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Abstract

', Gives an alternative derivation of a Monte Carlo method that has been.
used to study robust estimators. Extensions of the technique to the regression
case are also considered and some computational points are briefly mentioned.
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1. Introduction

In this paber, we discuss a method for achieving more accuracy from a
Monte Carlo study than is possible from simple random sampling. Such Monte
CarTo "swindles" are important in the large scale use of Monte Carlo stud1es
The part1cu]ar method we discuss here has been described before in Relles [1970]
and Andrews et al. [1972] but their approaches are somewhat different from
the one we employ. A deeper understanding of the method and its properties
.is gained by having é]tefnative derivations available.

The particular problem we consider is the following. We begin with the

familiar linear regression problem
= XB + e . R (1-1)

vhere y‘is Nx1, X is Nxp, B is pxl and e is Nx].' We furthermore 2ssume that

the components of e, e,» are independent and identically distributad random

variables with common density

1 -
= 7(2) - . (1-2)

where f is assumed to be symmetric about 0, j.e., f(-x) = f(x).v The linear

regression problem is to estimate B using y and X. -‘Let B denote z generic

estimator of 8. Sometimes its dependence on y will be denoted by (y)

There are two notions of invariance that will be important in the rest

of this paper.

Scale Invariance

An estimator é(y) is said to be scale invariant if
B{c y) = c Bly) (1-3)

for any constant, c.



Reqrassian Invariance

An estimator B(y) is said to be regression (on X) invariant if
Bly +.Xy) = 8(y) + v | | (1-4)

for any px1 vector, y. A

_We shall restrict our discussion to estimators, 8, which are both regres-

sion and scale invariant. The problem of main concern is to study' 
Covg(B) = Eo(8 - 8)(8 - 8)" .  (1-5)

However, because we have restricted attention to.regression and scale invariant

estimators we have

Eg(B(Y) - B)(Bly - B))T= o?E,(BESIEREIE)T) - gagy (5)
| o |  (1-6)
Thus we. may assume without loss qf'genéra]ity that 8 = 0 and o2 = 1. '
In order to compute Covo(g), we.must often resort to a Monte Carlo étudy.
The swindle we will consider is designed‘for such an investigation. When
p =1 and X, = 1, the regression problem reduces to the “location” problem in
‘which we are estimating the center of a symmetric distribufion. In
the location case (1-5) reduces to the variance of é. |
We shall divide our discussion of the swindle into four cases: Location
with Gaussian errors, Location with Gauss/Indepandent errors, Regression with

Gaussian errors and Regression with Gauss/Independent errors.
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2. location with Gaussian Errors

In this case we are concerned with computing; '
”~ - ~ 2 » - )
VafO(B) E,(8%) | (2-1)

for d general location and scale invariant estimator under the assumption that
f is the ynit Gaussfan density. However when f is the Gaussian d1str1but1on,
we know what the best location (regress1on) and scale invariant estimator is --
our friend y, the sample average. Hence, instead of compating the variance of
8, we sha]] try to compute the excess of the variance of 8 over that of y. UYe

now der1ve the important formula that aliows us to do this.

~

~ Theorem 1: If B is any location and scale invariant estimator, then under

unit Gaussian errors we have

Var(g) = Var(y) + E(8 - §)? | (2-2)

var(y) + £(E D] (2-3)

where $2 is the usual unbiased estimate of o2.

Proof: We begin with (2-2) and then derive (2-3) from it. We have

(B(y))? = (Bly - §) +7)% = (Bly - 3))2 + 2 8(y - J)7 + (5)?
(2-4)
Hence

Var(8) = E,(B%) = E,(3)? + 2 E (¥ Bly - §)) + E,(B(y - §))?
(2-5)
But y and y - y are independent so that y and g(y - y) are independent and

hence

Ep(y By - ¥)) =



Also EO(S?)2 = Var(y) and 8(y - y) = 8 - ¥ so that Var(g) = Var(y) + E(g - y)?

which was to be proved. To prove (2-3) we need to show that

£ - 7)7 - (B0 — (2-6)
This is done as follows .
EE - 702 = E(S2(B(L50)?) | (2-7)

-

But S is independent of 'QL€%JL so that S? is independent of,§(1L§+¥) and

hance (2-7) equals
B(s?) BB )?) = o g(Eg V) (2-8)

Since we have assumed o2 = 1, (2-6) follows immediately. »ggg'

It should be noted that (2-2) only reqﬁiresvé to be location invariant
while (2-3)‘require§ both location and scale invariance.

It is quite simple to use Theorem 1 to get a Monte Carlo swindle for the

"

variance of a Tocation and scale invariant estimator, 8. If we were going to

”~

use naive random sampling to estimate Var(8) we would draw repeatad independent

samples of size N, y = (yl, cees yN)T , compute é(y) for each sample and
average the value of éz over the replications. But from (2-2) we see that we-
:  m§y also estimate Vaf(é) by computing é(y) and y from each sample, averaging
the value of (é - y)? over the replications and then adding-N'l = Var(y) to

the result, i.e., .

1 + Monte Carlo Average (é - y)2.

(2-9)

estimated Var(g) = N

In order to remove the first order effect of N when looking at different

sample sizes it is customary to estimate N Var(B) instead. This leads to

T



estimated N (Var(g)) = 1 + H(Monte Carlo Average (2 - 7)?)
| (2-10)

What is the nature of this swindle? The main point is that it concentrates
the slos Monte Carlo convergence on the excess of the Var(é) over Vér(&) rather
than a]iowing this to effect all of Var(g). This implies that if § is a
very efficient estimator (haé a small excess of variénce) then £Be sﬁind]e will
be more effective than if E has a large excess. This is because the smaller
the excess, fhe smaller the percentage of the Var(g) that is estimated by
Monte Carla avéraging. From (2-4) and (2-5) we see thaf'the'swindle utilizes
the theory of the Gaussian diétribufion to get exact results for two of tnree

pieces of E(gz); these are
E(y 8y -¥)) =0 | (2-11)
and  E(y)% = N1, ' (2-12)

Mante Carlo is then used to estimate the third piece.

We may use (2-3) to get more of a swindle via the estimate:

estimated N(Var(é)) =1 + N(Monte Carlo Avérage(%r(é - y)i))
' (2-13)
However, if N is ét all appreciable, 1/S>2 will not differ much from unity so
that this swindle should not signiffcantly improve upon the earlier dne unless

the sample size, fl, is quite small. This agrees with the folklore.



3. Lecation with Gauss/Independent Errors

Critical to the swindle in thé Gaussian case was the ability to evaluate
(2-11) and (2-12) exactly. These calculations Tean heavily on properties of
y and S? in the Gaussian distribution. .It is not clear how to successfully
generaTize‘this to éfbit?ary symmetric unimodal densities; f. Héwever, the

class of distributions given by
y; = ui/Vi o | | o (3-1)

whers U is unit Gaussian and v, is a positive random variable fndependent of -
us» is such that an expression analogous to (2-11) can be evaluated exact]y-

and one analogous to (2-12) can be evaluated exactly in some cases and partially
eQa]uated in all caées. This 1eads to a swindle that is not as effective as

the one forvthe Gaussian case, but which is better than simpie random sampling.
The family of densities associated with (3-1) is a generalization of the t-
family and contains sUch members as: Cauchy, t, double exponential, logistic
"and scale mixtures of Gaussian densities. Conditionai?y, given vi, y. is
Gausﬁian with mean zero an§ variance vzz; We may regard y; @s Gaussian with

a random scale. Andrews and Ma]loﬁs [1973] give conditions under which a

density has the representation (3-1).

Let v = (vl, cees vN); then the key idea is that given v, we are back in |
much the same situation as we were in the pure Gaussian case. The only real
differences are (1) now the variances are uhequa] and (2) we must eventually

integrate over the density of v. We let

I viy,

- - .i 1l 1
y =y(v) = " (3-2).

z vi

and

§2 = 52(v) = gy I vily, - §(). (3-3)
2 Y



Note that y{v) and SZ(v) can't be computed in real data since v is not an
observable but in a Monte Carlo study in which v is generated along with
u= (ul, cees v) to produce y, v will be available.

Now instead of knowing the best 1ocation-sca]e}invariant estimator of B
for the error diétribution given by (3-1), we know an even better estimator,
y(v). It is better than the best location-scale invariant estimator because
it uses unobservable information. Thus we will try to compute the excess

variances of 8 over that of y(v) The formula for this is given in the next

*“-orem

Theorem 2: If B is any location and scale invariant estimator, then if the

errors are ngen by (3-1) weehave

Var(e) = Var(3(v)) + E(8 - y(v))? (3-4)

Var(3(v)) + E((—S—ng—(—ym | (3-5)

Proof:
He first show (3-4) and then derive (3-5) from it. Given v we may compute

y = y(v) so that we have
(B{y))* = (Bly - ¥))2 +28(y - ¥y + (3)?
and hence taking conditional expectations we get

E[(8(y))? V1 = EL(8ly - §))2|v] +2 €} Bly - y)vl + EL(¥)?*v]

However given v, y and y - y are independent so the middle term vanishes.
Then taking expectations over v we get (3-4). To prove (3-5) we need to show

that

A

B - y(v))? = e(d8g

))?
Se(v - )



‘We have
EL(B - y(+1)*|V] = E[5*(v)3 s W'y (36)

but givén v, S(v) is independent of (y - y(v))/S(v) so that S2{v) is

independent of E(X—§I%§!lj. Hénﬁe'(3-6) equals
CE[S2(v)|v] E[a( Lg(lj——) lv)
- el S Z Suh

Taking exo9ctat Ons ovar v proves the result. 0D

To usa Theorem 2 to get a swindle we need a little more Qbrk, namely we

need to be able to compute Var(y (v)) In general this is difficult, but the

following result helps a little.

Tneorem 3: Var(y{v)) = E( 1 y . (3-7)
. Iv,? ‘
i * '
Proof: Condition on v. QED

Depending on what the distribution of Vi is, the s{mp]ification implied

by Thzorem 3 may or may not lead to an exact solution. When qu has a chi-

square distribution with q degrees of freedom, then we may obtain an exact

result for Var(y (v)). It is:

E(

1 ,.__38
T - | (3-8)
s I
1

The swindle now comes in two forms depending on whether or not we have

an exact formula for Var(y(v)). As before we give it fbr estimating N Var(g).

If Var(y(v)) is known then use:

A ~

Estimated N (Var(:)) = N Var y(v) + N(Monte Carlo Average{z - y{v))2)

(3-9)



If Var(y’v)) cannot be found exact]y then use

Estimated M (Var(é)) = N(Monte Carlo Average( !

T V2
1

))
+ N(Monte Carlo Average(é - y{v))?) (3-10)

As before, some extra swindle may be gained from using (3-5) rather than (3-4),
| but unless N is small the gains are not likely to be appreciable.

In this case the swindle has two things going against it Fost obviously,
if E(Z]UZ) can't be computed exactly, and must be estimated by simple random
Sam,xlng then not only are we using Monte Carlo to est1ma;e the excess variance,
we are also using it to estimate a portion of Var(y(v)). Secondly, even if
Var(y(v}) can be computed exactly, it may not be‘a venyvlarge portion of the
total variance of §. This is because y(v) is a better estimator than any

location and scale invariant estimator, i.e.,
Var(y(v)) < var(8) (3-11)

for any such estimator 8. Thus relative to any given location-sceale 1nvar1ant
estimator Var(y(B)) may be very small, even relative to the best such estimator.

Because of these problems, the swindle should not be as effective here as it

is for the Gaussian case.
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4. The Regression Case

With the preparation given in the previous two sections we may move easily
to the regression case.” We first treat the case of Gaussian errors and then
Gauss/Independent errors. Tha2 theorems are stated without proof since they

are comp]ete1y,ana1ogous to the correspbnding ones for the location case.

‘Gaussian Errors

If the errors are Gaussian, then we have the following basic result. .

Tnearen 4: If B is any regression and scale invariant estimator and 8. _ the

ERrel

usual least’squares.eétﬁmator, then . N
”~ _ oY ~ ~ ~ ”~ T
Cov(B) —'COV(BLS) +E((B -8, )(B-8.)7) )
= Cov(B, ) + E((g)(8 - B, )(B - 8, )7) (4-2)

vhere S is the usual unbiased estimate of o? based on the least squarss

residual mean-square.

As was true for Theorem 1, (4-1) only requires regression invariance,

while (4-2) requires both regression and scale invarijance.

Since’Cov(BLs) is given exactly by

Cov(B, ) = (x%)7T (4-3)

we are led to the following Monte Carlo swindle formula.

~ ~ "~

Estimated Cov(B) = (XTX)_l + Monte Carlo Average((8 - BLS)(B - BL:}T)
(4-4)
As before when N is small (actually when N-p is small) there may be sc-e

additional advantage to basing.the swindle on (4-2) rather than (4-1), but

otherwise .the improvement over (4-4) is not likely to be noticeable.

PatieN
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Gauss/Independént Errors

When the errors have the structure given by (3-1), we may define, for

3

each v, these quantities:

é(v) = (X12v2>X)—lXT<v2>y | ' | (4-5)
y(v) = X3(v) | | | | o (4-6)
and o .
S = )T B Gy, -y () . (4-7)
; _

. . . ) . o\ T
Where <v?> is the diagonal matrix based on y2 = (vi, cers v;).

Then vie have the following theorem.

Theorem 5: If B is any regression and scale invariant estimator 2nd the

errors are given by (3-1) then

"N "~

Cov(8) = Cov(B(v)) + E((& - 8(v))(Z - B(v))T) (4-8)

fl

Cov(B(V)) + El(sizp) B - BB = BT (4-9)

In order to use Theorem 5 to get a swindle we need to be able to compute
‘Cov(é(v)). As before, this is generally difficult, but can be partially

accomplished from the following result.
Theorem 6: Cov(B(v)) = E(X72v2>X)—1 (4-10)
Proof: Condition on v. QED.

There do not appear tc be too many cases where E(XT<v2>X)-1 can be computed
exactly so that either approximaticns or Honte Carlo estimates must be used.
Again we get two swindle formulas depending con vhat we use for Cevi3{v)). 1If

\

Cov(p(v)) is known or can be well approximated, then use
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Estimated Cov(g) = Cov(g(v)) + Monte Carlo Average((g -.é(vj)(ﬁ - g(v))?)
| | " | (4-11)

If E(X12v2>x)—l must be egfimated by Monte Carlo use
Estimated Cov(B) = Moﬁte Carlo Average((XT<v2>X)—l) + - (4-12)
| Montg}tarlo.Average((é - E(v))(é - g(v))T)

In the regression case, because we will usually have to use Monte Carlo
is estimate E(X72v2>X)—l it is likely that the swindle will not produce much

of an improvement over simple random sampling. ' )

{v"—," . -
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5. Some Finpal Remarks

The basic result that underlies all of this discussion is (2-2}. ‘This is
a special case of a general result that holds for the best ldcation invariant

estimator for any given distribution (some conditions may be necessary).

This result is given but not proved in tne next theorem.

-

Theorem 7: 1If 8 is any location invariznt estimator and 8 is the best

location invariant estimator, then

Var(8) = Var(8,) + £(f - § )° | NG

It is evident that if B, can be ccrputed easily, and‘if-Var(Bo) can be
computed exactly then (5-1) provides a basis for a Monte Carlo swindle. Un-
fcrtunate]y, neither 80 nor its variances can be easily computed for many cases

outside of the Gaussian. The use of the 3{v) is a compromise for this state

of affairs.

Role of Configurations
In the discussion of this Monte Carlo swindle by Andrews, et at., [1972]

the concept of a "configuration" plays a prominent role. In the development

here no such concept arises. We comment on this briefly, now.

A configuration is a sample (the y's) adjusted in o particular way. One

important example of a configuration is

y - XSLS (5-2)

lle note that a configuration is unchangad by the addition of Xv to y for any

choices of y. A scale invariant configuration is given by

(_Y - XELS)/S . (5_3)
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The reader is referred to Andrews, et al., [1972] for the use of con figur-
ations in the derivation of the swindles discussed in the previous sections.

In our derivation here there is a place for regrzssion or regression and
scale invariant configurations, but they are not central to the swindle as
such, rather they may be used to make some of the computing more efficient.

In (4-4) we may compute the Monte Carlo -Average in one of two ways:

~ [

B, (B -8 )") (5-4)

O‘(‘ 1t " |1 uo (B(y.. Xs )8()‘/ _ )YC_”)T) (5-5)

r e
L5 CH

Monte Carlo Average of ((B -

~

If we are going to compare several estimators then from a computational stand
point it makes sense to compute BLS; then form the corfigurations, y - XBLS,
and then compute B on these rather than on y. This saves a large number of

subtractions. If a regression and scale swindle is going to be used then

rather than

. |
s7(8 - 8,)(8 - 8, )7) (5-6)

Monte Carlo Average of (

it is more efficient to form the configurations given by (5-3) and compute

(5-6) via
~ y - Xé\ ~ y - er »
Monte Carlo Average of (g( S L) g( S 25 T) (5-7)

Similar remarks hold for the configurations that arisa from the swindle in

" the non-Gaussian case.
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