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ABSTRACT

Game theory makes strong predictions about how individuals should behave in two player, zero sum
games.  When players follow a mixed strategy, equilibrium payoffs should be equalized across actions,
and choices should be serially uncorrelated.  Laboratory experiments have generated large and systematic
deviations from the minimax predictions.  Data gleaned from real-world settings have been more consistent
with minimax, but these latter studies have often been based on small samples with low power to reject.
In this paper, we explore minimax play in two high stakes, real world settings that are data rich: choice
of pitch type in Major League Baseball and whether to run or pass in the National Football League.
We observe more than three million pitches in baseball and 125,000 play choices for football.  We
find systematic deviations from minimax play in both data sets.  Pitchers appear to throw too many
fastballs; football teams pass less than they should.  In both sports, there is negative serial correlation
in play calling.  Back of the envelope calculations suggest that correcting these decision making errors
could be worth as many as two additional victories a year to a Major League Baseball franchise, and
more than a half win per season for a professional football team.
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A spirited debate has arisen regarding the question of the extent to which actions 

in two-player zero sum games conform to the predictions of game theory.  Von 

Neumann’s Minimax theory makes three basic predictions about behavior in such games.  

First, since the player must be indifferent between actions in order to mix, the expected 

payoffs across all actions that are part of the mixing equilibrium must be equalized.  

Second, the expected payoff for all actions that are played with positive probability must 

be greater than the expected payoff for all actions that are not played with positive 

probability.2  Third, the choice of actions is predicted to be serially independent, since if 

the pattern of play is predictable, it can be exploited by an optimizing opponent. 

 Laboratory tests of minimax have, almost without exception, shown substantial 

deviations from these theoretical predictions (Lieberman, 1960,1962; Brayer 1964, 

Messick 1967, Fox 1972, Brown and Rosenthal 1990, Rosenthal et  al. 2003).  One 

remarkable exception to this pattern is Palacios-Huerta and Volij (2008), in which soccer 

players who are brought into the laboratory play minimax in both a 2x2 game and 

O’Neill’s (1987) 4x4 game.  Levitt, List, and Reiley (2008), however, are unable to 

replicate these findings, either using professional soccer players or world class poker 

players, calling the Palacios-Huerta and Volij results into question.  

 In stark contrast to the lab, the existing literature on minimax play in the field has 

generally provided support to the predictions of game theory.  Whether the task is the 

direction of a serve in tennis (Walker and Wooders 2001, Hsu, Huang, and Tang 2007),   

                                                 
 
2 In most prior empirical analyses, this prediction has either been irrelevant of untestable.    If there are only 
two actions available (e.g. Walker and Wooders 2001, Hsu, Huang, and Tang 2007), then by definition any 
mixing strategy must include both actions.  Even when the action space is richer, the expected payoff to an 
action that is not taken is typically not observed, making this prediction untestable.  Hirschberg, Levitt, and 
List (2009), on the other hand, are able to address this prediction in studying the actions of poker players 
because of the richness of their data.    



penalty kicks in soccer (Chiappori, Levitt, and Groseclose 2002, Palacios-Huerta 2003), 

or the decision to call, check, fold, or raise in limit poker (Hirschberg et al. 2009), 

equalized payoffs across actions that are included in the mixed strategy cannot be 

rejected.  The evidence on serial independence in the field is more mixed, but has found 

some support (e.g., Hsu, Huang, and Tang 2007). 

 There are a number of possible explanations for the sharp differences observed in 

prior studies done in the laboratory versus the field.   Failure of minimax in the lab may 

be the result of a lack of familiarity with the games that are played, low stakes, or 

selection of participants into the studies who do not have experience or talent for mixing.  

A very different explanation for the contrasting conclusions of lab and field studies is that 

field studies tend to have very low power to reject (Levitt and List 2007).  For instance, 

in Chiappori, Levitt, and Groseclose (2002), the total number of penalty kicks is only 

459, spread over more than 100 shooters.  Walker and Wooders (2001) observe 

approximately 3,000 serves spread over forty Grand Slam tennis matches.  

 In this paper, we add to the existing literature by studying behavior in two new 

field settings: the pitcher’s choice of pitch type (e.g., fastball versus curveball) in 

professional baseball, and the offense’s choice of run versus pass in professional football.  

In each of these settings, we are able to analyze far more data than has previously been 

available in field studies of mixed strategy behavior.  In the case of baseball, we observe 

every pitch thrown in the major leagues over the period 2002-2006 – a total of more than 

3 million pitches.  For football, we observe every play in the National Football League 

for the years 2001-2005 – over 125,000 plays.  In both settings, the choices being made 

have very high stakes associated with them. 



 The results obtained from analyzing the football and baseball data are quite 

similar.  In both cases, we find clear deviations from minimax play, as evidenced by a 

failure to equalize expected payoffs across different actions played as part of mixed 

strategies, and with respect to negative serial correlation in actions. In the NFL, we find 

that offenses on average do systematically better by passing the ball rather than running.  

In baseball, pitchers appear to throw too many fastballs, i.e., batters systematically have 

better outcomes when thrown fastballs versus any other type of pitch.   

In football, teams are more likely to run if the previous play was a pass, and vice 

versa.  This pattern is especially pronounced when the previous play was unsuccessful.  

Negative serial correlation in actions is consistent with a large body of prior laboratory 

evidence (e.g., Brown and Rosenthal 1990).  Pitchers also exhibit some negative serial 

correlation, particularly with fastballs, i.e., they are more likely to throw a non-fastball if 

the previous pitch was a fastball, and vice versa. 

The magnitude of these deviations is not trivial.  Back-of-the-envelope 

calculations suggest that the average NFL team sacrifices one point a game on offense 

(4.5 percent of current scoring) as a consequence of these mistakes.  In baseball, we 

estimate that the average team gives up an extra 20 runs a season (about a 1.3 percent 

increase).  If these estimates are correct, then the value to improving these decisions is on 

the order of $4 million a year for the typical baseball team and $5 million a year for an 

NFL franchise. 

 The remainder of the paper is structured as follows.  Section I reports our results 

for major league baseball.  Section II analyzes NFL football.  Section III concludes. 

 



Section I: An analysis of pitch choice in major league baseball 

 Our data on pitch choice in major league baseball were purchased from Baseball 

Info Solutions, which employs data trackers at all games and compiles the information in 

order to sell it to major league teams and other interested parties.  The data set includes a 

wealth of information for each pitch thrown in the major leagues over the period 2002-

2006: the identity of the pitcher and batter, the current game situation (inning, count, 

number of outs, current score, etc.), the type of pitch thrown, and the outcome of the 

pitch (e.g., home run, foul, sacrifice bunt). 

 There are multiple dimensions along which pitches vary: the type of pitch (e.g., 

changeup, slider, fastball), the location of the pitch, the velocity, etc.  We limit our 

attention to just one of these dimensions: pitch type.3  The raw data contain 12 different 

types of pitches.  After consultation with major league teams, we consolidated these into 

five categories: fastball, curveball, slider, changeup, and other.4  In our analysis, we drop 

all pitches classified as “other.”5 

 Our primary outcome measure for an at bat is the baseball statistic known as 

“OPS,” which is the sum of a batter’s on-base percentage and his slugging percentage.  In 

                                                 
3 Unlike velocity or location, pitch type is not affected by faulty execution on the part of the pitcher;  a 
pitcher might intend to locate a pitch over the inside corner of the plate, but mistakenly throw it to the 
outside of the plate. 
4 These pitch types, with number of cases in parentheses, are as follows: Fastballs (2,083,248) and cut 
fastballs (39,830) are combined as “fastball.”  Changeups (362,387) and split fingers (50,818) are 
combined as “changeup.”  Forkballs (430), knuckleballs (18,905), pitchouts (4,379), screwballs (766), 
sinkers (84), and unknowns (188,927) are combined as “other.” Sliders (449,378) and curveballs (314,633) 
compose the rest of the data. 
5 The accuracy with which pitch type is coded is critical to our study.  As a check on this issue, we obtained 
the coding for an overlapping sample of pitches collected by STATS Inc., which competes with Baseball 
Info Solutions in providing information to baseball teams.  These two independent assessments of pitch 
type match on over 90 percent of all pitches.  The coding matches especially well on fastballs, with more 
variation occurring when the two data sets code an off-speed pitch differently.  If we limit our comparison 
to fastball versus non-fastball, approximately 94 percent of all pitch types match across the two data sets.  
Importantly, the degree to which the two data sets match does not appear to be a function of the outcome of 
the at bat.  Match rates are nearly identical regardless of whether the pitch is not put in play, is put in play 
for a hit, or is put in play for an out. 



prior empirical research, OPS has been shown to be a strong predictor of the number of 

runs a team scores (Fox 2006).  If a batter makes an out, his OPS for that at bat is zero.  If 

the batter walks, his OPS is one.  A single earns an OPS of two, a double an OPS of 

three, a triple an OPS of four, and a home run an OPS of five. 

 Our raw data covers every regular season pitch thrown in the major leagues over 

the period 2002-2006.  After generating season level statistics such as batter OPS, we 

exclude any at bat including any pitch categorized as “other,” as well as data from extra 

innings.  After these exclusions, we have 3,110,429 total pitches thrown.  Table 1 

presents summary statistics for these pitches.  As shown in column 1, fastballs are the 

most common type of pitch, accounting for approximately 65 percent of all throws.  

Sliders are the second most common pitch type, followed by changeups and curveballs.   

 Columns 2-5 of Table 1 report the distribution of outcomes for each pitch type.  

We report four mutually exclusive and exhaustive pitch outcomes: a ball, a strike, the ball 

is put into play and the batter is out, and the ball is put into play and the batter gets a hit.6  

Pitchers are slightly more likely to record strikes when throwing fastballs relative to all 

non-fastballs, and slightly less likely to register a ball.  Changeups are most likely to lead 

to both an out (15.29 percent) and a hit (7.08 percent); curveballs are least likely to yield 

both outs and hits.  Column 6 of Table 1 shows the OPS (our preferred outcome metric) 

by pitch type when the pitch ends the at bat.  Foreshadowing the results from the 

regression analysis, the OPS on fastballs is higher than for non-fastballs: .753 versus 

.620.  One potential explanation for that gap, however, is that fastballs are more likely to 

be thrown in hitters’ counts, as demonstrated in the final three columns of Table 1.  

                                                 
6 A foul ball that is not caught for an out is classified as a strike in this categorization. 



 To further explore the role of the count, Table 2 reports results for pitches thrown 

on each possible count, e.g., 1-0, 3-1, etc.  As column 3 demonstrates, the likelihood of a 

fastball varies widely across counts.  On a 3-0 count, almost 95 percent of all pitches are 

fastballs; when the count is 1-2 the share of fastballs is only 52 percent. Columns 3-6 

show OPS comparisons for fastballs and non-fastballs by count, for pitches that end the at 

bat.  The differences in outcomes for fastballs versus non-fastballs tend to be small when 

there are fewer than two strikes.   On two strike counts, however, non-fastballs generate 

an OPS that is more than 100 points lower than for fastballs, and this gap is highly 

statistically significant.  The last four columns of Table 2 report the final outcome of the 

at-bat as a function of which pitch was thrown at each count, when that pitch does not 

actually end the at-bat.  If there are no spillovers across pitches, there should be no 

difference in outcomes across pitch types if the pitch does not end the at bat.  To the 

extent, however, that fastballs are slightly more likely to generate strikes than non-

fastballs, throwing a fastball may provide some benefit to the pitcher when the at-bat 

does not end with the current pitch. 7  The results in the last four columns of Table 2 

suggest, however, that, if anything, throwing a fastball on the current pitch leads to 

slightly worse outcomes within this at-bat if the pitch does not terminate the at-bat.  For 

most counts, the eventual at-bat OPS is close for fastballs and non-fastballs, but with two 

strikes the non-fastballs yield lower OPS.  

                                                 
7 There are other channels, as well, via which a fastball might provide deferred benefits.  First, it may be 
that it is harder to hit a pitch if the preceding pitch was a fastball.  Second, fastballs might be less likely to 
generate other negative results, like wild pitches, passed balls, and stolen bases.  Third, fastballs might 
cause less wear and tear on the pitcher’s arm.   Back of the envelope calculations suggest that none of these 
channels is likely to be even close to a magnitude to offset the observed OPS differences between fastballs 
and other pitches.  



 Table 3 analyzes more formally the link between pitch type and OPS using 

regression specifications of the following form: 

(1) 'apb k apb apb p b apbOPS Pitchtype Xβ λ θ ε= + Γ + + +  

where a, p, b, and k index at-bats, pitchers, batters, and pitch types respectively.  OPS is 

our measure of how successful the batter is in the at-bat.  Pitchtype denotes whether the 

pitch that ends the at-bat is a fastball, curveball, slider, or changeup.  Also included in the 

regression is a set of covariates X that includes indicators for the count prior to the final 

pitch of the at-bat, the inning of the game, the number of outs, and the number of runners 

on base.  In some specifications pitcher and batter fixed-effects are included, pitcher-

batter interactions, and in our most fully saturated models, pitcher*batter*count 

interactions. In these regressions, we limit the sample to pitches that end the at-bat.8   

 Column 1 of Table 3 includes pitch type, but no other controls.  Changeup is the 

omitted pitch category, so all coefficients should be interpreted as relative to the outcome 

if a changeup is thrown.  With no covariates at all, as already noted in the summary 

statistics, the outcomes when fastballs are thrown are quite bad for pitchers: an OPS gap 

of .094 (standard error=.004) relative to changeups.  Curveballs and sliders have the best 

pitcher outcomes.  As demonstrated in column (2), however, a substantial fraction of the 

gap across pitch type is eliminated with the inclusion of count-fixed effects.  After 

controlling for count, the gap between fastballs and change-ups falls to .041 (SE=.004).  

Sliders do slightly better than changeups, curveballs slightly worse. 

 Column 3 of Table 3 adds a range of controls corresponding to the game situation: 

the inning, number of outs, and number of runners on base.  Including these covariates 
                                                 
8 We have also run these specifications for pitches that do not end the at-bat.  The results for specifications 
matching columns 1, 2, and 3 show changeups under-performing all other pitches by a small, but 
significant amount while those matching columns 4 and 5 in Table 3 are small and insignificant. 



has little impact on the coefficients on pitch type.  OPS is lowest in the ninth inning and 

highest with no outs and with the bases loaded.  The likely explanation for lower OPS in 

the ninth inning is that on average the quality of the pitcher is higher because specialist 

“closers” are brought in during the final innings of close games.  The inclusion of pitcher-

batter interactions confirms this intuition in column (4).  In this specification, it is the 

early innings in which OPS is low.  Controlling for pitcher-batter interactions  increases 

the OPS gap between fastballs and other pitches, which implies either that better than 

average pitchers tend to throw more fastballs, or that better than average hitters see fewer 

fastballs than other hitters.  Column (5) adds pitcher*batter*count interactions.  Thus, the 

identification in column (5) comes only from cases where the same pitcher and batter are 

facing each other, with the same count, and in one instance the pitcher throws a particular 

pitch, and on another such occasion, a different type of pitch.  Adding these three-way 

interactions has little impact on the coefficients. 

 The OPS gaps on fastballs in Table 3 are substantial in magnitude.  Fox (2006) 

estimates that each .001 point of OPS over the course of a season translates into 2.16 

additional runs.  If a pitching staff were able to reduce the share of fastballs thrown by 10 

percentage points while maintaining the observed OPS gap on fastballs, this would 

reduce the number of runs allowed by roughly 15 per season, or two percent of a team’s 

total runs allowed.  Because of behavioral responses by batters, this is likely to be an 

upper bound on the cost of teams throwing too many fastballs.   

 Table 4 explores the sensitivity of the coefficient on pitch types to a variety of 

subsets of the data, using the specification reported in column 5 of Table 3 as a baseline.  

The three columns of the table correspond to the estimate for fastballs, curveballs, and 



sliders respectively, in all cases relative to the omitted category, which is changeups.  

Each row of the table represents estimates from one regression; only the coefficients on 

the pitch type variables are presented in the table.   

The top row of the table shows the baseline estimates for the entire sample. The 

next three rows of Table 4 divide the sample according to whether it is a hitter’s count, a 

neutral count, or a pitcher’s count.9  Interestingly, once we control for other factors, 

fastballs not only do worse on pitcher’s counts (as was apparent in the large OPS gap in 

the raw data for two-strike counts), but on neutral and hitter’s counts as well.  Across 

these three classifications, the coefficient on fastball ranges from .064 to .087.   

 The next three rows divide the sample of pitchers with at least 200 plate 

appearances against them into three equal-sized categories according to their OPS.  

“Good” pitchers have the lowest third of OPS against, and “bad” pitchers have the 

highest OPS against.  The OPS gap associated with fastballs is smallest for the good 

pitchers.  Defining good and bad hitters in a parallel fashion, we find that the OPS gap for 

fastballs is present only for good and medium hitters.  Bad hitters do best with changeups 

and worst with curveballs.   

 The pitchers who throw the fewest  fastballs generally do worse with fastballs 

than pitchers who throw more fastballs.  Fastballs do best when there are runners in 

scoring position; in that circumstance, fastballs have worse outcomes than change-ups, 

but similar outcomes to curveballs and sliders.  There is little systematic difference in the 

coefficient on fastball as a function of the number of outs. 

 

                                                 
9 Specifically, we define hitter’s count as 1-0, 2-0, 3-0, and 3-1 counts, neutral count as 0-0, 1-1, 2-1, and 3-
2 counts, and pitcher’s count as 0-1, 0-2, 1-2, and 2-2 counts. 



Serial correlation in pitch choice 

 Minimax theory predicts that equilibrium actions will be serially uncorrelated.  In 

the context of baseball, testing this prediction is complicated by the fact that the payoff 

matrix changes both across at-bats, and even within an at-bat.  The payoff to a fastball, at 

least according to the choices pitchers actually make, is higher with a 3-0 count than an 

0-2 count.  The empirical challenge is to convincingly control for the heterogeneity in 

payoffs, knowing that these payoffs are potentially a function of many variables that are 

not in our data set (e.g., how fatigued the pitcher is, which way the wind is blowing, etc.) 

 Consistent with our estimation strategy above, one means of controlling for 

unobservables is to include pitcher*batter*count interactions.  In such a specification, the 

identifying variation comes only from instances when the same pitcher and batter reach 

the same count on multiple occasions, but the pitcher chooses to throw different pitches.  

Even this strategy, however, is subject to criticism when trying to measure serial 

correlation: if unobservable factors led the pitcher to choose a fastball on the previous 

pitch of this at-bat, perhaps those same factors are also relevant when choosing the next 

pitch to throw.  On a day when a pitcher has his curveball working effectively, he will 

tend to throw more curveballs.  

 To address this potential criticism, we condition not only on pitcher*batter*count, 

but also on the number of pitches of each pitch type that have been thrown thus far in the 

at-bat.  Thus, our identification comes only from cases where the same pitcher and batter 

meet on multiple occasions, reach the same count, and progress through the exact same 

number of fastballs, curveballs, changeups, and sliders in reaching that count, but the 

order in which those pitches were thrown differs.  Minimax theory would predict that for 



the same batter and pitcher, if the count is 2-1, and thus far in the at-bat there have been 

two fastballs and one slider, it should not matter whether the slider came on the first, 

second, or third pitch of the at-bat. 

 Formally, the regression specification we estimate takes the form: 

(2) 1 f cu s chabpt abpt abp bpcn n n n abptPitchtype Pitchtype Xβ δ ε−= + Γ + +  

Where a, b, p, and t index an at-bat, pitcher, batter, and the number of the pitch within an 

at-bat respectively.  Pitchtype, as before, corresponds to whether the pitch is a fastball, 

curveball, etc.  The control variables X include the percent of pitches by pitch type that 

have been thrown to this batter on this count up to this point during the season (excluding 

this observation), the same variable defined for the pitcher, and the share of each pitch 

type thrown by the pitcher thus far in this game.  The δ term represents a 

pitcher*batter*count*number of pitches of each pitch type thrown thus far in the at-bat, 

with c reflecting the count and  nf capturing the number of fastballs thrown thus far in the 

at-bat and similarly with the other subscripts.   

Table 5 reports our estimates of serial correlation using variations on equation (2).  

The dependent variable in each regression is listed at the top of the column.  In columns 

1-4, along with the interactions and controls, we include an indicator variable equal to 

one if the preceding pitch is the same as the dependent variable.  These specifications 

measure whether, conditional on the controls described above (e.g., the count and the 

number of pitches by type in this at bat), knowing the pitcher threw a particular pitch on 

the last pitch helps predict whether he will throw it as the current pitch.  For three of the  

four pitch types, we observe statistically significant negative serial correlation.  The 

largest coefficient is for fastballs.  If the pitcher threw a fastball on the last pitch, all else 



equal, it lowers the likelihood this pitch will be a fastball by 4.1 percentage points.  In 

relative terms, the negative serial correlation for sliders is greater, since sliders represent 

only about 10 percent of all pitches.  If the last pitch was a slider, the likelihood that this 

current pitch is a slider falls by two percentage points, or twenty percent.  The negative 

serial correlation is roughly half as large for curveballs, and not present for changeups. 

 Columns 5-8 of Table 5 add the indicators for once-lagged values of each pitch 

type, which allows us to learn not just whether pitchers repeat the same pitch more or less 

than would be expected, but also whether other transitional sequences from pitch to pitch 

appear more or less frequently than predicted by theory.  In each of these columns, one of 

the lagged pitch types is omitted, and all results are relative to that omitted category.  The 

results that emerge in columns 5-8 demonstrate that there is greater nuance associated 

with the ordering of pitches than simply the negative serial correlation observed in the 

first four columns.  For instance, in column 5, not only is it the case that fastballs follow 

fastballs less than would be expected, but also, fastballs are more likely to occur after 

changeups than after other non-fastballs.  In contrast, curveballs are least likely to follow 

changeups (and vice versa), and curveballs are most likely to follow fastballs.  

Changeups are more likely to occur if the last pitch was a changeup than it was another 

non-fastball. 

 Calibrating the value to a team’s batters of exploiting these correlation patterns 

requires making assumptions as to how valuable it is to a major league hitter to know 

what type of pitch is coming.  Executives of Major League Baseball teams with whom we 

spoke estimated that there would be a .150 gap in OPS between a batter who knew for a 

certain a fastball was coming versus that same batter who mistakenly thought that there 



was a 100 percent change the next pitch would not be a fastball, but in fact was surprised 

and faced a fastball.  If one makes the further assumption that the OPS gap is linear in a 

hitter’s expectations about what type of pitch will be coming, then knowing that a fastball 

is 4.1 percentage points less likely if the last pitch was a fastball (and conversely more 

likely if the last pitch was not a fast ball) is worth roughly .006 OPS points to a batter.  

Thus, the potential benefit from exploiting the patterns of serial correlation is  the same 

magnitude as identified earlier from pitchers throwing too many fastballs – about 10-15 

runs per year.  

 

Section II: An analysis of play selection in the National Football League 

 Our data on play choice in the National Football League was compiled by 

STATS, Inc.   STATS, Inc. maintains a network of reporters tracking every snap in detail 

to provide exclusive information from their proprietary database to the NFL and other 

clients.  The data set includes extensive information for each play in the NFL over the 

period 2001-2005: date of game, offensive team, defensive team, general game 

description (e.g., stadium, weather, etc.), current game situation (quarter, location on 

field, down, yards to go, etc.), offensive formation, the type of play (run, pass, punt, field 

goal, etc.), and the outcome of the play (e.g., yards gained). 

 As was the case with baseball, there are many dimensions on which play types 

vary: run or pass, direction, distance, movement of players, etc.  We limit our study to 

just one dimension: the choice of whether to call a running play or a passing play. 

 Our raw data covers every play from regular season NFL games over five full 

seasons: 2001-2005.  We exclude fourth down plays, as well as all plays that occur in the 



last two minutes of the half, during overtime, or when a team kneels down to run out the 

clock.  Because of difficulties in our data of identifying whether the team’s intention was 

to run or to pass on plays where the quarterback runs, and on penalties called before a 

play unfolds (e.g., false start), these plays are also excluded.  After these exclusions, we 

have 127,885 total plays.  

   Unlike baseball, where there are well-established summary metrics for 

evaluating the success of an at bat (e.g. OPS), there is no parallel statistic in football.  

Consequently, we construct our own measure of success for a play in football as follows.  

First, we estimate the value to a team of having possession of the ball as a function of 

distance from the end zone, what down it is, and yards to achieve a first down, using a 

regression taking the form 

 

(3) (down,  yards to first down, distance to goal)Y f=  

where the outcome variable Y is the change in the game score between the current time 

and the end of the half.  We allow for a flexible function form with respect to the right-

hand-side variables, including fully interacted quintics of each of the variables.  The 

values generated from equation (3) appear sensible.  For instance, the three lines in 

Figure 1 show the estimated value to a team of having the ball first down and ten yards to 

go, second down and ten yards to go, and third down and ten yards to go respectively as a 

function of the distance to the end zone. 10  If a team has the ball first and ten at the 

opponent’s ten yard line, that team will expect to gain more than four points relative to 

the other team by the end of the half.  The value of having the ball first and ten declines 
                                                 
10 One other measure of performance in NFL football is Net Expected Scoring (NES), developed by Citizen 
Sports Network.  NES is not as flexible as our success metric, but is highly correlated (ρ=. 0.8583) with our 
success metric. 



nearly linearly with field position; having the ball first and ten on one’s own ten yard line 

is associated with essentially no expected change in the half-time score.  Having the ball 

second and ten costs a team about one-half a point relative to having the ball first and ten 

from the same field position.  Moving from second and ten to third and ten is even more 

costly for a team. 

To compute how successful a particular play is, we calculate the change in 

expected points scored before and after the play (e.g., looking at Figure 1, if a team gains 

20 yards when it is first and ten from its own 20 yard line, expected points scored jump 

by roughly one) and subtract the average change in expected points for all plays in the 

data set that began at the same down, distance, and yards to the goal.11  The resulting 

statistic, which we call our “success metric,” is mean zero.  The success metric tells us, in 

units of expected points scored, how much this play exceeds or underperforms the 

average play run on this down, distance, and yards to goal. 

In addition to this constructed measure of success, we also report results for more 

traditional, but highly imperfect outcome measures: yards gained,12 whether a first down 

is made, whether points are scored, and whether a turnover occurs. 

 Table 6 reports summary statistics for the football data set.  Column 1 shows 

outcomes for all plays; columns 2 and 3 divide the sample into running plays and passing 

plays respectively.  Column 4 reports the t-statistic of the comparison of means between 

running and passing plays.  Overall, runs represent 44 percent of the combined passes and 

runs.  For all plays our success metric, by definition, has a mean value of zero, since it is 

                                                 
11 When the play results in points being scored, those points are included in our calculation of the metric.   
12 We adjusted yards gained per play to capture certain circumstances: penalty yardage for penalties 
occurring within plays were incorporated, touchdowns within 10 yards of end zone were credited with a 
full 10 yards gained, and interceptions were adjusted to -45 yards gained. 



defined as the deviation from the expected outcome on a play.  Note, however, 

comparing the top row of columns 2 and 3, that passing plays systematically outperform 

running plays.  The mean gap between the two types of plays is roughly .066, implying 

that on average, a passing play generates .066 more points than a run.  This difference in 

means is highly statistically significant.  Consistent with this result, passes on average 

yield an extra .55  yards gained, and are nine percentage points more likely to yield a first 

down.  Passes do, however, produce more turnovers, and thus have higher variance. Runs 

result in scoring plays 2.8 percent of the time; passes lead to scores with a 3.8 percent 

probability. 

 To further analyze the difference across runs and passes, we estimate regressions 

of the form : 

 

(4) pijijpijpijpij XPassOutcome ελβα ++Γ++=  

 

where p, i, and j index a particular play, offensive team, and defending team respectively.   

Outcome is our measure of success for an offensive play.  Pass is an indicator variable 

equal to one if the team calls a passing play, and zero if the play is designed to be a run.  

X is a vector of controls, such as the score differential at the time of the play, whether the 

game is played on grass, whether the offensive team is the home team, the year of the 

game, etc.  In some specifications, we also add team-fixed effects for the offense and the 

defense, or interactions between the offensive and defensive teams.  

 The results from estimating equation (4) are presented in Table 7.  The four 

columns represent four different specifications, with the number of controls increasing 



moving from left to right in the table.  The first column, which includes no covariates, 

confirms the raw difference in means between passing and running; a pass generates an 

additional .066 points in expectation.  Column 2 adds controls, but does not include team-

fixed effects.  The relative value of a pass increases to .083 points in this specification.  

This specification also highlights the sizable home field advantage in the NFL: an 

offensive play run by the home team generate an extra .041 points, or roughly half the 

difference between a pass and a run.  Offenses perform slightly worse  in the cold.  The 

playing surface does not have a large impact on the offense’s effectiveness.  

Column 3 adds fixed-effects for the offensive and defensive teams.  These fixed 

effects will absorb any systematic differences across teams in offensive and defensive 

prowess.  The relative value of a pass decreases slightly to .077 points in this 

specification.   The last column of the table includes interaction effects for the offensive 

and defensive teams.  The relative value of a pass is essentially unchanged at  .075 points. 

Table 8 examines the sensitivity of the results of running versus passing to a 

variety of subsets of the data, as well as reporting results for an expanded set of outcome 

measures (yards gained, achieving a first down on the play, turnovers, and whether a 

touchdown is scored on the play).  The columns of the table correspond to different 

outcome measures, e.g. our constructed success metric, yards gained, etc.  Each row of 

the table represents a different subset of the data.  In all cases, we include team-fixed 

effects and controls mirroring those in column 4 of Table 7.  Only the coefficient on the 

pass indicator variable is reported in the table. 

Focusing first on the column 1 of Table 8, the top row of the table reports our 

baseline specification.  Thus, the entry in the top row in column 1 matches the coefficient 



we report in Table 6, column 4: a .075 gap between passes and runs on our success 

metric.  Consistent with this result, passes do better on yards gained, first downs made, 

and scoring, but also lead to more turnovers.  Moving down through the table, passes 

outperform runs in all quarters of the game, but by a greater margin in the first half than 

the second half of the game.  The benefits of passing accrue equally to home teams and 

visitors.  The best offenses exhibit the greatest gap between passes and runs; for the worst 

offenses the differential is not statistically significant.  Teams that pass the most have 

slightly smaller edges when passing than other teams. 

 The results in Tables 7 and 8 demonstrate that the expected outcome of a pass 

systematically exceeds that of a run – a result that is inconsistent with Minimax theory.13  

According to the theory, defenses should adjust to better defend the pass.  Absent that 

adjustment, offenses should be passing more often.  The magnitude of the deviations in 

payoffs that are observed are substantial.  The typical offense runs about 60 plays a game, 

56 percent of which are passes.  If the offense could increase its share of passes to 70 

percent without inducing an offsetting response on the part of the defense, it would 

generate an additional 0.63 points per game in expectation (8.4 additional passes*0.075 

expected points), or an extra ten points over the course of a season, or roughly 3 percent 

of a team’s total scoring.  Because defenses are likely to respond, that estimate is likely 

an upper bound on how much an offense could gain by exploiting the deviations from 

minimax play that are present in the data.  

 

                                                 
13 Alamar (2006) shows passing plays as having an outcome advantage of nearly 1.8 yards per play 
(adjusted yards) for the 2005 NFL season.  However, the source of that data -- http://www.pro-football-
reference.com/years/2005/ -- shows a difference of 0.5 yards when considering both sacks and interceptions 
as passing plays (“Adjusted Net Yards gained per pass attempt”), which is consistent with our findings. 



Serial correlation in NFL play calling 

 To assess whether there is serial correlation in the choice of runs versus passes on 

the part of NFL offenses, we run regressions of the form 

 

(5) pijpijijppij XPassPass εβα +Γ++= −1  

 

where Pass is an indicator for whether the play called was intended to be a pass.  The 

coefficient β captures the degree of serial correlation in play calling.  Included in the 

vector of controls are the same set of covariates in the earlier football analysis, along with 

three additional variables: the percentage of time that the offensive team passed over the 

course of the entire season, the percentage of time that the defensive team was passed 

against over the course of the entire season, and the share of passes by the offense in this 

game, up until the time this play is called.  Because we control for down and distance in 

these regressions, as well as an offense’s overall tendencies towards passing versus 

running, our identification comes from a comparison of, for example, whether on 2nd 

down and 10, a pass is more likely if the previous play was a run that went for no gain, or 

the previous play was an incomplete pass.  Minimax play predicts no serial correlation, 

implying a zero coefficient on whether or not the last play was a pass. 

 The basic estimation results corresponding to equation 5 are presented in column 

1 of Table 9.14  Offensive play calling reveals substantial negative serial correlation, with 

a coefficient of -.100 (se=.003).  In other words, conditional on other factors, a team is 

                                                 
14 The number of observations in Table 9 is smaller than in the earlier analysis for two reasons.  First, the 
first play of each drive is not included in the serial correlation analysis.  Second, plays for which the 
preceding play could not be cataloged as a run or a pass (e.g. because of a penalty or a quarterback run) are 
also excluded. 



almost 10 percentage points less likely to pass on this current play if they passed on the 

previous play. 

 To further explore the question of serial correlation, we divide the sample into 

thirds according to how successful the previous play was, with success defined by our 

constructed success metric  The results for these three subsets of the data (i.e. previous 

play was in the bottom-third/middle-third/upper-third success-wise)  are shown in 

columns 2 through 4 of Table 9.  Negative serial correlation is most pronounced when the 

preceding play was  unsuccessful.  Experiencing a poor result on the last play increases 

the likelihood the team will switch from a run to a pass or vice-versa by  14.5 percentage 

points.  In contrast, when the last play is in the upper-third of successful outcomes, the 

tendency to switch away from that play type is greatly mitigated (serial correlation 

coefficient of only -.025). 

 These coefficients imply the opportunity for non-trivial gains for teams that 

successfully exploit serial correlation on the part of opposing offenses.    Assume, for 

instance, that if a defense knew with 100 percent certainty whether a play would be a run 

or a pass, it could cut the average yardage gained in half by adjusting defensive personnel 

or positioning.  Assume, as well, that if the defense was 100 percent certain a pass was 

coming, but instead the offense ran the ball, the expected yardage gained would be 50 

percent greater than the average, and similarly if the defense expected a run and the 

offense passed.15  Finally, let us assume that the value of knowing what play is coming is 

linear in the probabilities, i.e. going from 50 percent likelihood of a run to 60 percent 

likelihood yields one-tenth of the benefit of going from zero percent to 100 percent.  Take 

                                                 
15  Based on discussions with NFL teams, these assumptions are likely to be conservative, understating the 
potential value to defenses of exploiting serial correlated offensive play. 



the case where absent serial correlation, a defense expects an equal mix of runs and 

passes, with each type of play gaining 4.5 yards on average.  With serial correlation, 

however, the true mix of plays after a pass will be roughly 60 percent runs and 40 percent 

passes.  Under the assumptions above, if the defense adjusts to this information, the 

average running play will yield 3.6 yards and the average passing play 5.4 yards, yielding 

an overall average gain for the offense of 4.32 yards –.18 yards less than if the defense 

ignores the serial correlation.  There are roughly 60 offensive play calls per game that are 

preceded by another offensive play.  If the average reduction in yards gained per play is 

.18 yards, then this amounts to an overall reduction of 10.8 yards per game, which 

translates into roughly 1 point per game.  One point per game is worth approximately a 

half victory per year – considerable given the NFL regular season includes just sixteen 

games.16  The potential benefit from exploiting the patterns of serial correlation in 

football is slightly larger than the benefit from calling fewer running plays analyzed 

earlier. 

 

                                                 
16 We base this calculation on the change in expected winning percentage by scoring 16 additional season 
points as estimated by the Pythagorean Winning Percentage [expected winning percentage = (points 
scored^2.64)/(points scored^2.64 + points allowed^2.64)].  Taking an average NFL team with 350 season 
points scored and 350 points allowed, increasing their points scored to 366 increases their expected 
winning percentage from .500 to .529. 



Section IV: Conclusion 

 In this paper, we utilize two enormous data sets generated by professionals in a 

high stakes environment to provide the most powerful test to date of minimax behavior in 

a natural setting.  In contrast to most prior studies using field data, we find substantial 

deviations from minimax behavior, both with respect to equalizing payoffs and serially 

correlated actions.  These deviations are not enormous in magnitude – meaning that they 

might plausibly not have been detected in the smaller data sets that have been available in 

most prior field research on the topic – but are large enough that a team that successfully 

exploited these patterns could add one or two season wins and millions of dollars in 

associated revenue. 

 Our findings reinforce the results of Romer (2006), Levitt (2006), and Pope and 

Schweitzer (2009) in demonstrating that high stakes alone are not sufficient to ensure that 

optimal decision-making will ensue, even among professionals operating in their natural 

environments. 
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Figure 1: Value of Possessing the Ball by Down and Distance

 



Table 1: Major League Baseball Summary Statistics by Pitch Type 
  Distribution of Outcomes  Percent Thrown In 

Pitch Type 
Number of 

observations Ball 
Strike/ 

foul 
In Play 

Out 
In Play 

Hit 

OPS if AB 
Ends on  

this Pitch 
Hitter's 
Counts 

Neutral 
Counts 

Pitcher's 
Counts 

Fastball 2000619 36.41% 43.37% 13.43% 6.79% 0.753 75.33% 66.49% 55.52% 

All Non-Fastball 1109810 38.07% 42.60% 13.09% 6.24% 0.620 24.67% 33.51% 44.48% 

Change-Up 391318 37.12% 40.51% 15.29% 7.08% 0.658 11.52% 11.84% 14.16% 

Slider 421031 37.81% 44.22% 12.14% 5.83% 0.598 8.76% 12.58% 17.38% 

Curveball 297461 39.68% 43.07% 11.54% 5.70% 0.594 4.40% 9.10% 12.94% 
 
Notes: Data cover pitches from 2002-2006.  Pitch types based on classifications by the data provider, Baseball Info Solutions, with some aggregation of categories by the 
authors.  Columns 2-5 report the outcome on the pitch in question.  OPS refers to the statistic on-base percentage plus slugging percentage.  Hitter’s counts are defined as 
1-0, 2-0, 3-0, and 3-1 counts; neutral counts are 0-0, 1-1, 2-1, and 3-2 counts, pitcher’s counts are 0-1, 0-2, 1-2, and 2-2 counts.  See the text for details on sample 
exclusions.



Table 2: Outcomes for Fastballs versus Non-Fastballs by Count 

   OPS if pitch ends at-bat 
OPS of at-bat if this pitch 

does not end the at-bat 

Count 
Number 
of pitches % Fastballs All Fastball 

Non- 
Fastball P-value All Fastball 

Non-
Fastball P-value 

0-0 834355 68.93% 0.839 0.838 0.841 0.802 0.684 0.681 0.691 0.001 

1-0 340215 68.95% 0.873 0.877 0.861 0.193 0.738 0.735 0.744 0.052 

2-0 118774 81.59% 0.947 0.955 0.900 0.038 0.820 0.820 0.821 0.845 

3-0 38346 94.93% 1.008 1.008 1.005 0.813 0.876 0.876 0.886 0.752 

0-1 387207 57.42% 0.774 0.780 0.766 0.120 0.575 0.578 0.571 0.094 

1-1 319943 57.40% 0.821 0.820 0.823 0.785 0.619 0.615 0.623 0.073 

2-1 170748 68.84% 0.882 0.882 0.883 0.977 0.702 0.703 0.699 0.508 

3-1 72665 84.61% 0.997 1.005 0.949 0.000 0.721 0.725 0.703 0.150 

0-2 180300 56.07% 0.401 0.441 0.361 0.000 0.509 0.511 0.505 0.358 

1-2 273334 52.13% 0.438 0.473 0.406 0.000 0.571 0.569 0.575 0.250 

2-2 232790 55.89% 0.491 0.521 0.457 0.000 0.682 0.687 0.677 0.105 

3-2 141752 69.76% 0.731 0.769 0.651 0.000 0.762 0.763 0.760 0.794 
2 Strike 
Counts 828176 57.06% 0.523 0.576 0.458 0.000 0.604 0.610 0.597 0.000 
Other 
Counts 2282253 66.95% 0.860 0.871 0.833 0.000 0.676 0.682 0.666 0.000 

 
Notes: Data cover pitches thrown in Major League Baseball between 2002 and 2006.  Count refers to the numbers of balls and strikes prior to the pitch that is thrown.  
The middle four columns of the table report mean OPS (on base plus slugging percentage) for pitches that end the at-bat, by pitch type.  The p-value column reports the 
statistical significance of a t-test of fastballs versus non-fastballs.  The last four columns report the OPS of the at-bat if this pitch does not end the at-bat.  If, conditional 
on the at-bat not ending, throwing a fastball on this pitch benefits the pitcher later on in the at-bat, then the OPS on fastball in the third-to-last column should be less than 
the OPS for non-fastballs in the penultimate column. 



Table 3: Regression Analysis of Outcomes of Fastballs vs. Other Pitches 
 (1) (2) (3) (4) (5) 
Fastball 0.094*** 0.041*** 0.042*** 0.070*** 0.073*** 
 (0.004) (0.004) (0.004) (0.005) (0.008) 
Slider -0.060*** -0.016** -0.011* 0.008 0.024* 
 (0.005) (0.005) (0.005) (0.006) (0.011) 
Curveball -0.064*** 0.006 0.005 0.010 0.017 
 (0.006) (0.006) (0.006) (0.007) (0.011) 
1st Inning   0.061*** -0.045*** -0.038* 
   (0.006) (0.009) (0.016) 
2nd Inning   0.027*** -0.041*** -0.033* 
   (0.006) (0.009) (0.017) 
3rd Inning   0.037*** -0.032*** -0.031 
   (0.006) (0.009) (0.016) 
4th Inning   0.056*** -0.011 -0.012 
   (0.006) (0.009) (0.016) 
5th Inning   0.042*** -0.002 0.000 
   (0.006) (0.009) (0.017) 
6th Inning   0.056*** 0.018* 0.014 
   (0.006) (0.009) (0.016) 
7th Inning   0.026*** 0.014 0.013 
   (0.006) (0.009) (0.016) 
8th Inning   0.015* 0.004 -0.000 
   (0.006) (0.008) (0.016) 
0 Outs   0.028*** 0.028*** 0.029*** 
   (0.003) (0.004) (0.006) 
1 Out   0.020*** 0.023*** 0.025*** 
   (0.003) (0.004) (0.006) 
0 Runners   0.009 0.003 0.016 
   (0.008) (0.010) (0.018) 
1 Runners   -0.004 -0.013 0.002 
   (0.008) (0.010) (0.018) 
2 Runners   -0.016 -0.018 -0.013 
   (0.009) (0.011) (0.019) 
R² 0.003 0.027 0.027 0.284 0.745 
Count FEs No Yes Yes Yes Yes 
Pitcher FEs No No No Yes Yes 
Batter FEs No No No Yes Yes 
Pitcher x Batter 
FEs 

No No No Yes Yes 

Pitcher x Batter 
x Count FEs 

No No No No Yes 

 
Notes: The dependent variable is the OPS of the at-bat.  Only pitches that end the at-bat are included in the analysis.  
Standard errors are shown in parentheses.  The omitted pitch type is change-up, so the pitch type coefficients are 
relative to change-ups.  The number of observations is equal to 834,345 in all columns.   
* p < 0.05, ** p < 0.01, *** p < 0.001 
 



Table 4: Sensitivity Analysis of the Pitch-type Coefficients 

 Fastball Slider Curveball 
Baseline 0.073*** 0.024* 0.017 
 (0.008) (0.011) (0.011) 
Hitter's Count 0.087*** 0.063 0.000 
 (0.025) (0.04) (0.05) 
Neutral Count 0.064*** 0.016 0.001 
 (0.013) (0.018) (0.020) 
Pitcher's Count 0.077*** 0.024 0.027 
 (0.010) (0.013) (0.014) 
Good Pitcher 0.055*** 0.003 0.014 
 (0.016) (0.020) (0.022) 
Medium Pitcher 0.085*** 0.029 0.023 
 (0.014) (0.020) (0.020) 
Bad Pitcher 0.085*** 0.040 0.025 
 (0.017) (0.024) (0.025) 
Good Batter 0.080*** 0.030* 0.027* 
 (0.009) (0.012) (0.013) 
Medium Batter 0.051*** 0.004 -0.009 
 (0.015) (0.021) (0.022) 
Bad Batter 0.002 0.004 -0.135 
 (0.063) (0.075) (0.077) 
Most Fasballs 0.059*** 0.064** 0.019 
 (0.016) (0.022 (0.023) 
Medium Fastballs 0.040** -0.016 -0.035 
 (0.013) (0.018 (0.018) 
Fewest Fastballs 0.111*** 0.034* 0.061*** 
 (0.012) (0.016 (0.018) 
RISP 0.030** 0.053*** 0.023 
 (0.011) (0.014 (0.015) 
Man on 1st 0.090*** 0.042 0.025 
 (0.023) (0.030) (0.033) 
Bases Empty 0.091*** 0.023 0.028 
 (0.013) (0.017) (0.018) 
2 Outs 0.085*** 0.051 0.017 
 (0.021) (0.027) (0.029) 
1 Out 0.072*** 0.015 0.048 
 (0.020) (0.027) (0.029) 
0 Outs 0.064** -0.004 -0.019 
 (0.020) (0.027) (0.028) 
 
Notes: The dependent variable in all cases is the OPS of an at-bat, for pitches that end the at-bat.  Values in the table 
are the coefficients on the pitch-type indicators from specifications that parallel those shown in Table 3, column 5.  In 
all cases, the omitted pitch type is a change-up, so all coefficients are relative to change-ups.  Each row of the table 
reports the results from a different regression.  Standard errors are shown in parentheses.   The top row reproduces the 
results for the baseline sample in Table 3.  The remaining rows report results for a range of subsets of the data.  
* p < 0.05, ** p < 0.01, *** p < 0.001 
 



Table 5: Serial Correlation in Pitch Type 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 Fastball Curveball Changeup Slider Fastball Curveball Changeup Slider 
Previous Fastball -0.041***    -0.033*** 0.016*** 0.021*** 0.015*** 
 (0.001)    (0.002) (0.001) (0.001) (0.001) 
Previous Curveball  -0.009***   0.014*** 0.005***  0.000 
  (0.001)   (0.002) (0.001)  (0.002) 
Previous Changeup   0.001    0.019***  
   (0.001)    (0.002)  
Previous Slider    -0.023*** 0.013*** 0.006*** 0.011*** -0.010*** 
    (0.001) (0.002) (0.001) (0.002) (0.002) 
Observations 2276074 2276074 2276074 2276074 2276074 2276074 2276074 2276074 
R² 0.194 0.241 0.198 0.242 0.194 0.241 0.198 0.242 
 
Notes: Dependent variable is an indicator variable equal to one if the pitch thrown is named at the top of the column, and zero otherwise.  In all cases the values reported 
in the table are the coefficient on an indicator variable corresponding to whether the previous pitch in the at-bat was the pitch type named in the rightmost column.  Each 
column represents a different regression.  Columns (1)-(4) include pitch-types one at a time; columns (5)-(8) include all pitch-types simultaneously.  All specifications 
include interactions for pitcher*batter*count*number of pitches of each pitch type thrown thus far in the at-bat, so identification comes only from cases where the same 
pitcher and batter have reached the same count with the same distribution of pitch types, but in differing orders of pitch types thrown.  Standard errors are shown in 
parentheses.  * p < 0.05, ** p < 0.01, *** p < 0.001 



Table 6: Summary Statistics for NFL Football  
 All plays Runs only Passes only P-value of runs 

versus passes 
Success Metric 0.000 -0.0370 0.0292 0.000 
 (1.233) (0.903) (1.441)  
Yards Gained 4.367 4.052 4.615 0.000 
 (11.51) (7.636) (13.82)  
First Down Made 0.265 0.210 0.308 0.000 
 (0.441) (0.407) (0.462)  
Fumble or Interception 0.0336 0.0150 0.0482 0.000 
 (0.180) (0.122) (0.214)  
Scoring Play 0.0338 0.0284 0.0382 0.000 
 (0.181) (0.166) (0.192)  
Far from Goal 0.354 0.345 0.361 0.000 
 (0.478) (0.475) (0.480)  
Medium from Goal 0.379 0.361 0.394 0.000 
 (0.485) (0.480) (0.489)  
Close to Goal 0.267 0.294 0.245 0.000 
 (0.442) (0.456) (0.430)  
2001 0.194 0.191 0.197 0.006 
 (0.396) (0.393) (0.398)  
2002 0.205* 0.198 0.211 0.000 
 (0.404) (0.398) (0.408)  
2003 0.202 0.207* 0.199 0.000 
 (0.402) (0.405) (0.399)  
2004 0.203 0.207 0.200 0.004 
 (0.402) (0.405) (0.400)  
2005 0.195 0.197 0.193 0.068 
 (0.396) (0.398) (0.395)  
Temperature 40 or Below 0.120 0.124 0.116 0.000 
 (0.325) (0.330) (0.320)  
Home Team 0.505 0.515 0.498 0.000 
 (0.500) (0.500) (0.500)  
Grass 0.638 0.639 0.638 0.609 
 (0.480) (0.480) (0.481)  
Number of observations 127885 56401 71484  
 
Notes: The unit of observation is an offensive play.  Data includes plays from 2001-2005 for the National Football 
League, excluding fourth-down plays, plays in the last two minutes of a half, overtime, and quarterback runs (which we 
cannot accurately categorize in terms of intentions into runs versus passes).  The variable “success metric” is our 
estimate of a given play’s contribution to the offensive team’s score relative to the average play from this down, 
distance, and yards to goal.  The final column of the table reports p-values from a t-test of equality of means for 
running and passing plays.  Standard deviations are shown in parentheses.  * p < 0.05, ** p < 0.01, *** p < 0.001 
 



Table 7: Regression Estimates of the Determinants of an Offensive Play’s Success 

 (1) (2) (3) (4) 
Pass 0.066*** 0.083*** 0.078*** 0.075*** 
 (0.007) (0.008) (0.008) (0.008) 
2002  0.022* 0.023* 0.027* 
  (0.011) (0.011) (0.013) 
2003  0.005 0.006 0.005 
  (0.011) (0.011) (0.013) 
2004  0.034** 0.034** 0.047*** 
  (0.011) (0.011) (0.013) 
2005  0.014 0.016 0.022 
  (0.011) (0.011) (0.012) 
Temperature 40 or below  -0.009 -0.013 -0.012 
  (0.011) (0.011) (0.014) 
Home Team  0.040*** 0.043*** 0.048*** 
  (0.007) (0.007) (0.008) 
Grass  0.003 0.025** 0.021 
  (0.007) (0.009) (0.011) 
R² 0.001 0.004 0.007 0.016 
Down x Distance No Yes Yes Yes 
Quarter x Score Differential No Yes Yes Yes 
Offensive Team FEs No No Yes Yes 
Defensive Team FEs No No Yes Yes 
Offensive Team x Defensive Team FEs No No No Yes 
 
Notes: The dependent variable is our “success metric,” which is our best estimate of the marginal contribution of this 
offensive play to the outcome of the game, measured in units of points scored.  The success metric is measured relative 
to the expected outcome for a play at a given down, distance, and yards to the goal.  The variable “pass” is an indicator 
variable equal to one if the play is designed to be a pass and zero otherwise. Standard errors are shown in parentheses. 
The number of observations is equal to 127,885 in all columns.  * p < 0.05, ** p < 0.01, *** p < 0.001 
 



Table 8: Sensitivity Analysis of the Gap between Runs and Passes  

 
Coefficient on pass: 

Success Metric Yards Gained First Down 
Made 

Turnover Scoring 

Baseline 0.075*** 0.794*** 0.128*** 0.031*** 0.023*** 
 (0.008) (0.073) (0.003) (0.001) (0.001) 
1st Quarter 0.095*** 1.119*** 0.133*** 0.028*** 0.022*** 
 (0.014) (0.133) (0.005) (0.002) (0.002) 
2nd Quarter 0.094*** 0.825*** 0.132*** 0.033*** 0.030*** 
 (0.017) (0.159) (0.006) (0.002) (0.003) 
3rd Quarter 0.061*** 0.715*** 0.126*** 0.030*** 0.022*** 
 (0.015) (0.141) (0.005) (0.002) (0.002) 
4th Quarter 0.049** 0.435** 0.116*** 0.034*** 0.021*** 
 (0.018) (0.167) (0.006) (0.003) (0.003) 
Visitor 0.071*** 0.687*** 0.128*** 0.034*** 0.023*** 
 (0.011) (0.105) (0.004) (0.002) (0.002) 
Home 0.076*** 0.878*** 0.126*** 0.028*** 0.023*** 
 (0.011) (0.103) (0.004) (0.002) (0.002) 
Top 1/3 Offenses 0.121*** 1.475*** 0.146*** 0.026*** 0.028*** 
 (0.013) (0.124) (0.005) (0.002) (0.002) 
Middle 1/3 Offenses 0.068*** 0.692*** 0.127*** 0.032*** 0.023*** 
 (0.014) (0.129) (0.005) (0.002) (0.002) 
Bottom 1/3 Offenses 0.028* 0.143 0.110*** 0.035*** 0.017*** 
 (0.014) (0.130) (0.004) (0.002) (0.002) 
Passing Offenses 0.053*** 0.672*** 0.120*** 0.032*** 0.021*** 
 (0.014) (0.132) (0.005) (0.002) (0.002) 
Balanced Offenses 0.100*** 0.938*** 0.135*** 0.030*** 0.026*** 
 (0.013) (0.127) (0.005) (0.002) (0.002) 
Running Offenses 0.074*** 0.788*** 0.128*** 0.031*** 0.022*** 
 (0.013) (0.124) (0.004) (0.002) (0.002) 
 
Notes: Dependent variable is listed at the head of each column.  Each entry in the table is from a different regression 
parallel to the specification shown in column (4) of Table 7.  Controls included in the regression are interactions for 
team*opponent, down*distance, quarter*score differential, and indicators for grass versus turf, temperature below 40 
degrees, and home team. The top row of the table includes the whole sample.  The other rows of the table divide the 
data set into subsamples.  Standard errors are shown in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001 
 
 



Table 9: Serial Correlation in NFL Play Calling as a Function of Previous Play 
Success 

 All No Neutral Yes 
Previous Play Was a Pass -0.100*** -0.145*** -0.096*** -0.025*** 
 (0.003) (0.005) (0.006) (0.006) 
Season Passing Percentage 0.710*** 0.562*** 0.780*** 0.763*** 
 (0.032) (0.049) (0.057) (0.059) 
Game Passing Percentage 0.078*** 0.080*** 0.092*** 0.056** 
 (0.010) (0.016) (0.018) (0.019) 
Season Passing Percentage Against 0.367*** 0.291*** 0.363*** 0.414*** 
 (0.039) (0.061) (0.069) (0.072) 
Observations 102220 34075 34076 34069 
R² 0.217 0.194 0.178 0.114 
 
Notes: The dependent variable is an indicator for whether this play is a pass.  The first play of a drive and any play for 
which it is unclear whether the previous play was intended to be a run or a pass are excluded from the regression.  
Controls included in the regression, but not shown in the table, include interactions for down*distance, quarter*score 
differential, and indicators for grass versus turf, temperature below 40 degrees, and home team. The first column 
includes all other plays; the remaining three columns divides the sample into thirds based on the how successful the 
preceding play according to our success metric.  Standard errors are shown in parentheses. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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