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ABSTRACT

Mobile sources contribute large percentages of each pollutant, but technology is not yet

available to measure and tax emissions from each vehicle. We build a behavioral model of household

choices about vehicles and miles traveled. The ideal-but-unavailable emissions tax would encourage

drivers to abate emissions through many behaviors, some of which involve market transactions that

can be observed for feasible market incentives (such as a gas tax, subsidy to new cars, or tax by

vehicle type). Our model can calculate behavioral effects of each such price and thus calculate car

choices, miles, and emissions.

A nested logit structure is used to model discrete choices among different vehicle bundles.

We also consider continuous choices of miles driven and the age of each vehicle. We propose a

consistent estimation method for both discrete and continuous demands in one step, to capture the

interactive effects of simultaneous decisions. Results are compared with those of the traditional

sequential estimation procedure.
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The standard case for market-based incentives requires a tax or price on each unit 

of emissions.  Each form of abatement is then pursued until the marginal cost of reducing 

pollution matches the tax per unit of pollution, and the resulting combination of abatement 

technologies minimizes social costs (Pigou, 1920).  For vehicles, a tax on emissions could 

induce drivers to: (1) buy a newer, cleaner car, (2) buy a smaller, more fuel efficient car, 

(3) fix their broken pollution control equipment, (4) buy cleaner gasoline, (5) drive less, (6) 

drive less aggressively, and (7) avoid cold start-ups.1   Moreover, economic efficiency 

requires different combinations of these methods for different consumers: some lose little 

by switching to a smaller car, some could easily walk, and some just pay the tax.  

Yet the technology is not available to measure each car’s emissions in a reliable 

and cost-effective manner.  On-board diagnostic equipment is imperfect, and it is costly to 

retrofit millions of vehicles (Harrington and McConnell, 2003).  Remote sensing is less 

expensive and has been used to identify high-polluting vehicles, but it cannot measure 

emissions clearly enough to tax each car.2  Moreover, vehicle emissions are important.  In 

2001, vehicles in the U.S. contributed 27 percent of volatile organic compounds (VOC), 37 

percent of nitrogen oxides (NOx), and 66 percent of carbon monoxide (CO) emissions.3   

For these reasons, vehicle emission policies have relied almost solely on mandates: 

refineries must make clean gasoline, and new cars must meet required emission standards.4  

These command and control (CAC) policies miss the opportunity to reduce social costs by 

harnessing individual incentives, however, as the mandated combination of abatement 

methods is unlikely to match the combination that households would choose if faced with a 

tax on emissions.  In fact, the cost of abatement using such mandates can be several times 

the minimum cost achieved by using an emissions tax (Newell and Stavins, 2003).   

While the inability to measure emissions may preclude a vehicle emissions tax, it 

does not preclude any use of incentives.  Those who sell new or used cars or light-trucks 

                                                           
1 Heeb et al (2003) find that cold start emissions rates (in g/km traveled) exceed stabilized emissions rates by 
a factor of two to five, depending on the pollutant. Sierra Research (1994) finds that a car driven aggressively 
has carbon monoxide emissions that are almost 20 times higher than when driven normally. 
2 See Sierra Research (1994). Remote sensing in Texas (http://www.tnrcc.state.tx.us/air/ms/vim.html#im3) 
and Albuquerque NM (http://www.cabq.gov/aircare/rst.html) is used in 2005 to identify polluting vehicles. 
3  See http://www.bts.gov/publications/transportation_statistics_annual_report/2004/.  We focus on local 
pollutants, where emission rates depend on car characteristics.  In contrast, CO2 is linked directly to gas use. 
4 In the U.S., new cars face emission standards of .254 grams/km of HC’s, 2.11 grams/km of CO, and .248 
grams/km of NOx.  Light trucks face a variety of weaker standards, but all are scheduled to become more 
stringent.  These figures pertain to a test in the U.S. with a cold start-up phase, a transient phase at different 
speeds, and a hot start phase, for a total distance of 18 km at an average speed of 34 km/h. 
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can collect tax on vehicle characteristics that are associated with emissions, or provide 

subsidy for vehicles with low emissions.  Most states charge annual registration fees that 

can be made to depend on vehicle characteristics.  Such policies might reduce emission 

rates, while changes in the gasoline tax can reduce miles driven.5 

What vehicle characteristics or behaviors should be targeted by a tax or subsidy?  

How would consumers react to those new incentive instruments?  How much would each 

tax reduce emissions?  To address these questions, we build a general purpose model of 

discrete choices by households about how many cars to own and what types of cars to own, 

plus continuous choices about how far to drive.  In our model, we embrace individual 

heterogeneity.  We estimate all decisions simultaneously, and we use the estimated 

parameters to predict the effects of certain price changes on choices and on emissions.   

Several existing papers explore market incentives that could be used in place of a 

tax on emissions.6 In addition, several papers estimate models of the discrete choice among 

vehicle bundles (including number, size, and age categories).7  Some models estimate the 

demand for gasoline or for vehicle miles traveled (VMT) as functions of price and income 

(as reviewed in Harrington and McConnell, 2003).  As well, we note that other models 

predict emissions.8  A major contribution of our research, then, is to include all such 

choices simultaneously.  In general, we capture the effect of any price change on each 

household’s choices about the number of vehicles to buy, the type and age of each, the 

consequent emissions rates, miles driven, and the consequent total emissions.   

In a two-step procedure, Dubin and McFadden (1984) estimate a discrete choice 

model (for household appliances) and use the predicted shares to correct for endogeneity in 

the estimation of a continuous choice (usage hours).   Others extend this model to the 

discrete choice among vehicle bundles and a continuous choice of miles (e.g. Goldberg, 

1998, and West, 2004).  Yet, a single set of parameters appear both in the indirect utility 

                                                           
5 A new higher gas tax may be politically unlikely, yet it is still worth studying to know its power as an 
emissions-reduction tool.  And even if governments are unlikely to use tax dollars to pay for the various 
subsidies we study here, these incentives might instead be provided to drivers by private companies that want 
to purchase “offsets” – reductions in vehicle emissions to offset their increases from stationary sources.  For 
all of these reasons, we find it important to study specific incentives to drivers.  
6 For examples, see Eskeland and Devarajan (1996), Innes (1996), Kohn (1996), Train et al (1997), Plaut 
(1998), Sevigny (1998), and Fullerton and West (2000, 2002). 
7 See McFadden (1979), Mannering and Winston (1985), Train (1986), Brownstone et al (1996), Goldberg 
(1998), Brownstone and Train (1999), West (2004), and other papers reviewed in McFadden (2001). 
8 For example, the U.S. Environmental Protection Agency (U.S. EPA, 1998, p.3-68) discusses the use of 
EPA’s MOBILE5a model or California’s EMFAC7F model. 
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function used to estimate discrete choices and in continuous demands.  Using this 

sequential procedure, the estimated parameters of the continuous demand are not 

constrained to match the same parameters in the estimated discrete choice model.   

Relative to this literature, we make a number of contributions.  First, we capture the 

simultaneity of these decisions by proposing a method for consistent estimation of both 

discrete and continuous choices in one step, yielding a single set of parameters.  In other 

words, whereas the Dubin-McFadden method corrects for selection of vehicle on the 

choice of miles, our simultaneous procedure also allows for heterogeneity in actual fuel 

demand to affect the choice of vehicle.9  Second, we allow for two continuous choices of 

miles – in each vehicle of a two-vehicle household.  These choices are bundle-specific.10  

Third, we allow for an additional continuous choice of the age of each vehicle.  Fourth, we 

use the estimated parameters not only to predict changes in choices about vehicles and 

miles, but also how those choices affect emissions.11 

For several reasons, we deviate from discrete vehicle types used in prior literature 

(including age and size categories).  First, we have no need to model the choice among 

hundreds of vehicle types, as in prior studies of manufacturer product differentiation, since 

all cars in a given year are made to a single emission rate standard.  Second, a different, 

weaker emission standard has applied to “sports utility vehicles” (SUV, for short, but 

defined here to include all light trucks and vans).  Emission rules for new vehicles do not 

depend on engine size.  We therefore model the choice between car and SUV, rather than 

engine size.  Even for older vehicles, when we use data described below in separate 

regressions for cars and SUV’s, we find that engine size is not an important determinant of 

emission rates. Third, those regressions find that vehicle age is very important for emission 

rates.  We wish not to lose information by aggregation into finite age categories (e.g. new 

                                                           
9 Hanemann (1984) proposes a method to estimate these demands simultaneously, but his method does not 
consider unobserved individual heterogeneity – a key factor in the Dubin-McFadden model. Our model 
captures the individual unobserved heterogeneity.  Bento et al (2005) and Bhat (2005) are also working on 
models with simultaneous discrete and continuous choices. 
10 With a higher price of gas, some households might drive fewer miles in their SUV and more in their car.  
We do not estimate separately the miles in each vehicle, but we do estimate a change for the (Car, SUV) 
bundle that can differ from the (Car, Car) bundle.  Other papers have estimated substitution between vehicles 
within the family, but they treat the vehicles as given rather than chosen.  Greene and Hu (1985) find that this 
kind of substitution occurs to a large extent in some households, while Sevigny (1998) finds small effects.   
11 Our household responses represent market outcomes only if supply curves were horizontal.  The simulation 
of a change in the price of getting a car that is one year newer can be interpreted as a new local tax or subsidy 
in a small open jurisdiction that can import more of those newer cars at a constant price.  However, our 
demand system could be combined with some other estimates of supply to calculate equilibrium outcomes.  
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vs. old).  Age is a continuous variable, and the choice of vehicle age is a continuous 

demand that affects emissions.12  If a household in our model chooses to own two vehicles, 

then it has four continuous choices: age of each vehicle and miles to drive each vehicle.13 

Age is normally measured in years, of course, but our model requires a price that 

does not depend on the amount demanded.  The price of age is not linear, because owning 

a brand-new car costs more depreciation per year than owning an old car.   Instead of using 

age in years, we therefore construct a continuous choice variable called “Wear” that 

measures the fraction of the vehicle that has depreciated (between 0 and 1).  A constant 

rate of depreciation means that  Wear  is a nonlinear function of age, but then the price per 

unit of  Wear  does not depend on its amount.  This constant price is estimated for each 

vehicle type using hedonic price regressions below.  Next, in order to separate this choice 

of vehicle attribute from the choice of vehicle, we assume that the discrete choice is about 

a brand-new “concept vehicle.”  Then the household gets reimbursed by the price of  Wear  

for accepting an older car.  In other words, in our model, a household makes simultaneous 

decisions about which concept vehicles, how old, and miles to drive. 

As it turns out, results for all continuous demands are broadly similar for the 

sequential and simultaneous models.  For discrete choices, however, our simultaneous 

model finds substantially larger effects from a change in the gas price per mile, income, or 

vehicle-specific costs.  Signs of some elasticities are reversed.  In other words, household-

specific heterogeneity does affect discrete choices.   

The next section describes a behavioral choice model for one-vehicle households 

and then extends it to consider two-vehicle bundles.  It also presents a new method 

designed for jointly estimating all discrete and continuous choices.  Section II describes 

data sources and provides summary statistics, while III provides estimation results for both 

discrete and continuous demands.  Section IV compares elasticities, and V concludes.  

I. The Model and Estimation 

In our model, an agent representing each household faces a discrete choice among 

a finite number of vehicle bundles.  The nesting structure is shown in Figure 1.  One 
                                                           
12 Older vehicles have higher emissions both because older vintages were produced to weaker standards and 
because pollution control equipment deteriorates with age.  Panel data would be required to distinguish these. 
13 Fullerton and West (2000) also simulate effects of incentives in a model of heterogeneous households’ 
continuous choices of car size, car age, and  VMT,  but they use calibrated rather than estimated parameters.  
That model avoids discrete choices, but it considers only one car per agent.  In our model, we estimate 
discrete choices to consider the household’s number of vehicles.  
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choice is the number of vehicles (0, 1, or 2), and another choice for each vehicle is the 

type of vehicle (a car or an SUV).  We thus have six final bundles, as shown in the figure 

and listed in Table 1.  Other choices important for emissions of each vehicle are the 

continuous choice about vehicle miles traveled (VMT) and vehicle age.  To obtain a 

choice variable with a linear price, we construct “Wear”  as the fraction of the vehicle 

used up by depreciation.  It is calculated for each car in our sample by assuming 20% 

depreciation per year, so  Wear = 1 – (1 – 0.2)age.  Thus, a new car has  Wear = 0. 

  

Figure 1: Nesting Structure for Choice among Vehicle Bundles 

 

Then, since choice of age is considered separately, each discrete vehicle bundle 

must be defined in a way that is independent of age.  For this reason, we define each 

“concept” vehicle as a bundle of attributes of a brand-new vehicle (car or SUV).  The 

household must pay the price of that brand-new vehicle (the “capital cost”), but then it gets 

back some money for accepting Wear on that vehicle (the “reimbursement” price of Wear). 

Our demand system now has several distinguishing characteristics.  First, it 

incorporates all of these discrete and continuous choices simultaneously.  Second, some 

unobserved characteristics might affect both kinds of choices.  For example, an agent 

who lives far from work may drive more and thus prefer a larger, more comfortable car.  

Yet, a more comfortable car may increase the satisfaction of driving and thus induce the 

driver to drive more.  Third, many households have two cars with multiple continuous 

choices.  Consequently, the substitution structure in  VMT  and  Wear  among different 

vehicles is important in order to understand the effects of policy on driving behavior. 
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Since the discrete choice in Dubin and McFadden (1984) involves only two 

alternatives, that paper can use a simple logit model.  Our model has six choices, 

however, and so we require a more general logit structure.  We use the nested logit.  The 

next sub-section describes the simple case for households with only one vehicle, and the 

second subsection considers multi-vehicle households.  In the third and fourth sub-

sections, we discuss the estimation procedure and elasticity calculations. 

A. Our Model of Car Choice and Miles Driven 

This description starts with the choices of  VMT  and  Wear,  assuming that a one-

car household has already chosen vehicle number-and-type bundle  i.  Given bundle  i,  an 

agent’s direct utility is a function of  VMT,  Wear,  and another consumption good  c.  That 

is,  ),,( iii cWearVMTUU = .  Given income  y,  the budget constraint is given by: 

iiiii
i

g rycWearqVMT
MPG

p
−=+− ,                (1) 

where  pg  is the price of gasoline (in dollars per gallon), and  MPGi  is fuel efficiency (in 

miles per gallon), so that  pi ≡  pg/MPGi  is the marginal price per mile in the  ith  vehicle 

bundle.   The “reimbursement” price of  Wear  for vehicle type  i  is denoted as  qi.  The 

price of the other consumption good is normalized to be 1.  The annualized capital cost of 

the concept-vehicle bundle is  ri.  Thus, gasoline is the only cost per mile, whereas capital 

cost is a fixed cost of each bundle.14  The indirect utility for bundle  i  is a function of 

household income and prices, denoted as  V(y-ri, pi, qi,). 

One common way to obtain the indirect utility function is to use parametric demand 

and then solve a system of partial differential equations using Roy’s identity (Hausman, 

1981).  For comparability with other studies, we want  VMT  demand as a log-linear 

function of the price per mile  pi,  available income  y – ri,  and a vector of observed socio-

demographic variables  x.  We then add the reimbursement price  qi  to that equation to get:   

( ) ηγβααα ++−−−+= ')ln( xryqpVMT iiqi
i
p

i
Vi ,              (2)   

where  η  represents an agent-specific unobserved factor (see below).  Also, we assume 

   ri = (�+�)ki,                    (3) 

                                                           
14 Time variation in gasoline prices may cause time variation in used vehicle prices.  Our use of cross-section 
data helps avoid this problem. 
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where  ki  is the total capital value of bundle  i  (depreciated or market value),  δ  is the 

annual rate of further depreciation in value, and  �  represents the interest and maintenance 

cost.  When we plug (3) into (2) and integrate, the implied indirect utility is: 

( ) iiqi
i
pi

p
i

i
i qp�xky�V εαα

α
γββ

β
+−−−−−+−= )exp(

1
'exp

1
10 ,                     (4) 

where  �1 = �(�+�).15  This equation includes an extra additive error  εi  that is bundle-

specific.  As in the usual discrete choice model, this error term represents the difference 

between true individual utility at choice  i  and the calculated utility level. 16   For 

households who choose the no-vehicle bundle #6, continuous variables such as  pi,  qi,  and  

VMTi  are unobservable.  Implicitly, we assume that these households may purchase a 

bicycle or a fare card for public transportation with a fixed fee, similar to the capital cost ki.  

With no cost per mile or of Wear, their second exponential term in (4) is 1.0.  Their capital 

cost  ki  is unobserved, so ik1β  and 6
0�  are not separately identifiable.  Since we allow for a 

choice-specific intercept, however, we combine both terms into one constant, 6
0� . 

 Note that the simple addition of  iqqα  to equation (2) dictates the form of indirect 

utility in (4).  This indirect utility then implies specific forms for both demands:17 

ηγβα +++−−+= ')ln( 1 xk�yqp��VMT iiqi
i
p

i
Vi            (5a)  

( ) ηγβαααα +++−−++= '/ln)ln( 1 xk�yqp�Wear iiqi
i
p

i
pq

i
Wi          (5b)    

This specification has pros and cons.  One limitation is the use of specific 

functional forms, but these log-linear forms are comparable to prior literature and allow 

for two different demand functions (5a,b) that are consistent with a single indirect utility 

function (4).  An advantage of this specification is that it allows the price of  Wear  (qi)  

to enter the  VMT  demand, and price of  VMT  (pi) to enter the  Wear  demand, but a 

                                                           
15 Our model provides estimates of  �  and  �1,  and these can be used to calculate (�+�), but we do not 
provide separate estimates of  �  and  �.  Some of our steps below require an assumption about  �,  and we use 
20 percent for this purpose.  Estimates of the depreciation rate for automobiles range from 33% (Jorgenson, 
1996) or 30% (Hulten and Wykoff, 1996) to 15%, the rate implicit in the vehicle depreciation schedule 
currently used by the Bureau of Economic Analysis.  We use 20% because it falls between these bounds. 
16 Also, because of this integration, note that the intercept in (4) may be different from the intercept in (2). 
17 More general demand functions such as translog demand or the almost ideal demand system imply much 
more complicated indirect utility functions that could not be estimated. Also, note that no-vehicle households 
have zero marginal prices, so they have constant miles traveled (conditioned on observed socio-demographic 
variables and total income).  Thus, no continuous demand equations are needed for these households.  
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limitation is that the expression  �i
ppi – �qqi  enters both demands the same way.18  Also, 

both continuous demands have the same income effect,  �.  A more general model could 

not be estimated.  Note, however, that we have added generality where it matters most.  

In particular, the price per mile has a bundle-specific coefficient (�i
p), to allow for 

different effects on the demand for miles in each type of vehicle.  Thus a gas tax might 

decrease miles in an SUV more than in a car, in a way that depends on fuel efficiency, 

and the change in miles of a two-car household can differ from the change in miles of a 

household with two SUV’s (or one car and one SUV).  

B.  Two-Vehicle Households 

So far, the model above considers only one vehicle, but many households have two 

vehicles and thus two continuous choices of miles and two continuous choices of  Wear.  

We have the observed  VMT  and  Wear  for each vehicle, so we can incorporate all four 

continuous choices.19  The direct utility for a two-vehicle household choosing bundle  i  is  

U(VMTi1, VMTi2, Weari1, Weari2, ci).  The budget constraint is given by: 

( ) ( ) iiiiiii
i

g
i

i

g rycWearqWearqVMT
MPG

p
VMT

MPG

p
−=+−−+ 22112

2
1

1

,               (6) 

where  qij  are reimbursement prices for  Wear  in the two vehicles of bundle  i  (j = 1, 2).  

Also,  pij ≡  pg/MPGij  is the price per mile using the  jth  car of bundle  i.  We consider the 

indirect utility function as follows: 

( )�xk�y�V i
i

i −−−+−= γβ
β

'exp
1

10 iiqiqi
i
pi

i
pi

p

qqpp εαααα
α

+−−+− )exp(
1

22112211
1

   (7)  

The indirect utility in (7) is similar to (4) except for two extra terms related to the 

second vehicle’s gasoline price  pi2  and reimbursement price  qi2.  By Roy’s identity, given 

that the household has chosen bundle  i  in (7),  the four continuous demands are:                                                                                                                       

ηγβαα +++−−−++= ')ln( 12211221111 xk�yqqp�p��VMT iiqiqi
i
pi

i
p

i
Vi         (8a) 

                                                           
18 Thus, a change in  pi  must have the same effect on  Wear  that it has on miles.  We tried other models, 
including one where indirect utility has separate terms  exp(�i

ppi)  and  exp(�qqi), so that  pi  would have no 
effect on  Wear,  and  qi  would have no effect on  VMT.  That model would not converge, and anyway it is 
restrictive by assuming no cross-price effects.  We also tried models with more coefficients, to relax these 
restrictions, and we tried many starting points, but only the model in (4) and (5) could be estimated 
simultaneously for discrete and continuous choices (especially for two-vehicle bundles considered below).   
19 Another interesting question is about each household member’s choice of miles driven (in either car), but 
we have no such data.  As described below, we have only data on miles driven in each vehicle. 



 -9- 

22111222 )/ln()ln( i
i
pi

i
p

i
p

i
p

i
Vi ppVMT ααααα +++=                      

ηγββαα +++−−− '12211 xkyqq iiqiq         (8b) 

22111111 )/ln()ln( i
i
pi

i
p

i
pq

i
Wi ppWear ααααα +++=                  

ηγββαα +++−−− '12211 xkyqq iiqiq         (8c) 

22111222 )/ln()ln( i
i
pi

i
p

i
pq

i
Wi ppWear ααααα +++=                

ηγββαα +++−−− '12211 xkyqq iiqiq         (8d) 

These demands generalize those of a one-vehicle household in (5) by including 

terms for  pi2  and  qi2  (and so we refer to (8) for “all” demands).  The demand for  VMTi2  

is symmetric to  VMTi1  in explanatory variables, but it is non-linear in parameters of both  

pi1  and  pi2.  The demands for  Wearij  ( j= 1, 2)  are similarly defined.  

C.  A Procedure to Estimate Discrete and Continuous Demands Simultaneously 

Note that the same parameters appear in both discrete and continuous choice 

functions, yet previous literature has estimated these choice models separately.  Often the 

estimates for the same parameters are different not only in magnitude but also in sign.  In 

this sub-section, we propose a procedure for simultaneous estimation of bundle choice, 

vehicle age, and miles driven.  We start with separate discussion of car choice and miles 

driven, and then how we combine them in a single estimation procedure. 

Following McFadden’s random utility hypothesis, vehicle bundle  i  is chosen if 

and only if:  Vi � Vj  for all  j � i.  The unconditional expected share for bundle  i  then is: 

( ) ηηη dfijVVS jii � ≠∀>= )|,Pr( ,                                                                       (9) 

where  Si  is the share choosing bundle  i,  and  f(�)  is the probability density function of 

the agent-specific error  η.  We are now in a position to describe the importance of  η.  On 

the one hand, individual heterogeneity represented by  η  could directly affect the choice of 

bundle.  On the other hand, observed demands for  VMT  and  Wear  are conditional on 

that choice.  Since the choice of vehicle bundle is endogenous, the estimated demands for  

VMT  and  Wear  could be biased if the influence of  η  in (9) is ignored.  In the model of 

Dubin and McFadden (1984), the error term  �  can be cancelled out from the inequality 

{Vi>Vj, ∀ j�i}, which simplifies the calculation of probabilities (that is, the integration 
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over  η  in equation (9) is not necessary).  In such a model, η  appears only in the 

continuous demands, so this individual heterogeneity does not affect the choice of vehicle 

bundle directly.  They can estimate the discrete model with error  �i  for each bundle, and 

then, given predicted bundle shares, they estimate the continuous choices with errors  η.   

Yet, our purpose here is to retain individual-specific heterogeneity η  and its effect 

on bundle choice.  Thus, the evaluation of probabilities in our model involves integration 

over all error components (�, �), where  � =(�1, �2, … , �J), and where  J  is the number of 

possible vehicle bundles.  In our model, the  �i  are assumed to be distributed with a 

generalized extreme value (GEV) distribution, and  η  follows an unknown distribution 

with a zero mean across individuals.  Conditional on  η,  we integrate over the GEV 

distribution to obtain conditional choice probabilities as a general nested logit model: 

 ( ) ( )( )
( )( )� �

�

= ∈

−

∈=∀≠∀> K

l Bj lj

Bj njni

lmni l

l

n

k

V

VV
lnimVV

1

1

exp

exp)exp(
,,,Pr λ

λ

λ

λλ
η

    

,                     (10) 

where  n  and  l  represent nests,  i  is an alternative within nest  n,  m  is an alternative 

within nest  l,  K is the total number of nests, and  Bl  (l = 1, …, K)  represents a nested 

subset of alternatives.  Our nesting structure is illustrated in Figure 1. 

We also integrate over the distribution of  η  to obtain unconditional probabilities.  

The literature offers no guidance on the distribution of the  �.20  To reduce the numerical 

difficulty in estimation, we let  �  be uniformly distributed in the interval [-	, 	].  We 

search for the  	  that yields a likelihood function with the largest value.21 

As pointed out by Dubin and McFadden (1984), the random error  �  does not have 

a zero mean conditional on each chosen bundle, due to the endogeneity of bundle choice.  

This can be seen clearly if we rewrite equations (8a-d) into a more convenient form for 

estimation (using just equation 8a, as an example):  
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20 Dubin and McFadden (1984) assume  �  has a particular form of mean and variance, in order to derive an 
explicit conditional expectation.  
21 This search yields  	  equal to 0.65.  Since the estimation of the logit model requires integration over the 
individual heterogeneity term  �,  our model is a mixed logit model (McFadden and Train, 2000). 
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where  dij  is a choice indicator variable equal to one when  i = j, and where equations 

(11b-d) are analogous.  The random error  η   is correlated with the choice indicators  dij.  

Dubin and McFadden (1984) suggest sequential estimation to solve this endogeneity 

problem (a procedure later adopted by Goldberg (1998) and West (2004)).  First, the 

discrete choice model is estimated and the predicted probabilities are calculated.  They 

then suggest three alternative methods that yield consistent estimates of parameters for 

continuous demands: the instrumental variable method (IV), the reduced form method 

(RF), and the conditional expectation correction method (CE).  They derive the correction 

terms in terms of probabilities for the CE method based on the assumption of an  i.i.d.  

extreme value distribution of  εi.  However, since we assume a GEV distribution of  εi,  

these correction terms cannot be used in our model.  We want a method that can be used 

both for sequential estimation and for our simultaneous estimation, in order to compare 

them, and so we employ the RF method. Taking expectation of (11a) over  η,  we have: 
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where  Snj  is the probability of individual  n  choosing vehicle bundle  j  from (9),  un1  is 

an additional error to represent the difference between observed VMT  and predicted  VMT,  

and where (12b-d) are analogous (not shown here).  The sequential RF method applies 

least squares to (12a-d), except that the shares Snj are replaced by estimated shares njŜ  

from the discrete choice model.  In contrast, we estimate (9) and (12a-d) simultaneously. 

 Since the same parameters appear in both discrete and continuous choice functions, 

we propose a joint estimation method to capture this simultaneity.  In particular, we obtain 

a set of parameters that maximize the following objective function: 
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where  f1,  f2,  g1,  and  g2  represent the right hand sides (without the random error  un1) of 

the four equations (12a-d),  lnL  is the log likelihood function of the nested logit, and  
 

represents the set of parameters to be estimated by maximizing equation (13).  
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As is consistent with Dubin and McFadden (1984) and other papers in this 

literature, the maintained hypotheses are that the utility functional form is correct and that 

consumers maximize it.  Under these hypotheses, our procedure produces consistent 

estimates of parameters.  The reasoning is as follows: if the components of (13) were 

maximized separately, and if some single set of parameters were the solution to all those 

separate maximizations, then this set of parameters would also maximize the combined 

objective function.  To compare the results, we estimate our model by both the sequential 

method and the simultaneous estimation method.  

D.  Elasticities 

Once we obtain the parameter estimates, we are ready to calculate elasticities.  To 

see the marginal effects of prices on indirect utility, and therefore on bundle choice, we use 

equation (7) to obtain explicit formulas for those derivatives.  First, define   exp(�) � 
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and the marginal effects of income or capital cost on utility take similar forms: 
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Then we derive the elasticity of choice  i  with respect to a change in variable  zj 

(where  zj  may be any of the price variables, income  y,  or capital cost  kj): 
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Since these formulas involve the unconditional probability of vehicle bundle  i, 

calculating each bundle elasticity requires integration over  �.  In contrast, calculations of  

VMT  elasticites do not involve integration over  �.  For bundle  i  (i = 1, …, 5), the own- 

and cross-price elasticities of  VMT  demand are calculated by: 
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The elasticities of demand for  Wear  with respect to its price have a similar form: 
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We can also calculate the income elasticity, given by: 
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and the total capital cost elasticity, given by: 
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In equations (16) – (20), elasticities are typically evaluated at each bundle’s mean 

values of  y  and  k,  the bundle average of gas prices per mile (p1  and  p2) and the bundle 

average of reimbursement prices (q1  and  q2). 

II. Data and Summary Statistics 

In order to analyze household choice of vehicles, miles driven, and vehicle  Wear,  

we need micro-data on household characteristics, household income or expenditures, and 

detailed information about household-owned vehicles such as the number of vehicles, 

miles driven in each, and vehicle characteristics (including miles per gallon, MPG, and 

emissions per mile, EPM).  No single data set contains all such information. 

The Consumer Expenditure Survey (CEX) provides data on household income, 

characteristics, and household-owned vehicles. 22   For each household, we aggregate 

expenditures over four quarters, taking demographic data and detailed vehicle information 

from their last quarter in the survey.  We use the CEX from 1996 to 2000, supplemented 

with the corresponding OVB file (Owned Vehicles Part B Detailed questions).  This OVB 

file includes data on each vehicle type, make, year, number of cylinders, purchase 

expenses and financing, time since purchase, mileage, gasoline expenditure, and other 

information.  We keep only households that satisfy several criteria.  First, expenditures 
                                                           
22 The CEX data are collected by the Bureau of Labor Statistics of the U.S. Department of Labor through 
quarterly interviews of selected households throughout the U.S.  Each household is interviewed over five 
consecutive quarters.  Each quarter, 20% of households complete their last interview and are replaced by new 
households.  For CEX data, see http://elsa.berkeley.edu  or  http://www.icpsr.umich.edu/. 
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must be reported consecutively for four quarters in the CEX of 1996-2000.  Second, the 

household must possess the same number of vehicles during these four quarters.  Third, we 

remove households that own more than two vehicles.23  We also remove households that 

have vehicles other than automobiles or SUV’s (defined to include light trucks or vans).  

Finally, we are left with 9027 households, of which 2077 own no vehicles, 4211 own one 

vehicle, and 2739 own two vehicles.  We use yearly total expenditure as a proxy for yearly 

income of each household.  Table 2 defines all the variables used in estimations. 

Summary statistics are shown in Table 3 for major household characteristics by 

vehicle bundle.  This table shows significant variations in household characteristics across 

the number of vehicles and bundles.  For example, larger households especially with more 

kids have more vehicles and prefer SUVs.  Wealthier households (as measured by total 

yearly expenditures) possess more vehicles.  Households with more workers or income 

earners have more vehicles.  Households with male heads are inclined to have SUVs.    

Next, fuel price data are obtained from the ACCRA cost-of-living index for 1996-

2000.  This index compiles quarterly data for approximately 300 cities in the United States.  

It also lists average gasoline price for each city for each survey quarter.  Since the CEX 

reports region and state of residence instead of city for each household, we average the city 

gas prices to obtain a state price for each calendar quarter.  For those states reported in the 

CEX, but not reported in the ACCRA index, we use the average region price as a 

substitute.  Then we assign a gas price to each CEX household based on the state of 

residence, CEX quarter, and year. 

Some of the variables in our model require calculations or additional sources of 

data.  We now describe these extra calculations. 

(1) Wear:  The vehicle’s age is derived by taking the year of the survey minus the 

year the vehicle was made.  We then assume 20% annual depreciation, and calculate  Wear  

as the percentage of the vehicle’s value that has wasted away (given all the vehicle 

characteristics unchanged except vehicle age).  Wear  ranges from zero for a new car, to  

Wear = 1  for a very old car.  Specifically,  Wear = 1 – (1 – 0.2)age . 

          (2) Capital value of the vehicle:  The vehicle’s year of purchase and reported 

purchase price (pp) are available in the OVB file, but we want an estimate of current 

                                                           
23 In the CEX of 1996-2000, 18.4% of households own more than two vehicles.  Some of these households 
may have a vehicle for business, whereas our model of household choice assumes utility maximization. 
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market value (cmv).  We calculate the number of “years since purchase” (ysp), and we 

subtract depreciation for each year, again using 20% as the annual rate of depreciation. The 

formula is  cmv = pp×(1–0.2)ysp.  We then estimate a simple hedonic price regression: 

)()()1( 210210 imWearbcylWearbWearbimacylaacmv ×+×+−+++=           (21) 

where  a0  through  a2, and  b0  through  b2  are parameters.  The variable  cyl  denotes the 

number of cylinders, while  im  is a dummy variable indicating if the vehicle is imported.24  

Wear  is included in the regression to capture the effects of vehicle age on market value.  

Using a sub-sample of the CEX that has all necessary variables, we run separate 

regressions for cars and SUV’s and report the results in Table 4.  Then, for the value of 

each brand new “concept” vehicle (with  Wear = 0), we use:  

   0210
ˆˆˆˆˆ bimacylaak +++=    .                                                               (22) 

where 0â   through  2â   and  0̂b   are estimates of parameters in (21).   

(3) The price of  Wear:  First, we calculate the extra amount paid for a car with no 

wear on it (Wear = 0) compared to a very old car with the same characteristics (Wear = 1).  

From (21), that difference is  ( )imbcylbb 210
ˆˆˆ −− .  Then,  q  is the annual reimbursement 

price of  Wear, that is, the amount saved during a year by an owner who accepts one whole 

unit of  Wear (an old car instead of a new car).  Since a very old car does not depreciate 

any further, the amount saved is the depreciation during the year from holding a new car.  

Again assuming 20% depreciation, we have: ( )imbcylbbq 210
ˆˆˆ2.0 −−= . 

(4) Fuel Efficiency:  The EPA reports miles per gallon (MPG) of new vehicles, but 

we need it for vehicles of all ages.  The CEX does not contain this information, so we 

estimate MPG using data of the California Air Resources Board (CARB, 1997 and 2000).25  

Their first sub-sample is “series 13”, from November 1995 to March 1997, in which the 

CARB tested a total of 345 passenger cars, light-duty trucks, and medium-duty vans.  The 

second sub-sample is “series 14”, from November 1997 to August 1999, which includes 

                                                           
24 The CEX does not include the vehicle’s nation of origin, so we create the im dummy using information on 
manufacturer and model.  We also tried other vehicle characteristics in the regression, such as indicators for 
automatic transmission, power steering, and air conditioning, but the estimates are not significant.  Inclusion 
of these variables does not raise adjusted  R2 and can result in negative predictions of  cmv. 
25 For MPG of new cars, http://www.fueleconomy.gov/feg/index.htm is a website of the US Environmental 
Protection Agency (EPA) and the Department of Energy.  The EPA also provides the historical fuel economy 
of new vehicles at http://www.epa.gov/otaq/mpg.htm or at http://www.epa.gov/otaq/tcldata.htm.  
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332 vehicles (but which reports only 327 vehicles).  In total, we use 672 vehicles.  We 

regress MPG against vehicle characteristics in the CARB and then use those estimated 

coefficients to predict MPG for each vehicle in the CEX.  The estimation results are shown 

in Table 5, where a 4-cylinder SUV is the omitted category.  This table shows that fuel 

efficiency decreases with vehicle age and with engine size, both for cars and for SUV’s.  

Given the same vehicle age and engine size, MPG is higher for cars than for SUV’s. 

(5) Emissions per mile (EPM):  For the same sample of 672 used vehicles, the 

CARB tests for several pollutants.  Following Fullerton and West (2000), we weight each 

pollutant by estimates of its damages, with the highest weight on nitrous oxides (NOX, 

0.495), followed by hydrocarbons (HC, 0.405), and carbon monoxide (CO, 0.10).  Results 

appear in Table 5.  Cars pollute less than SUV’s because they were produced under stricter 

standards.  Older vehicles pollute more, both because newer vintages faced stricter 

standards and because pollution control equipment deteriorates over time.26 

(6) Vehicle Miles Traveled (VMT):  The OVB file provides cumulative miles on 

each vehicle, but we need yearly miles driven.  We had planned to match households 

across quarters, take the latest odometer reading minus the earliest one, divide by the 

number of quarters between readings, and multiply by four. Unfortunately, however, some 

later odometer readings are less than the earlier ones, and many readings are missing.  

Therefore, we propose a different procedure to get VMT.  For a one-car household, we take 

observed annual expenditure on gasoline, divide by the price per gallon to get number of 

gallons, and then multiply by MPG to get miles.  For a two-vehicle household, we only 

know the total gasoline expenditure, so we need to allocate it between the two vehicles.  

Only for this allocation do we use the difference in odometer readings between quarters.27  

(7) Vehicle bundles:  As listed in Table 1, vehicle choices are classified into six 

categories according to the number and type of vehicles.  For bundle 4, with one car and 

one SUV, the car is always identified as the first vehicle.  For bundles 3 and 5, the first 

vehicle is identified as the one with higher yearly  VMT.  If two vehicles have the same 
                                                           
26 For vehicles in our sample, the calculated  EPM  is 1.89 grams/mile for the average car and 3.56 for the 
average SUV.  It also increases to 6.94 grams/mile for a very old vehicle (with Wear =1). 
27 If the difference in odometer readings is positive for both vehicles, then we divide it by MPG to obtain an 
estimate of each vehicle’s gas consumption.  Each gasoline amount divided by their sum gives shares, used 
to allocate the observed total gas consumption.  Each vehicle’s gallons divided by MPG yields  VMT.  If the 
difference in odometer readings is positive only for one vehicle, we use this figure as  VMT1  and calculate 
gasoline used in this vehicle.  Then total gasoline minus gas used in this vehicle is residual gas, allocated to 
the other vehicle.  Dividing this residual gas by MPG yields  VMT2.  If the difference in odometer readings is 
positive for neither vehicle, then we do imputations based on households with similar characteristics.  



 -17- 

yearly  VMT,  the identification is random.  If  VMT  is missing, then the vehicle with an 

earlier purchase year is taken as the first vehicle.  If the purchase year and miles-driven are 

both missing, the identification is random.  

III.  Estimation Results 

The model described in Section I is estimated by both the sequential and the 

simultaneous estimation methods.  The mean values of key variables are reported by 

bundle in Table 6.  We average the values within each bundle for each bundle-specific 

variable except gas price per mile.  Gas price per mile is calculated by dividing gas price 

per gallon by a bundle-specific MPG listed in Table 1.  Thus, gas prices per mile vary both 

within and between bundles.  The presence of collinearity between the fixed effects  α0
i  (i 

= 1, …, 6)  and the bundle-specific variables such as  ki  (i = 1, …, 5)  forces us to 

normalize the fixed effect of bundle one  ( 1
0α )  to zero.  To facilitate the estimation, we 

also normalize  y  in units of 10,000 dollars,  ki  in units of 1,000, and  q1  and  q2  in units 

of 100 dollars.  Accordingly, we multiply  Wear1  and  Wear2  by 100 to keep the total 

amount of reimbursement unchanged in the budget constraint.   

Notice that bundle 3 and bundle 5 each contains two vehicles of the same type, 

while bundle 4 consists of one car and one SUV.  When the retail gas price increases, all 

gas prices per mile are affected in bundle-specific ways because MPG depends both on 

vehicle age and type (car or SUV).  As revealed by Table 1, MPG is more type-specific 

than bundle-specific.  Thus, we expect that the gas price parameters of car bundles 1 and 3 

are quite close to one another, as are those of SUV bundles 2 and 5.  For a household with 

one car and one SUV (bundle 4), however, we wish to allow more substitution.  In our 

estimation, we assign one parameter  1Cα   to the gas price of the only car in bundle 1 and 

first car in bundle 3 (and 2Cα   to the second car).  We assign one parameter  1Sα   to the 

only SUV in bundle 2 and first SUV of bundle 5 (and 2Sα  to the second SUV).  Then we 

assign two gas price parameters to bundle 4:  4
1pα (= 4

CARα )  for the car and  4
2pα (= 4

SUVα )  

for the SUV.  Results from the sequential estimation are discussed first. 

 We follow the procedure suggested by Dubin and Mcfadden (1984), but at the first 

stage we estimate a nested logit structure instead of a multinomial logit model.  The 

traditional ML method is employed.  The RF method is adopted at the second stage 

because the correction terms derived by Dubin and Mcfadden are inappropriate for the 
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GEV error structure.  In the second stage we estimate four continuous demand equations 

jointly (only two equations for the one-vehicle bundles), using an objective function 

similar to equation (13) except that the last term is removed.  We constrain parameters to 

be constant across bundles except those for gas prices and constant terms.  The estimation 

results are reported in the first two columns of Table 7, under “sequential estimation”.  

For the discrete choice model in the first column of Table 7, the estimates of  1Cα  

and 1Sα  are significant at the 1% level, while those of 2Cα  and 2Sα  are not statistically 

significant.  The estimates of  4
1pα (= 4

CARα )  and  4
2pα (= 4

SUVα )  are both significant at the 

0.01 level.  All of them are negative as expected.  The Wear coefficients 1qα  and 2qα  are 

also different from zero at the 0.01 level.  The parameter  λn (n = 1,2)  measures the degree 

of independence of the errors of alternatives in nest  n.  In our model, the estimates of  λ1  

and  λ2  are 0.814 and 0.066, respectively, both significant at the 0.01 level.28   

Since all the estimates of  1pα  and  2pα  are negative, equations (14) indicate that 

the marginal effects of gas prices per mile are negative.  As consistent with expectation, an 

increase in gas price reduces household utility.  Since the coefficient on the reimbursement 

price  q1  is negative, the marginal effect on utility is positive as expected.  A higher 

reimbursement price means more money back to the household for accepting a given 

vehicle age or level of  Wear.  However, the coefficient on  q2  has unexpected sign.  Since 

estimates of  �  and  �1  are both negative and significant, equations (15) indicate that the 

marginal effect of capital cost is negative while that of income is positive.  

We then use those discrete choices from the first column to estimate the continuous 

demands shown in the second column.  A glance down the second column indicates that 

most of estimated coefficients are quite different from the corresponding estimates in the 

first column. Yet the parameters in the second column are the same parameters as in the 

first column, even from the same model, as the continuous demands are supposed to be 

consistent with a particular indirect utility function. For example, the estimated coefficient 

on income is −1.408 in the first column and +1.134 in the second column.  Both have small 

errors, and so they are significantly different from each other, even though they are the 

                                                           
28 If  λn ∀n  are within the range of zero to one, then “the model is consistent with utility maximization for all 
possible values of the explanatory variables” (Train, 2003, p.85).  Since our  �  are significantly less than one, 
the errors within each nest are correlated, evidence in favor of nesting rather than MNL.   
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same parameter of the same model.  Many price coefficients also differ significantly in 

magnitude (and the two estimates of  �q2  differ in sign).   

 Next, the model is estimated by the simultaneous estimation procedure proposed in 

Section I.C.  The point of this procedure is to capture household-specific heterogeneity in 

both discrete and continuous choices.  The two types of choices are connected by the same 

parameters and the same random error term  η  appearing in both. 29  In contrast, in the 

sequential procedure, the bundle choice affects continuous demands (and not vice versa).  

The simultaneous estimates are reported in the last column of Table 7. 

 All ten estimates of coefficients on key variables have the expected signs, and all 

but two are significantly different from zero.  Yet, for many parameters, the estimate 

differs from both estimates obtained by sequential estimation.  For example, the capital 

cost coefficient (β1) from the simultaneous model (–0.405) is smaller in magnitude than 

either that of the logit model (–0.671) or the continuous demand model (–0.456).  The 

estimates of coefficients on demographic variables vary with the estimation method, not 

only in magnitude but also in sign.  For most price variables, however, the estimate from 

the simultaneous model is between the two estimates from sequential estimation, which 

suggests that the simultaneous model might provide more “reasonable” coefficients.  These 

coefficients cannot really be compared directly, however, and so we turn to elasticities. 

IV. Elasticity Comparisons  

 Bundle choice elasticities are presented in Table 8.  The upper panel shows 

elasticities from the sequentially estimated model, but our discussion will start with the 

elasticities in the lower panel from the simultaneously estimated model.  Each entry in the 

table is not an elasticity with respect to each price in the model, as it might be difficult to 

interpret an elasticity such as the change in the probability of holding bundle 3 (two cars) 

for a change in the price  p1 for gas in the first car only.  Instead, we calculate the 

simultaneous effect on all choices for a change in the price of gasoline.  In the lower part 

of Table 8, the first row shows that a 1% increase in the price of gas would decrease most 

the probability of holding bundle 4 with a car and an SUV (by 0.793%) while increasing 

the share holding bundle 3 with two cars (by 0.695%).  In other words, these households 

                                                           
29 The standard deviation for  x'�  is about 0.086 within a bundle, and for  �y  is about 0.78 within a bundle, 
so the finding that  �  has a range (-0.65,0.65) reflects a significant amount of individual heterogeneity. 
Therefore, introducing individual heterogeneity is expected to make a difference in parameter estimates. 
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sell the SUV for a second car instead.  This change is driven by the high price of driving an 

SUV with low fuel efficiency.30  In contrast, using results from the sequential method in 

the top panel, the price of gas has little effect on any bundle share. 

Given vehicle age, a higher reimbursement price  q  for Wear of a particular bundle 

means more money back to the household and thus higher probability of choosing that 

bundle.  Again, however, it is difficult to interpret a change in the price  q1  for the first car 

with no change in  q2 for the household’s second car.  Instead, we show effects of a change 

in  q  for all vehicles (or for all cars only, or all SUV’s only).  Rather than raising   q,  

policymakers may want to reduce  q  by taxing old vehicles or by subsidizing the purchase 

of a new vehicle, in order to reduce emissions.  Table 5 above shows that emissions per 

mile (EPM) are higher for SUV’s than for cars, and rise with either vehicle’s age. 

For the simultaneous model in the lower part of Table 8, the second row shows that 

a 1% tax on Wear (lower  q  for all vehicles) would decrease the probabilities of holding all 

bundles except bundle 5 (SUV, SUV).  In the next row, a tax on the age only of cars would 

decrease the reimbursement for wear on cars,  qcar,  and switch households out of cars and 

into bundle 2 with an SUV and bundle 5 with two SUV’s.  Conversely, the next row shows 

that a tax on the age only of SUV’s that lowers  qsuv  would induce a switch out of bundles 

2 and 5 with just SUV’s, and into bundles with cars.31   

The discrete-choice-only model in the top half of the table shows results for  q  

where effects on SUV bundles are unreasonably large and sometimes the wrong sign.  A 

tax that lowers  qsuv  would encourage the purchase of two SUV’s. 

Back to the lower panel for the simultaneous model, the choice elasticities with 

respect to  y  indicate that households with more income switch from holding no car 

(bundle 6) to one car (bundle 1), and those with a single SUV (bundle 2) seem to add a car 

(bundle 4).  Additional income reduces the share with two cars (bundle 3).  These results 

are inconsistent with the discrete-choice model, where the only bundle with a positive 

income elasticity is bundle 2 with one SUV.  

                                                           
30 This reasoning is confirmed by the choice elasticities with respect to  p1  and  p2  separately.  For bundle 4, 
a 1% higher price per mile in the car reduces the probability of choosing that bundle by 0.37%, while a 1% 
higher price per mile in the SUV (p2) reduces the probability of choosing that bundle by 0.81%.  Thus, the 
gas consumption of the SUV has twice as much impact as that of the car.  
31 This tax on age of SUV’s might actually cut emissions in two ways: by inducing a switch from SUV’s to 
cars (Table 8), and by inducing a switch from older SUV’s to newer SUV’s (Table 9 below). 
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We next look at an increase in capital cost in the lower panel of Table 8.  Since this 

change effectively reduces available income, we see that each capital cost elasticity has the 

opposite sign as that bundle’s income elasticity.  With higher capital costs, households 

seem to shift primarily out of two-vehicle bundles with at least one SUV (4 and 5) into 

bundles with two cars (bundle 3) or only one SUV (bundle 2).  While it does not make 

sense to increase the capital cost only for the first car of a two-car household, it might 

make sense to increase the capital cost only of cars relative to SUV’s or vice versa (to 

represent a vehicle-type tax).  The next row of Table 8 shows that if the increase in capital 

cost pertains only to cars, then it decreases the shares of the two bundles that have only 

cars. If it pertains only to SUV’s, however, then it has large effects that decrease the shares 

of all three bundles with SUV’s.  Such a policy could clearly reduce emissions (given the 

EPM in Table 5).  The 1% higher cost of an SUV means 13.7% less of bundle 4, which 

seems too large, but it means that the share falls two percentage points (from 14.5% of all 

households in Table 6 to 12.5% of all households).  The discrete-choice-only model in the 

top part of Table 8 produces elasticities with smaller magnitudes, except that the bundle 5 

elasticity has the wrong sign (higher  ksuv  lead to more households with two SUV’s). 

The sequential model uses predictions of discrete choices to estimate continuous 

demands, for which elasticities are shown in the top half of Table 9.  These are “short run” 

elasticities, in the sense that car choices are fixed and only continuous choices like driving 

distances may change (Goldberg, 1998).32  Again, we focus primarily on simultaneously 

estimated elasticities in the bottom panel.  In the first row, all elasticities for  VMT1  with 

respect to gasoline price are negative, as expected, for all bundles.  (For this demand, the 

sequential model produces similar results.)  The next row of Table 9 shows the effects of a 

1% increase in the reimbursement price,  q,  on Wear.  These elasticities are all positive, as 

expected:  households choose older vehicles when they get higher reimbursement for 

holding an old vehicle.  Conversely, a tax on vehicle age that reduces  q  by 10% would 

reduce desired  Wear  by about 1.2 to 1.4% (assuming the desired cars were available).33  

The table also shows similar effects of changing  q  just for cars, or just for SUV’s. 

Next, consider income and capital cost elasticities.  Due to the symmetric 

specification of demand functions, a 1% change in  y  or  k  has the same effect on both 
                                                           
32 Panel data would be required to distinguish the effects of lags from contemporaneous price changes. 
33 In Table 6, the average  Wear  of 0.75 corresponds to 6.2 years of age, so a 1.2% decrease in  Wear  means 
a decrease of about one month of age.  In the sequential model, the same 10% lower  q  affects desired age of 
one-vehicle bundles by one-tenth as much, and desired ages of two-vehicle bundles by three times as much. 



 -22- 

VMT  and  Wear  (whether for the first vehicle or the second).  In the simultaneous model, 

income elasticities are positive as expected.  One percent more income would increase 

driving distances by about 1% to 1.5%  for all bundles.  In contrast, the sequential model 

implies income elasticities that are all negative and large (-2.6 to -4.0).  The capital cost 

elasticities are negative as expected, for both models. 

The specific form for utility in equation (4) means a specific form for demands in 

equations (5), where  ln(VMT)  and  ln(Wear)  both depend on  �i
ppi – �qqi.  In other 

words, the parameter that determines the important effect of gas price on miles (�i
p) also 

necessarily drives the less-important effect of the gas price on choice of  Wear.  

Similarly, the own-price effect of  q  on  Wear  also drives the cross-price effect of  q  on  

VMT.  We note this fact, but we do not mean to emphasize these cross-price elasticities. 

Finally, the last column in Table 9 reports the percentage change in total emissions 

when each variable increases by 1%.  In the simultaneous model, for example, a 1% 

increase in all gasoline prices would reduce total emissions by 0.136%, while a tax on age 

that reduces  q  by 1%  would reduce total emissions by 0.434%.34  The largest elasticities 

are from income and capital cost: 1% higher income raises total emissions as expected, by 

4.246% (but in the sequential model would reduce emissions by 11.47%!)  A 1% increase 

in capital cost reduces total emissions by about 8% in either model.   

In the simultaneously estimated model, the coefficients are affected by all discrete 

and continuous choices.  The model imposes more constraints on the estimates.  Thus, if 

those constrained estimates are plugged into the likelihood function for either part of the 

sequential procedure, then the likelihood is not as high as for that portion of the sequential 

procedure.  However, the sequentially estimated model yields two sets of estimates for the 

same parameters.  The finding that these estimates are not consistent with each other raises 

questions about whether the behavioral model is correctly specified.    

V.  Conclusion 

 This paper focuses on incentive effects of price changes that might be associated 

with policies to reduce vehicle emissions.  We provide a model of household behavior that 

incorporates both the discrete choice of vehicle type, with different fuel efficiencies and 
                                                           
34 These are also short run elasticities, with no change in the number or type of vehicles.  Notice that the 
percentage change in emissions from a change in  p  is more than twice the change in driving distance, 
because the higher  p  also reduces demand for  Wear  (which also reduces emissions).  The change in  q   
also affects both  VMT  and  Wear  in the same direction, enlarging the effect on emissions.  
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emission rates, and continuous demands for miles driven.  Because emission rates depend 

directly on vehicle age, we also model vehicle age as a continuous choice.  To model the 

effect of prices on the choice of vehicle age, we establish a choice of “concept vehicle” 

that is separate from the choice of  “Wear”.  Using hedonic price regressions, we quantify 

the price of  Wear.  Then, after the discrete choice among concept vehicles, both  VMT  

and  Wear  become continuous variables that enter utility. 

Yearly household data are obtained from the CEX of 1996 – 2000, supplemented 

with fuel efficiency estimates from the CARB, and gas prices from the ACCRA cost of 

living indexes.  First, like many others, we follow the sequential procedure suggested by 

Dubin and McFadden (1984).  This procedure generates two different sets of estimates for 

the same set of parameters, which we argue is inconsistent with maintained hypotheses 

about the utility function and utility maximization. We then propose and implement a 

simultaneous method for consistent estimation of both discrete and continuous choices in 

one step.  Results from the simultaneous estimation differ significantly both in signs and 

magnitude from both sets of estimates obtained by sequential estimation. 

We find that a higher price of gasoline would shift households out of the Car-SUV 

pair and into the bundle with two cars.  It also would reduce miles driven.  Both of these 

changes reduce emissions.  A tax on vehicle age would induce shifts to newer vehicles 

with less “Wear”, and would also shift families out of bundles with an SUV.  Both of these 

changes also reduce emissions.  Similarly, a tax on SUV’s would shift families into cars 

and reduce emissions.  The size of these shifts is important information for environmental 

policy.  Rather than pin down the exact size of the important parameters, however, this 

paper points to important problems with existing methods and suggests an alternative 

approach with more internal consistency. 
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Table 1. Vehicle Bundle Descriptions and Statistics 

Bundle # of 
Vehicles 

First 
Vehicle 

Second 
Vehicle 

# of 
Households 

MPG of 
First 

Vehicle 

MPG of 
Second 
Vehicle 

1 1 Car -- 3469 21.37 -- 

2 1 SUV -- 742 16.76 -- 

3 2 Car Car 1181 21.88 21.55 

4 2 Car SUV 1305 21.51 16.53 

5 2 SUV SUV 253 17.04 16.50 

6 0 -- -- 2077 -- -- 

Note: The number of households is from the consumer expenditure survey (CEX), 
and miles per gallon (MPG) is calculated from CARB data described below.   
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Table 2. Variable Definitions 

 
 

Variable Definition 

 y  Household’s yearly expenditure 

 k  Total capital cost of a vehicle bundle  

 p1 Gas price per mile of the first vehicle 

 p2 Gas price per mile of the second vehicle 

q1 Unit price of Wear of the first vehicle 

q2 Unit price of Wear of the second vehicle 

VMT1 Miles driven in the first vehicle 

VMT2 Miles driven in the second vehicle 

Wear1 Continuous variable to measure the wear of the first vehicle 

Wear2 Continuous variable to measure the wear of the second vehicle 

Famsize Number of members in a household 

Earnr Number of income earners in a household 

Kids Number of children less than 18 in a household 

Drivers Number of household members 16 years old and over  

Metro A dummy variable: one if the household resides inside a 
Metropolitan Statistical Area (MSA), and zero otherwise 

Pop4 A dummy variable: one if the household lives in an area with a 
population of more than 4 million, and zero otherwise 

Urban A dummy variable: one if the household lives in an urban area, 
and zero otherwise. 

Age Age of household head 

White A dummy variable: one if the household head is white, and 
zero otherwise 

Male A dummy variable: one if the head is male, zero otherwise 

Educ A dummy variable: one if the head has education higher than 
high school, zero otherwise 

Northwest A dummy variable: one if in the Northwest, zero otherwise 

Midwest A dummy variable: one if in the Midwest, zero otherwise 

South A dummy variable: one if in the South, zero otherwise 

West A dummy variable: one if in the West, zero otherwise 
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Table 3. Summary of Household Statistics by Vehicle Bundles 

Number of Vehicles 
1 2 0 Characteristics 

1 (Car) 2 (SUV) 3 (C,C) 4 (C,S) 5 (S,S) 6 (none) 
# of households 3469 742 1181 1305 253 2077 
household size 1.92 2.30 2.65 2.94 3.44 1.98 

% with kids 23.87 33.56 33.62 43.98 62.45 26.05 
# of kids 0.44 0.73 0.56 0.89 1.42 0.55 

# > 15 years old 1.52 1.63 2.13 2.12 2.13 1.48 
# of workers 0.85 1.08 1.43 1.49 1.58 0.70 
% heads male 40.10 63.07 65.54 71.80 77.47 33.22 
age of head 55.24 48.22 51.84 49.45 45.24 55.66 

% heads white 82.07 87.60 83.32 89.04 92.89 67.89 
% heads educ > 

high school 52.15 52.29 66.05 57.01 57.31 34.33 

% in area with 
pop.> 4 million 28.37 19.41 30.48 22.68 18.58 38.61 

expenditures 22754. 24574. 35472. 33812. 34246. 17795. 
total gas cost 648. 920. 1103. 1279. 1398. -- 

 
 
 
 
 
 
 

Table 4. Hedonic Price Regressions 

Cars SUVs Dependent 
Variable: cmv Coefficient Standard 

Error Coefficient Standard 
Error 

constant (a0) 1444.64 1806.08 -1220.52 2702.42 
cyl (a1) 3150.55 288.44 1993.56 411.23 

import (a2) 2371.11 894.32 1417.36 1584.27 
1-Wear (b0) -2179.03 3272.66 8973.32 4996.71 

Wear×cyl (b1) -3184.92 546.49 -1459.66 763.85 
Wear×import (b2) -998.07 1719.28 -658.35 2800.80 

R2 0.49 0.51 
# of obs. 793 510 
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Table 5: Estimation of Miles Per Gallon (MPG) and Emissions Per Mile (EPM) 
 

Dependent Variable 
MPG EPM 

 
Independent 

Variable Coefficient Standard 
Error 

Coefficient Standard 
Error 

 
constant 

cyl6 
cyl8 
age 
age2 

car 
cyl6 × car 
cyl8 × car 

 
24.021 
-4.395 
-7.948 
-0.419 
0.006 
4.262 
-1.439 
-1.149 

 

 
0.496 
0.483 
0.581 
0.049 
0.002 
0.410 
0.560 
0.655 

 
-0.597 
1.103 
3.548 
0.285 
0.003 
-0.589 
-0.661 
-2.819 

 
0.663 
0.645 
0.777 
0.065 
0.002 
0.548 
0.749 
0.875 

 
R2 

F-value 
# of obs. 

0.7598 
299.997 

672 

0.4095 
65.775 

672 
 
 

 

Table 6. Mean Values of Key Variables Involved in Estimation 

 Bundle 
Variable 1 (Car) 2 (SUV) 3 (C,C) 4 (C,S) 5 (S,S) 6 (none) 

% of households 38.43 8.22 13.08 14.46 2.80 23.01 
VMT1 11799. 12977. 15283. 10513. 16151. -- 
VMT2 -- -- 5554. 10771. 5358. -- 

price of gas 1 (p1) 0.058 0.074 0.056 0.057 0.072 -- 
price of gas 2 (p2) -- -- 0.057 0.075 0.075 -- 

vintage1 8.62 8.24 7.63 7.89 6.87 -- 
vintage2 -- -- 9.02 8.50 8.78 -- 
Wear1 0.76 0.73 0.72 0.73 0.68 -- 
Wear2 -- -- 0.77 0.73 0.75 -- 

price of Wear1 (q1) 15572. 18010. 15363. 15686. 18052. -- 
price of Wear2 (q2) -- -- 15301. 18133. 18105. -- 

expenditure (y) 22754. 24574. 35472. 33812. 34246. 17795. 
capital cost (k) 17224. 20187. 34157. 37684. 40551. -- 
capital cost 1 17224. 20187. 17125. 17337. 20232. -- 
capital cost 2 -- -- 17032. 20348. 20319. -- 
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Table 7. Estimation Results 

Sequential Estimation 
Parameters 

Nested Logit Continuous 
Demands 

Simultaneous 
Estimation 

p11, p31 ( 1Cα ) -0.246** -0.460** -0.433** 
 (0.025) (0.070) (0.073) 

p32  ( 2Cα ) -0.045 -0.238* -0.045** 
 (0.033) (0.143) (0.008) 

p21, p51 ( 1Sα ) -0.237** -0.927** -0.526** 
 (0.028) (0.054) (0.105) 

p52 ( 2Sα ) -0.011 -0.453 -0.013 
 (0.049) (0.380) (0.080) 

p41 (
4
CARα ) -0.240** -0.374** -0.399** 

  (0.024) (0.143) (0.062) 
p42 (

4
SUVα ) -0.084** -1.331 -0.662** 

 (0.022) (1.582) (0.103) 
q1 ( 1qα ) -0.012** -0.370E-03 -0.004** 

 (0.003) (0.002) (0.001) 
q2 ( 2qα ) 0.010** -0.010** -0.219E-36 

 (0.001) (0.002) (0.936E-36) 
y ( β ) -1.408** 1.134** -0.420** 

 (0.086) (0.134E-03) (0.001) 
k ( 1β ) -0.671** -0.456** -0.405** 

 (0.108) (0.034) (0.023) 
Choice specific:    

constant 2 ( 2
0α ) -1.403** 

(0.278)  0.645** 
(0.035) 

 constant 3 ( 3
0α ) 4.219** 

(0.516)  1.860 ** 
(0.031) 

constant 4 ( 4
0α ) 5.057** 

(0.650)  2.063** 
(0.051) 

constant 5 ( 5
0α ) 2.401** 

(0.685)  2.320** 
(0.062) 

constant 6 ( 6
0α ) -2.045** 

(0.383)  -0.948** 
(0.132) 

Demand-Specific:    
constant 1 ( 1Vα )  9.578** 0.302** 

  (0.179) (0.087) 
constant 2 ( 2Vα )  7.361** 0.805** 

  (0.187) (0.088) 
constant 3 ( 1Wα )  9.346* 2.580** 

  (5.007) (0.298) 

constant 4 ( 2Wα )  5.147** 
(0.176) 

5.114** 
(1.259) 

(continued on the next page) 
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Table 7. Estimation Results (cont’d) 

Famsize 0.332 0.072** 0.058** 
 (0.542) (0.002) (0.001) 

Earnr 0.270** 0.067** 0.032** 
 (0.067) (0.001) (0.183E-03) 

Kids 0.510 0.081** -0.031** 
 (0.527) (0.002) (0.001) 

Drivers 0.190 0.060** -0.041** 
 (0.535) (0.001) (0.001) 

Metro -0.552** -0.012** 0.012** 
 (0.123) (0.002) (0.474E-03) 

Pop4 -0.340** -0.013** 0.012** 
 (0.085) (0.001) (0.290E-03) 

Urban -0.441** -0.058** 0.105** 
 (0.161) (0.002) (0.001) 

Age 0.046** -0.007** 0.004** 
 (0.003) (0.290E-04) (0.128E-04) 

White 0.056 0.136** 0.097** 
 (0.091) (0.001) (0.386E-03) 

Male 0.057 0.109** 0.004** 
 (0.085) (0.001) (0.240E-03) 

Educ 0.020 0.058** 0.036** 
 (0.072) (0.001) (0.263E-03) 

Northwest 0.244 0.042** 0.046** 
 (0.179) (0.001) (0.386E-03) 

Midwest 0.401** 0.064** 0.059** 
 (0.173) (0.001) (0.380E-03) 

South -0.726** -0.150** 0.072** 
 (0.121) (0.001) (0.374E-03) 

1λ  0.814**  0.138** 
 (0.053)  (0.006) 

2λ  0.066**  0.103** 
 (0.003)  (0.005) 

Log Likelihood -28917.8 -786857 -0.310E+07 
* indicates 0.10 significance level, and ** indicates 0.05 significance level. 
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Table 8. Elasticities of Discrete Choices for each Variable 

 Bundle 

Variable  1 (Car) 2 (SUV) 3 (C,C) 4 (C,S) 5 (S,S) 6 (none) 

Sequential: a 

 p  0.015 -0.106 0.006 -0.177E-03 0.034 -- 

q -0.207 3.618 -0.116 -0.033 -6.077 -- 

qcar 1.530 -6.318 0.139 0.127 -3.470 -- 

qsuv -1.737 9.937 -0.255 -0.160 -2.603 -- 

y -0.106 0.591 -0.042 -0.006 -0.011 -0.006 

k 0.086 -0.427 0.061 0.008 -0.303 -- 

kcar -0.008 0.127 0.056 -0.944 4.336 -- 

ksuv 0.110 -0.413 0.134 -1.099 4.703 -- 

Simultaneous: b 

p 0.009 -0.073 0.695 -0.793 0.020 -- 

q 0.025 0.193 0.066 0.283 -0.001 -- 

qcar 0.177 -0.966 0.151 0.352 -0.147 -- 

qsuv -0.153 1.159 -0.085 -0.069 0.146 -- 

y 0.341 -1.203 -0.818 0.634 0.010 -0.074 

k -0.321 0.390 1.655 -6.319 -0.377 -- 

kcar -1.229 7.315 -13.021 7.345 1.263 -- 

ksuv 0.908 -6.925 14.676 -13.665 -1.640 -- 
a Calculation based on estimates in column 1 of Table 7. 
b Calculation based on estimates in column 3 of Table 7. 
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Table 9. Short-Run Elasticities of Continuous Demands 

 Bundle Total 

Variable  1 (Car) 2(SUV) 3 (C,C) 4 (C,S) 5 (S,S) Emissions c 

Sequential: a 

p -0.026 -0.066 -0.038 -0.117 -0.098 -0.211 

q 0.012 0.013 0.306 0.360 0.362 0.631 

qcar 0.012 -- 0.306 0.012 -- 0.368 

qsuv -- 0.013 -- 0.349 0.362 0.263 

y -2.581 -2.788 -4.024 -3.836 -3.885 -11.472 

k -1.570 -1.840 -3.113 -3.434 -3.695 -8.746 

Simultaneous: b 

p -0.024 -0.037 -0.026 -0.070 -0.038 -0.136 

q 0.122 0.141 0.120 0.123 0.141 0.434 

qcar 0.122 -- 0.120 0.123 -- 0.293 

qsuv -- 0.141 -- 7.933E-36 0.141 0.141 

y 0.956 1.032 1.490 1.420 1.438 4.246 

k -1.397 -1.637 -2.770 -3.056 -3.288 -7.783 

Each entry is the elasticity of  VMT  or  Wear,  in the first or second vehicle, with 
respect to each variable. 
a Calculation based on estimates in column 2 of Table 7. 
b Calculation based on estimates in column 3 of Table 7. 
c The last column is the percent change in total emissions,  E = �EPM×miles, 
adding over all vehicles in all bundles, for a one percent change in each variable. 

 

 
 
 




