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ABSTRACT

We model equilibrium spot and futures oil prices in a general equilibrium production economy. In
our model production of the consumption good requires two inputs: the consumption good and a
commodity, e.g., Oil. Oil is produced by wells whose flow rate is costly to adjust. Investment in new
Oil wells is costly and irreversible. As a result in equilibrium, investment in Oil wells is infrequent

and lumpy. Even though the state of the economy is fully described by a one-factor Markov process,

the spot oil price is not Markov (in itself). Rather it is best described as a regime-switching process,

the regime being an investment `proximity' indicator. The resulting equilibrium oil price exhibits

mean-reversion and heteroscedasticity. Further, the risk premium for exposure to commodity risk

is time-varying, positive in the far-from-investment regime but negative in the near-investment

regime. Further, our model captures many of the stylized facts of oil futures prices, such as

backwardation and the `Samuelson effect.' The futures curve exhibits backwardation as a result of

a convenience yield, which arises endogenously. We estimate our model using the Simulated Method

of Moments with economic aggregate data and crude oil futures prices. The model successfully

captures the first two moments of the futures curves, the average non-durable consumption-output

ratio, the average oil consumption-output and the average real interest rate. The estimation results

suggest the presence of convex adjustment costs for the investment in new oil wells. We also

propose and test a linear approximation of the equilibrium regime-shifting dynamics implied by our

model, and test its empirical implication for time-varying risk-premia.
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1 Introduction

Empirical evidence suggests that commodity prices behave differently than standard

financial asset prices. The evidence also suggests that there are marked differences

across types of commodities. This paper presents an equilibrium model of commod-

ity spot and futures prices for a commodity whose primary use is as an input to

production, such as oil or copper. The model captures many stylized facts of the

data, which we review below.

Empirical studies of time series of commodity prices have found evidence of

mean-reversion and heteroscedasticity. Further, combining time series and cross-

sectional data on futures prices provides evidence of time-variation in risk-premia

as well as existence of a ‘convenience yield’ (Fama and French (1987), Bessembinder

et al. (1995), Casassus and Collin-Dufresne (CC 2005)). Interestingly, the empirical

evidence also suggests that there are marked differences across different types of

commodities (e.g., Fama and French (1987)). CC (2005) use panel data of futures

prices to disentangle the importance of convenience yield versus time-variation in

risk-premia for various commodities. Their results suggest that ‘convenience yields’

are much larger and more volatile for commodities that serve as an input to pro-

duction, such as copper and oil, as opposed to commodities that may also serve

as a store of value, such as gold and silver. A casual look at a sample of futures

curve for various commodities (reproduced in figure 1 below) clearly shows the dif-

ferences in futures price behavior. Gold and silver markets exhibit mostly upward

sloping futures curve with little variation in slope, whereas copper and especially

oil futures curve exhibit more volatility. In particular, oil future curves are mostly

downward-sloping (i.e., in backwardation), which, given the non-negligible storage

costs1 indicates the presence of a sizable ‘convenience yield.’ Further, casual em-

piricism suggests that the oil futures curves are not Markov in the spot oil price (as

highlighted in figure 3, which shows that for the same oil spot price one can observe

increasing or decreasing futures curves). Lastly, the volatility of oil futures prices

tends to decrease with maturity (the ‘Samuelson effect’) much more dramatically

than that of gold futures prices.

The commodity literature can be mainly divided into two approaches. The

equilibrium (or structural) models of commodity prices focus on the implications

1The annual storage cost are estimated to be around 20% of the spot price by Ross (1997).
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of possible stockouts, which affects the no-arbitrage valuation because of the im-

possibility of carrying negative inventories (Gustafson (1958), Newbery and Stiglitz

(1981), Wright and Williams (1982), Scheinkman and Schechtman (1983), Williams

and Wright (1991), Deaton and Laroque (1992), Chambers and Bailey (1996), and

Bobenrieth, Bobenrieth and Wright (2002)). These papers predict that in the pres-

ence of stock-outs, prices may rise above expected future spot prices net of cost of

carry. The implications for futures prices have been studied in Routledge, Seppi

and Spatt (2002). One of the drawbacks of this literature is that the models are

highly stylized and thus cannot be used to make quantitative predictions about

the dynamics of spot and futures prices. For example, these papers assume risk-

neutrality which forces futures prices to equal expected future spot prices and thus

rule out the existence of a risk premium. Further, these models in general pre-

dict that strong backwardation can occur only concurrently with stock-outs. Both

seem contradicted by the data. Fama and French (1988), Casassus and Collin-

Dufresne (2005) document the presence of substantial time variation in risk-premia

for various commodities. Litzenberger and Rabinowitz (1995) find that strong back-

wardation occurs 77% of the time2 in oil futures markets, whereas stock-outs are

the exception rather than the rule. Litzenberger and Rabinowitz offer an alternative

explanation for backwardation based on option pricing theory. They view oil in the

ground as a call option written on the spot oil price with exercise price equal to the

extraction cost. In equilibrium, a convenience yield (and backwardation) must exist

for producers to have an incentive to extract (i.e, exercise their option). Backwar-

dation is the price to pay for the flexibility producers have to refrain from producing

at any time, and keep oil in the ground.

In contrast, reduced-form models exogenously specify the dynamics of the com-

modity spot price process, the convenience yield and interest rates to price fu-

tures contracts as derivatives following standard contingent claim pricing techniques

(e.g., Gibson and Schwartz (1990), Brennan (1991), Ross (1997), Schwartz (1997),

Schwartz and Smith (2000) and Casassus and Collin-Dufresne (2002)). The con-

venience yield is defined as an implicit dividend that accrues to the holder of the

commodity (but not to the holder of the futures contract). This definition builds

loosely on the insights of the original ‘theory of storage’ (Kaldor (1939), Work-

ing (1948, 1949), Telser (1958), Brennan (1958)) which argues that there are benefits

2And in fact, weak backwardation, when futures prices are less than the spot plus cost of carry,
occurs 94% of the times.
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for producers associated with holding inventories due to the flexibility in meeting

unexpected demand and supply shocks without having to modify the production

schedule. The reduced-form approach has gained widespread acceptance because of

its analytical tractability (the models may be used to value sophisticated derivatives)

as well as its flexibility in coping with the statistical properties of commodity pro-

cesses (mean-reversion, heteroscedasticity, jumps). However, reduced-form models

are by nature statistical and make no predictions about what are the appropriate

specifications of the joint dynamics of spot, convenience yield and interest rates.

The choices are mostly dictated by analytical convenience and data.

In this paper we propose a general equilibrium model of spot and futures prices

of a commodity whose main use is as an input to production. Henceforth we assume

that the commodity modeled is oil.

Three features distinguish our model from the equilibrium ‘stock-out’ models

mentioned above. First, we consider that the primary use of the commodity is as an

input to production. Commodity is valued because it is a necessary input to produce

the (numeraire) consumption good. We assume a risky two-input constant returns

to scale technology. Second, we assume that agents are risk-averse. This allows us

to focus on the risk-premium associated with holding the commodity versus futures

contracts. Finally, we assume that building oil wells and extracting oil out of the

ground is a costly process. We assume these costs are irreversible in the sense that

once built an oil well can hardly be used for anything else but producing oil. This

last feature allows us to focus on the ‘precautionary’ benefits to holding enough

commodity to avoid disruption in production.

We derive the equilibrium consumption and production of the numeraire good,

as well as the demand for the commodity. Investment in oil wells is infrequent and

‘lumpy’ as a result of fixed adjustment costs and irreversibility. As a result there is

a demand for a security ‘buffer’ of commodity. Further, the model generates mean-

reversion and heteroscedasticity in spot commodity prices, a feature shared by real

data. One of the main implications of our model is that even though uncertainty can

be described by one single state variable (the ratio of capital to commodity stock),

the spot commodity price is not a one-factor Markov process. Instead, the equilib-

rium commodity price process resembles a jump-diffusion regime switching process,

where expected return (drift) and variance (diffusion) switch as the economy moves

3



from the ‘near-to-investment’ region to the ‘far-from-investment’ region. The equi-

librium spot prices may also experience a jump when the switch occurs. The model

generates an endogenous convenience yield which has two components, an absolutely

continuous component in the no-investment region and a singular component at the

investment boundary. This convenience yield reflects the benefit to smoothing the

flow of oil used in production. It is decreasing in the outstanding stock of oil and

increasing in the marginal productivity of oil in the economy.

When the economy is in the investment region, the fixed costs incurred induce

a wealth effect which leads all security prices to jump. Since the investment time

is perfectly predictable, all financial asset prices must jump by the same amount to

rule out arbitrage. However, we find that in equilibrium, oil prices do not satisfy

this no-arbitrage condition. Of course, the apparent ‘arbitrage opportunity’ which

arises at investment dates, subsists in equilibrium, because oil is not a traded asset,

but instead valued as an input to production.

We implement the Simulated Method of Moments of Duffie and Singleton (1993)

to estimate the model. We use quarterly data of crude oil futures prices and aggre-

gate macroeconomic variables of OECD countries from 1990 to 2004. In particular,

we find parameters that best fit the futures curve, the volatility term structure of

futures returns, the consumption-output ratio, the consumption of oil-output ratio

and the real interest rate. We find strong evidence that supports the presence of

fixed investment cost, and thus two regimes in prices. We further find that the

futures curves can be in contango or in backwardation depending on the state of the

economy. As observed in real data the frequency of backwardation dominates that

of contango. The two-regimes which characterize the spot price also determine the

shape of the futures curve. We find that futures curve reflect a high degree of mean-

reversion (i.e., are more convex) when the economy is in the ‘near-to-investment’

region. This is partly due to the increased probability of an investment which an-

nounces a drop in the spot price. Finally, our model predicts that risk-premia on

commodity prices are time varying, positive in the far-from-investment regime and

negative in the near-investment regime, contributing to the mean-reversion in the

spot price. Further, the systematic risk of the commodity price as measured with its

beta relative to the market (defined as the present value of the capital stock) return

is positive in the far-from-investment regime and negative in the near-investment

regime. This is, at least in principle, consistent with the wildly different estimates

4



of the magnitude of the risk-premium on commodities obtained in recent empirical

studies (e.g., Gorton and Rouwenhorst (2005), Erb and Harvey (2005)).

To test some of the implications of our model for the shape of the term structure

of futures and for the risk-premia across regimes we investigate a simple linear

approximation of our regime switching spot price model. We use quasi-maximum

likelihood technique of Hamilton (1989) to estimate the model with crude oil data

from 1990 to 2003. We find strong support for the existence of two regimes with

features consistent with those predicted by our model. There is an infrequent state

that is characterized by high prices and negative return and a more frequent state

that has lower average price and exhibits mean-reversion. To further test the model

we estimate the smoothed inference about the state of the economy (Kim (1993)),

i.e., we back out the inferred probability of being in one state or the other. We

compare the shape of futures curves in both states of the economy and find that, as

predicted by the theoretical model, futures curves are mostly convex in the near-to-

investment region but concave in the far-from investment region, reflecting the high

degree of mean-reversion when investment and a drop in prices is imminent.

We also find some evidence for time variation in the risk-premium on oil price

returns that is related to the estimated regime. Indeed, regressing oil price return on

the S&P 500 return we find that the beta is significantly negative in the estimated

near-investment regime and positive (though not statistically significant) in the

other regime. This significant time variation in beta is not driven out by conditioning

on the slope of the futures term structure, which suggests that, as in the model, slope

of the futures curve is not a perfect substitute for the investment regime.

This provides some validation for our equilibrium model and also suggests that

a regime switching model may be a useful alternative to the standard reduced-form

models studied in the literature.

In a sense our model formalizes many of the insights of the ‘theory of storage’

as presented in, for example, Brennan (1958). Interestingly, the model makes many

predictions that are consistent with observed spot and futures data and that are

consistent with the qualitative predictions made in the earlier papers on the theory

of storage, and on which reduced-form models are based. Thus our model can

provide a theoretical benchmark for functional form assumptions made in reduced-

form models about the joint dynamics of spot and convenience yields.
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Such a benchmark seems important for at least two reasons. First, it is well-

known that most of the predictions of the real options literature hinge crucially on

the specification of a convenience yield (e.g., Dixit and Pindyck (1994)).3 Indeed,

following the standard intuition about the sub-optimality of early exercise of call

options in the absence of dividends, if the convenience yield is negligible compared

to storage costs, it may be optimal to not exercise real options. More generally, the

functional form of the convenience yield can have important consequences on the

valuation of real options (Schwartz (1997), Casassus and Collin-Dufresne (2005)).

Second, equilibrium models deliver economically consistent long-term predictions.

This may be a great advantage compared to reduced from models, which, due to the

non-availability of data, may be hard to calibrate for long-term investment horizons.

The model presented here is related to existing literature and, in particular,

builds upon Cox, Ingersoll and Ross (1985).4 Dumas (1992) follows CIR and sets

up the grounds for analyzing dynamic GE models in two-sector economies with real

frictions. He studies the real-exchange rate across two countries in the presence

of shipping cost for transfers of capital.5 Recent applications of two-sector CIR

economies along the lines of Dumas (1992) have been proposed by Kogan (2001)

for studying irreversible investments and Mamaysky (2001) who studies interest

rates in a durable and non-durable consumption goods economy. Richard and Sun-

daresan (1981) extends the CIR to a multi-good economy to study the theoretical

relation between forward and futures prices. Unlike our paper, they do not allow for

irreversible investment which produces most of the time variation in the economy.

Similar non-linear production technologies to the one we use here have been pro-

posed by Merton (1975) and Sundaresan (1984). Merton (1975) solves a one-sector

stochastic growth model similar to the neoclassical Solow model where the two in-

puts are capital stock and labor force, while Sundaresan (1984) studies equilibrium

interest rates with multiple consumption goods that are produced by technology

that uses the consumption good and a capital good as inputs.6 Fixed adjustment

3Real Option Theory emphasizes the option-like characteristics of investment opportunities by
including, in a natural way, managerial flexibilities such as postponement of investments, abandon-
ment of ongoing projects, or expansions of production capacities (e.g. see the classical models of
Brennan and Schwartz (1985), McDonald and Siegel (1986) and Paddock, Siegel and Smith (1988)).

4In fact, our model converges to a one -factor CIR production economy when oil is not relevant
for the numeraire technology.

5Uppal (1993) presents a decentralized version of Dumas’s economy.
6Surprisingly, there are not many models that use this type of production technologies in continu-

ous time. Recently, Hartley and Rogers (2003) has extended the Arrow and Kurz (1970) two-sector
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costs have been used in multiple research areas since the seminal (S,s) model of

Scarf (1960) on inventory decisions. In the asset pricing literature, Grossman and

Laroque (1990) uses fixed transaction costs to study prices and allocations in the

presence of a durable consumption good.

There is an extensive literature that studies the effect of irreversibility and uncer-

tainty on investments that is related to our model. Some examples of such contribu-

tions are Pindyck (1988), Bertola and Caballero (1994), Dixit and Pindyck (1994),

Abel and Eberly (1994, 1996, 1997) and Baldursson and Karatzas (1997). More

recently Kogan (2001, 2004) analyzes the effect of irreversible investment on asset

prices. Some researchers have focused on the effect of fixed adjustment cost on in-

vestment behavior. Abel and Eberly (1994) incorporate fixed costs of investment

and study the optimal investment rate as a function of the marginal value of a unit

of installed capital (q). Caballero and Engel (1999) explains aggregate investment

dynamics in a model that builds from the lumpy microeconomic behavior of firms

facing stochastic fixed adjustment costs.

Our paper is also related to the work of Carlson, Khokher and Titman (2002),

who propose an equilibrium model of natural resources. However, in contrast to our

paper, they assume risk-neutrality, an exogenous demand function for commodity,

and (the main friction in their model) that commodity is exhaustible, whereas in

our paper commodity is essentially present in the ground in infinite supply but is

costly to extract. Finally, Kogan, Livdan and Yaron (2005) identify a new pattern

of futures volatility term structure that is inconsistent with standard storage models

but can be explained within their model that exhibits investment constraints and

irreversibility. Unlike our model, they take the demand side and risk-premia as

exogenous and focus mainly on the implications for the volatility curve.

Section 2 presents the model. Section 3 characterizes equilibrium commodity

prices in our benchmark model with irreversibility and costly oil production. Sec-

tion 4 presents the empirical estimation of the model and discusses its economic

implications. Finally, Section 5 concludes.

model to an stochastic framework and use this type of production technology with private and
government capital as inputs.
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2 The Model

We consider an infinite horizon production economy with two goods. The model

extends the Cox, Ingersoll and Ross (CIR 1985a) production economy to the case

where the production technology requires two inputs, which are complementary.

2.1 Representative Agent Characterization

There is a continuum of identical agents (i.e., a representative agent) which maxi-

mize their expected utility of intertemporal consumption, and have time separable

constant relative risk-aversion utility given by

U(t, C) =

{

e−ρt C1−γ

1−γ if γ > 0, γ 6= 1

e−ρt log (C) if γ = 1
(1)

There is a single consumption good in our economy. Agents can consume the con-

sumption good or invest it in a production technology. The production technology

requires an additional input, the commodity, which is produced by a stock of oil

wells. The dynamics of the stock of oil wells (Qt) and the stock of consumption

good (Kt) are described in equation (2) and (3) below:

dQt = −(̄i + δ)Qtdt + σQQt dwQ,t + XtdIt (2)

dKt = (f(Kt, īQt) − Ct) dt + σKKt dwK,t − β(Xt; Qt, Kt)dIt. (3)

The oil ‘industry’ produces a flow of oil at rate ī and depreciates at rate δ.7 The

representative agent can decide when and how many additional oil wells to build.

We denote by It the investment time indicator, i.e., dIt = 1 if investment occurs at

date t and 0 else. Investment is assumed to be irreversible (Xt ≥ 0) and costly in

the sense that to build Xt new wells at t, the representative agents incurs a cost

of β(Xt; Qt, Kt) of the numeraire good. We assume that the cost function has the

following form:

β(Xt; Qt, Kt) = βK Kt + βQQt + βX Xt (4)

7For simplicity we assume that the extraction rate per unit time of each oil well is fixed. This
is meant to capture the fact that it is very costly to increase or decrease the production flow of oil
wells.
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βX is a variable cost paid per new oil well. βKK + βQQ represent the fixed costs

incurred when investing. As is well-known, fixed costs (βK , βQ > 0) lead to an

‘impulse control’ optimization problem, where the optimal investment decision is

likely to be lumpy (i.e., occurring at discrete dates).8 In contrast if only variable

costs are present (βX > 0 and βK = βQ = 0) then the optimal investment decision

is an ‘instantaneous control’ which leads to a ‘local time,’ i.e., singular continuous,

investment policy (e.g., Dumas (1991), Harrison (1990)). Below we assume that9

βK , βQ , βX > 0.

Further, to insure that investment is feasible we assume that:10

βK < 1 and βQ < βX

We note that, while in our model investment immediately creates new oil wells (i.e.,

there is no time-to-build frictions in our model), one could potentially interpret the

costs as a proxy for this friction.

The numeraire-good industry, equation (3), has a production technology that

requires both the numeraire good and oil. Output is produced continuously at the

mean rate

f(k, q) = αk1−ηqη.

As in Merton (1975) and Sundaresan (1984) we use the Cobb-Douglas production

function (homogeneous of degree one and constant returns to scale). The param-

eter η represents the marginal productivity of oil in the economy. The output of

this industry is allocated to consumption (Ct ≥ 0), reinvested in numeraire good

production, or used for investment to create more oil.11

Uncertainty in our economy is captured by the Brownian motions wQ,t and wK,t

which drive the diffusion term of the return of the technologies in equations (2)

8The assumption that the fixed component of the investment cost is scaled by the size of the
economy, Kt and Qt, ensures that the fixed cost does not vanish as the economy grows.

9The case where β
K

= β
Q

= 0 can be recovered by taking the appropriate limit as shown in
Jeanblanc-Picque and Shiryaev (1995).

10We note that at the boundary when investment becomes optimal, the oil stock is valued at β
X

.
Thus for investment to be affordable we need β

X
X + β

K
K + β

Q
Q ≤ K + β

X
Q for some X ≥ 0.

11There is no storage of the numeraire good. Output that is not consumed, used in oil investment,
or further production of the numeraire good depreciates fully.
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and (3). We assume that there exists an underlying probability space (Ω,F, P )

satisfying the usual conditions, and where F = {F}t≥0 is the natural filtration

generated by the Brownian Motions.

Given our previous discussion it is natural to seek an investment policy of the

form {(XTi , Ti)}i=0,1,... where {Ti}i=0,... are a sequence of stopping times of the fil-

tration F such that It = 1
{Ti≤t}

and the XTi are FTi-measurable random variables.

Let us define the set of admissible strategies A, as such strategies that lead to

strictly positive consumption good stock process (Kt > 0 a.s.). Further, we restrict

the set of allowable consumption policies C to positive integrable F adapted pro-

cesses. Then the optimal consumption-investment policy of the representative agent

is summarized by:

sup
C∈C; {(Ti,XTi

)}i=0,...∈A
E0

[
∫ ∞

0
e−ρsU(Cs)ds

]

(5)

Let us denote by J(t, K, Q) = supC;A Et[
∫ ∞
t e−ρsU(Cs)ds] the value function asso-

ciated with this problem.

2.2 Sufficient Conditions for Existence of a Solution

Before characterizing the full problem 5 we establish sufficient conditions on the

parameters for a solution to the problem to exists. We note that this is slightly dif-

ferent than in traditional models without fixed costs such as Dumas (1992) or Kogan

(2002). Indeed, unlike in these models the no-transaction cost problem does not pro-

vide for a natural upper bound. Indeed, in our case, if we set βK = βQ = βX = 0 the

value function becomes infinite, since it is then optimal to build an infinite number

of oil wells (at no cost). Thus unlike in these papers, it is natural to expect that

sufficient conditions on the parameters for existence of the solution should depend

on the marginal cost of building an oil well (as well as other parameters). Indeed,

intuitively, if the marginal costs of an additional oil well is too low relative to the

marginal productivity of oil in the K-technology one would expect the number of oil

wells built (and thus the value function) to be unbounded. To establish reasonable

conditions on the parameters we consider the case where there are only variable

costs (βK = βQ = 0 and βX > 0), but where the investment decision is perfectly
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reversible. Let us denote Ju(t, K, Q) the value function of the perfectly reversible

investment/consumption problem. Clearly, the solution to that problem will be an

upper bound to the value function of (5).

When the investment decision is perfectly reversible then it becomes optimal to

adjust the stock of oil wells continuously so as to keep
JuQ

JuK
= βX . This suggests

that one can reduce the dimensionality of the problem, and consider as the unique

state variable Wt = Kt + βX Qt the ‘total wealth’ of the representative agent (at

every point in time the agent can freely transform Q oil wells into βX Q units of

consumption good and vice-versa). Indeed, the dynamics of W are:

dWt = (αK1−η
t (̄iQt)

η − Ct − βX (̄i + δ)Qt)dt + σK Kt dwK,t + βX σQQt dwQ,t (6)

Since along each path, the agent can freely choose to adjust the ratio of oil to

capital stock Zt = Qt

Kt
, the Cobb-Douglas structure suggests that it will be optimal

to maintain a constant ratio, Zt = Z∗. We may rewrite the dynamics of Wt as

dWt

Wt
=

(

µu
W

(Z∗) − cu
t

)

dt + σu
W

(Z∗) dwW,t (7)

where wW,t is a standard Brownian motion and we define

Ct = cu
t Wt, (8)

µu
W

(Z) =
α(̄iZ)η − (̄i + δ)βX Z

1 + βX Z
(9)

and

σu
W

(Z) =

√

σ2
K

+ 2ρKQσKσQβX Z + (βX Z)2σ2
Q

1 + βX Z
. (10)

The proposition below verifies that if the function

f(Z) =
ρ

1 − γ
− µu

W
(Z) + γ

σu
W

(Z)2

2
(11)

admits a global minimum at Z∗ such that

au :=
1

γ

{

ρ − (1 − γ)

(

µu
W

(Z∗) − γ
σu

W
(Z∗)2

2

)}

> 0 (12)
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then the optimal strategy is indeed to consume a constant fraction of total wealth

cu
t = au and to invest continuously so as to keep Qt/Kt = Z∗.

Proposition 1 Assume that there are no fixed costs (βK = βQ = 0), and that

investment is costly (βX > 0), but fully reversible. If the function f(Z) defined

in (11) admits a global minimum Z∗ such that condition (12) holds then the optimal

value function is given by

Ju(t, K, Q) = e−ρt (a
u)−γ(K + βX Q)1−γ

1 − γ
(13)

The optimal consumption policy is

C∗
t = au(K∗

t + βX Q∗
t ) (14)

and the investment policy is characterized by:

Q∗
t

K∗
t

= Z∗. (15)

Proof Applying Itô’s lemma to the candidate value function we have:

dJu(t, Kt, Qt) + U(t, Ct)dt

Ju(t, Kt, Qt)
= (1−γ) {h(ct) − f(Zt)} dt+(1−γ)σu

W
(Zt) dwW,t (16)

where we have set Ct = ct(Kt+βX Qt), σu
W

(Z) and f(Z) are defined in equations (10)

and (11), respectively, and we have defined:

h(c) = (au)γ (c)1−γ

1 − γ
− c.

Note that the function h(c) is concave and admits a global maximum c∗t = au with

h(au) = auγ
1−γ . Suppose the function f(Z) is strictly convex and admits a global

minimum at Z∗. Then, if we pick the constant au such that h(au) = f(Z∗), we have

for any c, Z:

h(c) − f(Z) ≤ h(c∗) − f(Z∗) = 0

12



Thus integrating equation (16) we obtain:

Ju(T, KT , QT )+

∫ T

0
U(t, Ct)dt ≤ Ju(0, K0, Q0)+

∫ T

0
(1−γ)Ju(t, Kt, Qt)σ

u
W

(Zt) dwW,t

(17)

Taking expectation and using the fact that the stochastic integral is a positive local

martingale we obtain:

E

[

Ju(T, KT , QT ) +

∫ T

0
U(t, Ct)dt

]

≤ Ju(0, K0, Q0) (18)

Further we note that for when we choose the controls ct = au and Zt = Z∗ then we

obtain equality in equation (17) and further have:

dJu

Ju
= −audt + (1 − γ)σu

W
(Z∗) dwW,t (19)

which implies that the local martingale is a martingale and thus (18) obtains with

equality. Further we have

lim
T→∞

E[Ju(T, KT , QT )] = lim
T→∞

Ju(0, K0, Q0)e
−auT = 0

under the assumption (12). Letting T → ∞ in (18) shows that our candidate value

function indeed is the optimal value function and confirms that the chosen controls

are optimal. ¤

We note that in the case where η = 0, then Oil has no impact on the optimal

decisions of the agent and the value function Ju is the typical solution one obtains

in a standard Merton (1973) or Cox-Ingersoll-Ross (1985a) economy. In that case,

the condition on the coefficient au becomes:

a0 =
1

γ

{

ρ − (1 − γ)(α − γ
σ2

K

2
)

}

> 0. (20)

A lower bound to the value function is easily derived by choosing to never invest

in oil wells (i.e., setting dIt = 0 ∀t) and by choosing an arbitrary feasible consump-

13



tion policy C l
t = αK1−η

t (̄iQt)
η. Indeed, in that case we have:

dKt

Kt
= σK dwK,t (21)

It follows that if the following condition holds:

al := ρ + (1 − γ)

{

(1 − η) γ
σ2

K

2
+ η

(

ī + δ + γ
σ2

Q

2

)}

+ (1 − η) η (1 − γ)2
{

σ2
K

2
− ρKQσKσQ +

σ2
Q

2

}

> 0 (22)

then, we have

Jl(0, K0, Q0) := E

[
∫ ∞

0
e−ρt (C

l
t)

1−γ

1 − γ
dt

]

=
1

al

(C l
0)

1−γ

1 − γ
(23)

We collect the previous results and a few standard properties of the the value

function in the following proposition.

Proposition 2 If al, au > 0, the value function of problem (5) has the following

properties.

1. Jl(t, K, Q) ≤ J(t, K, Q) ≤ Ju(t, K, Q).

2. J(t, K, Q) is increasing in K, Q.

3. J(t, K, Q) is concave homogeneous of degree (1 − γ) in Q and K.

For the following we shall assume conditions (12) and (22) are satisfied, i.e., that

al, au > 0.

2.3 Optimal Consumption and Investment with Fixed Costs and

Irreversibility

We first derive the HJB equation and appropriate boundary conditions, as well as the

optimal consumption/investment policy based on a heuristic arguments due to the

14



nature of the optimization problem faced. Then we give a more formal verification

argument.

First, since the solution depends on the time variable t only through the discount-

ing effect in the expected utility function, we define the ‘discounted’ value function

J(K, Q), such that J(K, Q, t) = e−ρtJ(K, Q). Given that investment in new oil is

irreversible (Xt ≥ 0) and the presence of fixed costs, it is natural to expect that the

optimal investment will be infrequent and ‘lumpy’ (e.g., Dumas (1991)) and defined

by two zones of the state space {Kt, Qt}: A no-investment region where dIt = 0

and an investment region where dIt = 1. This is analogous to the shipping cone in

Dumas (1992), but with only one boundary because investment is irreversible.

2.3.1 Optimal Consumption Strategy in the No-Investment Region

When the state variables {Kt, Qt} are in the no-investment region, the numeraire

good K can be consumed or invested in numeraire-good production. In this region,

it is never transformed into new oil (dIt = 0). That is; J(Kt − β(Xt), Qt + X) <

J(Kt, Qt) and it is not optimal to make any new investment in oil. The solution

of the problem in equation (5) is determined by the following the Hamilton-Jacobi-

Bellman (HJB) equation:

sup
{C≥0}

{−ρJ + U(C) + DJ} = 0 (24)

where D is the Itô operator

DJ(K, Q) ≡ (f(K, īQ) − C)JK − (̄i + δ)QJQ

+
1

2
σ2

K
K2JKK +

1

2
σ2

Q
Q2JQQ + ρKQσKσQKQJKQ (25)

with JK and JQ representing the marginal value of an additional unit of numeraire

good and oil respectively. JKK is the second derivative with respect to K.

The first order conditions for equation (24) characterize optimal consumption.

At the optimum, the marginal value of consumption is equal to the marginal value

of an additional unit of the numeraire good; that is

C∗
t = J

− 1
γ

K . (26)

15



Similarly, at the optimum, the marginal value of an additional unit of oil deter-

mines the representative agent’s shadow price for that unit and we denote St as the

the equilibrium oil price. Define the marginal price of oil, St. That is, St solves

J(Kt, Qt) = J(Kt + Stǫ, Qt − ǫ). With a Taylor expansion, this implies

St =
JQ

JK
. (27)

2.3.2 Optimal Investment Strategy

We assume in equation (4) that there is a fixed cost when investing in new oil. This

increasing-returns-to-scale technology implies that the investment in new oil deci-

sion faced by the representative agent is an Impulse Control problem (see Harrison,

Sellke, and Taylor (1983)). As is well known, these problems have the character-

istic that whenever investment is optimal, the optimal size of the investment is

non-infinitesimal and the state variables jump back into the no-investment region.

Optimal investment is infrequent and lumpy.

The investment region is defined by J(Kt − β(Xt), Qt + Xt) ≥ J(Kt, Qt); that

is when the value of additional oil exceeds its cost. Of course, along the optimal

path, the only time when this inequality could be strict is at the initial date t = 0

with stocks {K0, Q0}.
12 Without loss of generality we assume that the initial capital

stocks {K0, Q0} are in the no-investment region. Let J1 = J(K∗
t , Q∗

t ) be the value

function before investment and J2 = J(K∗
t −β(X∗

t ), Q∗
t +X∗

t ) be the value function

right after the investment is made. The investment zone is defined by the value

matching condition.

J1 = J2 (28)

There are three optimality conditions that determine the level of numeraire good

K∗
t , the amount of oil Q∗

t , and the size of the optimal oil investment X∗
t at the

investment boundary. We follow Dumas (1991) to determine these super-contact

12If this is the case, there is an initial lumpy investment that takes the state variables into the
no-investment zone.
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(smooth pasting) conditions.13

J1K = (1 − βK )J2K (29)

J1Q = −βQJ2K + J2Q (30)

0 = −βX J2K + J2Q (31)

These equations imply that

(βX − βQ)J1K − (1 − βK )J1Q = 0. (32)

2.3.3 Reduction of number of state variables

Because the numeraire good production function is homogeneous of degree one

(f(k, q) = αk1−ηqη) and the utility function is homogeneous of degree (1 − γ),

the value function inherits that property. This implies that the ratio of oil to the

numeraire good is sufficient to characterize the economy. Indeed, let us define j(z)

as

J(K, Q) =
K1−γ

1 − γ
j(z) (33)

where z is the log of the oil wells to numeraire-good ratio

z = log

(

Q

K

)

(34)

The dynamic process for zt is obtained using a generalized version of Itô’s Lemma.

dzt = µztdt + σz dwz,t + ΛzdI∗t (35)

where wz,t is a standard Brownian motion,

µzt =

(

−(̄i + δ) −
1

2
σ2

Q

)

−

(

f(1, īezt) − c∗t −
1

2
σ2

K

)

, (36)

13For a discussion of value-matching and super-contact (smooth-pasting) conditions, see Du-
mas (1991), Dixit (1991) and Dixit (1993). If β

K
= β

Q
= 0 in equation (4) then we face an

Infinitesimal Control problem. In this case, the optimal investment is a continuous regulator (Har-
rison (1990)), so that oil stock before and after investment are the same. In this case, equations (29)
to (32) result directly from equation (28) as can be checked via a Taylor series expansion (as
shown in Dumas (1991)). To solve this case we consider two additional ‘super-contact’ conditions
−J1QK + β

X
J1KK = 0 and −J1QQ + β

X
J1KQ = 0.
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σz =
√

σ2
K
− 2ρKQσKσQ + σ2

Q
, (37)

Λz = z2 − z1, (38)

and the consumption rate, c∗t = C∗
t /K∗

t , is a function of zt.

The no-investment and investment regions are also characterized solely by zt.

Using the same subscripts as in equation (28), define z1 = log(Q∗
t ) − log(K∗

t ) as

the log oil to numeraire-good ratio just prior to investment. Similarly, define z2 =

log(Q∗
t + X∗

t ) − log(K∗
t − β(X∗

t )) as the log ratio immediately after the optimal

investment in oil occurs. z1 defines the no-investment and investment region. When

zt > z1 it is optimal to postpone investment in new oil. If the state variable zt

reaches z1, an investment to increase oil stocks by X∗
t is made. The result is that

the state variable jumps to z2 which is inside the no-investment region. Given the

investment cost structure in equation (4), the proportional addition to oil, xt, is just

a function of z1 and z2.

x∗
t =

X∗
t

Q∗
t

=
e−z1 − e−z2 − (βKe−z1 + βQ)

e−z2 + βX

(39)

The jump in oil wells is
Q2

Q1
= 1 + x∗ (40)

and, we can express the jump in the consumption good stock simply as:

K2

K1
=

1 − βK + ez1(βX − βQ)

1 + βX ez2
(41)

Finally, the optimal consumption from (26) can be rewritten in terms of j as:

c∗t =
C∗

t

K∗
t

=

(

j(zt) −
j′(zt)

(1 − γ)

)− 1
γ

(42)

Plugging this into the Hamilton-Jacobi-Bellman in equation (24) we obtain one-

dimensional ODE for the function j.

θ0j(z) + θ1j
′(z) + θ2j

′′(z) + γ

(

j(z) −
j′(z)

1 − γ

)1− 1
γ

+α(̄i ez)η
(

(1 − γ)j(z) − j′(z)
)

= 0 (43)
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where

θ0 = −ρ− γ(1− γ)
σ2

K

2
, θ1 = −(̄i + δ) + γσK (σK − ρKQσQ)−

σ2
z

2
, θ2 =

σ2
z

2
(44)

To determine the investment policy, {z1, z2}, the value-matching condition of equa-

tion (28) becomes:

(1 + ez2βX )1−γj(z1) −
(

1 − βK + ez1(βX − βQ)
)1−γ

j(z2) = 0 (45)

Lastly, using the homogeneity there are only two super-contact conditions to deter-

mine that capture equations (29), (30), and (31).14 They are

(1 − γ)ez1(βX − βQ)j(z1) −
(

1 − βK + ez1(βX − βQ)
)

j′(z1) = 0 (46)

(1 − γ)ez2βX j(z2) − (1 + ez2βX )j′(z2) = 0 (47)

The following proposition summarizes the above discussion and offers a verifica-

tion argument. Let us define the functions:

a(z) := j(z) −
j′(z)

1 − γ
(48)

F (x, y) :=

(

1 − βK + ex(βX − βQ)

1 + βX ey

)1−γ
j(y)

1 − γ
−

j(x)

1 − γ
(49)

(50)

Proposition 3 Suppose that we can find two constants z1, z2 (0 ≤ z1 ≤ z2) and a

function j(·) defined on [z1,∞), which solve the ODE given in equation (43) with

boundary conditions (45), (46), and (47), such that the following holds:

0 < a(z)−1/γ < M1 (51)

0 <
a(z)

j(z)
< M2 (52)

14In a similar way, if β
K

= β
Q

= 0 the two super-contact conditions presented in footnote (13)
become the same condition (1 + (1 − γ)ez1β

X
)j′(z1) − (1 + ez1β

X
)j′′(z1) = 0.

19



F (x, y) ≤ 0, ∀y ≥ x ≥ z1 (53)

0 = F (z1, z2) ≥ F (z1, y), ∀y ≥ z1 (54)

where M1, M2 are constants.

Then the value function is given by

J(t, K, Q) = e−ρt K
1−γ

1 − γ
j(z) (55)

where z = log Q
K . Further the optimal consumption policy is to set

c(zt) = a(zt)
−1/γ .

The optimal investment policy consists of a sequence of stopping times and invest-

ment amounts, {(Ti, XTi)}i=0,2... given by T0 = 0 and:

• If z0 ≤ z1 then invest (to move z0 to z2):

X∗
0 = Q0

e−z0(1 − βK ) − e−z2 − βQ

e−z2 + βX

(56)

Then start with new initial values for the stock of consumption good K0 −

β(X∗
0 , K0, Q0) and stock of oil wells Q0 + X∗

0 .

• If z0 > z1 then set X∗
0 = 0 and define the sequence of F-stopping times:

Ti = inf {t > Ti−1 : zt− = z1} i = 1, 2, . . . (57)

and corresponding FTi-measurable investments in oil wells:

X∗
Ti

= QTi

e−z1(1 − βK ) − e−z2 − βQ

e−z2 + βX

. (58)

Proof We define our candidate value function as J(K, Q, t) = e−ρt K1−γ

(1−γ)j(z), where

z = log(Q/K) as before and where we define j(z) as in the proposition for z ≥ z1

and where we set

j(z) =

(

1 − βK + ez(βX − βQ)

1 + βX ez2

)1−γ

j(z2), ∀z < z1.
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Applying the generalized Itô’s lemma to our candidate value function for some

arbitrary controls we find:

dJ(t, Kt, Qt) + U(t, Ct)dt = e−ρtK1−γ
t−

{ [

θ̂0(zt)j(zt) + θ̂1(zt)j
′(zt) + θ2j

′′(zt)

1 − γ
+

(ct)
1−γ

1 − γ
− a(zt) ct

]

dt

+ a(zt)σK dwK,t + {j(zt) − a(zt)}σQ dwQ,t + F (zt− , zt)

}

(59)

where for simplicity we have defined θ̂0(z) = θ0 + (1 − γ)α(̄iez)η and θ̂1(z) = θ1 −

α(̄iez)η and Ct = ctKt.

Now the definition of the function j(z) implies that

θ̂0(z)j(z) + θ̂1(z)j′(z) + θ2j
′′(z)

1 − γ
+ sup

c

[

(c)1−γ

1 − γ
− a(z) c

]

{

= 0 ∀z ≥ z1

< 0 ∀z < z1

Further, F (x, y) ≤ 0∀x ≤ y with equality only if x ≤ z1 and y = z2. Thus we have

that for arbitrary controls

J(T, KT , QT ) +

∫ T

0
U(t, Ct)dt ≤ J(0, K0, Q0) +

∫ T

0
e−ρtK1−γ

t−
a(zt)σK dwK,t +

∫ T

0
e−ρtK1−γ

t−
{j(zt) − a(zt)}σQ dwQ,t . (60)

Taking expectation (using the fact that the stochastic integral is a positive local

martingale hence a supermartingale) we obtain that for arbitrary controls

E

[

J(T, KT , QT ) +

∫ T

0
U(t, Ct)dt

]

≤ J(0, K0, Q0) (61)

For the controls proposed in the proposition equation (60) holds with equality.

Further, we have for these particular controls:

dJ(t, Kt, Qt)

J(t, Kt, Qt)
= −a(zt)

−1/γ a(zt)

j(zt)
dt + σJ

(

a(z)

j(z)

)

dwJ,t (62)

where wJ,t is a standard Brownian motion and

σJ (x) = (1 − γ)
√

x2σ2
K

+ 2x(1 − x)ρKQσK σQ + (1 − x)2σ2
Q
. (63)
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This implies that (using the assumptions that a(z)
j(z) ∈ (0, M1) and a(zt)

−1/γ ∈

(0, M2)) the stochastic integral in (60) is a martingale and that

lim
T→∞

E[J(T, KT , QT )] = lim
T→∞

J(0, K0, Q0)Ẽ

[

e
−

∫ T
0 a(zt)−1/γ a(zt)

j(zt)
dt

]

= 0.

where we have defined a new measure P̃ ∼ P by the Radon-Nikodym derivative

dP̃
dP = e

−
∫ T
0

1
2
σ

J

(

a(zt)
j(zt)

)2
dt+

∫ T
0 σ

J

(

a(zt)
j(zt)

)

dw
J,t .

¤

The Hamilton-Jacobi-Bellman equation with boundary conditions does not have

(to the best of our knowledge) a closed-form solution. In Appendix A we sketch the

numerical technique used to solve this system of equations.

In the following we characterize the equilibrium asset prices and oil prices.

3 Equilibrium Prices

The solution to the representative agent’s problem of equation (5) is used to char-

acterize equilibrium prices.15 We first describe the pricing kernel and financial asset

prices. Next, we use the marginal value of a unit of oil, as in equation (27), to

characterize the equilibrium spot-price of oil. Finally, we characterize the structure

of oil futures’ prices. Interestingly, with only a single source of diffusion risk, the

model produces prices that can have both jumps and a regime-shift pattern.

3.1 Asset Prices and the Pricing Kernel

Since in our model markets are dynamically complete, the pricing kernel is char-

acterized by the representative agent’s marginal utility (see Duffie (1996)). First,

15We do not consider conditions under which the representative agent’s problem we solve cor-
responds to the outcome of a decentralized competitive equilibrium with multiple agents. For the
case where there are no fixed costs the structure of our framework is similar to Dumas (1992) and
Uppal (1993) so we conjecture their results apply. For the case with fixed costs, the problem is
complicated by ‘local’ non-convexity of the production function (e.g., Guesnerie (1975)). We leave
the problem for future research and proceed under the assumption of a unique maximizing agent.
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define the risk-free money-market account whose price is Bt. The process for the

money market price is
dBt

Bt
= rtdt + ΛBdIt (64)

where rt is the instantaneous risk-free rate in the no-investment region. ΛB is a

jump in financial market prices that can occur when the lumpy investment in the oil

industry occurs. Note that the jumps, ΛBdIt, occur at stochastic times, but since

they occur based on the oil-investment decision, they are predictable.

The pricing kernel for our economy satisfies

dξt

ξt
= −

dBt

Bt
− λK,t dwK,t − λQ,t dwQ,t (65)

with ξ0 = 1. In the no-investment region (dIt = 0), the pricing kernel is stan-

dard. However, when investment occurs (dIt = 1), there is a singularity in the

pricing kernel (through the ΛBdIt term in dBt). This is consistent with Karatzas

and Shreve (1998), who show that in order to rule out arbitrage opportunities, all

financial assets in the economy must jump by the same amount ΛB.16

Proposition 4 In equilibrium, financial assets are characterized by:

ξt = e−ρt JK(Kt, Qt)

JK(K0, Q0)
(66)

rt = f1(Kt, īQt) − σK

(

λK,t + ρKQλQ,t

)

(67)

λK,t = −σK

KtJKK

JK
(68)

λQ,t = −σQ

QtJKQ

JK
(69)

ΛB = −
βK

1 − βK

(70)

where f1(., .) is the first derivative of the production function with respect its first

argument. Moreover, the equilibrium interest rate and market prices of risk are only

functions of the state variable zt, i.e., rt = r(zt), λK,t = λK(zt) and λQ,t = λQ(zt).
17

16The oil commodity price, St, is not a financial asset and may, as is described later, jump by a
different amount at the point of oil-industry investment.

17We decide to present these variables under {Kt, Qt} rather than under zt to show that these
expressions are similar to the standard results in a CIR economy.
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Proof Using that ξt ∝ UC(t, Ct) and the first order condition of equation (24) with

respect to consumption (and setting ξ0 = 1), we obtain equation (66). To get the

interest rate, market prices of risk dynamics, we apply the generalized Itô’s lemma

to the pricing kernel equation . ¤

The interest rate in the no-investment region is the marginal productivity of the

numeraire good adjusted by the risk of the technology as in Cox, Ingersoll Jr., and

Ross (1985) (CIR). The only difference in our model is the effect of the non-linear

technology f(k, q). Similarly, the price of risk in equations (68) and (69) is driven

by the shape of the productivity of the numeraire good. Interestingly, there can

be a jump (predictable) in asset prices that occurs each time investment in oil is

optimal (dIt = 1). From equation (29) we can calculate the size of the jump in the

stochastic discount factor and note that it depends only on the oil investment cost

structure. In particular, note that since 0 ≤ βK < 1, financial asset prices jump

down ΛB ≤ 0 if βK 6= 0. Effectively, the fixed investment costs create a wealth

effect, which increases marginal utility of the representative agent. Since financial

asset prices normalized by marginal utility must be martingales to avoid arbitrage

opportunities, prices must jump down to offset the jump in marginal utility. In

the case where βK = 0 both the state price density and financial asset prices are

continous (ΛB = 0).

3.2 Oil Spot Prices

The market-clearing spot price of oil is determined by the marginal value of a unit

of oil along the representative agent’s optimal path. This shadow price, from equa-

tion (27), is a function of the ratio of oil to numeraire good state variable, zt:

St =
JQ

JK
=

e−ztj′(zt)

(1 − γ)j(zt) − j′(zt)
(71)

To characterize the oil spot price behavior, consider the spot price at the investment

boundary, z1. From the smooth-pasting condition in equation (31), the oil price

immediately after new investment is

S2,t = βX (72)
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That is, oil’s value is equal to the marginal cost of new oil at the time of investment.

Immediately prior to new investment, the condition in equation (32) implies that

S1,t =
βX − βQ

1 − βK

(73)

which depends on both the fixed and marginal cost of acquiring new oil. Therefore,

at the point of investment, the oil price jumps by the constant ΛSS1,t where

ΛS =
βQ − βK βX

βX − βQ

(74)

Since oil is not a traded financial asset, the jump in the price of oil can be different

that the ΛB jump in financial prices. Only when there are no fixed costs (i.e.,

when investment is not lumpy) to investing in oil (βK = βQ = 0) are both prices

continuous. In general, oil prices jump by a different amount then financial asset

prices. It is possible to generate continuous asset prices and discontinuous oil prices

(βK = 0, βQ > 0). In that case, note that the oil prices jumps up at the time of

investment λS = βQ > 0. Alternatively, if βQ = βK βX , then oil prices have no

jump. In this case, the cost of oil investment from equation (4) is β(Xt; Qt, Kt) =

βK (Kt +βX Qt)+βX Xt. Since S2,t = βX , this implies that the fixed cost component

of investing in new oil wells is proportional to aggregate wealth in the economy at

the time of investment. The simulations that follow illustrate this case.

3.3 Oil Futures Prices

Given the equilibrium processes for spot prices and the pricing kernel, we can char-

acterize the behavior of oil futures prices in our model. Define F (z, t, T ) as the

date-t futures contract that delivers one unit of oil at date T given that the state of

the economy is z.18 The stochastic process for the futures price is

dFt

Ft
= µF,tdt + σFK,t dwK,t + σFQ,t dwQ,t + ΛF dIt (75)

where µF,t, σFK,t , σFQ,t and ΛF are determined in equilibrium following Cox, Inger-

soll Jr., and Ross (1985).

18Since the futures contracts are continuously market-to-market, the value of the futures contract
is zero.

25



Proposition 5 The equilibrium futures price F (z, t, T ) in equation (75) satisfies

µF,t = σFK,t(λK,t + ρKQλQ,t) + σFQ,t(λQ,t + ρKQλK,t) and F (z1, t, T ) = F (z2, t, T ),

implying ΛF = 0 and the following partial differential equation

1

2
σ2

K
Fzz + (µz + σK (λK,t + ρKQλQ,t) − σQ(λQ,t + ρKQλK,t))Fz + Ft = 0 (76)

with boundary condition

F (z, T, T ) = S(z). (77)

In many commodity pricing models the second factor used to describe futures

prices is the net convenience yield (see Gibson and Schwartz (1990)). Typically, this

assumption is motivated as a benefit for holding stocks (net of any storage or depre-

ciation costs). In these models, backwardation (downward sloping forward curve) is

implied by the convenience yield. For example, Casassus and Collin-Dufresne (2005)

present a reduced-form model with mean reversion in commodity prices. When the

spot price is high, the convenience yield is high and pushes the spot price back

toward a long-term mean (under the risk-neutral measure).19

The convenience yield is defined as the implicit return to the holder of the

commodity, but not to the owner of a futures contract. If the commodity St were a

traded financial asset, then the convenience yield would be the monetary dividend

flow that would have to accrue to its holder to guarantee the absence of arbitrage.

This is analogous to calculating the implicit convenience yield from the “cost-of-

carry” and the slope of the futures curve as in Routledge, Seppi, and Spatt (2000).

The following proposition presents the equilibrium cumulative convenience yield

in our economy:

Proposition 6 The implicit cumulative net convenience yield Yt has the following

dynamics 20:

dYt = ytStdt + ΛY StdIt (78)

19Mean-reversion in prices under the historical measure can also be due to time-variation in risk
premia.

20The continuous component of the convenience yield yt is a function only of zt, but as before,
we prefer to present this variable under {Kt, Qt} rather than under zt to deliver better economic
intuition from the result. In fact, the variable f2 would be expressed in terms of fz which has a
less clear economic meaning.
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where

yt =
ī

St
(f2(Kt, īQt) − St) − δ − σQ(θQ,t + ρKQθK,t) (79)

θQ,t = −σQ

QJQQ

JQ
(80)

θK,t = −σK

KJKQ

JQ
(81)

ΛY = ΛB − ΛS . (82)

An alternative representation of the continuous part of the convenience yield is:

yt = −Et

[

d
(

e−ρtJQ

)c

e−ρtJQ

]

(83)

where Xc denotes the continuous component of the process X.

Proof The convenience yield is determined implicitly from equilibrium prices using

the no-arbitrage condition for tradable assets

E∗
t

[

dSt

St

]

=
dBt

Bt
−

dYt

St
(84)

where E∗
t is the expectation under the equivalent martingale measure. The relation

between this expectation and the expectation under physical measure is:

Et

[

dSt

St

]

= E∗
t

[

dSt

St

]

−
dξt

ξt

dSt

St
. (85)

Applying Itô’s lemma to equation (27) and using equation (85) we can determine

dYt from equation (84). For the second part we observe that the spot price is pro-

portional to e−ρtJQ/ξt. Applying Itô’s lemma to this expression and using equation

(85) we can obtain that

E∗
t

[

dSc
t

St

]

= Et

[

d
(

e−ρtJQ

)c

e−ρtJQ
−

dξc
t

ξt

]

(86)

Using equation (65) and a continuous version of equation (84) we obtain equa-

tion (83). ¤
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Equation (78) shows two components of the convenience yield. The first is the

continuous component yt which accrues continuously. It depends on the marginal

productivity of oil in production. The endogenous convenience yield is increasing in

f2 and, hence, is increasing in the oil’s importance as a productive input, η. Also, yt

is decreasing in the commodity inventories, Qt. This implies that the convenience

yield is higher near the investment region.

The second component of convenience yield is the predictable jump that occurs

in prices at the time of oil investment. If oil were a traded asset then ΛY would

represent pure arbitrage profits that can be locked in by trading oil prices against

any other financial asset. Instead, the commodity is not a financial asset, and its

‘price’ is the shadow value to the consumers of using it as an input to production.

Finally, the second part of Proposition 6 gives a clear interpretation of the con-

venience yield in terms of the marginal productivity of a unit of oil in excess of its

financial cost St, its physical depreciation δ and an adjustment for supply shock

risk. Comparing equation (79) with that for the short rate r in equation (67) we

see a strong resemblance. Effectively, the convenience yield y can be interpreted as

an interest rate in an economy where we switch numeraire and use the commodity

instead of the consumption good. In that economy, rt would become a ‘convenience

yield’ on the consumption good.21

4 Model Estimation

In this section we want to understand the empirical properties of the model in

Sections 2 and 3. First, we use crude oil derivatives data, interest rates and economic

aggregates to estimate our model using a simulation based technique. Then we

discuss the implications of the model for commodity prices. In particular, we find

that two regimes arise in our economy due to the fixed cost components of the

investment. Finally, we do a simple estimation of a regime-switching model that

supports our findings.

21This isomorphism between convenience yield and interest rates is made by Richard and Sun-
daresan (1981) in a multi-good economy.
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4.1 Moments and SMM Estimation

We implement the Simulated Method of Moments (SMM) of Duffie and Single-

ton (1993). The main idea is to pick parameters that minimize the weighted dis-

tance between a set of model implied unconditional moments, GZ(ψ), and their

corresponding moment conditions from the data, GT .

We are mainly interested in the behavior of crude oil prices and how they are

related to macro variables such as interest rates, oil production, output (GDP) and

consumption. For this reason, we consider a vector gt of micro and macro variables

in a sample of size T . The set of unconditional moments are the sample averages

in our dataset, i.e., GT = 1
T

∑T
t=1 gt. In particular, our dataset is composed by the

following series: (i) crude oil futures prices for different maturities, (ii) volatility of

futures returns, (iii) aggregate consumption-output of capital ratio, (iv) aggregate

consumption of oil-output ratio and (v) real interest rates. It is important to note

that we include futures prices for different maturities to match a full term structure

of prices and volatilities.

To obtain the model implied moment conditions, we simulate our economy for a

given set of parameters ψ̂. Recall that the economy is uniquely determined by the

state variable zt defined in equation (34). The dynamics of zt is endogenous since it

depends on the optimal consumption and investment strategies. For this reason, we

first need to solve the Hamilton-Jacobi-Bellman equation in (43) with the numerical

technique described in the Appendix. Then, we simulate to obtain the implied

density function of z, f(z; ψ̂).22 We calculate the implied variables used for the

moment conditions as functions of z, g(z; ψ̂), and using the simulated density of zt

we compute the model implied moments as GZ(ψ̂) = EZ [g(z; ψ̂)] ≈
∫

g(z)f(z)dz.23

Due to the high computational burden of the simulation approach and numerical

solution of the HJB, we estimate only a subset the parameters ψ̂ (the remaining

ones are calibrated using available studies). The SMM parameter estimates solve

22To ensure convergence, we discretize the state space of zt ∈ [−20, 10] in a grid of 15,000 points
and then simulate weekly samples of the state variable for 105 years.

23In our model, the aggregate consumption-output of capital ratio is defined as Ct/f(Kt, ī Qt) and
the aggregate consumption of oil-output ratio is ī QtSt/f(Kt, ī Qt). Both ratios are only functions
of of the state variable zt.
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the following problem24

ψ∗ = argmin
ψ∈Ψ

[GZ(ψ) − GT ]′WT [GZ(ψ) − GT ] (87)

where WT is weighting or distance matrix. We choose WT to be the inverse of the

diagonal of the unbiased estimate covariance matrix of the sample averages. This

weighting matrix ensures that the scale of each moment condition is the same, and

gives more weight to less volatile moments.25

4.2 Data

For the SMM estimation we use quarterly time series from Q4/1990 to Q4/2004. We

build the series of crude oil futures prices and interest rates, private consumption,

GDP and petroleum consumption from OECD countries. Crude oil futures prices

are obtained from the New York Mercantile Exchange (NYMEX). We use contracts

with maturities of 1, 3, 6, 9, 12, 18, 24, 30 and 36 months. If a specific contract is

missing, we select the one with the nearest maturity. For the quarterly figures we use

the average prices within that period. To get the (annualized) volatility of futures

returns, we sample quarterly observations of a GARCH(1,1) estimated separately

for each (log) futures series using weekly prices. The volatilities time series are

necessary to use the weighting matrix described above. Consumption and output

data is from www.oecd.org. The aggregate data is available from Q1/1995 for all

OECD members (30 countries). For the initial years we build a proxy for the series

with the G7 countries data available from the same site. We assume that the GDP

ratio of the G7 countries and all OECD members was constant from Q1/1990 to

Q1/1995. Petroleum consumption data for OECD countries is from the U.S. Energy

Information Administration site (www.eia.doe.gov). Finally, the interest rate data

is from Federal Reserve FRED site (research.stlouisfed.org/fred2). To build

the real interest rate time series we also use the CPI series, which are obtained from

the same site.

The “Historical data” group in Table 2 shows the statistics of our sample. For

24The feasible set of parameters Ψ are all ψ such that the existence of the value function is
guaranteed (see equations (12) and (22)).

25Cochrane (2001) discusses the pros and cons of using different weighting matrices for the esti-
mation.
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the period considered the average futures curve is downward sloping, implying a high

degree of backwardation in crude oil prices (in our dataset 70% of the times the 6-

months maturity contract is below the 1-month maturity contract). The average

volatility term structure of futures returns is also downward sloping, implying high

degrees of mean-reversion (“Samuelson effect”). The average annual consumption-

GDP ratio in the data is 61.7% and is stable with a slightly increasing tendency. The

average annual consumption of oil-output ratio in the data is 1.6% and its volatility

is 0.004. This ratio is very stable most of the time, but it peeked in 1981 at almost

6%. The average annual real interest rate for this period was 1.5% with a volatility

of 1.5%. The interest rate becomes negative (in real terms) in the last two years of

the sample period. The low standard deviation of the macro variables compared to

the ones from crude oil prices and volatilities, yield a higher weight for the macro

moments in the SMM estimation.

4.3 Parameter Estimates

The complete set of parameters in our economy is given by ψ̂ = {α, η, ī, δ, σK , σQ ,

ρKQ , βK , βQ , βX , ρ, γ}. These are too many parameters for the simulation-based

estimation technique. We choose the productivity factor α, the input ratio ī, the

volatility of capital σK , the investment fixed cost βK and the risk aversion γ to be

the free parameters and set the others to reasonable numbers.26 This leaves the

parameter search space as ψ = {α, ī, σK , βK , γ} ⊂ ψ̂.

The oil share of income η is set to 0.04 which is consistent with recent RBC

studies that include energy as a production factor (see Finn (1995), Finn (2000) and

Wei (2003)). The depreciation rate of the commodity stock δ is set to 0.2, which

implies an average storage costs of around $4 per barrel. This figure is similar to

the one used in Ross (1997). The marginal production cost of oil is fixed at $12.5

per barrel. The fixed cost component βQ is chosen such that there is no jump

in prices at the investment boundary. For the volatility of sector Q, we calculate

the standard deviation of annual changes of petroleum consumption in our dataset

26While the selection of the parameters is somewhat arbitrary, it was driven by the extent to
which we could find existing studies that help with the calibration, and by the fact that we are
mostly interested in estimating the cost parameters β

K
, β

Q
, β

X
which are crucial for the predictions

of the model.
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(i.e., σQ = 0.013). Finally, we assume that the shocks to capital and oil stocks are

independent (ρKQ = 0) and that the patience factor ρ is 0.05.

The parameter estimates ψ∗ are marked with an asterisk in Table 1. The histori-

cal moments and their implied value using the SMM estimates are shown in Table 2.

Figure 3 shows the plots for the mean and volatility of futures prices. We can see

that the model successfully matches the unconditional moments of the futures data.

Specifically, it generates reasonable average futures prices and average volatilities of

futures returns across maturities. The model implies a decreasing and convex aver-

age futures curve, but with a smaller average degree of backwardation than the one

from our sample. Also, the model-implied standard deviations (SD) of futures prices

are very close to their sample counterparts.27 The GARCH volatility term struc-

ture has a better fit than the futures curve, mainly because of the implied degrees

of mean reversion in our model. The macro moments are matched almost perfectly,

because of their higher weight in the SMM estimation technique. The expected

consumption/GDP ratio is 61.7%, the expected petroleum consumption/GDP ratio

is 1.6% and the expected real interest rate is 1.5%.

4.4 Oil Spot Prices

Figure 4 plots the equilibrium oil price as a function of the state variable, zt, the log

ratio of oil stocks to the numeraire good. The oil price is driven by both current and

anticipated oil stocks. In the no-investment region, the supply of oil depletes as oil

is used in the production of the numeraire good. Far from the investment trigger,

the decreased supply of oil increases the price. The marginal cost of adding new

oil is βX (equation (4)). The fixed cost involved in adding new oil stocks implies

that it is not optimal to make a new investment as soon as the spot price (marginal

benefit of oil) reaches βX . Therefore the spot price rises above βX as oil is depleted.

However, closer to the investment threshold, the oil price reflects the expected lumpy

investment in new oil (i.e., the probability of hitting the investment threshold is high)

and the price decreases. The parameters in this example are such that ΛS = 0 so

the price is continuous at the investment threshold, i.e., S(z1) = S(z2).

The maximum price Smax in Figure 4 partitions the state space into two regimes.

27These sample SDs where not included as moments, but as weights in the SMM estimation.
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On the right side of the figure, where zt ≥ zSmax, is the far-from-investment zone.

In this region, investment in new oil is sufficiently unlikely in the short term, and

the oil price is decreasing in zt. On the left side of the figure, where z1 < zt ≤ zSmax,

is the near-investment zone. In this region, the likelihood of investing in new oil

dominates and the economy anticipates an increase in the supply of oil. This implies

that as zt declines the spot price decreases as well, because the probability of an

increase in oil stocks increases towards the investment boundary. Figure 5 shows

the probability of investing at least one time for different horizons. Since the state

variable is continuous inside the no-investment region, the probability in the near-

investment zone is higher than the one in the far-from-investment region. Of course,

the likelihood of investment is increasing in the horizon.

The fact that the oil price St is a non-monotonic function of the state variable

zt is an important feature of our model. Since the inverse function z(S) does not

exist, the oil price process is non-Markov in St. This is a feature found in the data.

Typically, more than one factor is required to match oil futures prices (see, for

example, Schwartz (1997)). Note in Figure 2 that two futures curves with the same

spot price are not identical. In our model, the “second factor” that is needed in

addition to the current spot price is whether the economy is in the near-investment

or far-from-investment region.

We state the equilibrium process for the oil price in terms of St and εt where εt

is an indicator that is one if zt is in the far-from-investment region, and two if zt is

in the near-investment region.

Proposition 7 The oil price in equation (71) is governed by the following two-

regime stochastic process

dSt

St
= µS(St, εt)dt + σSK (St, εt) dwK,t + σSQ(St, εt) dwQ,t + ΛSdIt (88)

µS(St, εt) = r(St, εt) − y(St, εt) +

σSK (St, εt)
{

λK (St, εt) + ρKQλQ(St, εt)
}

+

σSQ(St, εt)
{

λQ(St, εt) + ρKQλK (St, εt)
}

(89)

σSK (St, εt) = λK (St, εt) − θK (St, εt) (90)

σSQ(St, εt) = λQ(St, εt) − θQ(St, εt) (91)
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where

ε =

{

1 if z > zSmax

2 if z1 < z ≤ zSmax

(92)

and where r(St, εt) = rt, λK (St, εt) = λK,t and λQ(St, εt) = λQ,t as in Proposition 4,

y(St, εt) = yt, θK (St, εt) = θK,t and θQ(St, εt) = θQ,t as in Proposition 6, and ΛS is

defined in equation (74).

Proof First, we apply Itô’s lemma to the definition of the spot price St in equa-

tion (27). The dynamics of St depends on the third order terms JKKK , JKKQ, JKQQ

and JQQQ. We differentiate the HJB equation in (24) to simplify the resulting sde

for St and obtain equations (88) to (91). To show that the dynamics of St depends

only on {St, εt}, we note that there is a one-to-one mapping between {St, εt} and

zt. Using the reduction of states variables presented in subsection 2.3.3, we obtain

that all the variables in Propositions 4 and 6 are only a function of zt and thus of

{St, εt}. ¤

Figure 6 shows a typical path for the state variable zt (bottom plot) and the

oil price St (top plot). The horizontal lines below show the optimal investment

strategy (z1, z2) and the boundary between the two regimes zMax. Whenever zt hits

the investment boundary z1, it jumps back to z2 inside the no-investment region.

The process for zt is only bounded by below and exhibits mean reversion. When zt

is far from the investment trigger (zt is high) the drift of zt is negative, because the

production function f(k, q) uses oil to produce capital (and because of depreciation),

i.e., Q decreases while K increases. The simulated oil price is shown in the upper

part of the figure. The price is non-negative, bounded at SMax, and mean reverting.

Central to commodity derivative pricing are the conditional moments for the

spot-price process. Figure 7 plots the conditional instantaneous return and condi-

tional instantaneous volatility of return as a function of St. The second factor εt,

indicating if zt is in the far-from-investment or near-investment region, is 1 above

the dashed-line and 2 below this line. From the conditional drift, note that the oil

price is mean-reverting however, the rate of mean reversion (negative drift) is much

higher in the near-investment region. Similarly, the conditional volatility behaves

differently across the two regions. The sign of the volatility in the figure measures
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the correlation of the oil price with the shocks in numeraire good production (see

equation (3)). A positive shock to Kt means a negative change in zt (less oil relative

to the numeraire good). Recall from Figure 4, the decrease in zt implies an increase

in the spot price in the far-from-investment , hence a positive correlation. However,

in the near-investment region the spot price decreases implying a negative correla-

tion. At the endogenously determined maximum price, SMax, the volatility is zero

and the drift is negative, which means that the price will decrease almost surely.

The volatility of zSmax is non-zero, so there is uncertainty to which direction is the

state variable moving after being at this point.

In order for the regime shifting behavior of the spot price to be detectable (and

economically important), the unconditional distribution for the state variable, zt

needs to place some weight near the boundary of the near-investment and far-from-

investment regions. Figure 8 plots the probability density function (simulated) for

the state variable zt. This variable is bounded from below by z1. The distribution

has positive skewness. For our calibration, 91.1% of the time the oil price is above

the marginal cost (that is z1 < zt < z2) and 21.5% of the time the economy is in

the near-investment region (zt < ZSmax).28

4.4.1 Fixed Costs Effect

The fixed cost components βK and βQ of the irreversible investment play an impor-

tant role in the economy. Figure 9 makes a comparison of the probability density

function of zt and St for the cases without fixed costs and with large fixed costs (10

times the SMM estimates of βK and βQ). The upper left plot shows the PDFs of

zt and the commodity spot price St as a function of zt. Without fixed costs invest-

ment is infinitesimal (z1 = z2) and the state variable stays most of the time near

the boundary. Also, the price is always below the marginal cost βX . Given that

the production cost for non-OPEC countries is between $10 and $15 per barrel, we

can see that fixed costs are crucial to generate observed prices. The effect of the

fixed costs is also important for higher moments of commodity prices. Due to the

infinitesimal investment, crude oil prices are typically near the maximum price and

28Recall that for this example, we are assuming that the price is continuous, so S1 = S2 = β
X

.
This implies that St is above β

X
when z1 < zt < z2.

35



have low volatility.29 This creates a lot of negative skewness in the distribution of

the prices (see the upper right plot in this figure), implying that the futures curve

is backwardated almost 100% of the times. If we consider fixed costs, investment

is lumpy and the state variable jumps from the investment trigger to the optimal

oil-capital ratio. This creates an extra source of variability in the economy. In this

example, the fixed costs are so high that the oil price can achieve an unrealistic price

of almost $1500 per barrel. The volatility of price is low when the price is equal to

the marginal costs (returning point z2 after investment is made), so the price stays

low most of the times.30 This implies that high fixed costs could potentially generate

positive skewness (see the lower right plot in this figure) and very infrequent large

investments.

4.4.2 Investment Policy

The non-monotonic relation between the state variable, zt and the spot price, St, is

crucial for the regime shifting behavior of the spot price. The size of the hump in

Figure 4 is determined by the optimal investment policy z1 and z2. Alternatively, we

can see the investment policy as the investment trigger z1 and the relative size of the

investment, Xt/Qt. In order for the hump to be large, investment in new oil wells

needs to be large; that is the ratio Xt/Qt. To understand how investment policy is

affected by our model parameters, Figure 10 shows the investment strategy under

various parameters. The graph on the upper-left corner shows the effect of economies

of scale in the strategy. The bigger is the fixed cost component βK , the bigger are the

investment delay (z1 is decreasing in βK ) and the size of the investment. When the

fixed cost component is small, the number of new oil wells is low (in the limiting case,

investment is infinitesimal). The graph to the right shows that a higher marginal

cost delays investments and but the size of the investment increases. The lower-left

graph of figure 10 shows the investment strategy as a function of the oil share η.

If the oil share is very low, then investment is postponed indefinitely. As long as

oil becomes relevant for the production function, the investment trigger increases,

which means that investment is made earlier. The graph on the lower-right corner

shows the investment sensitivity to the risk aversion degree of the individuals. The

29As we show later, the volatility of prices is related to the drift of the price function, which in
this case is zero at the boundary.

30We discuss the non-monotonic price function in the next subsection.
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higher the degree of risk aversion the earlier is the investment undertaken (z1 is

increasing with γ). The intuition for this is that agents care more about smoothing

consumption, so they make investment decisions to stabilize the state variable zt.

These decisions are to invest a less amount more frequently.

4.5 Oil Futures prices

Figure 11 shows the futures prices for different spot prices and maturities. As with

the process for spot prices in Proposition 7, we can use the {St, εt} characterization

of the state variable zt with futures prices. The thick futures curves are for spot

prices in the far-from-investment region (εt = 1) while the thin lines are for spot

prices in the near-investment region (εt = 2). The mean-reversion in futures prices

is inherited from the bounded equilibrium oil price. When the oil price is low, the

state variable is far from the investment trigger. This means that the supply of

oil decreases on average, so the expected price in the future is above the current

price. In these situations the futures curves are upward-sloping or in contango

(for example, see the curve when St = 10 in figure 11). When the price is at the

maximum price the futures curves are downward-sloping, i.e., backwardation (see

the curves when St = SMax). The expected price is below the current price, because

of a high probability of an increase in oil supply. Figure 11 also shows that the

spot price is not sufficient to characterize the futures curve. For higher prices there

are two different futures curves that share the same spot price. One for the case

of St in far-from-investment and one for St in the near-investment region. The

futures curve are steeper when the spot price is in the near-investment region. This

is a direct implication of a likely sooner investment to create new oil. Our model

also generates non-monotonic curves (see the humped curve when St = 20 and

the economy is in the far-from-investment region). In these situations, there is an

expected shortage of oil in the short-run, but in the medium-run some new oil will

likely be created through investment. The case when St = 20 and the economy is

in the near-investment region has the opposite situation. Today the price is above

the marginal cost, but with a high probability there will be new investments, which

drops the expected price in the short-run and price is likely to rise in the medium

range.

Another way of understanding the behavior of the futures curves is in terms of
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interest rates and convenience yields. The no-arbitrage condition in equation (84),

shows that the instantaneous slope of the futures curve curve is related to the dif-

ference of interest rates and convenience yields. Figure 12 shows these two variables

in terms of the state variable zt. Interest rates in our model are fairly flat because

of a small marginal productivity of oil in the economy, η = 0.04 (see the plot in the

left). Thus, most of the variation in the instantaneous slope of the futures curve is

due to the variation in convenience yields (plot in the right of Figure 12).31 When

inventories of oil are low (near-investment region), the convenience yield is very

high, implying that the futures curves presents high degrees of backwardation in

the short term. When inventories are high (far-from-investment region), the conve-

nience yield is low and mostly dominated by the interest rates, implying an upward

sloping futures curve (contango).

Recall from equations (70) and (74) that both asset prices and Oil spot prices

may jump at the (predictable) investment in oil. However, as shown in Proposition 5,

futures prices are continuous and ΛF = 0. This is not surprising since a futures price

is a martingale (expectations under the equivalent measure of the future spot price)

and perfectly anticipate the spot price jump.

The volatility of the futures contract are shown in figure 13. To compare the

futures volatility for different oil spot prices we show the relative volatility which

we define as σF (St, εt; T − t)/σS(St, ε). This ratio corresponds to the inverse of the

optimal hedge ratio, which is the number of futures contracts in a portfolio that

minimizes the risk exposure of one unit of oil. This ratio is 1 when t = T , because

the futures price with zero maturity is the spot price. The thick lines show the

relative volatility for oil spot prices in the far-from-investment region and the thin

lines when the spot is in the near-investment zone. In general, the volatilities are

much lower for higher maturities, which is a consequence from the mean reverting

behavior of risk-adjusted prices (often called the Samuelson Effect). The figure also

demonstrates the non-linearity in equilibrium futures prices. First, the volatility

curves depend on the spot price. In affine reduce-form models for commodity prices

the (log) futures prices is linear on the (log) spot price (see for example Schwartz

(1997)). This implies that the hedge ratio is independent from the price level.32

31This is consistent with the evidence found for crude oil and interest rates in Casassus and
Collin-Dufresne (2005).

32In fact, the volatility ratio can also be expressed as FSS/F . In linear models this expression
can be a function of maturity, but not of the spot price S.
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Second, the curves are non-monotonic in the maturity horizon. For high prices,

the expected investment in oil (rise in supply) is reflected in the futures contract

and also in the volatility. For short maturities and very high prices the relative

volatility has an abrupt behavior because the volatility of the spot price is very low

(recall that σS(SMax, ε, t) = 0). A negative volatility in figure 13 implies a negative

correlation between the spot price and the futures price. This is something possible

for high prices. For example, consider that the price is high and the economy is

in the far-from-investment region, say, St = 25 and εt = 1 (thick line in the plot).

Here, the spot price is negatively correlated with shocks in zt (see figure 7). In the

near future, the price is expected to be in the near-investment region and to be

positively correlated with shocks in zt. This implies that the spot and futures price

can have negative correlation, which is shown with negative relative volatility values

in the figure.

4.6 Regime-Switching Estimation

In this section we estimate a linear approximated version of the commodity pric-

ing model in Proposition 7. This model has two regimes that corresponds to the

near-investment and far-from-investment regions. The model for the price is expo-

nentially affine conditional on any given regime. Despite the fact that we are lin-

earizing the conditional moments with our approximation, the model is non-linear

because of its regime switching characteristic. Estimating the linear approximation

version of the model has several advantages. First, the estimation is much sim-

pler because we can get an approximation of the likelihood in closed form, while in

the “exact” model everything has to be calculated numerically. Second, it is easier

to extend the exponentially affine model with regime shifts for derivative pricing

and risk-management applications. Finally, structural estimations typically need

information about the state variables, which in our case is difficult to observe. By

considering the approximated model we can base our estimation solely on observed

oil prices.

The main prediction of our model is that there are two different regions in the

economy, i.e., the near-investment and the far-from-investment zones. We consider

these two regimes in the approximated model. Figures 4 and 7 shows that the
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price behaves differently depending on the active region in the economy. The linear

approximation of out structural model is

dSt = µS(St, εt)Stdt + σS(St, εt)St dwS,t (93)

where

µS(S, ε) = α + κε(log[SMax] − log[S]) (94)

σS(S, ε) = σε

√

log[SMax] − log[S] (95)

and εt is a two-state Markov chain with transition (Poisson) probabilities

Pt =

[

1 − λ1dt λ1dt

λ2dt 1 − λ2dt

]

(96)

The process in equations (93)-(95) is exponentially affine conditional on being

in a regime, i.e., the process for the logarithm of the price has a linear drift term

and volatility. The linearization of these terms is a first order approximation of

the “exact” process for the oil price in equations (88) to (90). Equation (96) is

the transition matrix for the regime variable εt. Here, λi can be interpreted as the

intensity of a jump process for moving out of state εt = i. A second, less important

approximation is that these λ’s are constant, something that is not true in the exact

model since they depend in the price St (or in the state variable zt in a similar

way than the probability of investment presented in figure 5). We set εt = 1 in the

far-from-investment region and εt = 2 in the near-investment region.

Data Description and Estimation Method Our data set consists of weekly

Brent crude oil prices between Apr-1983 and Apr-2005 deflated by the US Consumer

Price Index. The average price is 16.29 dollars per barrel in 1983 prices (or 31.53

dollars per barrel in 2005 prices). The annualized standard deviation of weekly

returns is 38%. The skewness in crude oil prices for this period is 1.09 and the

excess kurtosis is 0.42.

The parameter space for the approximated model in equations (93)-(95) is given

by Θ = {α, κ1, κ2, σ1, σ2, SMax, λ1, λ2}. We use the maximum likelihood estimator
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for regime-switching models proposed by Hamilton (1989). We do a quasi-maximum

likelihood estimation by considering only the first two moment of the distribution.

This should not have a significant impact on the estimates because we are work-

ing with weekly data. The Hamilton’s estimators accounts for the non-linearities

due to the regime-shift characteristic of our model. A by-product of the estima-

tion technique are the smoothed inferences for each regime. We follow Kim’s (1993)

algorithm, which is a backward iterative process that starts from the smoothed prob-

ability of the last observation. The smoothed probabilities are important because

they give information about the true regime that was active any given day.

Results The parameter estimates and standard errors of our model are given

in Table 3. In general, most parameters are significant implying that there are

clearly two regimes in the data for the period studied. The parameters vary across

regimes implying that these regimes are significantly different. The economy stays

on average one year in the first regime, λ1 = 1.023, before switching to the second

regime. Moreover, the first regime is the most frequent one, since the economy stays

approximately 79.5% of the time in it (λ2/(λ1 + λ2) = 0.795). The economy stays

in the second regime on average a couple of months before jumping back to regime

1 (λ2 = 3.967). The parameter α = −0.184 is negative and significant implying

that the process for the price has an upper bound at SMax. Also, the estimate

for SMax is a reasonable upper bound given the historical path of crude oil prices

(Ln[SMax] = 4.469). Under the most frequent regime, the crude oil price follows a

strong mean-reverting process (κ1 = 0.319), i.e., the drift is positive for low spot

prices and negative for high prices. The infrequent regime is different, since the mean

reversion parameter κ2 is insignificant. Also, the second regime is characterized to

be more volatile than the first regime (σ2 > σ1).

Figure 14 shows the crude oil price and the inferred probability of being in the

near-investment state (regime 2). We can see that most of the time this probability

is low (thin line), implying that the economy stays mainly in the far-from-investment

regime. Also, when the probability is high, most of the times the price decreases

very sharply, which is a characteristic of the near-investment regime. In the far-

from-investment periods, the price seems to have a mean reverting behavior. Many

of these results are reflected also in the estimates of table 3. Figure 14 shows that the

near-investment regime is generally for high prices (like in figure 4), but sometimes
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it can be for low spot prices as well. This implies that in the exact model the fixed

cost components of the irreversible investment are high enough such that the average

price is above the marginal price. This allows to generate both, high and low prices

in the near-investment state.

The smoothed probabilities from the maximum likelihood estimation are also

important to validate the predictions about the futures prices. For this we do a

simple exercise. First, we use the smoothed probabilities to detect the periods of

time where the economy was under one regime or the other. Second, we group

the futures curve in different regimes according to the backed out dates.33 Third,

we sort the curves for both regimes by the price of the shortest maturity contract

(typically the one-month futures contract with price F1) and group them according

to this price.34 Finally, we compare the behavior of the futures curves under both

regimes with the predictions from our model. We follow a very simple approach for

this comparison by calculating the sample mean of the shortest maturity contract

(F1) and the average short-term curvature of the futures curve (F1 − 2F6 + F12).
35

Table 4 shows the results. There are three important results that validate our

model. First, for each regime the column “Nobs” shows the number of observations

in every bin (range of F1 prices). Just by comparing these columns for both regimes

we see that the median in the near-investment regime is higher than the one in the

far-from-investment regime. This confirms that on average the prices are higher in

the near-investment regime. Second, we can see that in both regimes the curvature

is positive for high prices and negative for low prices, implying mean reversion

under the equivalent martingale measure. This is one of the main predictions for

the futures prices in our model. Finally, we see that for high spot prices (i.e., the

first three bins {“30-”, “25-30”, “20-25”}), the curvature of the futures curve in the

short-term is higher in the near-investment investment region.36 This occurs in our

model because the convenience yield is higher in the near-investment region, which

implies higher degrees of backwardation.

33We have the futures curve for (Nymex) crude oil prices from Jan-90 to Aug-03.
34We use the notation Fi for the futures price of a contract with the nearest maturity to i months.
35The measure of curvature that we choose is the price of a portfolio of futures contracts, where

we have a long position in the one-month and one-year maturity contracts and a short position in
two six-month contracts. It is easy to see that this can be a measure of the second derivative of the
curve for short maturities (ω = F1 − 2F6 + F12).

36The results are similar when we use contracts with other maturities for the measure of curvature.
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4.7 Commodity Risk Premium

As shown in Figure 15 the model predicts that the commodity risk premium is time-

varying: it is positive in the far-from-investment regime but negative in the near-

investment regime. To understand why, consider a positive productivity shock which

results in increased oil consumption. This has two opposing effects on oil prices. On

the one hand, it reduces the available supply which tends to raise prices. On the

other hand, it brings the economy closer to the investment trigger, which tends to

lower prices via expected future higher supply. The latter effect dominates in the

near-investment region, whereas the former dominates in the far-from-investment

regime. This explains the switch in the sign of the covariance of oil price with

productivity shocks and therefore the time variation in commodity risk-premia.

To investigate empirically if we can find some support for the time variation in

risk-premia predicted by the model we run simple time series regression of returns

on investment in oil on the market return (proxied by the S&P 500). We allow for

the beta in the regression to be time-varying and use as conditioning variables the

smoothed inferred probability of being in the near-investment regime as well as the

slope of the futures curve. More specifically, we run the following regression:

re
j,t+1 = at + bt re

M,t+1 + ǫt+1

where at = a0 + a1 zt, bt = b0 + b1 zt and zt is the conditioning variable (i.e.,

near-investment regime probability or slope of futures curve). For the return on

the investment in oil we use two proxies. One is the return on a spot invest-

ment in oil (analogous to a buy and hold transaction in a stock). The other is

the return to a fully collateralized long futures position in oil (probably the more

common approach for investors to take positions in energy markets, e.g., Gorton

and Rouwenhorst (2005), Erb and Harvey (2005)). Figure 16 shows the cumulative

returns associated with both strategies. The return to the futures strategy clearly

dominates the spot return strategy reflecting the existence of a convenience yield,

the non-monetary dividend which accrues to the holder of the spot but not of the

futures contract.

The result of the regression are presented in table 5. They provide support for the

fact that risk-premia on oil are time varying and related to the investment regime. In
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particular, consistent with the prediction of our theoretical model, the risk-premium

is significantly negatively related to the smoothed probability of being in the near-

investment regime. Note that the coefficient on the market return interacted with

the near-investment regime probability is very significant for both commodity spot

and futures return series (cf. row 2 of panels A and B in table 1). Conditioning

on the regime probability increases the R2 from 1% to around 5%. On the other

hand, the slope of the futures curve predicts significantly only the return on the spot

price and not on the collateralized futures position. This is consistent with the fact

that, to a first order, the slope at the short end of the futures curve moves with the

convenience yield. When the slope increases, the convenience yield decreases and

the return on the spot position, which is effectively an ex-dividend return, increases

(as can be seen from the very significant positive coefficient on slope in row 3 of

panel A). On the other hand, the return to the collateralized futures position is not

significantly affected by a change in the convenience yield (the coefficient in row 3

of panel B on slope is not significant). This suggests that commodity risk premium,

while time-varying, is not driven by the slope of the futures curve.

We note that most other coefficients are not statistically significant, which in-

dicates that there is little evidence for an unconditional risk-premium for investing

in oil (at least in our data set). The biggest gain in predictability appears to come

from conditioning on the investment regime.37

5 Conclusion

We develop an equilibrium model for spot and futures oil prices. Our model consid-

ers the commodity as an input for a production technology in an explicit way. This

feature endogenizes one of the main assumptions in standard competitive models of

storage, i.e., the demand function. Our model generates positive convenience yields

and long period of backwardation in futures curves without the necessity of run-

ning out of oil, like in the standard “stock-out” literature. Convenience yields arise

37Our predictability results are robust to using discrete or log returns for market and/or com-
modity returns. They are also unchanged if we use excess returns instead of gross returns. One
caveat applies with respect to our use of the regime probability: The coefficients of the model used
to infer the smoothed probability of the regime have been estimated with the whole data, and
therefore there is somewhat of a forward looking bias in that statistic. This is typical of this type
of study, e.g., Lettau and Ludvigson (2001).
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endogenously due to the productive value of the oil, which is consistent with the pre-

dictions of the “Theory of Storage”. This convenience yield is high when the stocks

of commodity are low, and viceversa. By modeling explicitly risk-averse agents, we

can investigate risk-premia associated with holding of stocks of commodities versus

futures contracts.

Equilibrium spot price behavior is endogenously determined as the shadow value

of oil. Our model makes predictions about the dynamics of oil spot prices and futures

curves. The equilibrium price follows an heteroscedastic mean-reverting process.

The spot price is non-Markov, because there are two regimes in our economy that

depend on the distance to the investment region. For reasonable parameters, the

futures curves are most of the time backwardated. Also, the two regimes imply that

two futures curve with similar spot prices can have very different degrees of back-

wardation. Further, the model predicts time varying risk premium on oil: positive

in the far-from-investment regime and negative in the near-investment regime.

We estimate the model using the Simulated Method of Moments for futures

prices and macroeconomic data. We find that the model captures many of the

stylized facts of our data set. In particular, our model can reproduce the mean and

volatilities of futures prices for maturities up to 36 months and also the average

consumption-output ratios, consumption of oil-output ratio and real interest rates.

We estimate a linear approximation of our model with crude oil prices from 1983 to

2004 and find evidence for regime switching behavior consistent with the predictions

of the model. Further, we find that, consistent with the model predictions, excess

returns on oil are predictable and related to the inferred probability of investment

regime.
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Appendix

A Numerical Techniques

In this appendix we delineate the numerical algorithm used to solve the Hamilton-Jacobi-Bellman
equation in (24) with boundary conditions represented by equations (28) to (31).

The first step is to use the homogeneity of the solution to reduce the state space (see Subsection
2.3.3). After this is done, the solution of the problem is represented by a nonlinear second order
ODE in the state variable zt = log(Qt/Kt). The boundary conditions are also expressed in terms of
zt. Now, we need to determine the value function j(z) in equation (33). The nonlinear HJB equation
for j(z) depends on (i) the optimal control c∗t , and on (ii) the optimal investment strategy {z1, z2}
determined by the boundary conditions. Unfortunately, the optimal control itself depends on the
value function j(z). This implies that j(z), c∗t , z1 and z2 need to be simultaneously determined.

We use an iterative method to solve for j(z). The main idea is to build a conditionally linear
ODE for j(z) so it is possible to apply a finite-difference scheme. The selection of the initial guess
is extremely important for the convergence of the iteration. We assume that j0(z) = 1 which
corresponds to the solution when the oil is not relevant for the production technology (η = 0). In
this case we also know that it is never optimal to invest z0

1 → ∞.

For every iteration m (for m = 0 . . .∞) we do the following steps:
• Determine the optimal consumption c∗m as a function of jm(z) using equation (42).

• We recognize that the ODE for jm+1(z) determines the value function when it is optimal
not to invest in new stocks of commodity. We name this function as jm+1

noinv(z). We calculate
the coefficients of the ODE for jm+1

noinv(z). It is important to notice that this ODE is linear
conditional on c∗m.

• Determine the optimal commodity/capital ratio zm+1
2 using the super contact condition

in equation (47). Conditional that it is optimal to invest in new commodity stocks, the
returning point is always zm+1

2 independent of what was the value of zt before investment
was made. Using this argument we define the extended value matching condition as

jm+1
inv (z) = jm(zm+1

2 )

(

1 − β
K

+ ez(β
X

− β
Q

)

1 + e(zm+1

2
)β

X

)1−γ

. (A1)

This equation represents the value function when the representative agent is forced to invest.

• Use a finite-difference scheme to solve for the value function jm+1
noinv(z). The finite difference

discretization defines a tridiagonal matrix that needs to be inverted to determine the value of
jm+1
noinv(z). Instead of doing this, we eliminate the upper diagonal of this matrix. At this point

the value of jm+1
noinv(z) depends only on the value of jm+1

noinv(z−∆z). We choose a zmin negative
enough to ensure that at that level it is optimal to invest, and then we solve the value function
for higher zt. At every point we choose the maximum of the value from investing (jm+1

inv (z))
and the value of no investing which comes from the finite-difference scheme. This maximum
determines the value of jm+1(z). The optimal trigger zm+1

1 is endogenously determined when
the representative agent is indifferent between investing and postponing the investment. The
algorithm described above is a more efficient way than solving independently for jm+1

inv (z)
and jm+1

noinv(z) and then choosing jm+1(z) = max(jm+1
inv (z), jm+1

noinv(z)).

• Check for the convergence condition. If it not satisfied we start a new iteration with the
updated value of jm+1(z).

46



Once j(z) has converged it is straight forward to calculate spot commodity prices from equation
(71). For the futures prices we use an implicit finite-difference technique. This is simpler than the
solution for j(z) since the coefficients of the PDE and boundary conditions and boundaries {z1, z2}
are known at the beginning of the scheme.
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Production technologies

Productivity of capital K (∗) α 0.128
Importance of oil η 0.04
Demand rate for oil (∗) ī 0.104
Volatility of capital (∗) σ

K
0.364

Volatility of oil stocks σ
Q

0.013
Correlation of capital and oil shocks ρ

KQ
0

Depreciation of oil δ 0.20

Irreversible investment

Fixed cost (K component) (∗) β
K

0.012
Fixed cost (Q component) β

Q
0.150

Marginal cost of oil β
X

12.5

Agents preferences

Patience ρ 0.05
Risk aversion (∗) γ 0.52

Table 1: Parameters from the calibration exercise.
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Historical data Model

Moment conditions Sample Sample Uncond. Uncond.
average SD Mean SD

Futures prices - 01 23.53 7.31 21.74 6.19
Futures prices - 03 23.11 6.93 21.69 5.94
Futures prices - 06 22.52 6.36 21.64 5.56
Futures prices - 09 22.07 5.90 21.59 5.21
Futures prices - 12 21.73 5.54 21.56 4.87
Futures prices - 18 21.29 5.01 21.50 4.24
Futures prices - 24 21.07 4.63 21.46 3.69
Futures prices - 30 21.01 4.40 21.43 3.22
Futures prices - 36 20.92 4.22 21.41 2.86

Volatility - 01 0.251 0.028 0.203 0.153
Volatility - 03 0.222 0.036 0.202 0.136
Volatility - 06 0.183 0.043 0.195 0.115
Volatility - 09 0.156 0.047 0.187 0.099
Volatility - 12 0.138 0.049 0.177 0.088
Volatility - 18 0.117 0.049 0.156 0.073
Volatility - 24 0.102 0.039 0.136 0.065
Volatility - 30 0.095 0.031 0.118 0.061
Volatility - 36 0.098 0.039 0.104 0.057

Consumption/GDP 0.617 0.008 0.616 0.019
(Petroleum consumption)/GDP 0.016 0.004 0.017 0.007

Real interest rates 0.015 0.015 0.015 0.002

Table 2: Historical and implied moments by the model using parameters in Table 1.
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far-from-investment state near-investment state

Parameter Estimate t-ratio Parameter Estimate t-ratio

λ1 1.023 3.1 λ2 3.967 2.5
1/λ1 0.978 1/λ2 0.252

λ2/(λ1 + λ2) 79.5% λ1/(λ1 + λ2) 20.5%
κ1 0.319 2.2 κ2 0.253 0.5
σ1 0.287 12.4 σ2 -0.790 7.2

Common parameters

Parameter Estimate t-ratio

α -0.184 -1.7
Ln[SMax] 4.469 3.9

Table 3: Quasi-maximum likelihood estimates for the regime-switching model for
weekly deflated Brent crude oil prices between Jan-1982 and Aug-2003.

F1 oil prices far-from-investment state near-investment state

($/barrel) Nobs F1 F1 − 2F6 + F12 Nobs F1 F1 − 2F6 + F12

30- 41 32.4 114.9 32 33.1 181.8
25-30 93 27.3 3.0 35 27.9 92.7
20-25 189 21.8 31.9 17 21.7 41.5
15-20 237 18.1 -7.2 13 18.2 -34.1
10-15 54 13.5 -28.7 2 12.4 -182.0

Table 4: Sample mean of the shortest maturity contract (F1) and average short-
term curvature of the futures curve (F1 − 2F6 + F12) under different regimes and
for different groups of crude oil prices between Jan-1990 and Aug-2003. The active
regime is inferred by the estimation of the regime-switching model.
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A. Coefficient estimates for crude oil returns

Additional Regressors

Row Constant re
M,t+1

pt pt · r
e
M,t+1

slt slt · r
e
M,t+1

R2

1 -0.07 -0.20 0.01
(0.11) (1.47)

2 0.17 0.05 -0.88 -1.23 0.05
(0.23) (0.30) (0.45) (2.95)

3 0.48 -0.19 78.86 -2.74 0.03
(0.71) (1.37) (2.28) (0.38)

B. Coefficient estimates for collateralized futures returns

Additional Regressors

Row Constant re
M,t+1

pt pt · r
e
M,t+1

slt slt · r
e
M,t+1

R2

1 1.05 -0.17 0.01
(1.67) (1.28)

2 1.12 0.06 -0.07 -1.17 0.04
(1.54) (0.41) (0.03) (2.85)

3 0.87 -0.19 -22.32 -2.72 0.01
(1.28) (1.38) (0.65) (0.37)

Table 5: The table presents the a and b estimates from the following time-series
regressions: re

j,t+1 = at + bt re
M,t+1 + ǫt where at = a0 + a1 zt, bt = b0 + b1 zt and zt

is the scaling (conditioning) variable. The term re
j,t+1 in the regressions is the (log)

real excess return of crude oil spot prices (Panel A) or the (log) real excess return
of the collateralized futures strategy (Panel B). re

M,t+1 is the real excess return of
the value-weighted CRSP index. The scaling variables zt are the smoothed inferred
probability of being in the near-investment regime, pt, and the slope no the futures
curve, slt. The t-statistics is presented in parentheses below each coefficient estimate.
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