintages, only v
(s)
τ through v

(s)
τ ,t have actually been adopted at time t. The embodiment

loss is the percentage difference between the productivity of the best vintage available in the world (i.e.

v
(s)
τ ,t = t) and the productivity embodied in the best adopted vintage (i.e. v

(s)
τ ,t). The effect on z

(s)
τ ,t of

increasing the number of adopted vintages is represented by triangle (a, b, c). The effect of increasing the

number of varieties on the world technology frontier is triangle (a, d, e). Hence, the productivity loss from

the non-adopted varieties is given by 1 − [area (a, b, c) /area (a, d, e)] and is the graphical equivalent of the
variety loss.12

It is important to note that, for a given adoption lag, the contribution of the variety term to embodied

productivity is larger at the initial stages of diffusion. Initially, there are no vintages of a particular technology

type available, so the number of varieties grows infinitely fast at the moment of adoption of the first vintage

of type τ . As time goes on, the newly adopted vintages make up a smaller and smaller part of the total

set of available vintages. Therefore, the growth rate of the variety term declines over time. In the long

run, the loss in the variety term from an adoption lag goes to zero, and the only effect that the lag has on

productivity is through the reduction in the embodied productivity of the last vintage adopted. The evolution

of the importance of the variety effect is what determines the curvature of the productivity embodied in the

technology type.

The exogenous variables in (34) and (35), uc
(s)
τ ,t and q

(s)
τ ,t , evolve as follows: the logarithm of the user cost

equals and can be approximated by

uc
(s)
τ ,t = ln

³
rt + δ(s)τ + q(s)τ

´
≈ uc(s)τ +

rt³
r + δ(s)τ + q

(s)
τ

´ (37)

while the level of investment specific technological change evolves according to

−q(s)τ ,t = −q
(s)

τ ,v
(s)
τ

+ q(s)τ

³
t− v(s)τ

´
(38)

2.7 Reduced form equations

One approach to estimating γ
(s)
τ and the determinants of D

(s)
τ ,t is to substitute (36), (37) and (38) into

equations (34) and (35) and estimate D
(s)
τ ,t and γ

(s)
τ for all τ in sector s directly. This approach is overly

12In Figure 1, γ
(s)
τ is the slope of the world technology frontier. What follows from the figure is that, for a given adoption

lag, an increase in γ
(s)
τ leads to a higher loss in the embodiment, as well as the variety, effects.
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complex, however, because D
(s)
τ ,t and γ

(s)
τ enter these equations non-linearly and because zs,t is a highly

non-linear function of the parameters that we would like to estimate.13

In order to estimate γ
(s)
τ and the determinants of D

(s)
τ ,t we proceed as follows. We avoid the problem with

D
(s)
τ ,t and γ

(s)
τ by linearizing (36) around the immediate adoption path in which D

(s)
τ ,t = 0 for all t. Doing so

yields

z
(s)
τ ,t ≈ ec(s)τ ,z + γ(s)τ

³
t− v(s)τ

´
− µψ

³
t− v(s)τ ; g(s)τ

´
−Ψ

³
t− v(s)τ ; g(s)τ

´
γ(s)τ D

(s)
τ ,t , where g

(s)
τ =

γ
(s)
τ

µ
(39)

where Ψ (t; g) is as defined in (31) and ψ (t; g) is its logarithm. Here −µψ (t; g) reflects the immediate
adoption path around which we log-linearize at every point in time and the adoption lag term reflects the

approximate deviation from that path.

We deal with the complications introduced by zs,t in two different ways, depending on whether various

technologies are close substitutes in a sector or not.

For some technologies, we have no data on other technologies that are close substitutes. These technologies

are interpreted as belonging to a sector with just one technology type. In that case z
(s)
τ ,t = zs,t, q

(s)
τ ,t = qs,t,

and uc
(s)
τ ,t = ucs,t, so (34) simplifies to³

y
(s)
τ ,t − yt

´
= c(s)y + ρs

³
(1− α) z

(s)
τ ,t − αq

(s)
τ ,t − αuc

(s)
τ ,t − (1− α) (yt − lt)

´
+ yt (40)

As we show in Appendix A, the equation for capital, (35), simplifies similarly in this case.

For technologies for which we have data on close substitutes we difference zs,t out of our reduced form

equations. If we have two technology types, τ and τ 0, that we consider close substitutes and therefore

belonging to the same sector, s, then (34) implies that³
y
(s)
τ ,t − y

(s)
τ 0,t

´
= θs

h³
(1− α) z

(s)
τ ,t − αq

(s)
τ ,t − αuc

(s)
τ ,t

´
−
³
(1− α) z

(s)
τ 0,t − αq

(s)
τ 0,t − αuc

(s)
τ 0,t

´i
(41)

Similar equations can be derived for
³
k
(s)
τ ,t − k

(s)
τ 0,t

´
and

³
y
(s)
τ ,t − k

(s)
τ 0,t

´
.14

The actual reduced form equations that we estimate are obtained by substituting the linear approxima-

tions of the logarithm of the usercost (i.e. (37)) and of the logarithm of the technology types’ embodied

productivity level (i.e. (39)) into (40) and (41). This yields³
y
(s)
τ ,t − yt

´
= η(1)c,τ + η

(1)
T,τ t+ η(1)r,τrt (42)

−η(1)ψ µ
h
ψ
³
t− v(s)τ ; g(s)τ

´
− (yt − lt)

i
−Ψ

³
t− v(s)τ ; g(s)τ

´
η
(1)
ψ,τγ

(s)
τ D

(s)
τ ,t + u

(1)
τ ,t

where η
(1)
ψ = (1− α) ρs. Again, similar equations can be derived for

³
y
(s)
τ ,t − y

(s)
τ 0,t

´
,
³
k
(s)
τ ,t − yt

´
,
³
k
(s)
τ ,t − k

(s)
τ 0,t

´
and

³
y
(s)
τ ,t − k

(s)
τ 0,t

´
.

13Recall that this is the logarithm of a CES aggregate of Z
(s)
τ,t for all technology types τ in sector s.

14Note that, for technologies for which we do not have data on other technologies that are close substitutes, like televisions,

we estimate the elasticity of substitution with aggregate demand, ρs. For technologies that are close substitutes, like sail and

steam- and motorships, we estimate the elasticity of substitution between them, θs.
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We estimate equation (42) by pooling the observations for countries in our data set. Adoption lags can,

in principle, vary by country, over time, and across technologies. To understand what factors determine

adoption lags, we assume that D
(s)
τ ,t is the same function of exogenous variables for all the countries over

time. Formally, we impose that

γ(s)τ D
(s)
τ ,t =

µ

ν
ln
³
1 + b

(s)
τ ,t

´
= −β0τxτ ,t (43)

where xτ ,t is a vector with determinants of the adoption lags. The coefficient vector βτ reflects the marginal

embodiment gain in percentages caused by the associated determinant in xτ ,t. A positive coefficient in βτ

means that an increase in the associated explanatory variable in xτ ,t reduces adoption lags and thus the

embodiment loss.

2.8 Estimation and identification

The regression equation (42) includes a time trend and a country dummy. The trend captures investment

specific technological change. The country-specific fixed effects, ηc,τ , captures a potential country fixed effect

in the productivity embodied in the technology type and differences in units of measurement across countries

in some of the dependent variables15. The inclusion of these terms prevents us from identifying the adoption

lags through the relative intensity of use of a technology in a country or by the trends in the technology

measure.

The identification of γ
(s)
τ and the determinants of D

(s)
τ ,t instead exploits the curvature of the adoption

paths and the different timing of this curvature across countries. More precisely, the growth rate of embodied

technological change is identified by estimating the non-linear trend component Ψ
³
t− v(s)τ ; g

(s)
τ

´
and its

logarithm ψ
³
t− v(s)τ ; g

(s)
τ

´
in the reduced form equation (42). Intuitively, ψ

³
t− v(s)τ ; g

(s)
τ

´
reflects the

evolution of the gains from variety in the world technology frontier; the faster embodied productivity growth,

the higher the curvature implied by the gains from variety term. From the curvature of this function, we

can identify g
(s)
τ = γ

(s)
τ /µ. For a given calibrated value of µ, this pins down our estimate of the growth rate

of embodied technological change in the technology type τ , γ
(s)
τ .

The effect of the variables in xτ ,t on the adoption lags is identified by the cross-country variation in

curvature and by the time series variation in curvature that is not predicted by the curvature of the world

technology frontier. These marginal embodiment gain parameters are jointly identified with the elasticity

parameter ηψ. This is not a problem for the identification of βτ , however, because ηψ can be estimated by

the effect of ψ
³
t− v(s)τ ; g

(s)
τ

´
on our measures of adoption, while ηψβτ is identified through the effect of

Ψ
³
t− v(s)τ ; g

(s)
τ

´
.

This highlights the importance of modelling the adoption decision at the worker level. It is exactly

this microfoundation that yields the logistic function Ψ
³
t− v(s)τ ; g

(s)
τ

´
and its logarithm that identify the

15We know, for example, that what is classified as an industrial robot tends to differ across the countries in our sample.
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parameters of interest in our aggregate reduced form equations.

Figure 2 illustrates our approximation and identification approach graphically. It plots the immediate

adoption path that we use as the time-varying approximation path for our adoption paths, as well as an

adoption path that is subject to a constant adoption lag, D
(s)
τ . It emphasizes two main points. First, what

matters for the adoption lags is how far the adoption path is from the long run linear trend. This distance is

determined by the curvature of the path. Thus, it is exactly the curvature in the adoption path that we use

to identify the adoption lags. Second, the adoption lags are quantified using the log-linear approximation,

which is also illustrated in the figure. Because of the highly non-linear nature of the adoption curve, this

approximation works better when t− v(s)τ is large.

3 Empirical results

In this section, we present the data used in the empirical analysis and the estimates we obtain for γ
(s)
τ and

the determinants of D
(s)
τ ,t for each technology type, τ . We discuss the estimates, then use them to explore

the importance of the embodied mechanisms emphasized in our model for technology diffusion and growth.

We do that by: (i) exploring the goodness of fit of the estimated adoption measures; (ii) computing the

actual growth in the productivity embodied in technology type τ , z
(s)
τ ,t ; and (iii) reporting the cross-country

dispersion in productivity embodied in each technology type.

3.1 Data

We use technology adoption data from Comin and Hobijn (2004) which covers 19 types of technologies, τ ,

for 21 industrialized countries, j, over the period 1870 - 1998, t. We have classified these technologies into

thirteen sectors, s. Table 1 lists the countries, sectors and technology types in our dataset. It also contains

the year that we use as the invention date, vτ , for our estimation, as well as whether the measure is an

output measure, Y, or a capital stock measure, K. The set of technologies we cover varies from electricity,

to textile spindles, to cars, to personal computers.

The historical nature of our technology adoption measures limits us to using only explanatory variables

for which we have long historical time series for the countries in our sample.

The main determinants that we allow for in the vector with explanatory variables, xτ ,t, can be classified

into four groups: (i) human capital, (ii) openness and trade, (iii) quality of institutions and (iv) relative

level of overall advancement. The variables that we use are listed in Table 2.

The human capital variables are the average primary, secondary, and tertiary school enrollment rates

of the last ten cohorts that are at least 18 years old in year t. For tertiary enrollment, we only have data

from 1960 onwards and, thus, we only include tertiary enrollment as an explanatory variable for technologies

mainly adopted after 1960.
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The idea that skills and human capital can influence technology adoption dates back to at least Nelson

and Phelps (1966). Nelson and Phelps (1966) argue that human capital might matter for how far you are off

the frontier, as well as how quickly you converge to it. These two mechanisms are also present in our model

if human capital reduces adoption lags. That is, highly educated countries suffer a smaller embodiment loss

from the adoption lags. In addition, a smaller adoption lag speeds up the elimination of the loss from having

a smaller variety of vintages available for production and, therefore, leads to faster convergence.

In addition to the theoretical motivation for including human capital measures in xτ ,t, there is ample

evidence, both on the aggregate (Benhabib and Spiegel, 1994) and microeconomic levels (Doms, Dunne, and

Troske, 1999 and Caselli and Coleman, 2001), that countries and organizations with more higly educated

workers are better able to adopt and absorb more advanced technologies.

Our proxy for openness and trade is defined as imports plus exports as a percentage of GDP. There are

two channels through which trade might affect adoption lags. First, as Holmes and Schmitz (2001) argue,

the increased foreign competition reflected in trade induces faster domestic technology adoption. Second,

trade causes knowledge spillovers. Coe and Helpman (1995) provide evidence that suggests that this is the

case for R&D. Such spillovers would likely reduce adoption costs and thus reduce adoption lags as well.

We approximate the quality of institutions by the Polity score, taken from Marshall and Jaggers (2002).

We renormalize this score such that 0 reflects a totalitarian autocracy and 1 indicates full democracy. There

is widespread evidence, including Hall and Jones (1999) and Acemoglu, Johnson, Robinson (2005), that the

quality of institutions matters for development. That institutions matter for development does not mean

that they matter for technology adoption, however. If institutional quality across the board increases the

productivity of all capital goods in place, it will likely not affect the set of technologies used in production.

What matters for adoption is that institutions either affect the barriers to adoption or affect the relative

productivity levels of newer technologies.

When interpreting our results for institutions, one has to bear in mind that our analysis is limited to

a sample of 21 of the world’s industrialized leaders. For these countries, there is a lot of variation in the

quality of their institutions before WWII. After 1945, however, the Polity variable exhibits little cross-

country variation. We therefore do not include our institutional quality proxy for technologies that are

mainly adopted after 1945.

The last control that we include in xτ ,t is the level of GDP per capita relative to the US. This captures the

idea that relatively advanced countries are more likely to have the appropriate resources and endowments

necessary for the adoption of the newest technologies. This is in the spirit of Basu and Weil’s (1998)

appropriate technology hypothesis.

Finally, our reduced form equation (42) includes a measure of the real interest rate to account for user

cost effects on the demand for capital. We measure these by the U.S. ex-post real interest rates.16

16It is constructed using the sources listed in Table 2.
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3.2 Parameter estimates and fit

The results that we present are obtained by the estimation of (42) using non-linear generalized least squares.

We use generalized least squares to allow the variance of the residuals, uτ ,t, to vary by country. The

estimation method we use can be interpreted as nonlinear GMM with deterministically trending variables,

as described in Andrews and McDermott (1995), and we use their results to calculate standard errors.

The parameters in our reduced form equations can be classified into three categories. The first is the set

of parameters that we calibrate. The second are the reduced form parameters that we estimate, but that do

not provide us with information about adoption lags. The third are the parameters that we estimate and

that allow us to quantify adoption lags.

We calibrate two parameters, α and µ. We set α = 0.3, to match the 70 percent average post-war labor

share in the U.S. non-farm business sector. As shown in the Appendix A, we set µ = 3/14 to match the

average corporate profit rate of 10 percent observed in the US since 1945.

The second set of parameters contains those reduced form parameters that do not directly pertain to

adoption lags. These are the country fixed effects, ηc,τ , the trend parameter ηT,τ , the user cost parameter

ηr,τ , and the demand elasticity parameter ηψ,τ . Because we focus on adoption lags, we do not report these

estimates.

The estimated parameters of interest are the growth rate of embodied technological change, γ
(s)
τ , and the

marginal effect of our explanatory variables on the embodiment gain, βτ . We present our results in three

tables, each covering a subset of technologies. Table 3 covers transportation related technologies, Table 4

covers communication technologies, and Table 5 covers manufacturing technologies and electricity.

For example, consider the first column (I) of Table 3. The results in this column are for passenger aviation.

Our sample for this technology starts in 1920, ends in 1993 and covers 21 countries. The approximation path

is based on a 1919 invention date. R2 and “R2 detrended” are measures of the goodness of fit. The estimated

growth rate of embodied technological change is 1.17 percent, which is the implied rate at which the quality

embodied in new passenger planes increases per year. The marginal effect of secondary enrollment is that a

1 percent increase in secondary enrollment reduces adoption lags such that the quality of the best adopted

vintage increases by 0.45%. Similarly, a 1 percent increase in relative GDP increases the quality of the best

adopted vintage by 0.80 percent.

We start by considering the estimated rates of embodied technological change. The first observation is

that, for 14 of our 19 technology types, we obtain estimates of the rate of embodied productivity that are

significantly different from zero. The three highest rates of embodied technological change are estimated in

personal computers (4.89 percent), trucks (2.86) and robots (2.13). The technologies for which we obtain

an insignificant estimate of γ
(s)
τ are cars, radios, televisions, and ring and mule spindles. Taken literally,

these estimates imply that all technological progress for these technologies is investment-specific and not

embodied.
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There are, however, three other likely reasons why these estimates are not significant. First, if a technology

diffuses very quickly, like televisions, for example, there are too few years for which the curvature through

which we identify the rate of embodied technological change drives the technology adoption path. Second,

if there are very large adoption lags, the approximation we use might not be appropriate, and the estimated

rate of embodied technological change is likely to be biased downward to fit the average adoption path across

countries. Finally, if a technology is relatively old, like the spindle types for the textiles technologies, then

the curvature and thus the rate of embodied technological change is hardly detectable by the time the sample

starts.

The growth rates of embodied technological change determine the average adoption approximation path,

but do not fit any cross-country variation in adoption patterns. Cross-country variation is fitted by either the

country fixed effects or by the adoption lag covariates included in the vector xτ ,t. There are three positive

observations we make based on our results obtained using the covariates.

First, as one would expect, we tend to find the highest embodiment gains from education, trade, institu-

tions, and relative advancement for technologies that also have the highest rates of embodied technological

change. That is, our estimates are consistent with the implication of our theory that a reduction of adoption

lags yields higher productivity gains for technologies where the quality of new vintages grows faster. In our

sample, this is particularly clear for aviation, personal computers, and robots.

Second, we find that the most significant effects, both economically and statistically, are for education.

Educational attainment seems to significantly reduce adoption lags for technologies that were mainly adopted

in the post war period, like aviation, personal computers and robots. Further, the effect of education on

the adoption of these technologies seems to be mainly through secondary and tertiary education. This

evidence is consistent with the view of skill-biased technological change becoming increasingly important in

recent decades. We also find a large effect of secondary education on the adoption of electricity. For older

technologies, like trucks and telephones, we find that primary education significantly reduces adoption lags;

however, these effects are not economically significant.

Third, openness seems to matter mainly for transportation technologies. This suggests that what drives

the effect of openness on adoption is not spillovers but competitiveness concerns that might reduce barriers

to adoption, as argued by Holmes and Schmitz (2001). Openness also has a significant effect on electricity

adoption lags. This, however, seems to be driven by the fact that larger, less open economies, like the United

States, United Kingdom and Germany, were more rapid adopters of electricity.

Finally, there are several technologies for which our covariates are neither economically nor statistically

significant. This is true for passenger transportation, telecommunication, and as well as steel and textiles.

This insignificance may result from three very different reasons. First, if we believe in the estimate, this

implies that for such technologies educational attainment, trade, institutions, and relative advancement do

not matter much for adoption lags. That is, in countries with better educated workers, people might still
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use more phones but they simply do not seem to use a different distribution of phone vintages. Second, we

use historical data to construct educational attainment and openness measures for the pre-war period. The

earlier data for the explanatory variables in our sample are likely to be more imprecise, biasing the estimated

coefficients to zero. Third, for textiles and steel, we only have very short samples that cover periods much

more recent than the invention date. As a consequence, our sample misses the curvature in the measures of

these technologies, and in these cases we would expect our empirical strategy to be less appropriate.

After exploring the determinants of the adoption lags, it is worthwhile to consider how well our theory

of the evolution of technology fits the data.

Figures 3 through 7 depict the actual and fitted adoption paths for various technologies for the US,

Japan, France, the UK and Germany. The technologies plotted are personal computers, electricity, telecom-

munications, cargo aviation and merchant shipping. In these plots, the adoption path for each country is

represented by a line wih a different marker. Actual data is represented by solid lines, while fitted data is

represented by dashed lines.

The first observation from these plots is that the model seems to fit the curvature of the actual adoption

paths well. For all the technologies, the markers for fitted and actual data are closely aligned.

There are a few cases where the model fit seems to be less satisfactory. For computers, for example, the

model does not seem to capture the cross-country variation in the curvature of the adoption path. In the US

and Japan, the model does not generate sufficient curvature to match the very fast diffusion of computers.

A larger growth rate of embodied productivity would have generated this extra curvature but would fail to

capture the lower curvature displayed by the paths of computers in Germany and France. That could, in

principle, be matched if the newest vintages adopted in France and Germany at any moment of time were

closer to the world technology frontier. But the structure we have imposed on the relationship between the

adoption lags and our vector of covariates restricts the cross-country variation that the model can generate

in the adoption lags.

The R2 is a more systematic way of reporting the goodness of fit of our model. The R2 lines in Tables

3, 4 and 5 list the R2 for these curves. These measures are all very high, and have a median of 0.989. This

very high R2, however, is driven in large part by the trends and country fixed effects that the econometric

model includes. In this sense, they are artificially inflated, and it is difficult to conclude that the mechanisms

emphasized by our model do a good job at explaining the diffusion paths on the basis of these R2s.

A more informative measure of the model’s ability to fit the evolution of the adoption measures involves

computing the fraction of the sum of squares that remains after the fixed effect, trend and interest rate

effects are filtered out that is explained by the model. This fraction is listed in Tables 3 through 5 as

“R2 detrended.” The average detrended R2 across technologies is 0.63, with a median of 0.64. For those

technologies with fewer observations, like textiles, steel and robots, we obtain a slightly higher detrended R2

and those technologies with a bad fit of the curvature, like radios and TV’s, have a detrended R2 lower than
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0.5. These goodness of fit measures suggest that our structural model explains a large part of the non-linear

features observed in the adoption patterns in the data, and therefore it is quite informative about both the

average diffusion curve for a representative technology type and the cross-country variation in the adoption

paths.

3.3 Growth in embodied productivity

Part of the interest in understanding the technology adoption processes resides in the belief that technology

adoption generates an important part of productivity growth. We are now in a position to explore how much

the embodiment and variety mechanisms emphasized by our model contribute to productivity growth and

how they determine observed differences in diffusion across technologies.

We use our parameter estimates to compute the time series of productivity embodied in each technology

type. More specifically, we compute the time-varying part of the log-level of productivity embodied in a

technology type, ẑ
(s)
τ ,t , as

ẑ
(s)
τ ,t =

Embodiment Effectz }| {
γ(s)τ

³
t−D(s)

τ ,t − v(s)τ
´
−

Variety Effectz }| {
µψ
³
t− v(s)τ ; g(s)τ

´
−Ψ

³
t− v(s)τ ; g(s)τ

´
γ(s)τ D

(s)
τ ,t (44)

Note that the first term in this expression corresponds to the embodiment effect while the last two correspond

to the variety effects’ influence on the approximation path as well as the linear approximation of the variety

effect of the adoption lags from (39). For each technology type, we then compute the average annual

increment in ẑ
(s)
τ ,t . Let ∆X denote the average annual increment of X. The average annual growth in

embodied productivity equals

∆ẑ
(s)
τ ,t =

Growth from Embodimentz }| {
γ(s)τ − γ(s)τ ∆D

(s)
τ ,t −

Growth from Varietyz }| {
µ∆[ψ

³
t− v(s)τ ; g

(s)
τ

´
]−∆[Ψ

³
t− v(s)τ ; g(s)τ

´
γ(s)τ D

(s)
τ ,t ] (45)

The first term in this equation captures the gain in embodied productivity at the world technology

frontier. The second term reflects the embodiment gain from catching up with the frontier. These two first

terms together correspond to the growth in embodied productivity from the embodiment effect. The third

term in (45) captures the growth in embodied productivity from the gains from an increase in variety at the

world technology frontier. The last term measures the additional gains from variety when the country is below

the frontier. The sum of the third and fourth terms corresponds to the growth in embodied productivity

associated with the increase in the number of vintages available for production.

For each technology type, we compute the growth rate of embodied productivity over the interval de-

scribed in the second column in Table 6. These intervals are selected based on the invention date of the

technology, the period over which the technology is relevant for production and the number of countries for

which data is available. For example, the interval for telephones and telegrams is 1913-90, while computers’
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interval is 1980-93. The third column of Table 6 reports the average annual growth rate in the productivity

embodied in each technology type over the interval. Columns 4 and 5 decompose this growth rate between

growth from the embodiment effect and growth from the variety effect.

The most interesting observation from Table 6 is that, for most technologies, the growth rate of embodied

productivity is substantial. The average annual growth rate across technologies is 7.3 percent, and the median

is 3.4 percent. For all the technologies in our sample except sail ships and mule spindles the average annual

growth rate of productivity embodied in the technology has been over one percent.

The low growth rate of embodied productivity in sail ships and mule spindles results from low growth

in both the embodiment and variety effects. The low growth of the embodiment effect is due to the low

estimate of γ
(s)
τ for these technologies. The small gains from the increase in varieties in these technologies

stem from the fact that these technologies were invented long before the beginning of the period considered

here. Thus there were already many available varieties, so the gains from increasing their number were very

small.

The average growth rate of embodied productivity over the relevant period is large for aviation, computers,

robots, TV’s, electricity, trucks and open hearth steel furnaces. Interestingly, different forces drive the growth

in embodied productivity for different technologies. In aviation, for example, the growth rate of embodied

productivity is driven mostly by the embodiment effect. The increment in the embodiment component of

embodied productivity is driven, in turn, by two factors. First, the high estimate of γ
(s)
τ for both passenger

and cargo aviation implies that new vintages embody substantially more productivity than older vintages.

Second, the increase in human capital and in the degree of openness has reduced the average adoption lag

in the aviation technologies. This catch up with the world technology frontier in aviation has led to a higher

growth rate in the embodiment component of z
(s)
τ ,t .

The case of personal computers is similar to aviation. New vintages of computers embody much more

productivity that older vintages, which explains a significant fraction of the growth in the productivity of

computers. As with aviation technologies, the average adoption lag in computers has decreased over the

period covered by Table 6. In this case, the variable that seems to be responsible for this catch up with the

world technology frontier is the increase in tertiary enrollment. However, a very significant fraction of the

growth in the productivity embodied in computers also comes from the growth in the variety component.

This effect is important despite the large estimate of γ
(s)
τ for computers because the interval we consider is

relatively small and starts shortly after the invention of the technology.

Robots are a case in which most of the growth in embodied productivity comes from the growth in

the variety component. Growth in this component is more important for robots than for computers for

two reasons. First, the lower estimate of γ
(s)
τ for robots than for computers implies that the gains from

increasing the number of available varieties die out more slowly. As a result, the average growth in the

embodied productivity of robots from the increase in the number of robot varieties will be larger than for
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computers. In addition, the growth in productivity from the increase in the number of robot varieties is

larger than for computers because there is a larger average adoption lag in the adoption of robots than

in the adoption of computers. That is, the average country is further from the world technology frontier

in robots than in computers, and adding more vintages of robots to production significantly increases the

average ideosyncratic productivity sampled by the workers. This dissection of the sources of the embodied

productivity growth of robots is also an accurate description of the determinants of the growth in embodied

productivity in TV’s, radios and electricity.

The determinants of the growth in productivity embodied in the remaining technologies in our sample

are presented in Table 6. For the sake of brevity, we do not describe them in detail here. What is worthwhile

noting is that, on average, the variety effect is more important than the embodiment effect as a source of

growth in embodied productivity over the periods and technologies studied here. In terms of the average

contribution to embodied productivity across technologies, the split is about 1/4 vs. 3/4. In terms of the

median contribution across technologies, the split between embodiment and variety is about 40 percent vs.

60 percent. This large contribution of the variety effect is surprisingly large given the length of the sample

periods considered for most of the technologies in our analysis.

3.4 Cross-country disparities in adoption

The final question that we explore in this paper is: ’How important are the two endogenous embodied

productivity mechanisms in generating cross-country variation in the level of embodied productivity?’

The sole source of cross-country variation in our model is the covariates that determine the adoption lags,

D
(s)
τ ,t . Therefore, the variation in the productivity embodied in technology τ is determined by differences

across countries in

(1 +Ψ
³
t− v(s)τ ; g(s)τ

´
)β0τxτ ,t (46)

The above equation measures the loss in embodied productivity due to the adoption lags, both through the

embodiment and variety effects.

Columns 3 and 6 of Table 7 report the standard deviation across countries of the log of embodied

productivity in each technology in the initial (column 2) and final year (column 5) of the intervals considered

in the section 3.3. Columns 4 and 7 report the ratio of the cross-country variation in embodied productivity

for each technology relative to the cross-country variation in the log of GDP per capita for the same year

and the same countries.

Two main observations emerge from Table 7. The first is that the cross-country dispersion in embodied

productivity relative to the dispersion in income per capita is very large for aviation (both cargo and pas-

sengers), radios, TV’s, PC’s, robots and electricity and small for the rest of the technologies in our sample.
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These are the technologies with higher estimates of γ
(s)
τ .17

The second observation is that, over time, the cross-country variation in embodied productivity has

decreased. Two forces produce this decline. First, the function Ψ
³
t− v(s)τ ; g(s)τ

´
declines over time since the

variety effect declines with the number of adopted vintages. Second, there has been convergence across the

countries in our sample in the determinants of the adoption lags, D
(s)
τ ,t .

The interest of TV’s and radios also resides in that they illustrate the ambiguity of the cross-country

dispersion in embodied productivity with respect to γ
(s)
τ . γ

(s)
τ has two effects on (46). A higher γ

(s)
τ increases

the embodiment effect, but decreases the gains from variety, and thus the variety effect. This ambiguity

is reflected by the fact that the technologies for which the model predicts a large cross-country variation

in embodied productivity include some of the technologies with highest (computers and robots) and lowest

(TV’s and radios) productivity embodied in new vintages.

4 Conclusion

This paper has presented a vintage capital model that incorporates economic mechanisms that are key for

the diffusion paths of technologies. The shapes of these paths are in large part determined by two important

components. The first, the embodiment effect, is the rate of embodied technological change, which reflects

how much better new technology vintages are than older ones. The second, the variety effect, is the gains

from varieties induced by the introduction of new vintages.

The predictions of the model for the curvature of the diffusion path allows us to estimate, for each

technology, the rate of productivity embodied in new vintages and the determinants of adoption lags. We

have used these estimates to explore the determinants of the variation of the speed of technology diffusion

both across technologies and across countries.

Several conclusions are worth noting. First, the model does a satisfactory job at fitting the diffusion

curves. Second, the two adoption margins matter differently for different technologies. For some technologies,

such as PC’s and aviation, the growth rate of productivity embodied in new vintages is large and statistically

significant. For others, such as TV’s and radios, the fast growth in embodied productivity is mostly driven

by the increase in the available number of varieties. Finally, for others, such as electricity and robots, the

speed of diffusion has been fast both because of the rapid productivity growth embodied in new vintages

and because of the increase in the number of varieties. This heterogeneity in the results emphasizes, in our

view, the importance of multi-technology studies.

In terms of the adoption lags, we find that technologies such as PC’s, robots and electricity are comple-

mentary to human capital in the sense that human capital reduces the adoption lags for these technologies.

Openness to trade tends to reduce the adoption lags of transportation technologies. These factors generate

17For these technologies, the cross-country variation in the growth rates of embodied productivity is also large.
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a substantial cross-country variation in the TFP embodied in technology. Other factors, such as the degree

of democracy, might still affect the intensity with which technologies are used, but do not seem to be very

important in explaining which technology vintages are being used.

The line of research developed in this paper leaves several doors open for future research. First, it would

be interesting to compare the panel of embodied productivity estimates generated from our model with

actual data on TFP at the sector level.18 A second line of research consists of bringing the intensity of use

of technologies back into the picture and try to use variation in this margin to test the relevance of various

sources of barriers to technology adoption. 19 Finally, it will be interesting to extend this analysis to other

technologies and countries. It may well be the case that the factors that impinge on technology adoption in

advanced economies are different from those that slow down adoption in poor countries.

18One potential difficulty of pursuing this route at this point is the quality of sectoral TFP data.
19One exercise along this line is Comin and Hobijn(2005), who use cross-country variation in institutions and cross-technology

variation in the presence of close substitute technologies to show that lobbies constitute an important barrier to technology

diffusion.
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A Mathematical details

Derivation of equation (10)

For the vintage production function, we obtain

Y
(τ)
v,t = L

(s)
τ,t

Z ∞
−∞

π
³
v, ε

(v)
l,t

´
exp

³
y
(τ)
v,t + ε

(v)
l,t

´
dε
(v)
l,t (47)

= L
(s)
τ,t exp

³
y
(τ)
v,t

´ Z ∞
−∞

π
³
v, ε

(v)
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´
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³
ε
(v)
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(v)
l,t

where Z ∞
−∞

π
³
v, ε

(v)
l,t

´
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³
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(v)
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(v)
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=
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³
ε
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l,t

´ 1
µ
exp

⎛⎝−ε
(v)
l,t

µ
− exp

⎛⎝−ε
(v)
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µ

⎞⎠ 1

S
(τ)
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⎞⎠ dε(v)l,t

=
³
S
(τ)
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´1−µ
e−γµ

Z ∞
0

xµe−xdx

=
³
S
(τ)
v,t

´1−µ
C, where C = e−γµΓ (1− µ)

where Γ (1− µ) is the gamma function.

Derivation of equation (11)

For the technology type production function, we obtain

Y
(s)
τ,t =

Z
v∈V (τ)

t

Y
(τ)
v,t dv = CL

(s)
τ,t

Z
v∈V (τ)

t

exp
³
y
(τ)
v,t

´ ³
S
(τ)
v,t

´1−µ
dv (49)

Substituting in the solution for the shares, S
(τ)
v,t , we obtain

Y
(s)
τ,t =

⎡⎢⎢⎣ 1R
v0∈V (τ)

t

³
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³
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(τ)
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´ 1
µ
dv

#µ

Derivation of equation (18):

We derive the capital demand function by combining the result that rental expenses exhaust a fraction α of revenue

generated with a particular capital vintage, such that

R
(τ)
v,tK

(τ)
v,t = αP

(s)
τ ,t Y

(τ)
v,t (51)

with (11).By substituting (5) in (11), we obtain

Y
(s)
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α
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³
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µ
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(52)

which yields that

K
(τ)
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1

R
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The Lagrangian associated with this problem is

L(τ)v,t =

Z ∞
t

e−
R s
t rs0ds

0
H
(τ)
v,sds (53)
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Where the current value Hamiltonian, H
(τ)
v,t , is given by

H
(τ)
v,t =
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The first order necessary conditions for the solution to this problem are

w.r.t. R
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We obtain (18) when we substitute that Q
(τ)
v,t = Q

(s)
τ,t.

Derivation of equation (19):

When we solve for the present discounted value of the monopolist profits for the provider of technology vintage v of technology

type τ , we obtain

M
(τ)
v,t =

1

η

Z ∞
t

e−
R s
t rs0ds

0
K
(τ)
v,sQ

(s)
τ,sUC

(s)
τ,tds (62)

where K
(τ)
v,t corresponds to the capital demand of technology vintage v at time t evaluated at the profit maximizing rental price

point. That is,

K
(τ)
v,s =

η

1 + η

³
Z
(τ)
v

´ 1
µ∙R

v0∈V (τ)
t

³
Z
(τ)
v0

´ 1
µ

¸1−µCL(s)τ ,tα
1

1−α
³
P
(s)
τ,t

´ 1
1−α 1

Q
(s)
τ ,tUC

(s)
τ,t

(63)

such that we can write the market value as

M
(τ)
v,t =

³
Z
(τ)
v

´ 1
µ fM(s)

τ ,t (64)

where

fM(s)
τ,t =

1

1 + η

Z ∞
t

e−
R s
t rs0ds

0 CL
(s)
τ ,sα

1
1−α

³
P
(s)
τ,s

´ 1
1−α∙R

v0∈V (τ)
s

³
Z
(τ)
v0

´ 1
µ

¸1−µ ds (65)

Derivation of equation (23):

Total revenue per worker for technology type τ equals

P
(s)
τ ,t Y

(s)
τ ,t

L
(s)
τ,t

=

µ
αη

1 + η

¶ α
1−α ³

P
(s)
τ ,t

´ 1
1−α

⎛⎜⎝
³
Z
(s)
τ,t

´1−α³
Q
(s)
τ ,tUC

(s)
τ,t

´α
⎞⎟⎠

1
1−α

(66)
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This implies that the free entry condition reads

Wt = (1− α)

µ
αη

1 + η

¶ α
1−α ³

P
(s)
τ,t

´ 1
1−α

⎛⎜⎝
³
Z
(s)
τ ,t

´1−α³
Q
(s)
τ,tUC

(s)
τ ,t

´α
⎞⎟⎠

1
1−α

(67)

Solving this we obtain that the price P
(s)
τ ,t equals

P
(s)
τ,t =

µ
1

(1− α)

¶1−α µ 1 + η

αη

¶α
(Wt)

1−α
³
Q
(s)
τ,tUC

(s)
τ ,t

´α ⎡⎢⎣ 1³
Z
(s)
τ ,t

´1−α
⎤⎥⎦ (68)

which is equivalent to (23).

Derivation of equation (25):

When we substitute (23) into the CES price aggregate we can write

Ps,t =

⎡⎢⎣ nX
τ=1

⎛⎝ 1

P
(s)
τ ,t

⎞⎠(θs−1)
⎤⎥⎦
− 1
(θs−1)

(69)

=

µ
1

(1− α)

¶1−α µ 1 + η

αη

¶α ⎡⎢⎢⎣ nX
τ=1

⎛⎜⎝
³
Z
(s)
τ,t

´1−α³
Q
(s)
τ ,tUC

(s)
τ ,t

´α
⎞⎟⎠
(θs−1)

⎤⎥⎥⎦
− 1
(θs−1)

(Wt)
1−α

=

µ
1

(1− α)

¶1−α µ 1 + η

αη

¶α (Qs,tUCs,t)α
(Zs,t)

1−α (Wt)
1−α

where

UCs,t =

⎡⎢⎢⎢⎣
nX

τ=1

⎛⎜⎜⎝
⎡⎢⎢⎣
³
Z
(s)
τ ,t

´1−αÁ³
Q
(s)
τ ,t

´α
(Zs,t)

1−α
.
(Qs,t)

α

⎤⎥⎥⎦ 1³
UC

(s)
τ,t

´α
⎞⎟⎟⎠
(θs−1)⎤⎥⎥⎥⎦

− 1
α(θs−1)

(70)

and

Qs,t =

⎡⎢⎣ nX
τ=1

⎛⎝⎡⎣Z(s)τ,t

Zs,t

⎤⎦1−α⎛⎝ 1

Q
(s)
τ,t

⎞⎠α⎞⎠(θs−1)⎤⎥⎦
− 1
α(θs−1)

(71)

and Zs,t is as defined in the main text.

Derivation of equation (30):

This equation is derived by equating M
(τ)
v,t to A

(τ)
v,t . Before doing so, it is useful to rewrite

M
(τ)
v,t =

³
Z
(τ)
v

´ 1
µ fM(s)

τ ,t =

⎛⎜⎜⎝ Z
(τ)
v

Z
(τ)

v
(s)
τ,t

⎞⎟⎟⎠
1
µ Ã

Z
(τ)

v
(s)
τ,t

! 1
µ fM(s)

τ,t (72)

Equating this market value with the adoption cost yields⎛⎜⎜⎝ Z
(τ)
v

Z
(τ)

v
(s)
τ,t

⎞⎟⎟⎠
1
µ Ã

Z
(τ)

v
(s)
τ,t

! 1
µ fM(s)

τ,t =
³
1 + b

(s)
τ ,t

´⎛⎝ Z
(τ)
v

Z
v
(s)
τ,t

⎞⎠
1+ν
µ µ

Z
v
(s)
τ,t

¶ 1
µ fM(s)

τ ,t (73)

which simplifies to

1 =
³
1 + b

(s)
τ,t

´⎛⎝ Z
(τ)
v

Z
v
(s)
τ,t

⎞⎠ ν
µ

=
³
1 + b

(s)
τ,t

´
exp

Ã
−νγ

(s)
τ

µ

³
v
(s)
τ ,t − v

´!
(74)

such that ³
v
(s)
τ,t − v

´
=

µ

νγ
(s)
τ

ln
³
1 + b

(s)
τ,t

´
(75)

which can be rewritten in the form (30).
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Derivation of equation (31):

We can write

Ψ
(τ)
v,t =

Z max
n
t−D(s)

τ,t,v
o

v
S
(τ)
v0,tdv

0 (76)

=

R maxnt−D(s)
τ,t,v

o
v Z

(τ) 1
µ

v0 dv0R
v00∈V (τ)

t

Z
(τ) 1

µ

v00 dv00
=
e
γ
(s)
τ
µ

max
n
t−D(s)

τ,t,v
o
− e

γ
(s)
τ
µ

v

e
γ
(s)
τ
µ

³
t−D(s)

τ,t

´
− e

γ
(s)
τ
µ

v
(s)
τ

=
1− e−

γ
(s)
τ
µ

max
n
t−D(s)

τ,t−v,0
o

1− e−
γ
(s)
τ
µ

³
t−D(s)

τ,t−v
(s)
τ

´
which equals (31).

Derivation of equations (34) and (35):

For the output measure, we obtain from the nested two level CES that

Y
(s)
τ,t =

Yτ ,t

Ys,t

Ys,t

Yt
Yt =

⎛⎝P (s)τ,t

Ps,t

⎞⎠−θs (Ps,t)−ρs Yt (77)

while for the capital measure our model solution implies that

K
(s)
τ,t = α

P
(s)
τ ,t Y

(s)
τ ,t

R
(s)
τ ,t

=
αη

1 + η

1

Q
(s)
τ,tUC

(s)
τ ,t

P
(s)
τ ,t Y

(s)
τ ,t

Ps,tYs,t

Ps,tYs,t

Yt
Yt (78)

=
αη

1 + η

1

Q
(s)
τ,tUC

(s)
τ ,t

⎛⎝P (s)τ ,t

Ps,t

⎞⎠1−θs

(Ps,t)
1−ρs Yt

In terms of logarithms, this implies that

y
(s)
τ ,t = −θs

³
p
(s)
τ ,t − ps,t

´
− ρsps,t + yt (79)

and

k
(s)
τ ,t = ln

µ
αη

1 + η

¶
+ (1− θs)

³
p
(s)
τ ,t − ps,t

´
+ (1− ρs) ps,t − q

(s)
τ ,t − uc

(s)
τ,t + yt (80)

Equations (34) and (35) are obtained by substituting in the logarithmic versions of (23) and (25), which imply³
p
(s)
τ,t − ps,t

´
= −

h³
(1− α) z

(s)
τ,t − αq

(s)
τ,t − αuc

(s)
τ ,t

´
− ((1− α) zs,t − αqs,t − αucs,t)

i
(81)

and

ps,t = α [ln (1 + η)− ln η − lnα]− ((1− α) zs,t − αqs,t − αucs,t) + (1− α) (yt − lt) (82)

such that we can write the equations for y
(s)
τ ,t and k

(s)
τ ,t in the form of (34) and (35), where

c
(s)
y = −ρsα [ln (1 + η)− ln η − lnα] (83)

and

c
(s)
k = ln

µ
αη

1 + η

¶
+ (1− ρs)α [ln (1 + η)− ln η − lnα] (84)

Derivation of equation (36):

This follows from

Z
(s)
τ ,t = C

"Z
v∈V (τ)

t

³
Z
(τ)
v

´ 1
µ
dv

#µ
= C

⎡⎣Z t−D(s)
τ,t

v
(s)
τ

µ
Z
(τ)

v
(s)
τ

e
γ
(s)
τ

³
v−v(s)τ

´¶ 1
µ

dv

⎤⎦µ (85)

= CZ
(τ)

v
(s)
τ

⎡⎣Z t−D(s)
τ,t

v
(s)
τ

e
γ
(s)
τ
µ

³
v−D(s)

τ,t

´
dv

⎤⎦µ = Ã Cµ

γ
(s)
τ

!
Z
(τ)

v
(s)
τ

"
e
γ
(s)
τ
µ

³
t−D(s)

τ,t−v
(s)
τ

´
− 1

#

=

Ã
Cµ

γ
(s)
τ

!
Z
(τ)

v
(s)
τ

e
γ
(s)
τ
µ

³
t−D(s)

τ,t−v
(s)
τ

´ "
1− e−

γ
(s)
τ
µ

³
t−D(s)

τ,t−v
(s)
τ

´#
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Taking logarithms, we obtain (36) where

c
(s)
τ,z = lnC + lnµ− ln γ(s)τ (86)

Derivation of equation (39):

Linearization of (36) around D
(s)
τ,t = 0 for t > v

(s)
τ yields

z
(s)
τ ,t ≈ c

(s)
τ ,z + z

(τ)

v
(s)
τ

+ γ
(s)
τ

³
t−D(s)

τ,t − v(s)τ

´
+ µ ln

"
1− e−

γ
(s)
τ
µ

³
t−v(s)τ

´#
− e

− γ
(s)
τ
µ

³
t−v(s)τ

´

1− e−
γ
(s)
τ
µ

³
t−v(s)τ

´ γ(s)τ D
(s)
τ ,t (87)

=

∙
c
(s)
τ,z + z

(τ)

v
(s)
τ

¸
+ γ

(s)
τ

³
t− v(s)τ

´
+ µ ln

"
1− e−

γ
(s)
τ
µ

³
t−v(s)τ

´#
− 1

1− e−
γ
(s)
τ
µ

³
t−v(s)τ

´ γ(s)τ D
(s)
τ ,t

= ec(s)τ ,z + γ
(s)
τ

³
t− v(s)τ

´
− µψ

³
t− vτ ; g

(s)
τ

´
−Ψ

³
t− vτ ; g

(s)
τ

´
γ
(s)
τ D

(s)
τ ,t

Derivation of equation (40):

Because (34) can be written as

y
(s)
τ,t = c

(s)
y + θs

nh
(1− α) z

(s)
τ ,t − αq

(s)
τ ,t − αuc

(s)
τ ,t

i
− [(1− α) zs,t − αqs,t − αucs,t]

o
(88)

+ρs [(1− α) zs,t − αqs,t − αucs,t]− ρs (1− α) (yt − lt) + yt

the first term, which reflects relative demand within the sector, cancels when z
(s)
τ,t = zs,t, q

(s)
τ,t = qs,t, and uc

(s)
τ,t = ucs,t, and we

obtain (40).

In a similar way, we can rewrite (35) as

k
(s)
τ,t = c

(s)
k + (θs − 1)

nh
(1− α) z

(s)
τ,t − αq

(s)
τ,t − αuc

(s)
τ ,t

i
− [(1− α) zs,t − αqs,t − αucs,t]

o
(89)

+ (ρs − 1) [(1− α) zs,t − αqs,t − αucs,t]− q(s)τ ,t − uc
(s)
τ,t

− (ρs − 1) (1− α) (yt − lt) + yt

which, when z
(s)
τ ,t = zs,t, q

(s)
τ ,t = qs,t, and uc

(s)
τ ,t = ucs,t, simplifies to³

k
(s)
τ ,t − yt

´
= c

(s)
k + (ρs − 1)

h
(1− α) z

(s)
τ,t − αq

(s)
τ,t − αuc

(s)
τ ,t − (1− α) (yt − lt)

i
− q(s)τ,t − uc

(s)
τ ,t (90)

where the last two terms reflect the relative price of capital of technology type τ .

Derivation of equation (41):

Equation (34) can also be written as

y
(s)
τ,t = c

(s)
y + θs

h
(1− α) z

(s)
τ ,t − αq

(s)
τ,t − αuc

(s)
τ,t

i
(91)

+ (ρs − θs) [(1− α) zs,t − αqs,t − αucs,t]− ρs (1− α) (yt − lt) + yt

such that because

(ρs − θs) [(1− α) zs,t − αqs,t − αucs,t]− ρs (1− α) (yt − lt) + yt (92)

is the same for all technology types in the same sector. This is the case because the overall demand for output from the sector

has the same effect on the demand for output of each of the technology types. This allows us to write y
(s)
τ ,t − y

(s)
τ0,t as in (40).

Moreover, in a similar way, we can derive³
k
(s)
τ,t − k

(s)
τ0,t

´
= (θs − 1)

h³
(1− α) z

(s)
τ ,t − αq

(s)
τ,t − αuc

(s)
τ,t

´
−
³
(1− α) z

(s)
τ0,t − αq

(s)
τ 0,t − αuc

(s)
τ 0,t

´i
(93)

as well as ³
y
(s)
τ ,t − k

(s)
τ0,t

´
=

³
cys − cks

´
+ θs

h³
(1− α) z

(s)
τ ,t − αq

(s)
τ,t − αuc

(s)
τ,t

´
−
³
(1− α) z

(s)
τ0,t − αq

(s)
τ 0,t − αuc

(s)
τ 0,t

´i
(94)

+
³
(1− α) z

(s)
τ 0,t − αq

(s)
τ 0,t − αuc

(s)
τ 0,t

´
+ q

(s)
τ 0,t + uc

(s)
τ0,t − (1− α) (yt − lt)
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Neither (40) nor either of the two equations above depend on zs,t.

Derivation of equations (42):

We will derive (42) in detail and then present the equations for
³
k
(s)
τ ,t − yt

´
,
³
y
(s)
τ,t − y

(s)
τ 0,t

´
,
³
k
(s)
τ,t − k

(s)
τ0,t

´
and

³
y
(s)
τ ,t − k

(s)
τ0,t

´
that can be derived in a similar manner.

Equation (42) is obtained by substituting (37) and (39) and the condition that³
(1− α) z

(s)
τ,t − αq

(s)
τ ,t − αuc

(s)
τ ,t

´
= ((1− α) zs,t − αqs,t − αucs,t) (95)

into (40). This yields

y
(s)
τ ,t = c

(s)
y + ρs ((1− α) zs,t − αqs,t − αucs,t)− (1− α) ρs (yt − lt) + yt (96)

≈
h
c
(s)
y + ρs

³
(1− α) ec(s)τ,z − αq

s,v
(s)
τ
− αuc

(s)
τ

´i
+ ρs

h
(1− α) γ

(s)
τ + q

(s)
τ

i ³
t− v(s)τ

´
− ρsα³

r + δ
(s)
τ + q

(s)
τ

´ rt − (1− α) ρs (yt − lt)− ρs (1− α)µψ
³
t− v(s)τ ; g

(s)
τ

´
−ρs (1− α)Ψ

³
t− v(s)τ ; g

(s)
τ

´
γ
(s)
τ D

(s)
τ ,t + yt

When we define

η
(1)
c,τ = c

(s)
y + ρs

³
(1− α) ec(s)τ,z − αq

s,v
(s)
τ
− αuc

(s)
τ

´
(97)

η
(1)
r,τ = ρsα/

³
r + δ

(s)
τ + q

(s)
τ

´
(98)

η
(1)
T,τ = ρs

h
(1− α) γ

(s)
τ + q

(s)
τ

i
, η

(1)
ψ = (1− α) ρs (99)

we obtain (42), where u
(1)
τ,t is the approximation error.

The equation for
³
y
(s)
τ ,t − y

(s)
τ0,t

´
is obtained by substituting (37) and (39) into (41). Doing so, we obtain³

y
(s)
τ ,t − y

(s)
τ0,t

´
= θs

h³
(1− α) z

(s)
τ ,t − αq

(s)
τ,t − αuc

(s)
τ,t

´
−
³
(1− α) z

(s)
τ0,t − αq

(s)
τ0,t − αuc

(s)
τ 0,t

´i
(100)

= θs

∙³
(1− α) ec(s)τ,z − αq

s,v
(s)
τ
− αuc

(s)
τ

´
−
µ
(1− α)ec(s)

τ 0,z − αq
s,v

(s)

τ0
− αuc

(s)
τ 0

¶¸
+θs

h
(1− α) γ

(s)
τ + q

(s)
τ − (1− α) γ

(s)
τ 0 − q

(s)
τ 0

i ³
t− v(s)τ

´
+θsα

⎡⎣ 1³
r + δ

(s)
τ + q

(s)
τ

´ − 1³
r + δ

(s)
τ0 + q

(s)
τ0

´
⎤⎦ rt

−θs (1− α)µ
h
ψ
³
t− v(s)τ ; g

(s)
τ

´
− ψ

³
t− v(s)

τ0 ; g
(s)
τ0

´i
−θs (1− α)Ψ

³
t− v(s)τ ; g

(s)
τ

´
γ
(s)
τ D

(s)
τ ,t + θs (1− α)Ψ

³
t− v(s)

τ0 ; g
(s)
τ0

´
γ
(s)
τ0 D

(s)
τ0,t

which yields ³
y
(s)
τ,t − y

(s)
τ 0,t

´
= η

(2)
c,τ + η

(2)
T,τ t+ η

(2)
r,τ rt − η

(2)
ψ µ

h
ψ
³
t− v(s)τ ; g

(s)
τ

´
− ψ

³
t− v(s)

τ0 ; g
(s)
τ0

´i
(101)

−Ψ
³
t− v(s)τ ; g

(s)
τ

´
η
(2)
ψ γ

(s)
τ D

(s)
τ,t +Ψ

³
t− v(s)

τ 0 ; g
(s)
τ 0

´
η
(2)
ψ γ

(s)
τ0 D

(s)
τ 0,t + u

(2)
τ ,t

where

η
(2)
c,τ = θs

∙³
(1− α) ec(s)τ,z − αq

s,v
(s)
τ
− αuc

(s)
τ

´
−
µ
(1− α)ec(s)

τ 0,z − αq
s,v

(s)

τ0
− αuc

(s)
τ 0

¶¸
(102)

η
(2)
r,τ = θsα

⎡⎣ 1³
r + δ

(s)
τ + q

(s)
τ

´ − 1³
r + δ

(s)
τ0 + q

(s)
τ0

´
⎤⎦ (103)

η
(2)
T,τ = θs

h
(1− α) γ

(s)
τ + q

(s)
τ − (1− α) γ

(s)
τ 0 − q

(s)
τ 0

i
, η

(2)
ψ = (1− α) θs (104)

and u
(2)
τ ,t can be interpreted as the approximation and measurement error.
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In a similar manner, we can derive³
k
(s)
τ ,t − yt

´
≈ η

(3)
c,τ + η

(3)
T,τ

³
t− v(s)τ

´
+ η

(3)
r,τ rt − η

(3)
ψ µ

h
ψ
³
t− v(s)τ ; g

(s)
τ

´
− (yt − lt)

i
(105)

−η(3)ψ Ψ
³
t− v(s)τ ; g

(s)
τ

´
γ
(s)
τ D

(s)
τ,t + u

(3)
τ ,t

while ³
k
(s)
τ,t − k

(s)
τ0,t

´
= η

(4)
c,τ + η

(4)
T,τ

³
t− v(s)τ

´
+ η

(4)
r,τ rt −

h
η
(4)
ψ − (1− α)

i
µ
h
ψ
³
t− v(s)τ ; g

(s)
τ

´
− ψ

³
t− v(s)

τ0 ; g
(s)
τ 0

´i
(106)

−η(4)ψ Ψ
³
t− v(s)τ ; g

(s)
τ

´
γ
(s)
τ D

(s)
τ ,t + η

(4)
ψ Ψ

³
t− v(s)

τ0 ; g
(s)
τ0

´
γ
(s)
τ0 D

(s)
τ0,t + u

(4)
τ ,t

and ³
y
(s)
τ ,t − k

(s)
τ0,t

´
= η

(5)
c,τ + η

(5)
T,τ (t− vτ ) + η

(5)
r,τ rt + (1− α)

h
−µψ

³
t− v(s)

τ 0 ; g
(s)
τ0

´
− (yt − lt)

i
(107)

−η(5)ψ µ
h
ψ
³
t− v(s)τ ; g

(s)
τ

´
− ψ

³
t− v(s)

τ 0 ; g
(s)
τ0

´i
−η(5)ψ Ψ

³
t− v(s)τ ; g

(s)
τ

´
γ
(s)
τ D

(s)
τ,t + η

(5)
ψ Ψ

³
t− v(s)

τ 0 ; g
(s)
τ 0

´
γ
(s)
τ 0 D

(s)
τ 0,t + u

(5)
τ,t

which completes the set of five reduced form equations that we estimate for the different technology types.

Calibration of µ

We calibrate µ based on profit rates. Our model implies that rental expenditures on capital goods make up a fraction α of

revenue for each vintage, technology and sector. Of this fraction α, a fraction 1 /(1 + η) flows as profits to the capital goods

producers. Thus, the fraction of total profits in total revenue in this economy is

sprofits =
α

1 + η
=

α

1 + 1
µ

α
1−α

(108)

The average share of corporate profits in national income (sprofits) in the US since 1945 has been approximately 10 percent.

This yields an estimate of µ equal to

µ =
αsprofits

(1− α)
¡
α− sprofits

¢ = 0.3× 0.1
0.7× 0.2

=
3

14
(109)
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Table 1: Countries and technology measures covered in the data.

j Country s τ v
(s)
τ Type Technology sector/type

1. Australia I Passenger aviation

2. Austria 1 1919 Y Aviation passengers (passenger kilometers, PKM)

3. Belgium II Passenger transportation

4. Canada 1 1825 Y Passenger traffic on railways (passenger kilometers, PKM)

5. Denmark 2 1885 K Number of passenger cars

6. Finland III Cargo aviation

7. France 1 1919 Y Aviation cargo (ton kilometers, TKM)

8. Germany IV Cargo transportation

9. Greece 1 1825 Y Freight traffic on railways (ton kilometers, TKM)

10. Ireland 2 1885 K Number of commercial trucks

11. Italy V Merchant shipping

12. Japan 1 1606 K Tonnage of sailships in merchant fleet

13. Netherlands 2 1788 K Tonnage of steam- and motorships in merchant fleet

14. New Zealand VI Telecommunications

15. Norway 1 1835 Y Telegrams sent

16. Portugal 2 1876 K Number of mainline telephones

17. Spain VII Radio

18. Sweden 1 1920 K Number of radios

19. Switzerland VIII Television

20. United Kingdom 1 1924 K Number of televisions

21. United States IX Personal computer

1 1976 K Number of personal computers

t Sample X Textiles

1870 1 1779 K Number of mule spindles

1998 2 1828 K Number of ring spindles

XI Steel

1 1867 Y Steel tonnage produced using Open Hearth furnaces

2 1950 Y Steel tonnage produced using Blast Oxygen furnaces

XII Robots

1 1962 K Number of industrial robots in manufacturing

XIII Electricity

1 1879 Y KWHr produced
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Table 2: Explanatory variables

Measure

User cost of capital

Real interest rate Description:
Ex-post real interest rate: Average annual long bond yield minus

inflation for the United States

Source:
Bond yields from Homer and Sylla (2005). Inflation from

Mitchell (1998) and from Bureau of Labor Statistics’s CPI release

(i) Human capital

Primary enrollment rate Description: Fraction of eligible aged children enrolled in primary school

Source: Comin and Hobijn (2004), Barro and Lee (1994)

Secondary enrollment rate Description: Fraction of eligible aged children enrolled in secondary school

Source: Comin and Hobijn (2004), Barro and Lee (1994)

Tertiary enrollment rate Description: Fraction of eligible aged children enrolled in tertiary education

Source: Comin and Hobijn (2004), Barro and Lee (1994)

(ii) Trade and openness

Openness Description: Sum of imports and exports as a fraction of GDP

Source: Comin and Hobijn (2004)

(iii) Relative overall advancement

Log relative real GDP per capita Description: Log of real GDP per capita of country minus that of the U.S.

Source: Comin and Hobijn (2004) and Maddison (1995)

(iv) Institutions

Polity Score Description:
Renormalized Polity IV score.

0 = full autocracy, 1 = full democracy

Source: Marshall and Jaggers (2002)
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Table 3: Sample size and estimated coefficients (Transportation)

s I II III IV V

Passenger Passenger Cargo Cargo Merchant

aviation transportation aviation transportation shipping

Sample

start 1920 1895 1931 1906 1870

end 1993 1993 1991 1993 1991

no. countries 21 17 21 17 13

no. observations 1079 923 889 962 601

Goodness of fit

R2 .989 .976 .997 .989 .940

R2 detrended .635 .596 .634 .641 .642

Technology type

τ Planes Trains Cars Planes Trains Trucks Sail Steam/Motor

v
(s)
τ 1919 1825 1885 1919 1825 1885 1606 1788

Growth rates of embodied technological change (annual percentage)

γ
(s)
τ 1.17∗∗

(0.16)
0.55∗∗
(0.10)

0.18
(0.28)

1.89∗∗
(0.10)

1.07∗∗
(0.08)

2.86∗∗
(0.20)

0.14∗
(0.06)

0.58∗∗
(0.15)

Explanatory variables (marginal percentage embodiment gain)

Primary enr. −0.72∗∗
(0.13)

0.00
(0.15)

0.00
(0.00)

0.08
(0.83)

0.03
(0.40)

0.03∗∗
(0.04)

0.00
(0.84)

0.00
(0.00)

Secondary enr. 0.45∗∗
(0.08)

0.00
(0.39)

0.00
(0.02)

0.11∗∗
(0.03)

−0.03
(0.08)

−0.03
(0.07)

−0.02
(0.15)

−0.02
(0.17)

Tertiary enr. 3.03∗∗
(0.09)

0.76∗∗
(0.04)

Openness 0.42∗∗
(0.03)

0.00
(0.00)

0.00
(0.00)

0.03∗∗
(0.01)

0.01
(0.01)

0.01
(0.01)

0.03∗∗
(0.00)

0.04∗∗
(0.00)

Polity 0.51∗∗
(0.10)

0.00∗∗
(0.00)

0.00∗
(0.00)

−0.11
(0.10)

0.00
(0.01)

0.00
(0.01)

−0.01
(0.02)

−0.01
(0.02)

Relative GDP p.c. 0.80∗∗
(0.08)

−0.00
(0.00)

−0.00
(0.00)

0.47∗∗
(0.04)

0.01
(0.02)

0.01
(0.01)

−0.01
(0.02)

−0.01
(0.01)

∗∗ denotes significantly different from 0 at a 1% significance level, ∗ denotes the same for 5% significance level
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Table 4: Sample size and estimated coefficients (Communication and Computers)

s VI VII VIII IX

Tele- Radio TV PC

communication

Sample

start 1888 1926 1947 1980

end 1993 1973 1993 1998

no. countries 21 21 21 21

no. observations 1287 566 728 233

Goodness of fit

R2 .989 .994 .975 .999

R2 detrended .363 .375 .450 .778

Technology type

τ Telegrams Telephones Radios TVs PCs

v
(s)
τ 1835 1876 1920 1924 1976

Growth rates of embodied technological change (annual percentage)

γ
(s)
τ 0.85∗∗

(0.06)
0.58∗∗
(0.11)

0.05
(0.24)

0.05
(0.18)

4.89∗∗
(1.16)

Explanatory variables (marginal percentage embodiment gain)

Primary enr. 0.00
(0.19)

0.00∗∗
(0.00)

0.01
(0.23)

0.02
(1.59)

−0.77
(0.50)

Secondary enr. −0.00
(0.29)

−0.00
(0.01)

0.02
(0.06)

0.04
(0.08)

1.59∗∗
(0.27)

Tertiary enr. 0.63∗∗
(0.12)

Openness 0.00∗∗
(0.00)

0.00∗∗
(0.00)

0.06
(0.07)

−0.01
(0.12)

Polity 0.00
(0.00)

−0.00
(0.00)

0.01
(0.24)

0.03
(0.35)

Relative GDP p.c. −0.00
(0.00)

−0.00
(0.00)

0.05
(0.29)

0.11∗∗
(0.02)

0.43∗
(0.18)

∗∗ denotes significantly different from 0 at a 1% significance level, ∗ denotes the same for 5% significance level39
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Table 5: Sample size and estimated coefficients (Manufacturing and electricity)

s X XI XII XIII

Textiles Steel Robots Electricity

Sample

start 1908 1960 1981 1879

end 1954 1993 1998 1993

no. countries 18 14 17 21

no. observations 157 185 240 1300

Goodness of fit

R2 .959 .930 .998 .980

R2 detrended .942 .730 .762 .671

Technology type

τ Mule Ring OHF BOF Robots KWHr

v
(s)
τ 1770 1828 1867 1950 1962 1879

Growth rates of embodied technological change (annual percentage)

γ
(s)
τ 0.03

(0.04)
0.06
(0.06)

1.73∗∗
(0.38)

1.62∗∗
(0.57)

2.13∗∗
(0.69)

1.26∗∗
(0.04)

Explanatory variables (marginal percentage embodiment gain)

Primary enr. −0.00
(2.41)

−0.00
(0.00)

−0.00
(0.25)

−0.00∗
(0.00)

1.62
(8.85)

−0.31
(3.11)

Secondary enr. 0.00
(0.53)

0.00
(0.52)

−0.00
(147.36)

−0.00
(0.03)

3.56∗∗
(0.18)

2.11∗∗
(0.18)

Tertiary enr. −0.31
(0.30)

Openness −0.00
(0.07)

−0.00
(0.03)

−0.00
(0.00)

0.00
(0.00)

−0.77∗∗
(0.16)

Polity 0.00
(0.00)

0.00
(0.00)

0.21
(0.12)

Relative GDP p.c. −0.00
(0.30)

−0.00
(0.17)

−0.00
(0.00)

0.00
(0.00)

0.57
(0.37)

−1.04∗∗
(0.12)

∗∗ denotes significantly different from 0 at a 1% significance level, ∗ denotes the same for 5% significance level
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Table 6: Growth rate of the productivity embodied in each technology type and its decomposition

Technology Period ∆z Embodiment Variety

Frontier Catch up Frontier Lags

Aviation cargo 1937-90 0.041 0.019 0.012 0.019 -0.009

Aviation passengers 1937-90 0.066 0.012 0.040 0.013 0.001

Train passengers 1913-90 0.013 0.005 0.000 0.006 0.001

Train cargo 1913-90 0.021 0.011 0.000 0.011 0.000

Cars 1930-90 0.006 0.002 0.000 0.004 0.000

Trucks 1930-90 0.055 0.029 0.000 0.027 0.000

Sail ships 1913-90 0.003 0.001 0.000 0.002 0.000

Steam/motor ships 1913-90 0.011 0.006 0.000 0.006 0.000

Telegrams 1913-90 0.018 0.009 0.000 0.008 0.001

Telephones 1913-90 0.013 0.006 0.000 0.007 0.000

Radios 1930-90 0.038 0.001 0.001 0.007 0.030

TV’s 1950-90 0.129 0.001 0.002 0.005 0.122

PC’s 1980-93 0.237 0.049 0.015 0.053 0.120

Robots 1975-93 0.483 0.021 0.040 0.024 0.399

Electricity 1930-90 0.146 0.001 0.010 0.003 0.132

Steel open hearth 1930-88 0.048 0.017 0.000 0.017 0.014

Steel blast oxygen 1961-90 0.034 0.016 0.000 0.019 -0.002

Mule spindles 1913-70 0.006 0.003 0.000 0.003 0.000

Ring spindles 1913-70 0.013 0.007 0.000 0.007 0.000

Average 0.073 0.017

∆z denotes the average annual growth rate in embodied productivity for the technology over the period.
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Table 7: Descriptive statistics of estimated level of Z due to embodiment and variety mechanisms

Technology type Cross section
initial year

Cross section
final year

year Std(z) Std(z)
Std(y−l) year Std(z) Std(z)

Std(y−l)

Aviation cargo 1937 0.530 1.755 1990 0.204 0.977

Aviation passengers 1937 0.938 3.029 1990 0.511 2.443

Train passengers 1913 0.001 0.002 1990 0.000 0.002

Train cargo 1913 0.012 0.031 1990 0.005 0.026

Cars 1930 0.001 0.002 1990 0.000 0.001

Trucks 1930 0.009 0.026 1990 0.005 0.026

Sail ships 1913 0.024 0.063 1990 0.011 0.052

Steam/motor ships 1913 0.024 0.063 1990 0.011 0.053

Telegrams 1913 0.001 0.003 1990 0.001 0.003

Telephones 1913 0.001 0.004 1990 0.001 0.003

Radios 1930 0.966 2.675 1990 0.120 0.572

TV’s 1950 1.153 2.396 1990 0.157 0.752

PC’s 1980 0.461 2.031 1993 0.326 1.642

Robots 1975 0.740 3.085 1993 0.432 2.178

Electricity 1930 0.946 2.618 1990 0.256 1.223

Steel open hearth 1930 0.001 0.001 1988 0.000 0.001

Steel blast oxygen 1961 0.001 0.001 1993 0.000 0.001

Mule spindles 1913 0.002 0.005 1970 0.001 0.002

Ring spindles 1913 0.002 0.005 1970 0.001 0.002

Std denotes standard deviation. (y − l) is log real GDP per capita.
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Figure 1: Decomposition of technology type total factor productivity level
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Figure 2: Approximation of adoption lags around immediation adoption path
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Figure 3: Actual and fitted adoption paths for personal computers
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Figure 4: Actual and fitted adoption paths for electricity
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Figure 5: Actual and fitted adoption paths for telecommunications
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Figure 6: Actual and fitted adoption paths for cargo aviation
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Figure 7: Actual and fitted adoption paths for merchant shipping
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