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Abstract

This paper suggests and examines a straightforward diagnostic test procedure
that 1) provides numerical indexes whose magnitudes signify the presence of
one or more near dependencies among columns of a data matrix X, and 2)
provides a means for determining, within the linear regression model,

the extent to which each such near dependency is degrading the least-
squares estimation of each regression coefficient. In most instances

this latter information also enables the investigator to determine
specifically which colums of the data matr‘_ix are involved in each near
dependency.

The diagnostic test is based on an interrelation between two analytic
devices, the singular-value decamposition (closely related to eigensystems)
and a matching regression-variance decomposition. Both these devices are
developed in full. The test is successfully given empirical content through
a set of experiments that examine its behavior hhen applied to several
different series of data matrices having one or more known near dependencies
that are weak to begin with and are made to become systematically more nearly
perfectly collinear. The general diagnostic properties of the test that
result fram these experiments and the steps required to carry out the test

are summarized, and then exemplified by application to real economic data.

Acknowledgements

The author wishes to express gratitude to Professors Gene Golub of Stanford
University, John Dennis of Cornell University, Edwin Kuh of MIT and the NBER,

and Mrs. Virginia Klema of the NBER for their many helpful comments, and to

Mr. David Jones for his very able research assistance. The author is additionally
grateful to the Center for Advanced Studies in the Behavorial Sciences at Stanford
for the opportunity to initiate research in this area during his fellowship there.




TABLE OF CONTENTS

1. OVERVIEW AND PERSPECTIVE
1.0 Introduction .

2. TECHNICAL BACKGROUND
2.0 Introduction . e e e e
2.1 The Singular-Value Decomposition .

2.2 The Estimated Regression-Variance
Decomposition .

2.3 Two Interpretive Considerations
2.4 A Suggested Test Procedure .
The T11-Effects of Collinearity.

3. EXPQRIMENTAL EXPERIENCE .
3.0 Introduction . e e e
3.1 The Experimental Procedure .
3.2 The Individual Experiments .
3.3 The Results

4, SUMMARY AND INTERPRETATION; AND EXAMPLES CF
DIAGNOSING ACTUAL DATA FOR COLLINEARITY .
4.0 Introduction . e ..
4.1 Interpreting the Diagnostic Results
4.2 BEmploying the Diagnostic Procedure .
4.3 Applications with Actual Data

FOOTINOTES '+ « v v v v v v v v v v ey

REFERENCES .

~N 3

. 13
. 15
. 21
.24

. 29
.29
. 29
. 34
. 39

. 73

. 73
. 73
. 79
. 82

. 91

. 98




Part 1: OVERVIEW AND PERSPECTIVE
1.0 Introduction

Multicollinear (i1l-conditioned) data are a frequent, if often undetected,
companion to econometric studies, and their presence, whether exposed or‘not,
renders ordinary least-squares estimates less precise and less useful than
would otherwise be the case. The ability to diagnose collinearity is therefore
important to econometricians, and it consists of two related but separable
elements: 1) detecting the presence of multicollinear relationships among the
data series, and 2) assessing the extent to which these relationships have
degradedl regression-estimated parameters. Such diagnostic information would

aid the investigator in determining whether and where corrective action is

necessary and worthwhile.? This paper suggests and examines a test procedure

that treats both diagnostic elements. First, it provides numerical indexes

whose magnitudes signify the presence of one or more near dependencies3 among

the columns of a data matrix X, and second it provides a means for determining,
within the linear regression model, the extent to which each such near dependency
is degrading the least-squares estimation of each regression coefficient. In

most instances this latter information also enables the investigator to determine
specifically which columns of the data matrix are involved in each near dependency,
i.e., it isolates the variates involved (and therefore also those not involved)

and the specific relationships in which they are included.

The remainder of this introductory part places the work reported here in its
historical context. The next part, 2, provides an analytic background for the
concepts to be employed and culminates in an empirical (as opposed to statistical)
test procedure for diagnosing the presence of multicollinearity and assessing its

potential harm to regression estimates. The techniques of Part 2 have long been




known to numerical analysts, but only recently are they becoming part of the
working vocabulary of econometrics. Part 3 provides a series of experiments
designed to illuminate the empirical properties of the test procedure suggested
in Part 2 and results in a set of inferprefive tools. Finally, the process is
summariied and exemplified in Part 4. There We learn, for example, that every-
thing we thought Qe knew’was bad about the déta used to estimate the consump—
tion function is true. l |
1.1 Historical Background

Two important_approaohes have been taken toward understanding the nature
of multioollinearity” and diagnosing its severity and presence. For simplicity

they will be preferred to as the numerical analytic approach and the statistical

approach.

The Statistical Approach

The single dominating work dealing Qith multicollinearity as a statistical
problem is that of Farrar and Glauber (1967). Their widely-read article provides
a prescribed set of steps for keying the presence of collinearity and for isolating
the variates involved. The basis of their procedure is a statistical test against
a null hypothesis of an orthogonal data matrix (the accepted standard of "clean"
data). Both aspects of diagnosing collinearity are therefore treated by this
technique, and Farrar and Glauber thereby presented the econometric practitioner
with the first systematic means for determining just how bad his data was. The
Farrar and Glauber technique has not, however, survived without its share of
critical skepticism. Haitovsky (1969) criticized the use of a null hypothesis of
orthogonality and proposed o widely accepted change of emphasis to tests against
a null hypothesis of peffect singularity. This suggested change seemingly
strengthened the Farrar andnGlauber process. More recent criticism, however, has

proved more damaging. Kumar (1975) highlights 1) the obvious fact that the

Farrar and Glauber technique, in assuming the data matrix X to be stochastic, has .




no relevance to the standard regression model in which X is assumed fixed, and
2) the less obvious fact that even when X is stochastic, the tests employed by
Farrar and Glauber depend upon an assumption (independence of the rows of X)
that is without practical relevance to econometrics. In another vein, O'Hagan
and McCabe (1975) quite directly question Farrar and Glauber's "statistical’
interpretation of a measure of collinearity, concluding that their procedure
misinterprets the use of a t-statistic as providing a cardinal measure of the
severity of multicollinearity.

Indeed this latter criticism is correctly placed, for whether or not the
statistical test employed by Farrar and Glauber is based on assumptions that
are wholly relevant to econometrics, their interpretation of multicollinearity
is a statistical phenomenon is fundamentally misleading. Farrar and Glauber
justify their procedure as being one more in a long line of classical statistical
tests of hypothesis - such as tests of significance, the Durban-Watson statistic,
the Goldfeld-Quandt test - that test for the presence of a given problem through
the use of a test statistic constructed under the assumed absence of that
problem (the null hypothesis). To interpret their procedure as being a legiti-
mate example of classical Neyman-Pearson hypothesis testing is, however, invalid,

for such tests must be based on testable hypothesis; that is, the probability for

the value of a relevant test statistic, calculated with actual sample data, is
assessed in light of the distribution implied for it by the model under the null
hypothesis. The Farrar and Glauber technique differs critically from this
classical procedure exactly in the fact that the linear regression model makes no
testable assumptions on the data matrix X.5 That is, there are no distributional
implications by the regression model for specific null hypotheses (such as

orthogonality) on the nature of the data matrix against which tests can be made,




In short, multicollinearity can cause computational problems and reduce
the précision of étatistical estimates, but, in the context of the linear
regression model, multicollinearity is not itself a statistical phenomenon
subject to statistical test. A solution fo the problem éf diagnosing multi-~
collinearity, then, must be sought elsewhere, in mefhods that deal directly
with the numeric properties of the data matrix that cause calculations based
on it to be unstable or sensitive in ways to be discussed.

The Numerical-Analytic Approach

Historical completeness requires one to begin this discussion with mention
of Ragnar Frisch's (1934) bunch-map analysisp While not in the mainstream of
numerical analysis, Trisch's technique of graphically investigating the possible
relationships among a set of data series was the first major attempt in economics
to uncover the sources of near linear dependencies in economic data series.

Frisch's work addresses itself to the first of multicollinearityis diagnostic

problems - the location of dependencies - but makes no attempt to determine the
degree to which regression results are degraded by their presence. Bunch-map
analysis has not become a major tool of the‘econometrician because its exten-
sion to dependencies among more than two variates is time consuming and quite
subjective.

Recent efforts Qf the numerical analysts, however, havé provided a very
useful set of tools for a rigorous examination of multicollinearity. Their
attention has, among‘ofher topics, been focused on an examination of the proper-
ties (conditioning) of a matrix A of a linear system of equations Ax = b that
allow a solution for x *o be obtained,with numerical stability. The relevance of
;th to mnlticollinearity in econometricé ig readily apparent, for the Least—‘
squares estimator is a solution to the linear system (X'X)b = X'y with variance -
covariancermatrix 02(X'X)_l. To the extent, then, that multicollinearity among

the data series of X results in a matrix A = X'X whose ill chditioning causes ’ '
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both the solution for b and its variance-covariance matrix to be numerically
unstable, the techniques of the numerical analysts have direct bearing on
understanding the econometrician's problems with multicollinearity. The’
important efforts of the numerical analysts relevant to this study are contained
in Businger and Golub (1965), Golub (1968), Golub and Reinsch (1970), Lawson
and Hansen (1974), Stewart (1973) and Wilkinson (1965).

Few of the techniques of the numerical analysts have been directly
absorbed in econometrics, although a close cousin, eigensystems, has been an
econometric staple for decades. This is in part because of a lack of communica-
tion between the two disciplines exacerbated by awkward differences in nota-
tion. Furthermore, the numerical analysts have placed much of their emphasis
upon determining which columns of a data matrix can be discarded with least
sacrifice to subsequent analysis,6 a solution that is rarely open to the
econometrician whose theory has already determined those variates that must
always be present or those that may be deleted, but not solely on grounds of
numerical stability. Nevertheless, with a change in emphasis, the numerical
analysts' techniques have much to offer the econometrician in dealing with his
twin concerns with multicollinearity.

Tor many years the eigensystem of the cross-products matrix X'X has been
employed in dealing with multicollinearity. Kloeck and Mennes (1960), for
example, depict several ways of using the principal components of X or related
matrices to reduce the ill effects of collinearity. In a direction more useful for
diagnostic purposes, Kendall (1857) and Silvey (1969) have suggested using
the eigenvalues of the cross-products matrix X'X as a key to the presence of
multicollinearity. In fact, the use of the eigenvalues of X'X is very closely
related to one of the principal tools of numerical analysis, the singular-value

decamposition (SVD) of the data matrix X. The intimate connection between these




two notions, eigensystems and singular values, will be discussed below, but
suffice to say that the best inroad numerical analysis has had into the
econocmetric analysis of multicollinearity has been indirectly through thé
Kendall-Silvey line of research employing eigenvalues, and this paper draws
heavily upon it.

Silvey (1969) correctly concludes that multicollinearity is easily
discernable by the presence of a “small" eigenvalue éf X'X, a fact first ﬁoted
by Kendall. Silvey fails, however, to éid us in knowing when an eigenvalue
is small, and it is here that mumerical analysis adds important insights.
Silvey also provides the basis for a mechanism for decomposing the estimated
variance of each regression coefficient in a manner that can illuminate the
degradation of each coefficient caused by collinear relationships, but fails
to exploit this use. |

This paper, then, 1) applies the relevant techniques of numerical analysis
to Silvey's suggestion in order to provide a set of indexes that signal the
presence of one or more near dependencies among the columns of X and 2) adapts
the Silvey regression-variance decomposition in a manner that can be coordinated

with the above indexes to uncover those variates that are involved in particular

near dependencies and the degree to which their estimated ceofficients are being

degraded by the presence of the near dependencies.




-7

Part 2: TECHNICAL BACKGROUND

2.0 Introduction

In this section we develop the two principal tools of analysis employed
in this paper, the singular-value decamposition (SVD) of a matrix X (and its

associlated notions of the conditicning of X), and the decomposition of the

estimated regression variance in a manner corresponding to the SVD. As
noted, none of these concepts is new; the innovation is their combination
in a manner that helps the econometrician solve the two diagnostic problems

of multicollinearity stated at the outset: detection and assessment of

damage.

2.1 The Singular-Value Decomposition
We learn from the numerical analystsl that any TxK matrix X, considered
here to be a matrix of T observations on K economic variates, may be decomposed

as
X = Ugv! (2.1)

where U'U = V'V = I and L is diagonal with non-negative diagonal elements

K 293

s X=1 . called the singular values of X.

The singular-value decomposition is closely related to the familiar con-
cepts of eigenvalues and eigenvectors, but has useful differences. Noting
that X'X = VEV', we see that V is an orthogonal matrix that diagonalizes
X'X and hence the diagonal elements of 22, the squares of the singular values,
must be the eigenvalues of the real symmetric matrix X'X. Further, the ortho-
gonal columns of V must be the eigenvectors of X'X (and, similarly demonstrated,

the colums of U are the eigenvectors of XX'),
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The singular-value decamposition of the matrix X, therefore, provides
information that encampasses that given by the eigensystem of X'X. As a
practical matter, however, it is preferable to deal with the SVD of X rather
than the eigensystem of X'X, because to the extent that X is ill conditioned,
X'X is i1l conditioned by the square.L+ Hence, calculations of the eigen-
system based on X'X will be very much more unstable than will calculations
of the singular values based directly on the matrix X and, of course, it is
precisely on the case thaf ¥ is 111 conditioned that our interest is centered.5

Exact Linear Dependencies: Rank Deficiency

In the first instance let us assume X has exact linear dependencies
among its columns, a case rarely encountered in econometric practice, so
that rank X =r < K. Since, in the SVD of X, U and V are orthogonal (and
hence are necessarily of full rank), we must have rank X = rank I. There
will therefore be exactly as many zero elements along the diagonal of I as “

the nullity of X, and the SVD in (2.1) may be partitioned as

';11 0
X = ULV!' = UL ! (2.2)
0 0

where le is rxr and nonsingular. Postmultiplying by V and further parti-

tioning we obtain
B} z 0
x['yl\ﬂ - EJl Ua 1L (2.3)
0 0

where Vl is Kxr U1 isTxr

V2 is K x (K-r) U2 is T x ( K-r).

(2.3) results in the two matrix equations

X Vl = Ul le 2.4)

XV, =0. (2.5)




Interest centers on (2.5) for it displays all of the linear dependencies of
X. The Kx(K-r) matrix V, provides an orthonormal basis for the null space that
is spanned by the columns of X. |
| If, then, X possesses K-r exact linear relation among its columns (and
the computers possessed exact arithmetic), the number K-r of such depeﬁdencies
would equal the number of zero‘singular values, and the wvariates invglved in
each of these dependencies would be determined by the non-zero elements of V2
in (2.95).

Needless to say, in applied econometrics, the interrelations among the
columns of X are not exact dependencies, and cdmputers deal in finite, not
exact, arithmetic. Exact zeros for the singular'values or for the elements of
v, will therefore rarely, if ever, occur. In general, then, it will be difficult

to determine the nullity of X (as determined by zero ¢'s) or which columns of X

do not enter into specific linear relationships (as determined by the zeros of

V2). There is nevertheless suggested in the foregoing the idea that each near
linear dependency among the columns of X will result in a small singular value,

a small o. This corresponds to Silvey's notion that the presence of collinearity
is revealed by the existence of a small eigenvalue. The question -now is to
determine what is small. Although what ultimately is to be judged as large

or small must remain an empirical question, we are greatly aided in answering

this question by the notion of a condition number of a matrix X.

The Condition Number

Intuition is pressed to define a notion of an ill-conditioned matrix. One
is tempted to say a matrix is ill conditioned if it "almost isn't of full rank,"
or "if its inverse almost doesn't exist", two obviously absurd statements.

Yet this is in effect what is meant when it is said that an ill-conditioned

square matrix is one with a small determinant (or an il1l-conditioned rectangular

matrix is one with a small det X'X). A small determinant, of course, has
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nothing to do with invertability of a matrix, for the matrix aIn has as its
determinant the number o which can be made arbitrarily small; and yet it is
clear that A_l always exists for a#0 and is readily calculated as a—lln.

It is equally infeasible to obtain information on the invertability
(conditioning) of a‘matrixrfrom the smallness of some diagonal elements of a
triangularization of the given matrix. This process is closely related to the
use of the determinant, since the determinant will be the product of the
diagonal elements of the triangular iactorization.6

A means for defining the conditioning of a matrix that accords somewhat
with‘intuition and avoids the pitfalls of the above techniques is afforded
by. the singular-value decomposition, The motivation behind this technique
derives from a more correct method of determining when an inverse of a given
matrix "blows up". As we shall see it is reasonable to consider a matrix to
be ill conditioned if its inverse is large in spectral norm (a generalization
of the well-known Euclidean norm of a vector)7 in comparison with the spectral
norm of the given matrix itself. In essence this measure, called the condition
number,. tells us how difficult it is to compute the inverse of a given matrix
in the senge of specifying how sensitive the elements of At are to small per-
turbations in the eienents of A [Wilkinson (1965)1. The larger the condition
number the more ill conditioned the given matrix,

Two examples aid our understanding of the condition number. Consider

1 a

first the matrix A = Clearly as o+l, this matrix tends toward perfect

o 1
singularity. The singular values of A are readily shown8 to be (1ta) and those
of A™" to be (1xa)7t. Hence, as a+l the product ||A]| ||A_l|| = (T+o) (1-a) 7t

explodes;- the ‘spectral norm of a7l is large relative to that of A. A is ill

conditioned fér small a.
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By way of contrast consider the admittedly well conditioned matrix intro-

a O
Quced above, B = . - As we have seen, the often held intuitive feeling
o

that B becomes ill conditioned as o0 1s incorrect, and this is correctly

reflected in the condition number, for [|B|] = o and HB—l" = o™} and the

product | |B| | IIB—1|| =l = 1#0as 0. In this case, then, the norm
of B™L does not blow up relative to that of B, and B is well conditioned
for all a#o.

The conditioning of any square matrix A can be summarized, then, by a
condition number k(A) defined as the product of the maximal singular value
of A (its spectral norm) times the maximal singular value of A™l. This
concept is readily extended to a rectangular matrix and can be calculated
without recourse to its inverse. Fram the SVD of X = ULV', it is easily
shown that the generalized inverse X+ of X is UZ+V', where Z+ is the
generalized inverse of I and is simply I with its non-zero diagonal elements
inverted.9 Hence the singular values of x* are merely the inverses of
those of X, and the maximal singular value of x* is the reciprocal of the
minimum (non-zero) singular value of X. We may therefore define the condition
‘number of X as

a

K(X) = £ > 1, (2.6)
min

It is readily shown that the condition number of any matrix with orthonormal
colums is unity, and hence k(X) reaches its lower bound in this cleanest of
all possible cases.

Near Linear Dependencies: How Small is Small

We have seen that for each exact linear dependency among the columns of

X there is one zero singular value. Extending this property to near depen-

dencies leads one to suggest, as did Kendall (1957) and Silvey (1969),
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that the presence of near dependencies (multicollinearity) will result in
"small” singular values (or‘eigenvalues). This suggestion does nof include

a means for determining what small is. The preceding discussion of

condition numbers, however, does provide such a measure. It was learned there
that the degree of ill conditioning depends upon how sméll the minimum singular
value is relative to the maximum singular value, i.e., O ax provides a yardstick
against which smallness can be m.easured.lO In this connection, it proves use-

ful to define

5
nek) = f“ﬁ (k # max index) (2.7)
g%

to be the k-th condition index of the TxK data matrix X. There are, of course,

K-1 such index values, the largest of which is also the condition number of the
given matrix. A singular value that is small relative to its yardstick Onax?
then, has a high condition index.

We may therefore extend the Kendall-Silvey suggestion as follows: there
are as many near dependencies among the colums of a data matrix X as there are
high condition indexes (singular values small relative to Omax)' Two points
regarding this extension must be emphasized.

First, we have not merely redirected the problem fram one of'determining
when small is small to one of determining when large is large. As we saw
above, taken alone, the singular values (or eigenvalues) shed no light on
the conditioning of a data matrix. Equally well conditioned problems can have
arbitrariiy low singular Values.11 Determining when a singular value is small,
then, has no relevance to determiﬁing the presence of a near dependency causing
a data matrix to be ill conditioned. We did see however, in our discussion of

the condition number, that determining when a singular value is small relative

to O . (or, equivalently, determining when a condition index is high) is
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directly related to this problem. The meaningfulness of the condition index
in this context is verified in the empirical studies of part 3.

Second, even if there is measurable meaning to the term "large" in connec-
tion with condition indexes, there is no a priori basis for determining how
large a condition index must be before there is evidence of collinear data or,
even more importantly, evidence of data so collinear that its presence is
degrading or harming regression estimates. Just what is to be considered
a large condition index is a matter to be empirically determined, and the
experiments of part 3 are aimed at aiding such an understanding. There we learn
that dependencies begin to be observable with condition indexes as low as 5 or
10, and, in comparison with other well-known standards, such as correlations and
R2's, become quite strong with values of 30 or 100.

The use of the condition index, then, extends the Kendall-Silvey suggestion

in two ways. First, practical experience will allow an answer to the question
of when small is small (or large is large) and second, the simultaneous occurrence

of several large n's keys the simultaneous presence of more than one near dependency.

2.2 The Estimated Regression-Variance Decomposition

As we have seen, when any one singular value of a data matrix is small
relative to Orax? We interpret it as indicative of a near dependency among the
colums of X associated with that singular value. In this section, reinterpreting
and extending the work of Silvey (1969), we show how the estimated variance of
each regression coefficient may be decomposed into a sum of terms each of which is
associated with a singular value, thereby providing means for determining the
extent to which near dependencies (having high condition indexes) degrade (become

a dominant part of) each variance. This decomposition provides the link between

the numerical analysis of a data matrix X as embodied in its singular-value
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decomposition, and the quality of the subsequent regression analysis using X as a
data matrix as embodied in the estimated variance-covariance matrix of b.12

The variance-covariance‘matrix of the leastrsquares estimator b = (X'X)_lX'y
is, of course,cz(X'X)—l, where 02 is the common variance of the components of

the T disturbances € in the linear model y = Xg+€. Using the SVD of X = UIV',

we get
V) = o?x') L = oy (2.8)

or, for the k-th component of b

o2
2 ki

var(bk) =0 (2.9)

)
3 9%

where the Oj's are the singular values and V = (vij).

(2.9), it is noted, decomposes var (bk) into a sum of components, each
associated with one and only one of the K singular values % (or eigenvalues
ci). Since these Oi appear in the denominator, other things equal, those
components associated with near dependencies, i.e., with small o, , will be
large relative to the other components. This suggests, then, that an unusually
high propertion of the variance of two or more coefficientsls’cgncentrated in
components associated with the same small singular values provides evidence
that the corresponding near dependency is causing problems. Let us pursue

this suggestion.

The variance-component proportions are readily displayed as follows. Let

=~

v2
XJ

and @k =

1~
e

1 k=1...K. (2.10)

o; j
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Further, define the variance-component proportions as

=L ok, 3=1...K (2.11)

The investigator seeking patterns of high variance-component proportions

will be aided by a summary table (a Il matrix) of the form

Variance-Component Proportions

Components of

var(bl) var(bz) .o . var(bk)
9 " M2 o My
a
s 9Dl M M2 s Ty
S
o w
ci (2.12)
it :
ah
2 .
€ a s T, . . . ™
d K « 2K KK

Notice that the “kj make use of the SVD information on near dependencies in
a way that is directly applicable to examining their effects on regression

estimates.

2.3 Two Interpretive Considerations

The next part will contain detailed experiments using the two tools developed
here, the SVD and its associated N-matrix of variance-component proportions.
These experiments are designed to provide experience in the behavior of these
tools when employed for analyzing multicollinearity, its detection and an
assessment of the damage it hgs caused to regression estimates. Before pro-

ceeding to these experiments, however, it will be necessary to develop two
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important interpretive properties of the Il matrix of variance-component propor-
tions. An example of these two properties completes the section.

Near Collinearity Nullified by Near Orthogonality

In the variance decomposition (2.9), small Gj's, other things equal,
lead to large components of var (bk)' HbWever, not all var (bk)'s need be
adversely affected by a smali Oj’ for the ng in the numerator may be even
smaller. In the extreme case where vkj = 0, var (bk) would be unaffected
by any near dependency among the columms of X that would cause Oj to become
even very small. As is shown in Belsley and Klema (1975), the vkj are equal
to zero exactly as the kth and jth columns of X are orthogonal. The proof
to this intuitively plausible statement is lengthy and need not be repeated
here, for it reflects a fact well known to econometricians; namely, that
the introduction into regression analysis of a variate orthogonal to all
preceding variates will not change the regression estimates or the standard
errors of the coefficients of the preceding variates. Thus, if two very
collinear variates (near multiples of one another), that are also mutually
orthogonal to all prior variates are added to a regression equation, the
estimates of the prior coefficients and théir variances must alsc be unaffected.
In terms of the variance decomposition (2.9), this situation results in at least
one 0 (corresponding to the two closely collinear variates) which is very small,
and which has no weight in determining any of the var (bk) (for k correspond-
ing to the initially included variates). Clearly, the only way this can
occur is for the v, . between the prior variates and the additional orthogonal

kJ
variates to be zero. Hence we have the result that, in the SVD of X = Exlxzj

with X,'X, = 0, it is always possible to £ind™ a V matrix with the form
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Thus we see that the bad effects of collinearity, resulting in small o's, may be

mitigated for some coefficients by near orthogonality, resulting in small vkj's.

At least Two Variates Must Be Involved

At first it would seem that the concentration of the variance of any
one regression coefficient in any one of its components could signal that
multicollinearity may be causing problems. However, since two or more
variates are required to create a near dependency, it must be that two or more
variances must be adversely affected by high variance components associated with
a single singular value (i.e., a single near dependency).

To illuminate this, consider a data matrix X with mutually orthogonal
columns - the best possible experimental data. Our previous result immediately
implies that the V matrix of the singular-value decomposition of X is diagonal,
since all v;s = 0 for i # 3. Hence the associated Il matrix of variance-

component proportions must take the form

Proportions in

Var Var L Var
(bl) (b2) (bk)
‘ -
a Ul 1 4]
s
g w 02 1
- i
ol
£ OkL l_J .
e
d

It is clear that a high proportion of any variance associated with a single
singular value is hardly indicative of multicollinearity, for the variance pro-
portions here are those fqr an ideally conditioned, orthogonal data matrix,

Reflecting the fact that two or more colums of X must be involved in any near
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dependency, the degradation of a regression estimate due to collinearity can
be observed only when a single singular value Oj is associated with a large
proportion of the variance of two or more coefficients. If, for example, in
a case for K = 5,‘coiumms 4 and 5 of X are highly collinear and all other
colums are mutually orthogonal, we would expect a variance-component I

matrix that has the form, say,

Proportions in

a Var Var Var Var Var

s (bl) (bz) (b3) (bu) (b5)
s - —
o) 0 1.0 0 0 0 0

ol

i 9, 0 1.0 0

aw o) 0 0 1.0

ti 3

ot 9, 0 0 0 1.0 0.9

dh 05 | 0 0 0 0 O.%J

Here 0, plays a large role in both var (by) and var (b5).

An Example

An example of the preceding two interpretive considerations is useful

at this point. Consider the 6x5 data matrix

r-I:7|-\l 80 18 -56 -]_12--1
14 -69 21 52 104
X=[X1X2] =| 66 =72 -5 764 1528
-12 66 -30 4096 8192
3 8 -7 -13276 ~26552
4 -12 i | 8421 16842_|]

- 1

This matrix, essentially due to Bauer (1971), has the property that its

fifth column is exactly twice its fourth, and both of these are in turn

orthogonal to the first three columns (which are not, however, orthogonal to
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to each other). That is, X, is of rank 1 and Xl'X2 = 0. We therefore know
from the foregoing that, in the SVD of X, 1) one of the singular values

associated wtih X, will be zero (i.e., within the machine tolerance of

2

15

zero), " and 2) in V = , V ''= 0.

12 = Vo1

Indeed application of the program MINFTT1® to obtain the singular-value

decomposition of X gives

-
™ .5u8 -.625 .556 15x10718  ~Lsuxaontt
-.836 .383 .393 22x1071% - ymao
V= .033 .680 .733 16x107Y8  ~L73x107 MM
—eux107T —22x107 oo™ ] w7 .89
| L3207t L1ox107® —uexaio™ ) Lson 447 —
L 17
with singular values
01 = 170.7
02 = 60.5
03 = 7.6
o, = 36368.u
o = 1.3 x 10712,

A glance at V verifies the off-diagonal blocks are small - all of the order
of 107 or smaller - and well within the effective zero tolerance of the compu-

tational precision. Only somewhat less obvious is that one of the oj is zero.

12

0. is of the order of 10° " and would seem to be nonzero relative to the

5
machine tolerance, but, as we have seen, the size of each Oj has meaning only
o
relative to O ax? and in this case 05 16, well within the machine
max

= 071 (s) < 107

zZero.
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The ‘I matrix of variance-component proportions for this data matrix is given

in Table 0.
Table O

Variance-Component Proportioﬁs: Modified Bauer Matrix

var(bl) var(b,) var(b3) var(b”) var (b )
Ol .002 .009 .000 .000 .000
%, .019 .015 .013 .000 .000
Og .976 .972 .983 .000 .000
o, .000 .000 .000 .000 .000
O¢ .003 .005 .003 1,000 1.000

Several of its properties are noteworthy. TFirst, we would expect that
the small singular value g associated with the linear dependency X, = .5
would dominate several variances - at least those of the two variates
involved - and this is seen to be the case; the component associated with og
accounts for virtually all the variances of both bu and b5.

Second, we would expect that the orthogonality of the first three columns
of X from the two involved in the linear dependency would isclate their esti-
mated coefficients from collinearity's deleterious effects. Indeed, it is
noted that the components of these three variances associated with Og are
very small, .003, .005 and .003 r*espectively.l8 This point serves also to
exemplify that the analysis suggested here aids the user not only to determine
which regression estimates are degraded by the presence of multicollinearity,
but also which are not adversely affected and may therefore be salvaged.

Third, a somewhat unexpected result is apparent. The singular value g
accounts for 97% or more of var(bl), var(bz) and var(bg). This suggests that

a second near dependency is present in X, one associated with 04, that involves
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the first three columns only. This, in fact, turns out to be the case, and
we shall reexamine this example in Part U4, once we have gained further
experience in interpreting the magnitudes of condition indexes and
variance~component proportions.

Fourth, to the extent that there are two separate near dependencies in X
(one among the first three columns, one between the last two), the II matrix
provides a means for determining which variates are involved in which near
dependency. This property of the analytic framework being presented here is
important, because it is not true of alternative means of analyzing near
dependencies among the columns of X. One could hope, for example, to investi-
gate such near dependencies by regressing selected columns of X on other col-
umns or to employ partial correlations. But to do this in anything other than
a shotgun manner would require prior knowledge of which columns of X would
be best preselected to regress on the others, and to do so when there are several
coexisting near dependencies would prove a terrible burden. Usually the
econometrician, when presented with a specific data matrix, will have no
rational means for such a preselection process, and can avoid the problem
entirely, through the use of the Il matrix which displays all such near depen-
dencies, treating all columns of X symmetrically, and requiring no prior

information.

2.4 A Suggested Test Procedure

The foregoing discussion suggests a practical procedure for 1) testing for
the presence of one or more near dependencies among the columns of a data matrix,
and ?2) assessing the degree to which each such dependency degrades the regression
estimates based on that data matrix.
The Test

It is suggested that an appropriate means of detecting harmful collinearity

is the double condition of
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1) The presence of high variance-component proportions for twe
or more estimated regression variances associated with

2) A single singular value judged to have a high condition
-~ index.

The number of condition indexes deemed large in step 2 identifies the
nurnber of near dependencies among the colums of the data matrix X, and the
magnitudes of these high condition numbers provides a measure of their relative
"tightness" . Furthermore the determination in Step 1 of large variance-
camponent proportions associated with a high condition index identifies those
variates that are involved in the corresponding near dependency, and the
magnitude of these proportions in conjunction with the high condition index
provides a measure of the degree to which the corresponding regression estimate

has been degraded by the presence of multicollinearity.lg.

Examining the Near Dependencies

Once the variates involved in each near dependency have been identified
by their high variance-component proportions, the near dependency itself can
be examined, for example, by regressing one of the variates involved on the
others. Another procedure is suggested by (2.5). Since v, in (2.5) has

rank (K-r) we may partition X and V2 to obtain

[xl x2] Uy, |5 RyVyy *+ X, Uy = 0 (2.13)

Voo

where V2 is chosen nonsingular and square.

1

Hence the dependencies among the columns of X are displayed as

i = X, where G = -V vl (2.14)

Xy = % V 22 Vo1

22 V2
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The elements of G, calculated directly from those of V, provide alternative
estimates of the linear relation between those variates in X, and those in

X Of course, (2.13) holds exactly only in the event that the linear

2
dependencies of X are exact, and is not clearly interpretable otherwise.

It is also straightforward to show that when the linear dependencies

are exact, (2.13) provides identical estimates as those given

by OLS. It seems reasonable therefore to employ OLS as the descriptive
mechanism for displaying the linear dependencies once the variates involved
are discerned in Step 2. It is important to reiterate the point made earlier
that OLS does not and cannot subétitute for the test suggested above, for

OLS can be rationally applied only after it has first been determined how
many dependencies there are among the colums of ¥ and which variates are
involved. The test suggested here requires no prior knowledge of the numbers
of near dependencies involved or of the variates involved in each; it
discovers this information - treating all columns of X symmetrically

and requiring that ncone be choosen (as OLS requires) to become the "dependent!
variable.

What is "large" or "high"

Just what constitutes a "large" condition index or a "high" variance-
component proportion are matters that can only be decided empirically. We
turn in Part 3 to a set of systemmatic experiments designed to shed light on
this matter, but to provide a meaningful background against which to interpret
those empirical results it is first useful to give a more specific idea of what

it means for collinearity to harm or to degrade a regression estimate.
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2.5 The I11 Effects of Collinearity
The i1l effects that result from regression based on multicollinear data
are two: one computational, one statistical,

Computational Problems

20 that solutions to a set of least-

Computationally, it can be shown
squares normal equations, (or in general, a solution to a system of linear
equations) contain a number of digits whose meaningfulness is limited by
the conditioning of the data in a manner directly related to the condition
number. Indeed the condition number gives a multiplication factor by which
imprecision in the data works its way through to imprecision in the solution

to a linear system of equations. Somewhat loosely, if data are known to n

significant digits, and the condition number of the matrix A of a linear system .

Ax=b is of order of magnitude 10", then a small change in the data in its last
place can (but need not) affect the solution x=A"1b in the (n-r)th place. Thus,
if GNP data are trusted to 4 digits, and the condition number of (X'X) is 103,
then a shift in the 5th place of GNP (which, since only the first four digits

count, results in what must be considered an observationally equivalent data

matrix), could affect the least-squares solution in its 2nd (5-3) significant
digit. Only the first digit is therefore trustworthy, the others potentially
being worthless, arbitrarily alterable by modifications in X that do not affect
the degree of accuracy to which the data are known. Needless to say, had the

q or 105

condition number of X'X been 10 in this case, one could trust none of
b's significant digits. This computational problem in the calculation of

least-squares estimates may be minimized’l but never removed. The econometrician's

intuitive distrust of estimates based on ill-conditioned data is therefore ‘

Justified,
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Statistical Problems

Statistically, as is well known, the problem introduced by the presence
of multicollinearity in a data matrix is the decreased precision with which
statistical estimates conditional22 upon those data may be knownj; that is,
multicollinearity causes the conditional variances to be high. This problem
reflects the fact that when data are ill conditioned scme data series are nearly
linear combinations of others and hence add very little new, independent
information from which additional statistical information may be gleaned.

Needless to say, inflated variances are quite harmful to the use of
regression as a basis for hypothesis testing, estimation and forecasting.

All econometricians have had the suspicion that an important test of
significance has been rendered inconclusive through a needlessly high error
variance induced by collinear data, or that a confidence interval or forecast
interval is uselessly large, reflecting the lack of properly conditioned data
from which appropriately refined intervals could conceivably have been
estimated.

Both of the above ill -effects of collinear data are most directly removed

through the introduction of new and well conditioned data.?3 In econometric
analysis, however, new data are, more often than not, not available, and when

they are, can be acquired only at great cost in time and effort. The usefulness of
having diagnostic tools that key the presence of collinearity and even isolate the

variates involved is therefore apparent, for with them the investigator can at least

determine whether the effort to correct for collinearity (collect new data or apply
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Bayesian techniques) is potentially worthwhile, and perhaps he can learn a
great deal more. But just how much can be learned? To what extent can

diagnostics tell the degree to which collinearity has caused harm?

Harmful vs. Degrading Collinearity

At the outset it should be noted that not all collinearity need be
harmful. We have already seen, in the example of the Bauer matrix given
in Section 2.3, that near orthogonality can isolate some regression esti-
mates from the presence of even extreme collinearity. If by chance, the
investigator's interest centers only on those unaffected parameter estimates,
clearly no problem exists?u” In a less extreme, and therefore a practically

more useful example, we recall from (2.9) that the estimated variance of
2
kth regression coefficient, var(b, ) is s? ) —%1—-where s
%
is sufficiently small, it may be that

2 is the estimated

. . 2
regression error variance. If s

particular var(bk) are small enough for specific testing purposes in spite

v, 2

of large components in the —5%—tern5 resulting from near dependencies. If,
. ‘

J
for example, an investigator is only interested in whether a given coefficient
is significantly positive, and is able, even in the presence of collinearity,
to accept that null hypothesis on the basis of the relevant t-test, then
collinearity has caused no problem. Of course, the resulting forecasts or
point estimates may have wider confidence intervals than would be needed to
satisfy a more ambitious researcher, but for the limited purpose of the test

of significance initially proposed, collinearity has caused no practical harm.

These cases serve to exemplify the pleasantly pragmatic philosophy that

collinearity doesn't hurt so long as it doesn't bite.
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Providing evidence that collinearity has harmed estimation, however,
is greatly more difficult. To do this one must show, for example, that
a prediction interval that is too wide for a given purpose could be appro-
priately narrowed if made statistically conditional on better conditioned
data (or that a confidence interval could be appropriately narrowed or the
computational precision of a point estimator appropriately increased). To
date there is no procedure that provides such information. If, however, the

researcher were provided with information that 1) there are strong near

dependencies among the data, so that collinearity is potentially a problem,

and 2) that variances of parameters (or confidence intervals based on them)
that are of interest to him have a large proportion of their magnitude
associlated with the presence of the collinear relation(s), so that collinearity

is potentially harmful, then he would be a long way toward deciding whether the

costs of corrective action were warranted. In addition such information
would indicate when variances of interest were not being adversely affected
and so could be relied upon without further action. The above information
is, of course, precisely that provided by the condition indexes and high
variance-component proportions used in tﬁe two-pronged test suggested earlier.
And so we shall say that when this joint test has been met, the affected regression
coefficients have been degraded (but not necessarily harmed) by the presence of
multicollinearity, degraded in the sense that the magnitude of the estimated
variance is being determined greatly by the presence of a collinear relation,
and there is therefore a presumption that confidence intervals, prediction
intervals and point estimates based on this estimate could be refined if need
be by introducing better conditioned data.

At what point do estimates become degraded? Future experience may provide

a better answer to this question, but for the experiments of the next section
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we will take as a beginning rule of thumb that estimates are degraded when

two or more variances have at least half of their magnitude associated

with a single singular value.
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Part 3: EXPERIMENTAL EXPERIENCE

3.0 Introduction

The test for the presence of degrading collinearity suggested at the
end of the prior section requires the joint occurrence of high variance-
component proportions for two or more coefficients associated with a single
singular value having a "high" condition index. Knowledge of what constitutes
a high condition index must be empirically determined, and it is the purpose
of this section to describe a set of experiments that have been designed to

provide such experience.

3.1 The Experimental Procedure

Each of the three experiments reported below examines the behavior of the
singular values and variance-component proportions of a series of data matrices
that are made to become systematically more and more i1l conditioned by the
presence of one or more ﬁear dependencies constructed to become more nearly exact.

Each experiment begins with a "basic" data set X of T observations on Ky
variates. T, which is unimportant, is around 24-27, and Kl is 3~5, depending
upon the experiment. In each case the basic data series are chosen either as
actual economic time series or as constructs that are generated randomly but
having similar means and variances as actual economic time series.

These basic data series are used to construct additional collinear data
series displaying increasingly tighter linear dependencies with the basic series

as follows. Let c be a Kl—vector of constants and construct

X; = Xt e, (3.1)

where ei is generated randomly with mean zero and variance oi = 10_l Oic,




-30-

02
X

- = % e'¥'®e, 1 =0 ... 4. Each Xs s then, is, by construction, a known
linear conbination, Xc, of the basic data series plus a zero-mean random
error term, e., whose variance becomes smaller and smaller (that is, the
dependency becomes tighter andltighter) with increasing 1. In the i = 0
case the variance in X, due to the error term e, is seen to be equal to vari-
ance in X due to the systematic part Xc. In this case, then, the imposed
linear dependency is weak. The sample correlation between x. and Xc in
these cases tends toward .4 to .6. By the time i = 4, however, only
1/10,000 of xi's variance is due to additive noise, and the dependency
between x, and Xc is tight, displaying correlations very close to unity.

A set of systematically increasingly ill conditioned data matrices may

therefore be constructed by augmenting the basic data matrix X with the

xi's, i.e., by constructing the set
X(1) = [X %] i=0, ., (3.2)

The experiments are readily extended to the analysis of matrices possessing
two or more simultaneous near dependencies by the addition of more data series

similarly constructed from the basic series. Thus, for given Ki vector b, let
z. = Xb + u. 3.3
3 5 (3.3)

where U is random with mean zero and variance oj2 =103 ¢
Experimental matrices with two linear dependencies of varying strengths are con-

structed as

udi,j) = [x Xy z]] i, 3=0.. 4. (3.4)
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In the third experiment to follow, three simultaneous dependencies are
examined.

The Choice of the X's

As mentioned, the data series chosen for the basic matrices X were
either actual economic time series or variates constructed to have similar
means and variances as actual economic time series. The principle of
selection was to provide a basic data matrix that was reasonably well condi-
tioned so that all significant ill conditioning could be controlled through

the introduced dependencies such as (3.1).1

The various series of matrices that comprise any one experiment all have the

same basic data matrix and differ only in the constructed near dependencies used to
augment them. Within any one such series, the augmenting near dependencies become
systematically tighter with increased i or j, and it is in this sense that we can
speak meaningfully of what happens to condition indexes and variance-compcnent pro-
portions as the data matrix becomes "more ill conditioned," or "more nearly singular,"

or "the near dependencies get tighter," or "the degree of collinearity increases."

Experimental Shortcomings

The experiments given here, while not Monte Carlo experiments,2 are never-
theless subject to a similar weakness; namely, the results depend upon the
specific experimental matrices chosen and cannot be generalized to different
situations with assurance. It has been attenmpted, therefore, within the
necessarily small number of experiments reported here, to choose basic data
matrices using data series and combinations of data series representing as
wide a variety of economic circumstances as possible. Needless to say, not
all meaningful economic cases can be considered, and the reader will no doubt
think of cases he would rather have seen analyzed. However, the cases offered

here are sufficiently varied that any systematic patterns that emerge fram
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them are worthy of being reported and will certainly provide a good starting
point for any refinements that subsequent experience will suggest.

The Need for Column Scaling

Data matrices that differ from one ancther only by the scale assigned
the colums (matrices of the form XD, where D is a nonsingular diagonal
matrix) represent equivalent economic structures; it doesn't matter for
example, whether one specifies the model in dollars, cents, or billions
of dollars. Such scale changes do, however, affect the numerical properties
of the data matrix and result in very different singular-value decompositions
and condition indexes.3 Without further adjustment, then, we have a situation
in which near dependencies among structurally equivalent economic variates
(differing only in the units assigned them) can result in greatly differing
condition indexes. Clearly the condition indexes can provide no stable
information to the econometrician on the degree of collinear among the X
variates in such a case. It is necessary, therefore, to standardize the data
matrices corresponding to equivalent economic structures in a way that makes
comparisons of condition indexes meaningful in an econometric application. A
natural standardization process is to scaie each column to have unit length.u
This scaling is natural because it transforms a data matrix X with mutually
orthogonal columns, the standard of ideal data, into a matrix whose singular
values and condition indexes would all be unity, the smallest (and therefore
most ideal) condition indexes possible. Any other scaling would fail to

reflect this desirable property: the more ideal the data, the closer the
5

condition indexes come to their lowest possible value, unity.
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In all the experiments that follow, then, the data are scaled to have
unit column length before being subjected to an analysis of their condi-
tion indexes and variance-component proportions. In the event that the
linear relations between the variates are displayed, the estimated coeffi-
cients have been rescaled to their original units.

The Experimental Report

Selected tables displaying variance-component proportions (II-matrices)
and condition indexes will be reported for each experiment, showing how these
two principal pieces of information change as the near dependencies get
tighter.

Additional statistics, such as the simple correlations of the contrived
dependencies and their R2‘s as measured from relevant regressions, will also
be reportéd to provide a link between the magnitudes of condition indexes
(with which we have little experience) and these more familiar notions., It
cannot be stated too strongly, however, that these additional statistics cannot
substitute for information provided by the variance-component proportions and
the condition indexes. In the experiments that follow, we know a priori which
variates are involved in which relations and what the generating constants (the
c in (3.1)) are. It is therefore possible to construct simple correlations
between Xy and Xc and run regressions of X, on X. In practice, of course, c is
unknown and one does not know which elements in the data matrix are involved in
which dependencies. These auxiliary statistics are, therefore, not available to
the investigator as independent analytic or diagnostic tools. However, one can
learn from the variance-component proportions which variates are involved in

which relationships, and regressions may then be run among these variates to

display the dependency. Furthermore the t-statistics that result from these
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regressions can be used in the standard way for providing additional descriptive
evidence of the "significance" of each variate in the specific linear dependency.
Once the analysis by condition indexes and variance-component proportions has
been conducted, then, it can suggest useful auxiliary regressions as a means of
"exhibiting" the near dependencies; but regression by itself, particularly, if
there are two or more simultaneous near dependencies, cannot provide similar

information.6

3.2 The Individual Experiments

Three experiments are conducted, each using a separate series of data matrices
designed to represent different types of economic data and different types of
multicollinearity. Thus "levels" data (Manufacturing Sales), "trended" data
(GNP), "rate of change" data (inventory investment), '"rates" data (unemploy-
ment) are all represented. Similarly, the types of collinearity generated
include simple relations between two variates, relations involving more than two
variates, simultaneous near dependencies, and dependencies among variates with
essential scaling problems. The different cases of relations involving more
than two variates have been chosen to involve different mixes of the different
types of economic variables listed above. In each case the dependencies are
generated from the unscaled (natural) economic data, and hence the various
test data sets represent és closely as possible economic data with natural
near dependencies.

Experiment No. 1: The X Series

The basic data set employed here is
x = [ires, *mw, w7

where MEGS is manufacturers' shipments, total

*TVM is manufacturers' inventories, total
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MV is manufacturers' unfilled orders, total

and each series is in millions of dollars, annual 1947-1970 (T=24).
This basic data set provides the type of series that would be relevant, for
example, to an econometric study of inventory investment. 8

Two sets of additional dependency series are generated from X as follows;
wo =MV 4 v, i=0, ..., 4 (3.5a)

with v; generated randomly with mean zero and
. 2 _ -2 -i2
variance o, ” = 10 “syy (denoted Vi++f(0,10 SMV))

sﬁv being the sample variance of the My series,

and

Zj = .8MFGS + .2%IVM + Vj (3.5b)
v.er£(0, 107352,
2 ] 2
S;  being the sample variance of .8MFGS + .2¥IVM.

The We and zj series were used to augment the basic data set to produce three

sequences of matrices

Xl(i)SE(wj] i=0..4

5) = ) i =0 .. 3.6
X2(3) E(ZQ] 320 .. 4 (3.6)
X3(i,j) = [x W, zﬂ i, 3 =0 .. 4,

each of which is subjected to analysis.
The dependency (3.5a) is a commonly encountered simple relation
between two variates. Unlike more complex relations, it is a dependency

whose presence can be discovered through examination of the simple correlation
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matrix of the colums of the X1(i) or ¥X3(i,j). Tts inclusion, therefore,
' alléws us to learn how condition indexes and simple correlations compare
with one another.

The deperdency (3.5b) involves three variates, and hence would not
generally be discovered through an analysis of the simple correlation matrix.
(3.5b) was designed to present no difficult scaling problems; that is, the
two basic data series MFGS and *IVM have roughly similar magnitudes and
variations, and the coefficients (.8 and .2) are of the same order of magni-
tude. No one variate, therefore, dominates the linear dependency, masking
the effects of others. This situation should allow both the identification of
the variates involved and the estimation of the relation among them to be
accomplished with relative ease,

Experiment No. 2: The Y Series

The basic data set employed here is
Y = [%GNP58, *GAVM, ®*IHTUR, *GV58] ,
where GNP58 is GNP in 1958 dollars
@GV58 is annual change in total inventories, 1358 dellars

GAVM is net corporate dividend payments
IHTUR is total labor hours, unemployment rate.

Each basic series has been constructed from the above series to have
similar means and variances, but chosen to produce a reasonably well conditioned
Y matrix. Data are annual, 1948 to 1974 (T=27), The variates included here,
then, represent "levels" variates, (#GNP58), rates of change (*GN58), and
"rates" (LHTUR).

Three additional dependency series are cconstructed as

u. = GNP58 + GAVM + V.
1 i

-1 2
v, < £(0,107 857 (3.7a)

SG2 = var (GNP58 + CAVM)
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0.1%GNP58 + *GAVM + v.

<
1]

3 3
v. <« £(0 10':'l sA2> (3.75)
] ’ \ )
302 = var (.1*GNP58 + *GAVM)
o _ %
z, = *GVS8 + v
-k 52 )
v £(0, 10 *GV58’ ° (3.7¢)

These data were used to augment Y to produce four series of test matrices

v1i) = [¥ u;) i=0..4
Yz(j)=[ij] j=0 .04
v30) = [¥, 2] k=o0..u (3,8)

Yh(ik) = [Yu, zJi, k=0 .. 4.

Dependency (3.7a) presents a relation among three variates with an essential
scaling problem; namely, in the units of the basic data, the variation intro-
duced by GNP58 is less than one percent that introduced by GAVM. The inclusion
of GNP58 is therefore dominated by GAVM, and its effects will be semewhat masked
and difficult to discern. Dependency (3.7b) is of a similar nature except that
the scaling problem has been made even more extreme., These are "essential"
scaling problems in that their effects cannot be undone through simple column
scaling. Dependency (3.7c) is a simple relation between two variates, except in

this case the variate is a rate of change, exhibiting frequent shifts in sign.
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Experiment 3: The Z Series

The basic data matrix here is an expanded version of that in the previous

ékperiment
Z = [*GNP58, *GAVM, *LHIUR, DUMLl, DUM2]

where DUML is generated similar to GV58 and DUM2 is similar to GNP58, except
that DUML and DUM2 were generated to have very low intercorrelation with the
first three variates. This configuration allows examination of the case
described in Part 2 when some variates are isolated by near orthogonality from
dependencies among others.

The additional dependency series are

u., = DUM1 + e.
1 1
-i 2 -
e; < £(0, 107 sl ) i=0 ..y | (3.9a)
= - e.

Vj DUM2 ool + g

.. S .

5+ £(0, 10 SDUMZ—DUMI) 3=0..4 (3.9b)

W, = 3*GNP58 + 1.5%LHIUR + €
-k _2 =
&+ £(0, 10 SS*GNP+1,5*LHTUR) k=0..4 (3.90)
x = RGAUM + THDUMZ + ep

(3.9d)

€

_ 2
m f(O, 10™m S"‘GAUM+-7*DUI\/[2) m=0 .. 4,

These data are used to augment Z to produce seven series of test matrices

71(i) = [Z ui] 75(3,k) = [Z v wk]

72(3) = [Z vj] z6(i,m) = [Z us xm]

Z3(k) = [2Z wk] Z7(ik,m} = [Z uy W xm].

z4m) = L2 %, ] (3.10)
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Each of the dependencies (3.9a, b and ¢) possesses essential scaling prob-
lems, with DUM2, 3*GNP58 and ®GAVM, respectively, being the dominant terms. The
problem is extreme in the relation of DUM2 and DUM1, where DUML introduces much
less than .1% of the total variation, and difficult in the other cases. The
relation defined by (3.9b) is isclated by near orthogonality from the one defined
by (3.9c), and these relations occur separately in the Z2 and 73 test series and

together in the 7Z5 series. Relation (3.9d) bridges the two subseries.

3.3 The Results

Space limitations obviously prevent reporting the full set of experimental
results. Fortunately, after reporting Experiment 1 in some detail, it is
possible to select samples of output from Experiments 2 and 3 that convey what
generalizations are possible.

Experiment 1: The X Matrices

Xl: Let us begin with the simplest series of experimental matrices,
the X1¢i), i = 0, .., 4. Here the data series of colum 4, C4, is related
to that of colum 3, C3, by (3.5a), i.e., Ch = C3 + e i=0..U4; and this is
the only contrived dependency among the four columns of X1. We would therefore
expect there to be one "high" condition index and a large proportion of var(bs)
and var (b,) to be associated with it. Table 1.A presents the variance-component

proportions and the condition indexes for this series as i goes from 0 to &.
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TABLE 1A%

Variance-Component Proportions
and Condition Indexes

X1 Series
1 constructed near dependency (3.5a)
Ch = C3 + es
X1(0)
var(bl) var(b,) var(b,) var (b, ) Condition
index n
9y .005 .012 .002 .003
%, .04k . 799 .00y .032 5
9, .906 .002 .04l .238 8
Iy . 045 .187 .954 .727 14
X1(L)
9y .005 011 .001 .001
9, .04 <834 .003 .002 5
O, . 899 .117 .0u8 .035 9
oy .002 .038 .9u8 .962 27
X1(2)
| oy .005 .012 .000 .000
9, .086 . 889 .00C .000 5
o,  .901 .083 .003 .003 9
o .007 .016 .997 .997 95
X1(3)
0 .005 .012 .000 .000
a2 .078 .903 .000 .000 5
Qg .855 .079 .000 .000 9
o} .061 .006 .998 .99¢ 461
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X1(4)
9 .005 .010 .000 .000
9, .08 .792 .000 .000 5
0, .906 .070 .000 .000 9
oy .00L .127 1.000 1.000 976

#Columns may not add to unity due to rounding error.

A glance at these results confirms our expectations. In each case
there is a highest condition index that accounts for a high proportion of
variance in two or 1more coefficients, and these are var(b3) and var(bu).
Furthermore, the pattern is observable in the weakest case X1(0), and becomes
clearer and clearer as the near dependency becomes tighter: all condition
indexes save one remain virtually unchanged while the condition index corres-
ponding to the imposed dependency increases strongly with each jump in i; the
variance-component proportions of the two "involved" variates C3 and C4 become
larger and larger, eventually becoming unity.

To help interpret the condition indexes in Table 1A we present in Table 1B

the simple correlation between C3 and C4 for each of the X1(i) matrices and

also regressions of Ch on Cl, C2 and C3.
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TABLE 1B%
p(C3,C4) Regression of C4 on Cl, C2 and C3
c1 @ c3 RZ

X1(0) .766 .3905 -.1354 .9380 .6229
[1.114] [.91] [4.768]

X1(1) .931 .1481 .0925 .8852 .8765
[.97] [1.38] [10.10]

X1(2) .995 -.0076 L0142 .9982 ,9893
[~.17] [.721 [38.80]

X1(3) .999 .0111 .0015 .9901 .9996
[1.22] [.37] [188.96]

X1(4)  1.000 -.0012 .0033 .9976 .9999
[-.28] [1.761 [400.56]

*The figures in square brackets are t's. Since interest in these
results centers on "significance", it seems proper to publish t's
rather than estimated standard deviations.

In addition to observing the general pattern that was expected, the
following points are noteworthy.

1. The relation between C3 and C4 of X1(0), having a simple
correlation of .766 and a regression R” of .6229 (not very high in comparison
with simple correlations present in most real-life economic data matrices),
shows itself in a condition number of 14 and is sufficiently high to cause
large proportions (.95 and .73) of the variance of the affected coefficients,
var(b3) and var(bu).

2. Also at this lowest level (i=0), the diagnostic test proposed at
the end of Part 2 would corvectly indicate the existence of but one near

dependency and correctly key the variates involved.

3. In light of 2) above, the regressicns of Table 1B that were run for
comparative purposes are also those that would be suggested by the
results for displaying the near dependencies. Table 1B verifies that even in the

X1(0) case with an n of 14, the proper relation among the columns of X1(0) is

being clearly observed.
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4. With each increase in i (corresponding to a ten-fold reduction
in the noise in the near dependency), the simple correlations and R2's increase
one order, roughly adding another 9 in the series .9, .99, .999 etc., and
the condition index increases in order of magnitude roughly along the progression
10, 30, 100, 300, 1000, a pattern we shall observe in further examples.9 This
relation suggests a means for comparing the order of magnitude of the "tightness"
of a near dependency.

5. Also with each increase in i, the proportion of the variance components
of the affected coefficients associated with the highest n increases markedly
(again roughly adding one more 9 with each step).

6. As noted in Part 2, it is the joint condition of high variance-
component proportions for two or more coefficients associated with a high condi-
tion index that signals the presence of degrading collinearity. In the case of
X1(0), the second highest condition index, 8, is not too different from the highest,
but it is a dominant component in only one variance, var (bl)' In this
case, then, a condition index of 14 (roughly 10) is "high enough" for collinearity's

Presence to begin to be observed.

. 7 X2: The X2(1) series also possesses only one constructed near dependency,
3.5b, but involving three variates, colums 1, 2 and 4 in the form C4 = .8%Cl +
L2%C2 + e;. We expect, then, high variance-component proportions for these
three variates to be associated with a single high condition index. Table 2A
presents the ll-matrix of variance~component proportions and the condition
indexes for the X2(i) data series, and Table 2B gives the corresponding simple

correlations and regressions. In this case the correlations are between C4 in

3.5b and 63 = .8*Cl + .2%C2. The regressions are C4 regressed on Cl, C2 and C3.
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TABLE 2A

Variance-Component Proportions
and Condition Indexes

X2 Series
1 constructed nearldependency (3.5b)
Ch = .8%C1l + .2%C2 + es

var(bl) var(b,) iié?g3) var(b,,) Condition
index n

oy .003 .012 .00k .005

9, .027 .735 .001 .068 4

O .009 .228 .636 .526 9

Gq .960 .030 . 359 401 11
X2(1)

Cl .001 .00y .003 .0090

% .021 .297 011 .001 5

Oy .091 .026 .767 .006 10

o, .887 .673 .219 .993 31
X2(2)

oq 000 .001 .004 .000

9, .001 .039 .012 .000 5

a5 .004 - .002 .983 .002 9

U .995 .958 .001 .998 102
X2(3)

9 .000 .000 .004 .000

9, .000 .002 014 .000 5

Oy .000 .000 .976 .000 9

o), 1.000 997 .006 1.000 381
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X2(4)
o, .000 .000 .00k .000
o, .00 .000 .013 .000 5
o, .00 .000 .938 .000 9
0, 1.000 1.000 046 1.000 1003
TABLE 2B
%ﬁCN, ) Regression C4 on Cl, C2 and C3
= .8C3 + .2C2 c, c, c, c,
X2(0) 477 .8268 -.0068  .1089  .286Y4
[3.84] [-.07] [.88]
x2(1) .934 633  .1776  .1032  .8976
[10.14] [6.49] [2.87]
X2(2) .995 .8186  .1879  .0007  .9911
[4+0.90] (f21.44] [.o06]
X2(3) .999 7944 .2023  .0012  .9993
[149.03] [86.69] [.40]
X2 (4) 1.000 .7990  .1992  .0012  .9999

[393.947] [224.32] (1.02]
The following points are noteworthy.

1. Once again the expected results are clearly observed, at least for
i> 1,

2. In the case of X2(0), the constructed dependency is weak, having a
simple correlation of less than .5. The resulting condition index, 11, is
effectively the same as the second highest condition index, 9, and hence this
dependency is no tighter than the general background conditioning of the
basic data matrix. We shall see as we proceed that in the case where several

condition indexes are effectively the same, the procedure can have trouble

distinguishing among them, and the variance-component proportions of the
various variates involved can be arbitrarily distributed among the nearly
equal condition indexes. In X2(0) the two condition indexes 9 and 11 account

for over 90% of the variance in bl’ by and by, . b3's presence in this group is
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- explained by the fact that the simple correlation between Cl and C3 is .58
(greater than the constructed correlation between C4 and 6&). b2's absence
is explained by the fact that there is a minor scaling problem; C2 accounts
for only half the variance of the constructed variate C4 = .8%Cl + .2%C2 + e
and, in this case, its influence is being dominated by other correlations.

3. By the time the simple correlation between Cu and'fﬁ becomes .934,
in the case of X2(1), the above problem completely disappears. The contrived
relation involving colums 1, 2 and 4. now dominates the other correlations
among the colums of the basic data, and the variance-component proportions
of these variates associated with the largest condition index, 31, are all
greater than ,5.

4. We again observe that, with each increase in i, the condition
index corresponding to this ever-tightening relation jumps in the same pro-
gression noted before, namely 10, 30, 100, 300, 1000. In this regard it is
of interest to observe that the contrived relation among columns 1, 2 and 4,
becomes clearly distinguishable from the background in case X2(1) when its
condition index becames one step in this progression above the "noise," i.e.,
when it becomes 31 vs. the 10 associated with the background dependencies.

5. Once again, the presence of collinearity begins to be observable with
condition indexes around 10. In this instance, however, an unintended rela-
tion (the .58 correlation between Cl and C3) also shows itself, confounding
clear identification of the intended dependency among C4, Cl and C2.

6. In both this and the X1 case, a condition number of 30 signals clear
evidence of the presence of the linear dependency and degraded regression
estimates.

X3(i,3): This series of matrices combines the two dependencies (3.5a) and
(3.5b) just examined into a single 5 column matrix with C4 = C3 + e and
C5 = :8%Cl + ,2%C2 + u., This, then, offers the first constructed example of
simultaneous or coexisting dependencies;n We expect that there should be two high
condition indexes, one associated with high variance-component proportions in var(bs)
and var(bu) - due to dependency (3.5a) - and one associated with high variance-

component proportions between var(bl) and var(bz) and var(bs) - due to dependency

(3.5b).
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In an effort to reduce the increasing number of II-matrices relevant to
" this case we shall concentrate our reported results in two ways. First, we
shall report only representative information from among the 25 cases X3(i,]),
i, = 0 .. 4, and second, where possible, we will report only the rows of the
variance-component proportions that correspond to the condition indexes of
interest. We note in the previous two series that many of the rows, those
corresporiding to lower condition indexes, are effectively unchanging as i
varies, and convey no useful additional information for the analysis at hand.
Let us begin by holding i constant at 2 and varying j = 0 .. 43 (3.5a) is
therefore moderately tight, while (3.5b) varies. Table 3 presents the results

for this case.

TABLE 3

Variance-Component Proportions
and Condition Indexes

X3 Series
2 constructed near dependencies (3.5a) and (3.5b)
Cu = C3 + e, (unchanging)

C5 = .B®(C1 + .2%C2 + us (i=0..4)
X3(2,0)
var(b,) var(b,) var(b,) var(b, ) var(b.) Condition
1 2 3 ) 5 X
index, n
01 .002 .007 .000 .000 .003
02 .025 . 734 .000 .000 .0cy 5
03 .025 . 240 .003 .003 .303 8
Ol+ 941 .002 .000 .001 .630 12
o .007 .016 . 996 .996 .001 106
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X3(2,1)*
o 076 .008 .003 .003 .003 9
o,  .765 .537 .000 .004 .792 3y
O 147 .192 .997 .992 .199 118
X3(2,2)
oq 004 .001 .003 .003 .002 8
o, .746 .750 459 LBl .758 127
o .249 211 .537 .533 241 99
X3(2,3)
oq .002 .000 .003 .003 .000 8
o, .999 .997 .173 .182 .993 469
oc .000 .001 .824 .816 .001 83 “
‘i'i
X3(2,4)
oq .000 .000 .003 .003 .000 8
g, 1.000 1.000 .003 .001 1.000 1124
og .000 .000 .994 .996 .000 106

*The unchanging and inconsequential rows corresponding to oy and o,
have not been repeated. See text.

The auxiliary correlation and regression statistics need not, of course,
be repeated, for these are the same as the relevant portions of Tables 1B and
2B. In particular, the correlations and regressions for the unchanging ¥3(2,3)
relation for i = 2 between Ch and C3 are those for X1(2) in Table 1B and the

regressions for cclumn 5 on the basic columns 1, 2, and 3 for § = 0 ,.. 4 are

those given in Table 2B for X2(j), j = 0 .. 4.
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The following points are noteworthy.

1. The unchanging "tight" relation between columns 3 and 4 is observable
throughout, having a correlation of .995 and a very large condition index in
the neighborhood of 100.

2. The relation with varying intensity among C5, Cl, and C2, begins weakly for
the X3(2,0) case, and, as before, is somewhat lost in the background. Still, the
involvement of var(bl) and var (bs) with the condition index 12 is observable
even here, although it is being confounded with the other condition index, 8,
of roughly equal value. The unchanging tight relation between C4 and C3 with index
106 is unobscured by these other relations.

3. When the relation between colums 1, 2 and 5 becomes somewhat tighter
than the background, as in the case of X3(2,1), its effects become separable.
This case clearly demonstrates the ability of the procedure to correctly identify

two simultaneous dependencies and indicate the variates involved in each: the N of
34 is associated with the high variance-component proportions in var(bl), var(b2) and
var(bs) and the n of 118 is assoclated with those of var(b3) and var(bu).

L. When the two contrived dependencies become of roughly equal intensitys
as in the case of X3(2,2), both having n's in the neighborhood of 100, the
involvement of the variates in the two relations once again becomes confounded.
However, it is only the information on the separate involvement of the variates
that is lost through this confounding. It is still possible to determine that
there are two near dependencies among the colums of X, and it is still possible
to determine which variates are involved; in this case all of them, for the two
condition indexes together account for well over 90% of the variance in bl’ b2,
b3, bu, b5, indicating the involvement of each. The only information being lost
here is which variates enter which dependency. ’

5., When the relation among colums 1, 2 and 5 again becomes strong relative
to the unchanging relation between columns 3 and 4, as in the cases X3(2,3) and

X3(2,4), their separate identities reemerge.

6. Once again, the order of magnitude of the relative tightness of a near

dependency seems to increase with a progression in the condition index in the
scale of 10, 30, 100, 300, 1000. Dependencies of roughly equal magnitude can be
confounded; dependencies of differing magnitudes are able to be separately identi-
fied.
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The preceding analysis examined X3(i,j) by varying the second dependency
and holding the first constant at i = 2. Let us reverse this order and examine
X3(i,1) for i = 0 .. 4, and j held constant at 1.

As i increases, we would expect there to be two high condition indexes.
The one corresponding to the unchanging dependency between colums 1, 2 and 5
will not be too high, since j is held at 1. The relation between columns 3 and
4 will get tighter and more highly defined as i increases from 0 to 4.

Table 4 reports these results. Table 1B and the second row of Table 2B

provide the relevant supplementary correlations and regression.

TABLE Y4

Variance-Component Proportions
and Condition Indexes

X3 Series

2 constructed near dependencies(3.5a) and (3.5b)
Ch =C3+e: (1 =0, ..,4)
C5 = .8%C1 + .7%C2 + u; (unchanging)

X3(0,1)
var(bl) var(bz) var(by) var(bu) var(bs) Condition
Index, n
01' .001 .002 ..001 .002 .000
02 .008 .274 .003 .032 .000 5
03 .092 . 004 .ol .250 .011 9
Ou .885 643 171 .008 .988 35
05 .015 .076 .781 .708 .001 15
X3(1,1)
OH .821 .656 .226 .077 .900 35

.720
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X3(2,1)
9, .765 .537 .000 .oou . 792 34
Og <147 .192 .997 .992 .199 ' 118
X3(3,1)
9, .871 .673 .000 .000 .985 34
O¢ .028 .010 .999 .989 .005 519
X3(4,1)
o, .842 .549 .000 .000 .901 34
ag .062 .192 1.000 1.000 .089 1148

The following points are noteworthy.
1. Both relations are observable from the outset.

2. A condition number of 15 (greater than 10) corresponds to a
dependency that is tight enough to be cbserved.

3. The confounding of the two dependencies is observable when the condi-
tinn indexes are close in magnitude, the case of X3(1,1); but it is not as

pronounced here as in the previous examples.

4. The rough progression of the condition indexes in the order of 10, 30,
100, 300, 1000 is observed again.

To camplete the picture on the behavier of X3(i,3) we report the variance-

component proportions tables for selected values of i and j increasing together.
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TABLE 5
Variance-Component Proportions
and Condition Indexes

X3 Series

2 constructed near dependencies (3.5a) and (3.5b)
Ch = C3 + e; (selected values)
Ch = ,8%C1 + .2%(C2 + us (selected values)

X3(0,0)
var(bl) var(b2) var(b3) var(bu) var(bs)
.002 .007 .001 .002 .003
.016 .750 .000 .009 041
.028 .053 . o4y .206 .323
.953 .000 .018 .032 .610
.00l .190 .937 .751 .023
X3(1,0)
.015 271 041 .033 . 341
.852 .009 .012 .006 .585
.006 .037 . 946 .961 004
X3(1,2)
. 995 .962 .09y 117 .998
.005 .002 . 860 . 848 .001
X3(3,2)
.967 .936 .000 .000 .979

.028 .023 1.000 1.000 .020

Condition
Index, n

12

15

12

30

123

30

115

523
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X3(3,4)
o, -999 .999 .015 .013 .999 1129
og .00l .001 .985 .986 .001 © 517
X3k ,4)
o, .698 .705 .633 .631 .699 1357
o5 302 . 294 . 369 . 369 .301 960

The following points are noteworthy.

1. In the X3(0,0) case, three condition indexes are of close magnitude,
7, 12 and 15 and there is some confounding of variate involvement among all
three of them.

2. The relation between C3 and C4 is freed from the background in the
next case, X3(1,0), but there is still some confusion between the two similar
condition indexes 8 and 12.

3. Quite clearly the two relations become more clearly identified as i
and j increase, and are strongly separable so long as the condition indexes
remain separated by at least one order of magnitude along the 10, 30, 100,
300, 1000 progression.

4, However, no matter how tight the individual relationship, they can
be confused when of equal weight, as is seen in the case of X3(4,4).

Experiment 2: The Y Matrices

Our interest in examining these new experimental data series focuses on
several issues. First, does a totally different set of data matrices result
in similar generalizations on the behavior of the condition indexes and the
variance-canponent proportions that were beginning to emerge fram Experiment
1? Second, do "rate-of-change" data series and "rates" series behave
differently from the "levels" and "trends" data of Experiment 1? The data

series Y3 are relevant here. Third, do essential scale problems cause troubles?

Data sets Y1 and Y2 examine this problem.
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Y1l and Y2: The Y1(i) series, we recall, consists of a five column
matrix in which C5 = C1 + C2 + e; as in (3.7a). The variance in C5 intro-
duced by Cl (GNPS8) is relatively small, less than 1% of that introduced by
C2. Its influence is therefore easily masked. The Y2(i) series is exactly
the same except that Cl's influence is made smaller yet. Here C5 = ,1%*Cl +
C2 +e; as is clear from (3.7b). These two series allow us to see how sensitive
the diagnostic procedure for multicollinearity is to strong and even severe
scaling problems.
For both experimental series, Y1 and Y2, we would expect one high

condition index associated with high variance-component proportions in

var(bl), var(bz) and var(bs). Tables €A and 7A present these results
for Y1 and Y2 respectively as 1 = 0 .. 4. Tables 6B and 7B present the

corresponding supplementary correlations and regressions.

TABLE 6A

Variance-Component Proportions
and Condition Indexes

Y1l Series

1 constructed near dependency (3.7a)
C5=CL+C2+e, (1i=0..4)

i
Y1(0)
var(b, ) var(b,) var(b,) var(b,, ) var(b.) Condition
1 2 3 L 5
Index, n
o, .005 .001 .003 015 .002
02 .010 .001 .010 . 898 .002 3
03 .782 .036 .001 .010 .081 7
Gl+ .188 .045 .978 .071 .09¢6 10
g .016 .916 .008 .007 .819 16




Y1(0)

Y1(1)

Y1(2)

Y1(3)

Y1(4)

.607 .019
.02 .030
. 360 .950
.394 .001
.065 .001
.534 .998
.099 .000
.016 .000
.883 .997
.001 . 000
.993 1.000
A
0(C5,C5)
A
CS = C1 + C2
.776
.939
.997
.999
1.000
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Y1()
.031
.94l

.014

Y1(2)
.003
.976

.008

Y1(3)
.003
.959

024

Y1)
.965

.018

TABLE 6B

.008
.090

.036

.010
.068
.020

.010
.073

.003

.072

.000

.003
.012
.985

.001
.001
.999

.00
.000

1.000

.000

1.000

Regression of C5 on C1, C2, C3, Ch,

Cl
-.0264
[-.01] 5.
2.5629
[3.78] [13.
.9506 1.
[5.24]  [59.
.9534
[13.36] [151.
1.0178

£59.57] [633.

C2

.9262

33]

.8238

20]

0009
80)

.9989

80]

.9875

30]

C3

97.8101
[1.03]

35.7769
[1.05]

-2.7505
[-.30]

2.8747
[.80]

.5632
[.65]

Cy
28.3210
[.3u4]

35.1060
(1.17]

-4,9108
[-.61]

.9679
[.31]

.0135
[.0178]

10

40

10
156

10
397

10

1658

.6186

.9116

9940

.9991

.9999
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TABLE 7A

Variance-Component Proportions
and Condition Indexes

Y2 Series

1 constructed near dependency (3.7b)
C5 = ,1*C1 + C2 + e; A=0..W)

¥2(0)
var(b, ) var(b,) var(b,) var(b,,) var(bg) Condition
. Index
o1 .005 .003 .003 014 .003
o9 .009 .002 .00% .886 .005 3
o3 . 804 .023 .007 .001 .205 7
oy .157 . 366 .201 .0o0 {781 10
o5 .025 .606 . 781 .098 .006 11
Y2(1)
03 .736 .009 .000 .022 .012 7
oL . 248 .005 . 887 .072 .012 10
o5 .000 .985 .099 .016 .975 42
Y2(2)
o3 TH7 .001 .000 .013 .000 7
oy .190 .001 .880 .068 .001 10
g .049 .999 .108 .001 .998 153
Y2(3)
g3 .6u8 .000 .000 .012 .000 7
oy .157 .000 .867 .069 .000 10

o5  .183 1.000 .120 .008 1.000 475
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Y2(u)
o, .512 .000 .000 .011 .000 7
g, 121 .000 .98y ~.066 .000 ' 10
og  .357 1.000 .00?2 .063 1.000 1166
TABLE 7b
A .
p(C5,C5) Regression of C5-on C1, C2, C3 and Cu.
A . :
CS = .1%C1 + C2 c1 c2 c3 oy R?
Y2(0) .395 .3789 .4585 260.8090 47.9654 .1433
[.16] [2.101] [2.18] [.u6]
Y2(1) .962 .0862 1.0613 -35.0793 27,0102 .929Y
[.12] [16.64] {-1.00] [.88]
Y2(2) .997 .2077 1.0179 -13.8609 -.4803 .9943
- [1.15] [60.94] [-1.52] [-.061
¥2(3) .999 .1331 1.0078 -5.0668 -1.0565 .9994
, [2.287] [187.81] [-1.73] [~.u41
Y2(4) 1.000 .0845 1.0009 -.2182 1.3050 .9999
[3.58] [460.06] [~.18] [1.25]

The following points are noteworthy.
1. The results for both data series are in basic accord with expectations.

2. However, the essential scale differences do cause problems in identify-
ing the variates involved in generating the dependency. In the Yl series, the
involvement of the dominated column 1 is not observed at all in the weakest case
Y1(0), having a condition index of 10 (and a correlation of .78). Cl's involve-
ment begins to be observed by Y1(1), but does not show itself completely until
Y1(2) and Y1(3). By contrast, the involvement of the dominant column C2, along
with the generated column 5 is observed from the outset. The same pattern occurs
within the supplementary regressions. Cl's regression parameter is insignificant
in case Y1(0), becomes significant in Y1(1) and takes the proper order of magni-
tude (unity) in Y1(2) and Y1(3).

3. Aggravating the scale problem in the Y2 series (Cl now accounts for
less than 1/100 of 1% of the variance in C5) has the expected effect. Now column
1's involvement is becoming apparent only by the tightest case Y2 (4) with a
condition index of 1166.
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4, The several other general patterns noted in Experiment 1 seem still to
hold: a dependency's effects are beginning to be observed with condition indexes
around 10; decreasing the variance of the generated dependency by successive
factors of 10 causes the condition index roughly to progress as 10, 30,'100, 300,
1000, i.e., log n progresses in steps of 1/2.

¥3: The Y3(i) series consists of a 5 column data matrix in which the
fifth colum is in a simple relation 3.7c with the fourth column, C5 = Cu + ej.

Ct in this case is inventory investments, a rate-of-change variate. The results

of this series are given in Tables 8A and 8B.

TABLE 8A

Variance-Component Proportions
and Condition Indexes

Y3 Series
1 constructed near dependency (3.7¢c) .
C5 = Ch + ey (1=0..4)
Y3(0)
var(bl) Var(b2) var(b3) var(bu) var(bs) gondition
ndex, 1
oy .005 .003 .003 .012 .012
o, .018 .007 .015 .09y .222 3
Oy .953 .180 .112 .003 .001 8
oy .025 .810 .870 .013 .034 11
Og .0cy .001 .001 .877 .731 5
Y3(1)
Og .708 2133 .118 .027 .019 8
oy .000 .855 .693 .00k .022 11

Og .270 .001 JA71 .9u8 .939 15
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Y3(2)
oy 953 A7 .102 .000 .000 8
o, 017 .757 751 .002 .000 : 11
o 005 .063 .132 .996 .997: 42
Y3(3)
oy +956 .180 .115 .000 .000 8
o, .018 .789 .859 .000 .000 11
o, .001 .020 .008 .999 .999 147
Y3(u)
oy -890 .179 .107 .000 .000 8
o, .016 .790 .798 .000 .000 11
oy .07 .020 .078 1.000 1.000 416
TABLE 8B
p(C5,Cu) Regression of C5 on C1, C2, C3, Cu
c1 c2 C3 C4 R?
Y3(0) .6u3 .0015 .000u -.2014 .9180 4231
[.27] [.81] [~.74] [3.82]
Y3(1) .950 -.0027 .0001 .08u45 .9491 .9188
[1.93] [.62] [1.20] [15.38]
Y3(2) .995 .0002 .0001  -.0u50 1.00u48 .9902
. [.36] [1.23] [1.80] [45.67]
Y3(3) .999 .0000 ~.0000 .0029 1.0004 .9992
[.17] [-.65] [.40] [161.11]
Y3(4) 1.000 .0000 -.0000 .0035 1,0013 .9999

{-1.3] [-.67] [1.4] [455.66]
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Points of Interest

1. An interesting phenomenon emerges in case Y3(0) that is in need of
explanation and provides us the first opportunity to apply our diagnostic
tools to a near dependency that arises naturally in the data and has not
been artifically generated. First we note that the generated dependency
between C5 and C4 is indeed observed - associated with the weak condition
index 5. In addition, however, we ncte that over 80% of var(bz) and var(b3)
is associated with the larger condition index 11, indicating at least their
involvement in a low-level, unintended "background" dependency. The simple
correlation between C2 and C3 is very low, .09,ll so we must look further
than a simple dependency between C2 and C3. Further examination of Y3(0)
in Table 8A shows that there is really not one, but two unintended near
dependencies of roughly equél intensity in the basic data matrix associated
with the effectively equal condition indexes 11 and 8. Furthermore, these .
two background dependencies together account for over 95% of var(bl), var(bz),
and var(b3), and the three roughly equal condition indexes 5, 8 and 11
‘account for virtually all of each of the five variances. Applying what we
have learned from Experiments 1 and 2, we conclude that there are three
weak dependencies of roughly equal intensity whose individual effects cannot
be séparated, a problem we have seen arise when there are several condition
indexes of the same order of magnitude. Since we know C5 and C4 are related,
we would expect to find two additional near dependencies among the four
columns C1, C2,‘C3, and C4.12 Indeed, regressing Cl and C3 separately on

C2 and CH gives13

Cl = .0SKOC, + 16.67C, R? = .8335
[5.86] [1.96]
C3 = .0015C, + .0373C, R? = .9045
[8.u43] * ' =

[2.27] ‘
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These background dependencies are, of course, also present in the Y1 and
Y2 series (the first four columns being the same in all Y series), but their
effects there are overshadowed by the presence of the relatively Strongér
contrived dependency involving Cl, C2 and C5. The experience we have attained
from these experiments in the use of these diagnostic techniques, however, has
clearly led us very much in the right direction.

2. The previously described phenomenon serves to emphasize the point
that when there are two or more condition indexes of equal or close magnitude,
care must be taken in applying the diagnostic test. In such cases the
variance-component proportions can be arbitrarily distributed across the roughly
equal condition indexes so as to obscure the involvement of a given variate in
any of the campeting (nearly equal) near dependencies. In Y3(0), for example,

. the fact that over 80% of va.r'(bz) and var(b3) is associated with the single

condition index of 11 need not imply only a simple relation between C2 and C3.
Other vériates (here Cl and C4), associated with competing condition indexes (8
and 5), can be involved as well. Furthermore, when there are competing condition
indexes, the fact that a single condition index (1like 8 in Y3(0)) is associated
with only cne high variance-component prbpor'tion (95% of var(bl) ), need not imply,
as it otherwise could,i" that the corresponding variate (Cl) is free from involve-
ment in any near dependency. Its interrelation with the variates involved in
campeting dependencies must be investigated.

In sum, when there are campeting dependencies (condition indexes of similar
value), they must be treated together in the applicgtion of the diagnostic
test. That is, the variance~component proportions for each coefficient
should be aggregated across the competing condition indexes, and high variance-
component aggregate proportions for two or more variances associated with the set

o _ of competing high indexes is to be interpreted as evidence of degrading collinearity.

The exact involvement of specific variates in specific dependencies cannot be
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learned in this case, but it is still possible to learn a) which variates are
degraded (thdse with high aggregate component proportions) and b) the number
of near dependencies.present (the number of competing indexes).

3; Another, quite different, form of confounded involveﬁent is also
exemplified by the foregoing: the dominant dependency. Ch is apparently
involved simultaneously in several near dependencies, weakly, and with
scaling problems, in the dependencies associated with n's of 8 and 11, and
without scallng problems in the contrived dependency between C4t and C5. In
all cases, but particularly as it becomes tighter, this latter dependency
dominates the determination of var(bu), thereby obscuring C4's weak involvement
in the other dependencies. Dominant dependencies (higher condition indexes), then,
can mask the simultaneous involvement of a single variate in weaker dependencies.
Thus, one cannot rule out the possibility that a variate whose variance is being
greatly determined by a dependency with a high condition index is not also
involved in dependencies with lower condition indexes, unless, of course, that
variate is buffered from the other dependencies through near orthogonality.

4. From within the intricacies of the foregoing points, however, one must
not loose sight of the fact that the test for potentially damaging collinearity
requires the joint condition of 1) two or more variances with high component
Proportions associated with 2) a single high condition index15; condition 1) by
itself is not enough. It is true in the Y3(0) case, for example, that the three
condition indexes 5, 8, and 11 account for most of the variance of all five esti-
mates, but by very rough standards, these condition indexes are not high, and the
data matrix Y3(0), quite likely, could be suitable for many econometric applica-
tions. Let's examine this point fUPther. In our prior examples we noted that
contrived dependencies began‘to be observed when their "tightness" resulted in

condition indexes of around 10. We were also able to calculate the correlations

that correspond to these relations, so we can associate the magnitudes of condition

o
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indexes with this more well known measure of tightness. A glance through
Tables 1-8 shows that condition indexes of 10-11 result from underlying
dependen01es whose correlations are in the range of .4 to .6, relatively
loose relations by much econometric experience., It is not untll condition
indexes climb to a level of 15-30 that the underlying relations have correla-
tions of .9, a level that much experience suggests is high.16 Further insight

is afforded by examining the actual variances whose camponent proportions are

given in Table 8A; these are presented in Table 9.

TABLE 9%

var(bl) var(bz) var(bg) var(bu) var(bs)
Y3(0) 9.87 16.94 16.32 3.71 3.04
Y3(1) 11.43 16.74 16.94 25.58 26.38
Y3(2) 9.90 17.56 18.18 207.76 204 .17
Y3(3) 9.86 16.78 16.06 2559.53 25L47.85
Y3(u) 10.59 16.79 17.28 20389.78 20457.85
*Figures reported here are diagonal elements of (X'X) - the ¢k's

of (2.9) - and do not include the constant factor of s2, the
estimated regression variance. g2 can, of course, only be cal-
culated once a specific y has been regressed on X.
In the case of Y3(0), all variance magnitudes are relatively small, certainly
in comparison to the size attained by var(b,) and var(bs) in the cases of Y3(2)

and Y3(3) when the contrived dependency between them becomes tighter. In short,

high variance-component proportions surely need not imply large component values.

This merely restates the notion of Part 2 that degraded estimates (capable of
being improved if calculated from better conditioned data), which apparently can
result from even low-level dependencies, need not be harmful; harmfullness depends,
in addition, upon the specific regression model employing the given data matrix,

the estimated 52 and statistical use to which the results are to be put.
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5. Thé contrived dependency between CUt and C5, rates of change variateé,
seems to behave somewhat differently from previous experience, based on "levels"
data; namely its condition index is lower for comparable tightness in the under-
lying relation. Perusal of Tables 1-7 indicates, that, quite roughly, the
condition index jumps one step along the 10, 30, 100, 300; 1000 progression
each time another "9" digit is added to the correlation of the underlying
dependency. That is, an n of 10 has a corresponding correlation of about ,.5;
an n of 30 with correlation .9; n = 100, correlation = .99, n = 300, correlation
.999. Table 8 indicates the rate of change data to be one step lower with

n < 10, correlation .6; n > 10, correlation .9; n = 30, correlation .99, ete.
It may be, therefore, that there is no simple pairing of the level of the

strength of a relationship as measured by a condition index with that of the

same relation as measured by a correlation. There does, however, seem to be ‘
stability in the relative magnitudes of these two measures along the progressions
noted above.
6. In all of the foregoing, one should not lose sight of the fact that,
basically, the diagnostic procedure works in accord with expectations. The
contrived relation between C4 and C5 is 6bserved from the outset and takes on
urmistakable form once it is removed from the background, in case Y3(1) or

¥3(2).

Yu: In the Y4(i,j) series the two dependencies of Y1 and Y3 occur
simultaneously. Here C5 = Cl + C2 + e; according to (3.7a) and C6 = CU + u;
as in (3.7c). What is new to be learned from this experimental series can be seen

from a very few selected variance-component proportion matrices. These are

reported in Table 10.
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TABLE 10
Variance-Component Proportions
and Condition Indexes
Y4 Series
2 constructed near dependencies (3.7a) and (3.7¢)

C5 = Cl + C2 + ey (selected values)
C6 = Cuy + uj (selected values).

Y4(0,0)

var(bl) ‘ var(b2) var(bg) var(bu) var(bs) var(bs) Condition

Index, n
0y .004 .001 .002 .008 .001 .008
o, .010 .002 .009 .105 .002 .223 3
oq .788 .036 .001 .001 .079 .00y 7
o, .181 .051 .981 .00y ,100 . 044 11
o .017 .910 .006 .008 .817 .001 17
‘ o .001 .000 .000 .875 .001 .720 5
Y4(0,2)
o .003 .001 .002 .000 .001 .000
o, .011 .002 .008 002 .003 ,002 3
oy .778 .038 .001 .000 .Q77 .000 8
o, .186 .OuY .822 .001 .092 .000 11
o .015 .916 .009 .000 772 ,000 17
o 1,006 .000 .159 .996 .055 .997 Y7
Y4(1,1)
aq 477 .015 .045 .024 .002 .01y 8
o, .001 .035 .777  .006 .013 .025 11
o, .346 .948 .010 .000 .98Y .005 43
Og .167 .008 .158 .9u8 .000 .936 17




Y4(1,2)
oy .587 .018 .027 .000 .003 .000 8
o, 023 .028 847 .001 .011 .000 11
og 173 . .u53 .068 .234 .543 .250 39
og 209 .501 048 .762 442 747 51
Y4(3,3)
o,  .016 .000 .954 .000 .000 .000 11
o 884 1.000 .025 .003 1.000 .003 428
o5 000 .000 .007 .997 .000 .997 162

Points of Interest

1. Both relations are cbservable even in the weakest instance ovKH(0,0),
one with condition index 17, the other with condition index 5. The presence of
the contrived relation between Cl, C2 and C5 has somewhat masked the background
relation among Cl, C2 and C3 that was observed in the Y3 series (although var(bl)
is still being distributed among these relations).

2, Dependencies with differing condition indexes tend to be separately
identified, as in the cases of Y4(0,2), Y4(1,1) and Y4(3,3). When the condition
indexes are nearly equal, however, as in the case Y4(1,2), the involvement of
separate variates is confounded between the two. This fact, observed frequently
before, is particularly important in this instance. In earlier experiments,
roughly equal condition indexes corresponded to roughly equal underlying correla-
tions. In this case, however, the relation between the "rate of change" variates
C4 and C6 is .9 while that underlying the relation among Cl, C2 and C5 is .99,
one 9 stronger. Thus the problem of confounding of relations results from
relations of nearly equal tightneés as judged by condition indexes, not as

judged by correlations.
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3. In general, however, the two construycted relations behave together
quite independently, and much as they did separately. This was true in
Experiment 1 as well; the individual behavior of the dependencies in the X1
and X2 series was carried over to their simultaneous behavior in the X3
series. Thus, with the exception of the mincr problem of confounded propor-
tions that results from the presence of near dependencies with competing or
dominating condition indexes, it seems fair to conclude that the simul-
taneous presence of several near dependencies causes the analysis no critical

Problems.

Experiment 3: The Z matrices

The purposes of Experiment 3 are 1) to analyze slightly larger data
matrices (up to eight colums) to see if size has any noteable effect on the
procedure; 2) to allow up to three coexisting near dependencies, again to see
if new complications arise; 3) to recast some previous experimental series in a
slightly different setting to see if their behavior remains stable; 4) to
create cases where near orthogonality among data series exists in order to
observe its buffering effect against dependencies within nearly orthogonal
subgroups. Toward this last objective, columns 4 and 5 of the basic data
matrix were generated having maximal correlations with columns 1-3 of roughly
.18. Columns 1-3 here are the same as columns 1-3 in the previous Experiment 2.
Four dependency relations are contrived according to (3.9a, b, ¢, and d). (3.9,
and b) generate dependencies among the two colums 4 and 5 which were. constructed
to have low intercorrelations with columns 1-3. (3.9c) generates a dependency
using only Cl, C2 and C3 and, hence, presumably buffered from C4 and C5. (3.9d)
bridges these two data groups. There are scaling problems built into the
generated dependencies. DUML is dominated (<,1% of the variance in (3.9b)). ®LHTUR

is dominated (<,1% of the variance in (3.9¢c)), and DUM2 is dominated (<.1% of the

variance in (3,9d)),
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Many of the Z-series experiments were designed to duplicate previous
experiments with different data in order to observe whether the process
exhibits some degree of stability. In those cases where such stability exists,
such as Z1 below, and the experiment merely becomes repetitive it will be
reported as such without additional and unnecessary tabulations.
7Z1: In this series C6 = Ch + e:. cy (DUML) in this basic data matrix Z
is generated to have the same mean and variance as column 4, the rate-of-change
variate (GV58), of the basic data matrix Y of Experiment 2. Hence the Z1 series
is quite similar to the Y3 series of Experiment 2, and it is to be hoped that this
experimental series would exhibit similar properties. This expectation was met in full.
22: In this series the dependency is generated by the two "isolated"
columns, 4 and 5, by C6 = C5 - C4. It also mixes a rate-of-change variate, Ch
and a levels variate, C5, and, as noted has a scaling problem. Table 11 _
‘ N

presents two I-matrices for the case Z2(2) and Z2(4). =

TABLE 11

Variance-Component Proportions

and Condition Indexes

72 Series

1 constructed near dependency (3.9b)
C6 = C5 - Ch + e, (selected values)

22(2)
var(b, ) var(b,)  var(b,) var(b,)  var(bg) var(bg) Condition
index, N
o1 .00u | .003 .002 .000 .000 .00C
oy .000 .000 .000 .825 .000 .000 2
03 .ou7 L1k .043 .018 .002 .002 6
ou .94y .162 .085 .016 .000 .000 8
o5 .001 721 .836 .000 .000 .000 11
g 004 .000 .034 140 .998 .998 104
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22()
Og .001 .661 .839 .000 .000 .000 11
% .003 .088 .028 .817 1.000 1.000 1039

Points of Interest

1. The "background" relations with condition indexes 8 and 11 are still
present (the first three columns here are the same as in Experiment 2).

2. The generated dependency is quite observable, but the scaling problem !
is evident. Even in 73(2) with a condition index of 104, Cu4's involvement is

not clearly observed, and does not became strongly evident until the condition

index increases to the very high value of 1000.
3. The isolation of C1-C3 from Cu-C6 is very evident. Even in the case
of Z3(4#), the high condition index of 1000 does not add any significant

degradation to var(bl), var(b2) or var(b3).

23: This series, in which C6 = 3%Cl + 1.5%C3 + ess is very similar to
the Y1 series and shows effectively identical behaviour. The scaling problem
here is severe and the involvement of the dominated variate C3 is not strong

even in the Z3(4) case, as is seen by the one relevant row of the Il matrix.

Z3(4)
var(b,) var(d,) var(b,) var(b,) var(b.) var(b.) Condition
1 2 3 L 5 6
Indexs N
08 1.000 .027 451 .072 .000 1.000 980

Z4: In this series there is the single contrived relation C6 = C2 + .7*C5 + e;.

The behavior is as according to expectation, paralleling that of the qualitatively

similar Y1 and X2 series.
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Z5: This series posseses two simultaneous dependencies each isclated
from one another by low intercorrelations among the C1-C3 and Ch-CS columns of
the basic data matrix Z. Here C6 = C5 - Ch + e, and C7 = 3%Cl + 1.5%*C3 + uj.

A typical I-matrix for this series is given by

TABLE 12

Variance~Component Proportions

and Condition Indexes
75 Series
2 constructed near dependencies (3.9b) and (3.9c)

C6 =C5 -Ch +e; (i=2)
C7 = 3*Cl + 1.5%C3 + U G =3

75(2,3)
var(b,) var(b,)  var(bg) var(b,)  var(bg) var(bg)  var(b;)  Condition

Index, n

Ol .000 .002 .001 .000 .000 .000 .000

9, .000 .000 .000 742 .000 .000 .000 2

Oqy .000 .029 .005 .029 .002 .002 .000 6

Oy .000 243 .090 .005 .000 .000 k.OOO 8

O .000C .711 .602 .000 - .000 .000 .000 12

%% .000 .000 .021 121 .950 .849 .000 11y

0y .999 .015 .280 .102 .0us . 049 .999 368

Points of Interest

1. The presence of the two relations is clear, and the scaling problems that
beset the two relations are observed.

2. Of principal interest is the verification of the expected simultaneous
isolation of the relation among C7, Cl and C3 from that among C4, C5 and C6. The

low intercorrelations of these two sets of columns allows the variances within

each group to be unaffected by the relation among the other group.
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3. Although not shown, it should be noted that the usual confounding
of relations occurs in this series, when the condition numbers are of
equal magnitude.

26: This case has two contrived near dependencies C6 = Cl + e; and
C7 =C2 + ,7%C5 + us . The results are fully in accord with expectations.

Z7: This case presents the first occurrence of three simultanecus
relations C6 = Ch4 + e;, C7 = 3*Cl + 1,5%C3 + Uy and C8 = C2 + .7*%C5 + Vs

Table 13 displays three selected cases.

TABLE 13

77 Series

3 near dependencies (3.9a), (3.9¢c) and (3.9d).

C6 = C4 + e; (selected values)
C7 = 3*Cl + 1,5% + u: (selected values)
C8 = C2 + .7%C5 + v, “(selected values)
27(2,2,3)
var(b,) var(b,) var(b,) var(b,) var(b.) var(b.) var(b.,) var(b,) Condition
1 2 3 y 5 6 7 8 I
ndex, N
05 .000 .000 .657 .001 ~.020 .001 .003 .000 11
66 .000 .000 .076 .835 .007 .852 .000 .000 35
07 .970 .001 071 .083 .000 .073 .973 .000 153
08 .028 .999 177 .078 .829 072 .025 1.000 455
27(2,3,3)
06 .000 .000 071 .886 .007 .900 .000 .000 35
07 714 .105 .332 104 .098 .089 .718 .108 345
08 .286 .8395 .003 .006 .734 .007 .282 .892 482
Z7(3,2,2)
06 401 .370 .017 .818 .065 .815 .380 .388 221
07 .161 113 .020 .179 .048 .182 ,169 .094 116
g 436 .506 .068 .003 124 .003 451 .516 164
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Points of Interest

1. The presence of three simultaneous near dependencies causes no special
problems, each behaving essentially as it did separately.

2. The 77(2,2,3) case illustrates the separate identifications of all
three relationships, although the severe scaling problem of C3 is masking its
influence in the relation associated with 0re

3. The other two cases exemplify the problem of separating the individual
relationships when the condition indexes are of the same order of magnitude.

In 77(2,3,3) the two relations with similar condition indexes 345 and 482 are
confounded; while i1, L. 27(3,2,2) cases the involved variates_have the variance
of their estimated regression parameter distributed over the three dependencies

with roughly equal condition indexes 221, 116, 164,

One final conclusion may be drawn rather generally from this Experiment 3;
namely, that those Z series that were qualitatively similar to previous X and

Y series, resulted in quantitatively similar T-matrices and condition indexes,

attesting to a degree of stability in the diagnostic procedure.




~73-

Part 4: SUMMARY AND INTERPRETATICN; AND EXAMPLES OF
DIAGNOSING ACTUAL DATA FOR COLLINEARITY

4,0 Introduction

In Part 2 a test was suggested for diagnosing the presence of multicollinearity
ir. econcmetric data matrices and for assessing the degree to which such near
dependencies degrade ordinary least squares regression estimates. Part 3,
recognizing the empirical element to this diagnostic procedure, reported a
set of experiments designed to provide experience in its use and interpretation.
This part sumarizes and exemplifies the foregoing. In Section 1 the experi-
mental evidence of Part 3 is distilled and summarized. Section 2 summarizes the
steps to be followed in employing the diagnostic procedure on actual economic
data sets, and Section 3 provides two examples of its use on actual data - analyz-

ing naturally arising, uncontrived dependencies.

4.1 Interpreting the Diagnostic Results: A Summary of the Experimental Evidence
Before proceeding with a summary of the evidence, it is worth emphasizing
its preliminary nature. The experiments of Part 3 are necessarily limited in
scope and cannot hope to illuminate all that is to be kmown of the behavior of
the proposed diagnostic procedure in econometric applications. Indeed, it is
to be expected, as experience is gained from future application of these tech-
niques to actual data, that the conclusions presented here will be refined and
expanded. For the moment, however, the experimental evidence is gratifyingly
stable and provides an excellent point of departure.
This summary begins with a presentation of the experience gained from

experiments having a single contrived near dependencey. We then summarize the

modifications and extensions that arise when analyzing data matrices in which

two or more near dependencies coexist.
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Experience With a Single Near Dependency

1. The Diagnostic Procedure Works. The diagnostic test suggested in

Part 2 works well and in accord with expectations for a variety of data’
matrices with contrived dependencies. It is possible not only to determine
the presence of the near dependency, but also, subject to the qualifications
given below, to detefmine the variates involved in it.

2. The Progression of Tightness. The tighter the underlying dependency

(as measured eithéf by its correlation or relevant multiple correlation),

the higher the condition index. Indeed, as the underlying correlations or
R%1s increase along the progression <.9, .9, .99, ,999, .9999 etc., the condi-
tion indexes increase roughly along the progression 3, 10, 30, 100, 300, 1000,
3000, etc. ‘The correspondence between.these two progressions, however, is not
constant and depends upon the type of data. A given éorrelation, for example,
among rates-of-change data appears to be translated into a lower condition
index than for levels data., Some rough generalizations do, however, seem
warranted, and these are given next.

3. Interpreting the Magnitude of the Condition Index. Most of the

experimental evidence shows that weak dependencies (correlations of less than
.9) begin to exhibit themselves with condition indexes around 10, and in
some cases as low as 5. An index in the neighborhood of 15-30 tends to result
from an underlying near dependency with an associated correlation of .9,
usually considered to be the borderline of "tightness" in informal econometric

practice. Condition indexes of 100 or more appear to be large indeed, causing

substantial variance inflation and great potential harm to regression estimates.
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4. Variance-Component Proportions. The rule of thumb proposed at the

end of Part 2, that estimates shall be deemed degraded when more than 50% of
the variance of two or more coefficients is associated with a single high
condition index, still seems good. Future experience may suggest a more
appropriate or a more sophisticated rule of thumb, but the 50% rule allows
the involved variates to be identified in most instances even when the under-
lying dependency is reasonably weak (associated correlations of .4-.7).
Indeed most evidence indicated proportions of over 80% were attained quite
early.

5. Scaling Problems. Essential scaling imbalance causes the involve-

ment of the dominated variates to be masked and more difficult to detect.
Essential scaling imbalance occurs when several variates are interrelated
so that the variance introduced by some is very much smaller than that intro-
‘ duced by others. Variates introducing less than 1% of the total
‘ variation are dominated and their involvement can be completely overlooked
by this procedure until the condition index rises to 30 or more. Very
strongly dominated variates (<.01%) can be masked even with condition
indexes in excess of 300.

6. Data Type Matters. As already noted in 2 above, near dependencies among

"rates-of -change" data seem to behave differently from those involving "levels"

type data.

Experience With Coexisting Near Dependencies

7. Retention of Individuality. While some new problems of diagnosis and

interpretation are introduced, in general it can be concluded that coexisting near

dependencies cause the diagnostic procedure no critical problems.

Subject to the modifications given in 11-13 below, the several underlying

near dependencies behave together much as they did separately. In particular

they remain countable (8 below) and to a great degree separable (9 below).
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8. Countability. The number of coexisting near dependencies is
correctly assessed in all cases by the number of high condition indexes.
The presence of a very strong (n > 300) near dependency, for example,
does not obliterate the presence of a much weaker near dependency.

9. Separability. The near dependencies remain greatly separable in the
following two senses. First, near dependencies which, when existing alone,
have a given condition index, retain roughly the same condition index when made
to coexist with other near dependencies, regardless of their relative condition
indexes, and second, subject to the qualifications given below, the individual
involvement of specific variates in specific near dependencies remains observable.

10. Isolation Through Near Orthogonality. As the theory of Part 2 would

have it, near orthogonality does indeed buffer the regression estimates of one

set of variates from the deleterious effects of near dependencies among the

nearly orthogonal variates. ‘

11. Confounding of Effects with Competing Dependencies. When two or more

near dependencies are competing, i.e., have condition indexes of the same order
of magnitude, thelhigh variance-component proportions of the variates involved
in the separate competing dependencies can be arbitrarily distributed among
them, thus confounding their true involvement. The number of coexisting
dependencies is, however, not obscured by this situation, nor is the identifi-
cation of the variates that are involved in at least one of the campeting
dependencies. It remains possible, therefore, to diagnose how many dependehcies
are present and which variates are being degraded by the joint presence of
those dependencies. Only information on the separate involvement of specific
variates in specific competing dependencies is lost. In this case the test
procedure is trivially modified to examine those variates which have high

variance-component proportions aggregated over the competing high condi-

tion indexes.
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12. Dominating Dependencies. A dominating dependency, one with a condition

index of higher order of magnitude, can become the prime determinant of the
variance of a given coefficient and thus obscure information about its simul-

taneous involvement in a weaker dependency. Consider the example

TABLE 14

Variance-Component Proportions

and Condition Indexes

var(bl) var(b,) var(b,) var(b,) Condition
Index, n
9 .00 .01 .00 .00
02 .01 .99 .00 .00 3
Oy .99 .00 .01 01 30
Oy .00 .00 .99 .99 300

Here there are two dependencies with high condition indexes, 30 and 300;
“and 300 dominates. The involvement of C3 and C4 in this dominant dependency

is clear; however, equally clearly, we cannot rule out the potential involve-
ment of C3 and C4 along with Cl in the dependency associated with n = 30. Thus,
when there are dominated dependencies, sﬁch as n = 30 above, it is quite
possible for only one high variance-component proportion to be associated with
it and still give indication of degradation - the involvement of the other
variate(s) being obscured by the dominant relation. In this case our test pro-
cedure must once again be qualified: "two or more high variance-component

proportions associated with a single high condition number - unless that high condi-

tion index is dominated by an even larger one, in which case further investigations

may be required." One reasonable procedure tc adopt in such cases would be to run

an auxiliary regression among the potentially involved variates (Cl on C3 and Ch




in the above example) to verify their roles, if such information were required.

In this example such additional information would be needed to demonstrate
the degradation of var(bl). There is. no question but that var(b3) and var(b,)
are degraded - not just by their presence in one, but possibly two, dependencies.
var(bl), however, cannot be said to be degraded unless Cl can be shown to be
involved in a linear dependency with C3 and/or Ch.

By way of contrast, had the last two rows of the above example read as

in Table 15, the degradation of all variances

TABLE 15

Variance~Component Proportions

and Condition Indexes

var(b- ) var(b.,,) var(b,) var(b, ) Condition
1 2 3 m
Index, n
03 .39 .99 .01 .01 30 ‘
OL+ .00 .00 .99 .99 300

would be apparent without further analysis, and auxiliary regressions would not
be required unless it was explicitly desired to know whether C3 and Ch4 entered
along with Cl in the dependency with n = 30.

13. Non-degraded Estimates. On occasion it is also possible to identify

those coefficients whose estimates show no evidence of being degraded by the
presence of near dependencies. In the example given by Table 15, all four
variances show degradation due to the two near dependencies with n's of 30 and
300, In the example given by Table 14, however, var(b2) has virtually all of
its variance determined in association with the relatively small condition
index 3, and is not adversely affected by the two tighter dependencies wiﬁh

n's of 30 and 300. The same situation occurs closely in Part 3, for example, in

var(bz) of the Xlor X2 series, Tables 1A and 2A.
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Just where the dividing line between small and large is to be set is a
matter that can be answered only with greater practical experience in the use
of these techniques. The evidence of the experiments suggests n = 10, or a

range of 7-11, to be a reasonable starting point.1

4.2 Employing the Diagnostic Procedure
Diagnosing any given data matrix for the presence of near dependencies and
assessing the potential harm their presence may cause regression estimates is
effected by a rather straightforward series of steps, the only problems of
interpretation arising when there are competing or daminating near dependencies.
Two thresholds must be determined at the outset, a condition-index cutoff, n*,
and component-proportion cutoff, n*, as will be seen in Steps 3 and S.
The Steps
Step 1. Scale the data matrix X to have unit column length.
Step 2. Obtain the Singular-Value Decomposition2 of X, and from
this calculate
a. The condition indexes, N> as in (2.7) and
b. The MI-matrix of variance-component proportions
as in (2.10) - (2.12).
Step 3. Determine the number and relative strengths of the near
dependencies by the condition indexes exceeding some
chosen threshold, n*, such as n* = 10, or 15 or 303.
Step 4. Examine the condition indexes for the presence of competing
dependencies (roughly equal condition indexes) and dominating

dependencies (high condition indexes - exceeding the threshold

determined for Step 3 - coexisting with even larger indexes.)




Step 5.

a0 ®

Determine the involvement (and the resulting degradation
to the regression estimates) of the variates in the near
dependencies. Three cases are to be considered.

Case 1 - Only one near dependency present. A variate is

involved in, and its estimated coefficient degraded by, the
single near dependency if it is one of two or more variates
with variance-component proportions in excess of some
threshold value, such as 50%. Presumably, if there are not
two high variance-component proportions associated with this
single highest condition index, no degradation is exl'mibi’cecl.L+

Case 2 --Campeting dependencies. Here involvement is deter-

mined by aggregating the variance-component proportions over

the competing condition indexes (see point 11 of Section 4.1). .
Those variates with aggregate proportions exceeding the

threshold are involved in at least one of the competing

dependencies, and therefore have degraded coefficient estimates.

In this case, it is not possible exactly to determine in which of

the competing near dependencies the variates are involved.

Case 3 - Dominating dependencies.5 In this case 1) we cannot rule

out the involvement of a given variate in a dominated dependency

if its variance is being greatly determined by a dominating
dependency, and 2) we cannot assume the noninvolvement of a
variate even if it is the only one with a high proportion of

the variances associated with the dominated condition index - other

variates can well have their joint involvement obscured by the

dominating near dependency. In this case additional analysis,
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such as auxiliary regressions, is warranted, directly to investi-
gate the descriptive relations among all of the variates

potentially involved. See point 13 of Section 4.1.

Step 6. Examine the underlying near dependencies., Once the number of

near dependencies and the variates involved are determined (if
the latter is possible), regressions among the indicated vari-

ates can be run to display the relations.

Step 7. Determine those variates that remain unaffected by the presence

of the collinear relations. See point 13 of Section 4.l.

Once the X matrix has been analyzed and the potential harm to regression

estimates has been assessed, it is possible to analyze the quality of an

actual regression based on those data. In particular, one can often learn

1.

How many near dependencies plague a given data set and what they
are.

Which variates have estimates adversely affected by the presence
of those dependencies.

Whether estimates of interest are included among those with
inflated confidence intervals, and therefore whether corrective
action (obtaining better conditional data or applying Bayesian
techniques) is warranted.

Whéther, rather generally, prediction intervals based on the
estimated model are greatly inflated by the presence of ill-
conditioned data.

Whether specific coefficient estimates of interest are relatively

isolated from the ill effects of collinearity and therefore trust-

worthy in spite of ill-conditioned data.
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Software. The computational foundation of the diagnostic procedure
reported here is the singular-value decomposition of Step 2; a computational
routine whose.accessability would seem‘to be somewhat limited 6 In point of
fact, a routine called EISPACK - Release 2‘contains a Very efficient version
of the SVD aigorithm aﬁd already hes been made available to over 200 university
eomputer iibfaries.7b‘Fﬁrthermdre >an interactive routihe has already been
de51gned specifically to effect the computatlonal steps 1, 2, and 6 and exists
as part of the TROLL system at the National Bureau of Economic Research,

Computer Research Center.8

4.3  Applications with Actual Data

With one very interesting exceptiqn,8 we have, until now, employed the
proposed diagnostic procedure just summarized only on data matrices with con-
trived near dependencies. We turn now to an analysis of tﬁo matrices of
actual data to see how the procedure fares when dealing with naturally occurring,
uncontrived near dependencies. The first example makes use of the Bauer
matrix that was introduced in a different context in Part 2, and the second
example makes use of data familiar to all econometricians, those relevant to

an annual, aggregate consumption function.

The Bauer Matrix.

The Bauer matrix, we recall from Part 2, had an exact contrived dependency
between its last two columns, C4 = .5%C5, which were in turn orthogonal to the
first three Its purpose there was to exemplify the isolation from collinearity
that is afforded those variates that are orthogonal or nearly so, from the

variates 1nvolved in the offending near dependencies. TIn examining the M-matrix,

Table 0, of the Bauer matrix, the involvement of var(bu) and var(bs) in the exact,
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contrived dependency was clearly observed as well as the isolation of the first
three variances from it. But, in addition, there appeared an unexpected occurrence:
over 97% of var(bl), var(bz) and var(b3) was associated with the condifion index of
O3+ We were not prepared at that time to pursue this naturally arising phenamenon,
but now we are.

First we note that the singular-values and variance-component proportions
of Table 0 are based on data that have not been column scaled as required in Step 1.
Since colum scaling does not destroy the existence of dependencies, they can still
be observed from Table 0, but there will be no standardized meaning to the
singular values and the resulting conditon indexes. In Step 2, then, we compute
the “matrix and condition indexes for a Bauer matrix on colum-scaled data,

resulting in Table 16.

TABLE 16

Scaled Bauer Matrix

var(b, ) var(b,) var(b,) var(b,,) var(b.) Condition
1 2 3 L 5
Index, n

Gl .000 .000 .000 .000 .000
02 .005 .005 .000 .000 .000 1.0
03 .001 .001 047 .000 .000 1.3
Ul+ 994 994 .953 .000 .000 16
05 .000 .000 .000 1.000 1.000 2X1016

Inanalyzing Table 16, it will prove instructive to feign ignorance of
any prior knowledge we have of the properties of the Bauer matrix to see how well

the mechanism discovers all there is to know.
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The first and obvious fact is that there are two near dependencies with
condition indexes greater than 10. One is dominating; none is competing.
_ The domindting dependency is clearly very tight, having the astronomically

large condition number of 2xlO:-LS

and involving colums 4 and 5. Tt is safe
to conclude that the involvement of Cl, C2 and C3 in this dependency is mini-
mal, if any.

The second dependency (and the one that we are really interested in)
possesses the weak to moderate condition index of 16. Clearly, at least the
first three columns, Cl, C2; and C3, are involved in this dependency, but
one cannot rule out the potential involvement of C4 and C5, their roles
being usurped by their involvement in the dominate dependency.

We may display these two dependencies through auxiliary regressions;
we need only to choose the two variates to act as dependent variates, the
three remaining being independent. In this case, choosing one of Cl, C2 or
C3 and one of C4 or C5 is clearly appropriate and Table 17 presents the
auxiliary regression results with Cl and C4 chosen as the two dependent
variates to be regressed on C2, C3 and C5. The regressions are based on
unscaled data, so that the dependencies are displayed in terms of the

original data relationships.

TABLE 17

Auxiliary Regressions
Bauer Data-Unscaled

Coefficient of

2 3 c5 R?
Cht 0.0000 0.0000  .5000  1.000
[0.0] [0.0] [#]
cs -.7008 -1.2693 0.0000 .9820

[-14.41 [-7.5] [¢.0]

%egsentially infinite.
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Both near dependencies are clearly displayed. In the first, we see the
dominant, essentially perfect relation true of the Bauer data given in Part 2
in which C4 = ,5C5, exactly. The noninvolvement of C2 and C3 in this relation
is also discovered. In the second, we see a fairly strong (R2=.98) relation
involving C1, C2 and C3, but not C4. This is the naturally occurring dependency
whose presence was first suggested in Part 2 and now verified. One can now
conclude that all five regression estimates based on this matrix are degraded by
the presence of two collinear relations. The variances for the coefficients of Ch
and C5 are obviously very seriously degraded, while those for Cl, C2 and C3
are less so.

It is fair to conclude that the diagnostic procedure, when applied to the
Bauer matrix, has been very successful in uncovering all relevant properties

of the near dependencies contained in it.

The Consumption Function

All economists are familiar with annual, aggregate consumption function

data, and so we analyze the following data matrix.

[1 C(T-1) DPI(T), r(T), A DPI(T)],
annual series 1947-1976
where 1 is a colum of 1's (the constant term)
C is total consumption, 1958 dollars
DPI is Disposable Personal Income, 1958 dollars
and r is the interest rate (Moody's Aaa).
It must be emphasized that no attempt is being made here to analyze the
consumption function. There are many well known, sophisticated alterations
to basic consumption data involving, for example, per-capita weightings, dis-

aggregations, wealth effects, and recognition of simultaneity. Our interest




here necessarily centers on analysis of one fundamental variant without regard

to additional econometric refinements; namely
C(T) = B + By C(T-1) + B,DPI(T) + B,r(T) + B ADPI(T) + e(D. . (4.1)
Estimation of (4.1) with ordinary least squares results in

C(T) = 6.72u2 + .2uSh C(T~1) + .698Y4 DPI(T) -2.2097 r(T) + .1608ADPI(T).
(3.83)% (.237) (.208) (1.838) (.877)  (4.2)

R%=.9991 |,

Only one of these parameter estimates, that of DPI, is significant by a

standard t-test; but few econometricians would be willing to reject the
hypotheses that the other B's, either jointly or singly, are significantly different

from zero. Furthermore, few.econometricians would be happy with the prediction o

intervals that would result from such a regression. This dissatisfaction stems ‘
from the widely held belief that the consumption function data are highly ill

conditioned and that estimates based on them are too noisy to prove conclusive

or useful.10 A mere glance at the simple correlation matrix for these data,

Table 18, partially confirms this belief.- But how i1l conditioned are these

TABLE 18
Correlation Matrix

Consumption-Function Data

1 C(T-1) DPI(TO r(T) ADPI(T)
1 1.000
C(T-1) .000 1.000
DPI(T) .000 .997 1.000
r(T) .000 .975 : . 967 1.000

ADPI(T) .000 <314 .377 .229 1.000
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data? How many near dependencies exist among them, and how strong are they?
Which variates are involved in them, giving evidence of degradation? Which
estimates might benefit most from obtaining better conditioned data or from

the introduction of appropriate information through a Bayesian prior? Answers
to these questions, of course, cannot be obtained from Table 18 along, but can
be obtained from an analysis of the ll-matrix and condition indexes for the con-
sumption function data. For this analysis, we will continue to set the condi-
tion~index threshold of n* = 10, and the variance-component-proportion-threshold
at T¥z50%. Steps 1 and 2 of the diagnostic procedure applied to the consumption

function data results in the l-matrix given in Table 19.

TABLE 189

Variance-Component Proportions
and Condition Indexes

Consumption Function Data

CONST C(T-1) DPI(T) r(T) ADPI(T) Condition
var(b,) var(b,) var(b,) var(b var(b.) Index, n
1 2 3 y 5
o) .001 .000 .000 .000 .001 1
o, .003 .000 000 .001 .135 m
o, .301 .000 .000 .012 .000 8
o, .263 o .00k .98l .0u8 39
o 420 .995 .995 .000 .813 376

Table 19 shows the existence of two near dependencies, one dominant with a
large condition index of 376 and one strong with a condition index of 39. The
dominant relation involves C(T-1), DPI(T) and ADPI(T). r(T) does not seem to
be involved in this dependency, but it is likely that the constant term, CONST,
is being shared in both. The weaker dependency definitely includes r(T); and

all other variates are potentially involved, their effects clearly being

dominated by their involvement in the stronger dependency with n=376.
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Auxiliary regressions are required in this case to determine those variates
involved in the weaker of the two dependencies. One possible choice for the
two dependent variates of these auxiliary regressions would be DPI(T) and r(T).

Table 20 reports these results.

TABLE 20
Auxiliary Regressions
Consumption-Function Data (Unscaled)

Coefficients of

. C(T-1) ADPI(T) R n

DPI(T) ~11.5472 1.1384 8044 .9999 376
[-4.9]  [164.9]  [11.9]

£(T) _1.02uL 0174 -.0145 9945 39

[-3.9] [22.3] [ -1.9]

We verify that the dominant relation does inwolve 1, C(T-1), DPI(T) and
ADPI(T), and note that the weaker involves at least 1 C(T-1) and r(T).

Quite generally, then, we may conclude that the data upon which the consump-
tion function regression (4.2) was based possess two strong near dependencies
(one very strong). Furthermore, each variaté is involved in one or both of
these near dependencies, and each is degraded to some degree by their presence.
It would appear that the estimates of coefficients of C(T-1) and DPI(T) are
most seriously affected, followed closely by that for ADPI(T), these variates
being strongly involved in either the tighter of the two dependencies or both.
The estimate of the coefficient of r(T) is adversely affected by its strong
involvement in the weaker of the two dependencies, but, in our experimental

2

experience, we found n's of 39 to be quite large, and the R® in Table 20 confirms

this here. Thus we see that all parameter estimates in (4.2), and their estimated
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standard errors, show great potential for refinement through better conditioning
of the estimation problem, either from more appropriate modeling or the introduc-
tion of better conditioned data or an appropriate Bayesian Prior. One would be

loath to reject, for example, the role of interest rates in the aggregate consump-

tion function on the basis of the estimates of (4.2); and one would feel even more
helpless in predicting the effects of a change in r on aggregate consumption from
a regression equation like (4.2). Thus the econametrician's intuitive dissatisfac-
tion with estimates of the aggregate consumption function, and his seemingly never-
ending efforts to refine them, seems fully justified.

Several additional points of interest arise from this example, some of
which suggest future directions for research. First, the fact that the esti-
mated coefficient of DPI(T) appears to possess any degree of statistical signi-
ficance at all reflects the fact that C(T) and DPI(T) are phenomenally highly
correlated (.9999). In light of this, the seriousness of the degradation of
the estimate of this parameter is seen in the fact that its standard error is
still quite large, resulting in the very broad 95% confidence interval of
(.28 - 1.11]. Second, as seen from Table 19, no one near dependency dominates the
determination of the variance of the estimate of the constant term. This estimate
is nevertheless degraded since nearly 70% of the variance is associated with
the two near dependencies, as is verified by the auxiliary regressions in
Table 20. This lack of dominance is to be contrasted with the estimates of the
coefficients of C(T-1) and DPI(T), which also clearly enter both near dependencies
but are greatly dominated by the stronger of the two, This situation suggests, in
accord with intuition, that it is possible for a variate that is weakly involved
in a strong near dependency to be confounded with cne that is more strongly
involved in a weaker near dependency. Similar results occur in the experiments of
Part 3, but not in such a way that any definite conclusions can be drawn. Further

experimentation will be needed directly to test this suggestion. Third, within a given
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near dependency, there appears to be a strong rank correlation between the
relative size of the variance-component proportions of the variates involved
and their t-statistics in the corresponding auxiliary regressions. Comparing
the variance-component proportions for the near dependency with n = 376 in
Table 19 and the corresponding t's for the DPI(T) regression in Table 20
exemplifies the point. Of course, allowance must be made for relations that are
dominated (such as the one with n = 39) or are competing, but again there is
considerable support, but novsubstantiation, for such an hypothesis from the
experiments of Part 3, and further experiments aimed directly to this point
are suggested. Fourth, even with this "real-world" data, the relative pro-
gression between correlations and condition indexes summarized in point 2

of Section 4.1 continues to hold. The near dependencies of the consumption

data are of orders of magnitudes 30 and 300, two degrees apart along the 3, 10,

30, 100, 300, etc. progression. Similarly, the R%'s of the auxiliary regressions .
reported in Table 20 are .99 and .9999, two degrees apart along the 9's pro-

gression .9, .99, .999, .9999 etc. TFifth, we once again note the ability of

these diagnostic tools to uncover complex relations among three or more

variates that are overlocked by simple correlation analysis. The simple correla-

tion matrix in Table 18 surely tells us that DPI(T) and C(T-1) are closely

related; but the role of ADPI(T)’(or, equivalently, the role of DPI(T-1))

is not at all observable from this information. The largest simple eorrelation

with ADPI(T) is under .4. ADPI(T)'s role in a near dependency along with C(T-1)

and DPI(T), however, is readily apparent from the variance-ccmponent proportions

matrix of Table 19.
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Part 1
Footnotes

IThis term will be given meaning in Section 2.5.

The emphasis of this paper is on diagnostics and does not deal with corrective
mechanisms. The introduction of additional, well-conditioned data is, of
course, cne straightforward solution to the problem when such data are avail-
able. In other instances much interest attaches to the solutions offered
through applications of Bayesian and mixed-estimation techniques. The reader
is referred to Zellner (1971), Leamer (1973) and Theil (1971).

3. . . . .
This term w:11l be defined in the next section.

L+The terms multicollinearity, collinearity, dependencies, near dependencies,
near collinearity, near singularity have all been used more or less Tormally
in this context. The first five terms are used interchangably in this paper.

5% is, of course, assumed to have full rank, but this is not testable, for its
absence, the null hypothesis, renders the regression model invalid,

6See, for example, Hawkins (1973) or Golub, Klema and Stewart (1976) or
Webster, Gunst and Mason (1974) (1976).
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Papt 2

Footnotes

lSee, for example, Golub (1969), Golub and Reinsch (1970), Hanson and Lawson
(1969) and Becker et al (1974). :

2This decomposition is efficiently and stably effected by a program called
MINFIT (Golub and Reinsch (1970)).

3In (2.1) U is TxK, I is KxK and V is KxK. Alternative formulations are
also possible and may prove more suitable to other applications. Hence
one may have

TxK TxT TxK KxK

(2.1a)
X = U P
or
TxK Txr rar rxK (2.1b)
X = U z A

where r = rank X. In this latter formulation I is always of full rank,
even if X is not.

*See Golub (1969). These notions of conditioning and the reasons for the
relation between the conditioning of X vs X'X will be explained subsequently.

5 . . . . . .
Furthgrmore, in operating directly in the TxK matrix.,X, the SVD avoids the
additional computational burden of forming X'X, a TK® operation.

570 examples from Golub and Reinsch (1970) and Wilkinson (1965) illustrate
this point. Consider

-
Mso1 -1 o ] [T -1 -1 ... -1
502 -1 1 -1 ... -l
| .
and
0 .599 -1 0 .
600) B L

Each of these matrices will be shown by the singular-value decamposition, in a

way described later, to be quite ill conditioned even though neither possesses
a small diagonal element.

7 . . .
The spectral norm of the mxn matrix A = (A{3), denoted [JAl) is defined
[Wilkinson (1965)1 as Sup || Axy o> where x 15 an n-vector and "'||2 denotes

||X||2:l

n 1
the Fuclidean norm |yl) ) * ('zl yizji, It is readily shown that JAl = o _ ,
l:

max

i:e.? the maximal singular value, a result that is equivalent to finding the
first principal component of A.
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Part 2 Footnotes (Continued)

8It is readily apparent from the application of the SVD (2.1) to a real symmetric
matrix A that the singular values of A are also its eigenvalues.

P
[0}

Sec  wlub and Reinsch (1970) or Becker, et al. (1974).

Ly .. . . e .-
The Peqder Who 1s interested in the analysis of the sensitivity of A 1 to per-
turbatlgns in elements of A and in the determination of when a matrix is, as
a practical matter, rank deficient (i.e., when Omin May be considered equal to

zero relative to Gmax) is referred to Wilkinson (1965) and to Golub, Klema and

Stewart (19?6?. These studies give a greater appreciation of the interpretation
of t?e co?dltlon number X than can be given here. See also Van der Sluis (1969)
and (1970).

11The matrix B = oI employed above provides an excellent example here.

12This link is obviously of the utmost importance, for ill conditioning is a numeric
property of a data matrix having, in itself nothing directly to do with least squares
estimation. To have meaning in a regression context, then, there must be some means
by which the numeric information on ill conditioning can be shown to directly affect
the quality (variances) of the regression estimates. It is this link, for example,
that is lacking in the Farrar and Glauber techriques described in Section 1.1.

ls"TWo or more" since there must be ¢t least two colums of X involved in
any dependency.

lhtThe careful wording "it is always possible to find" is required here. As
is shown in Belsley and Klema (1975), if there are multiple roots of X,
there is a class of V's in the SVD of X, one, but not all, of which takes
the partitioned form shown. Such multiplicities are therefore of theoretical
importance but of little practical consequence since they will occwr with
probability zero in a "real life" economic data matrix.

15107 on the IBY 370 67 in double precision.

lBGolub and Reinsch (1870), and Becker et al (1974)

17The reader is warned against interpreting the condition indexes from these
singular values at this point. For reasons explained in Part 3 the data should
be scaled first to have equal colum lengths, and the resulting singular values
subjected to analysis. For the analysis of this section, however, scaling is
unnecessary.

18That these components are non zero at all is only due to the finite arithmetic
of the machine. In theory these components are an undefined ratioc of zeros
that would be defined to be zero for this case.

19Part III is devoted to experiments that help us put meaning to "high" and
"large", two terms whose meaning in this context can only be determined

empirically and necessarily must be used loosely here.

0. . . . .. . . s

For a discussion of the theoretical underpinning to this topic see Wilkinson
(1965). A more detailed discussion of its implica:tions in econometrics

is contained in Belsley and Klema (1975).
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Part 2 Footnotes (Continued)

. ‘
*LThe condition number of the moment matrix X'X is the square of that of X,

22

24
Either statistical or computatlonal, provided, of course a regression algorithm

This is seen from SVD of X = UIV'. Hence X'X = VZ2V’, and, by definition,
2

, . _
this must also be SVD of X'X. Clearly, then, k(X'X) = gax = KQ(X). Hence,

. %min
any ill conditioning of X is greatly compounded in its ill effects on a least-

squares solution calculated as b = (X'X)— X'y. Procedures for calculating b
that do not require forming X'X or its inversion exist, however. See Golub
(1968) or Belsley (1974).

To avoid any possible confusion it is worth highlighting that this is the statis-
tical use of the word conditional, having nothing directly to do with (and thus
to be contrasted with) the numerlc-analytlc notion of jll-conditioned data.

3 .. . . .
In addition, this statistical roblem, but not necessarily the computational

problem can be alleviated by the introduction of Bayesian prior ormation. See
Zellner (1971), Leamer (1973).

is used that does not blow up in the presence of highly collinear data. Stan-

dard routines based on solving b = (X'X)~! X'y are quite sensitive to ill-condi-

tioned X. This problem is greatly overcome by regression routines based on SVD

of X, or a QR decomposition [see Belsley (1374)]. .
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Part 3
Footnotes

1 . . . . . . :
As we shall see in Experiment #2, this objective was only partially achieved,

leading to an unexpected set of dependencies that nevertheless provided a
further successful test of the usefulness of this analytical procedure.

2 \ . — .
No attempt 1s made here to infer any statistical properties through repeated
samplings. :

3 .
Scale changes do not, however, affect the presence of linear dependencies
among the colums of X since for any nonsingular matrix D there exists a non
ggroDclsuch that Xc = 0 if and only if [XDI[D-1lc] = Xc = 0 where X = XD and
c = DTe.

L+This scaling is similar to that used to transform the cross-products matrix X'X
into a correlation matrix, except that the "mean zero" properly is not needed,
and, indeed, would cause unnecessary problems in the event that X contains a
constant column.

5Furthermor’e an important converse is true with scaled data; namely, when all

condition indexes of a scaled data matrix are equal to unity, the columns are

mutually orthonormal. This is readily proved by noting that all condition
‘ indexes equal to 1 implies I = I. Hence, in the SVD of X, we have
. X=Uv' = WW', or X'X = V'U'UV = I, due to the orthogonality of U and V.
This result is important, because it rules out the possibility that several
high variance-component proportions could be associated with a very low
(near unit) condition index.

6A:_Lthough, perhaps a costly and time-consuming set of tests based on partial correla-
tiocns or block regressions on the columns of the data matrix encompassing all
possible combinations could be of some value

7A star, *, before a series name indicates a dummy series was used having the
same mean and variance as the given series, but generated to provide a well
conditicned basic data matrix.

8See, for example, Belsley (1969),

gIhis progression corresponds closely to equal increments in log ny of %3 i.e.,

logni=1+%,

lOAlthough we have already seen something like it above in the case of X2(0).
1l Indeed the highest simple correlation between the four basic colums is -.32.

12 ven though var(bi) is not greatly determined by the condition indexes of 8

.and 11, Cu's involvement in these two dependencies cannot be ruled out. The

variance-proportions, as we have seen, can be arbitrarily distributed among
n's of nearly equal magnitude.
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Part 3 Footnotes (Continued)

13'The choice of C1 and C3 on C2 and C4 is arbitrary. Any two of the four variates with
a nonvanishing jacobian could be selected for this discriptive use of least
squares. 2The figures in the square brackets are t's not standard deviations
and the R“'s are the ratio of predicted sum of squares (not deviations about the
mean) to actual sum of squares since there is no constant term.

lL*See, however, point 3 following.

lSAs we have just seen in points 2 and 3 above, point 1 requires some modifications

when there are either competing or dominating dependencies. These modifications
will be treated fully in Section 4.1.

Indeed the experience so far indicates that the condition index goes cne
further step in the 10, 30, 100, 300, 1000 progressicn as successive "g's"

are added to the underlying correlation. For example, .5+10, .9+30, .399>100,
.999+300, etc.
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Part 4
Footnotes

1cf., however, 6) above.
2Progr'ams effecting this decomposition will be discussed in the text below.

3Choosing this threshold is akin to choosing a test size (o) in standard
statistical hypothesis testing - and only practical experience will help
determine a useful rule of thumb. n#*= 10 seems a gocd start. As a matter
of practice it seems reasonable to ignore all condition indexes below the
threshold as being too weak for further consideration, regardless of what
patterns of variance-component proportions may be associated with them.

L}This situation has, as yet, not occurred in practice, and as long as the
data matrix has been properly scaled, as in Step 1, it doesn't seem likely
that it will, cf footnote 5, Part 3.

5The joint occurrence of dominating and competing dependencies causes no
additional difficulties. The competing dependencies, whether dominated

or dominating, are merely treated as one in association with their aggregate
variance-camponent proportions.

sAs noted in Part 2, the eigenvectors of X'X and the positive square roots
of its eigenvalues provide identical information as the SVD of X, but it is
not recomrended that the calculations be so obtained, for calculations based

on X'X are computationally very much less stable than those based on X when
X is 11l conditioned ~ the case that is central to this analysis, of footnote 21,
Part 2.

7Copies of EISPACK-Release 2 and further information on it may be obtained
from Dr. Wayne Cowell, Argorne Code Center, Argonne National Laboratories,
Argonne, Illinois, 60439,

8The unexpected weak, "background" dependency that was discovered when we
examined the experimental series Y3.

9Numbens in parenthesis are standard errors.
10Indeed, few functions have received greater attention than the consumption
function in efforts made to overcome the ill-conditioned data and refine its
estimation.
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