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Abstract

We develop a new GMM-style methodology with good small-sample properties to

assess the abnormal performance and risk exposure of a non-traded asset from a cross-

section of cash �ow data. We apply this method to a sample of 958 mature private

equity funds spanning 24 years. Our methodology uses actual cash �ow data and

not intermediary self-reported Net Asset Values. In addition, it does not require a

distributional assumption for returns. For venture capital funds, we �nd a high market

beta and signi�cant under-performance. For buyout funds, we �nd a low beta and no

abnormal performance, but the sample is small. Larger funds have higher returns due

to higher risk exposures and not higher alphas. We also �nd that Net Asset Values

signi�cantly overstate fund market values for the subset of mature and inactive funds.
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A new method to estimate risk and return of non-traded
assets from cash �ows: The case of private equity funds

We develop a new GMM-style methodology with good small-sample properties to assess

the abnormal performance and risk exposure of a non-traded asset from a cross-section of

cash �ow data. We apply this method to a sample of 958 mature private equity funds

spanning 24 years. Our methodology uses actual cash �ow data and not intermediary self-

reported Net Asset Values. In addition, it does not require a distributional assumption

for returns. For venture capital funds, we �nd a high market beta and signi�cant under-

performance. For buyout funds, we �nd a low beta and no abnormal performance, but

the sample is small. Larger funds have higher returns due to higher risk exposures and not

higher alphas. We also �nd that Net Asset Values signi�cantly overstate fund market values

for the subset of mature and inactive funds.

JEL classi�cation: C51; G12; G23
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1 Introduction

The estimation of risk exposure (beta) and abnormal performance (alpha) is at the heart

of �nancial economics. Since Jensen�s (1968) time-series regression approach to determine

the alpha and beta of a mutual fund, a large literature has been dedicated to re�ning

measures of risk and return (see Cochrane, 2005a, for an overview). However, a commonly

encountered situation has received little attention. It is that of a non-traded asset for which

we only observe cash �ows. For example, private equity fund investors give away cash at

di¤erent points in time and receive dividends at other points in time during the 10 years of

the life of the fund. In this paper, we propose a methodology to measure risk and abnormal

return in such a context and apply it to a sample of private equity funds.

The intuition is simple. When the fund is terminated, we know that the market value

at that date is zero. This gives a moment condition stating that the expected discounted

value of all investments should equal the expected discounted value of all dividends paid

out, where the discounting is done using the chosen asset pricing model. E¤ectively, our

method searches for parameter values (alpha and beta) that bring the net present values of

cash �ows as close to zero as possible. If we have a su¢ cient number of moment conditions

(i.e., funds), the system is overidenti�ed and we can �nd the parameters of the asset pricing

model that best �t the observed cross-section of cash �ows using Generalized Method of

Moments estimation (GMM). One can see this setup as a search for a mimicking fund that

best �ts the cash �ows of the private equity funds, where the mimicking portfolio is a stock

index fund. This fund can be levered by the investor (hence reaching any beta level) and

fund fees should be paid (fees would be negative for a positive alpha and vice versa).

We show that our method generates consistent estimates of risk and abnormal returns

without assuming a distribution for returns. Avoiding this distributional assumption is

important because i) it is di¢ cult to estimate the probability density function since market

prices are not observable and ii) in asset classes such as venture capital or buyout, the

return distribution is nonstandard with a cluster at -100% and fat right tail. We also show

that our estimator remains consistent when the cash �ow timing is endogenous.

We study the small-sample properties of our estimator in order to minimize small
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sample biases. We show that the bias is reduced when each moment condition corresponds

to a portfolio of funds instead of a single fund. We also �nd that it is important to form

portfolios based on fund inception year. Grouping funds reduces idiosyncratic risk, which

is a key element in the precision of the abnormal return estimate. Moreover, grouping on

the basis of inception year enables a better identi�cation of beta because portfolios with

di¤erent inception years are subject to di¤erent market returns. Basically, the cross-section

of inception-year portfolios provides information on beta while alpha is identi�ed from the

restriction that the �nal value of liquidated funds equals zero. Finally, we show that a

log-transformation of the moment condition further improves small sample properties.

We illustrate these �ndings with a Monte Carlo simulation. We calibrate an economy

following the setup and parameter estimates of Cochrane (2005b). The simulation con�rms

that our estimator has a negligible bias in a small sample (less than ten basis point per year

for alpha and less than 0.01 for beta).

We apply our new methodology to a trillion-dollar asset class: private equity funds.

These funds are �nancial intermediaries that are typically classi�ed as venture capital fo-

cused or buyout focused. They are not publicly traded and investors observe only a stream

of cash �ows for about 10 years. Hence standard estimation techniques cannot be applied.

Our dataset consists of 958 private equity funds with over 25,000 cash �ow observa-

tions between 1980 and 2003. We include all funds that are more than 10 years old (the

typical fund duration). For funds that are not reported as liquidated, we predict the �nal

market value using an econometric model. This model relates the realized market value of

subsequently liquidated funds to a set of fund characteristics.

We �nd that venture capital funds have a signi�cantly di¤erent risk pro�le than buyout

funds. Venture capital funds have a market beta of 3.21, while buyout funds have a market

beta of 0.33. In line with these estimates, we observe that many venture capital funds paid

large dividends mainly in the late 1990s, precisely when the stock market had previously

experienced large returns. In 2001-2003, when stock markets experienced lower returns,

dividends from venture capital funds have been rare. Such a pattern is consistent with a

high beta for venture capital. For buyout funds, we do not observe a strong dependence on
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market returns. The dividends of buyout funds have been remarkably steady throughout

our time period. We discuss in the text potential explanations for such a result, with the

caveat that the buyout sample is much smaller than the venture capital sample.

For venture capital, we �nd a large signi�cant negative CAPM alpha of -15% per year

and a Fama-French alpha of -8%. These results complement the results on the �private

equity premium puzzle�for entrepreneurial investments as documented by Moskowitz and

Vissing-Jorgensen (2002). For buyout funds, the alpha is slightly positive but insigni�cant.

Our econometric model for �nal market values predicts that the value of non-liquidated

funds beyond the typical liquidation age (10 years) is only 30% of the self-reported Net Asset

Value. In contrast, for funds that are liquidated, market values are close to Net Asset Value.

This substantial discrepancy comes from the fact that the non-liquidated funds have not

distributed dividends for a long time (more than 3 years) and have not updated their Net

Asset Value for a long time (more than 2 years); two characteristics that are signi�cantly

associated with poorer subsequent cash �ows according to our econometric model.

In sum, we show that observing the time series of market values is not necessary to

consistently estimate risk and return. Neither are distributional assumptions on returns. A

cross-section of cash �ow streams is su¢ cient but it comes at the cost of assuming a common

parametric structure for the cross-section of alphas and betas. For example, we �rst allow

alpha and beta to be a function of focus (venture capital, buyout). Subsequently, we make

the alpha and beta a function of both fund size and focus, thereby having a di¤erent alpha

and beta for each fund. This speci�cation allows us to shed light on the �nding that large

funds have a higher total return than small funds (Kaplan and Schoar, 2005, and Phalippou

and Gottschalg, 2007). We �nd that alpha is not related to size but beta is signi�cantly

and positively related to size. The higher return of large funds is thus due to higher risk

exposure and not higher abnormal performance.

We also conduct a large number of robustness tests. We observe that results remain

essentially unchanged for venture capital funds, while the results for buyout funds are

somewhat less stable. Still, across all speci�cations and setups, buyout funds have low

betas and abnormal performance close to zero. The robustness results also con�rm that our
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estimator has good small-sample properties.

The rest of the paper proceeds as follows. In Section 2, we discuss related literature.

Section 3 contains a description of the GMM approach and presents a simulation study

to assess the small-sample properties. Section 4 describes the private equity industry, our

data, and the model for �nal market values. Section 5 presents the empirical results and

robustness checks. Section 6 concludes.

2 Related Literature

Our work is related to that of Cochrane (2005b) and Korteweg and Sorensen (2008) who

assess the alpha and beta of US venture capital projects gross-of-fees (e.g. the return on

Google from the �rst observed round of venture �nancing until the IPO date). Their data

have two important characteristics. First, returns are observed mainly for investments that

perform well (e.g., those going public). Second, information may be missing for intermediary

rounds.1 Cochrane (2005b) tackles both issues with a maximum likelihood approach and

Korteweg and Sorensen (2008) tackles the �rst issue with a Bayesian methodology and the

second one by removing all observations for which a return cannot be computed. Both

papers need to estimate a selection equation to correct for the selection bias and thus need

to assume a parametric distribution for returns.

We view the approach of Cochrane-Korteweg-Sorensen (CKS) and our approach as

complementary. Using individual investment data (i) may lead to more precise estimates

of risk and return since more information is used and (ii) allows for an analysis of risk

and return as a function of project characteristics. This comes at the cost of assuming a

parametric structure for both the project return distribution and the selection equation. In

contrast, our approach does not require a parametric assumption on the return distribution.

In addition, given that our methodology only needs fund-level data it does not su¤er from

1Venture Capital (VC) funds invest in distinct projects in so-called rounds. A return from round n to
n + 1 is observed only if i) project valuation post-money at round n is observed, ii) there is a subsequent
valuation round n+1 which happens only if investments do well enough, and iii) project valuation pre-money
at round n + 1 is observed. Cochrane (2005b) reports that a return could not be computed in 58% of the
cases and a subsequent round (item 2) is not observed in 23% of the cases. Korteweg and Sorensen (2008)
use an improved sample and cannot compute a return in 36% of the cases.
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a project selection bias since the fund-level cash �ows include all investments (both good

and bad).2 These are the core di¤erences in terms of methodology.

In terms of the empirical estimates of risk and return we provide, it is important to note

that we do not exactly measure the same object. CKS measure risk and return of the venture

capital project when it is under the control of the venture capital �rm. For example, in case

of an IPO-exited project, the return observed by CKS will be based on the IPO o¤ering

price. In contrast, our data give the timing and amount of dividends received by investors,

which in case of an IPO are typically based on the stock price after the lockup period.3

A second di¤erence between project returns and investor returns comes from fees. As fees

vary across funds, over time, and are non-linear in performance, they a¤ect estimates of

both risk and abnormal return. Hence, the gross-of-fees risk-return estimates of CKS di¤er

from the net-of-fees risk-return that we measure here. A third reason why project returns

and investor returns di¤er is that the stake of fund managers in a project changes over the

project�s life. If the stake of a fund manager is higher when the expected return is higher

then the investor�s performance will be superior to that of the project. Finally, our dataset

contains US venture capital funds (as CKS) but also contains cash �ows of buyout funds

and non-US funds.

In terms of empirical results, the beta for venture capital reported by Korteweg and

Sorensen is close to our estimate, while Cochrane�s estimate for beta is lower (1.9). The

after-fee alpha, however, is signi�cantly negative in our case, while both Cochrane (2005b)

and Korteweg and Sorensen (2008) report large positive alphas (30% and 150% per annum,

respectively).4

2Sample selection issues are relatively low in our dataset as cash �ows are reported by investors and for
all the investments of a given fund, including bad ones. A small selection bias may nonetheless exist in
our dataset (Phalippou and Gottschalg, 2007). Investors that report fund cash �ows to Venture Economics
appear to have some fund-picking abilities. Moreover, we do have non-liquidated funds in our sample, but
we show that their treatment does not a¤ect results much (section 5.3.1).

3An extreme example is the eBay IPO. Benchmark Partners return in eBay was 20 times the investment
at the IPO. This is what CKS would observe. However, investors received the eBay stocks 6 months after the
IPO, when the price had increased by more than 3000% making their stake worth 700 times the investment.
This is the dividend we would observe in our data.

4The di¤erence between these estimates for alpha and ours is larger than what can be justi�ed by fees.
Our results are consistent with what Kaplan and Schoar (2005) �nd. The discrepancy could be due to data
errors but it is unfortunately not possible to compare the two datasets to study di¤erences. Another possible
reason for the discrepancy is that the correction for sample selection by CKS is not su¢ cient.
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Our paper is also related to Kaplan and Schoar (2005) and Phalippou and Gottschalg

(2007) who benchmark private equity fund performance to that of the S&P 500 index,

e¤ectively assuming a CAPM with beta equal to one. Our results suggest that the natural

benchmark for venture capital is much higher. According to the CAPM and using average

past risk-free rates and S&P 500 returns, our estimates imply a required return above 20%

per year (instead of 13% per year with a beta equal to one). In addition, our results

suggest that most of the Net Asset Values (NAVs) reported by mature funds (beyond their

10th anniversary) are too high, especially for inactive funds. We thus o¤er an econometric

estimate of the fund market value that lies in between the Kaplan-Schoar assumption that

all �nal NAVs re�ect market value and the Phalippou-Gottschalg assumption that the �nal

NAVs of mature funds are worthless.

Finally, our paper is related to that of Jones and Rhodes-Kropf (2004). They derive

a theoretical model showing that idiosyncratic risk should be priced in private equity. To

test it, they estimate the risk faced by private equity fund investors. They assume that the

quarterly self-reported NAVs are stale but unbiased estimates of market values and proxy

log returns by arithmetic returns. They obtain alpha and betas by regressing NAV-based

returns on both contemporaneous and lagged risk factors.5 In this paper, we show that

NAVs reported by mature funds are systematically biased. That is why we do not take

NAVs as market values in this paper.

3 A New Approach to Estimate Risk and Abnormal Return

We propose a GMM-style methodology to estimate risk and return of a non-traded asset

for which we only observe cash �ows. In this section, we �rst provide an intuition for our

approach. We then illustrate its working with a simple example. This example is then

used to show the assumptions we make and the assumptions we do not make. Next, in

section 3.2, we show that a �rst GMM approach although consistent would generate a

small sample bias. Consequently, in section 3.3, we introduce three improved GMM-style

5The reader may refer to Phalippou (2008) for further discussion of this method and of alternative
approaches to risk and return evaluation.
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approaches. These approaches preserves statistical consistency while minimizing the small

sample biases. Section 3.4 discusses how to best group funds into portfolios and how to

calculate standard errors for our new approach. Finally, section 3.5 shows Monte Carlo

simulations to illustrate our theoretical claims and select the best approach.

3.1 The basic idea

3.1.1 The intuition: A mimicking fund

We illustrate our approach with a mimicking fund analogy. We de�ne the mimicking fund as

a levered position on the S&P 500 index. By increasing or decreasing leverage, the investor

can reach any level of systematic risk. The question we ask is what is the beta (i.e. leverage)

of the mimicking fund that best mimics a private equity fund.

By de�nition, the mimicking fund should have the same cash �ows as the private equity

fund. That is, whenever the investor gives money to the private equity fund, the same

amount goes into the mimicking fund and whenever money is being paid to the investor, we

assume the same amount comes out of that same mimicking fund. When the private equity

fund is liquidated, its value is zero by de�nition. The mimicking fund should thus also have

a value of zero. This provides one equation in one unknown. Hence, only knowing the cash

�ows is enough to estimate systematic risk exposure.

3.1.2 Example

We show how our idea works with two private equity funds. In this example, we assume

that the risk-free rate is zero and that there are no idiosyncratic shocks. The true model

is the CAPM with a beta of 1.5. Both funds invest 100 in 2 projects for 2 years. In a

CAPM economy, the �nal dividend equals 100(1+ 1:5Rm;t)(1+ 1:5Rm;t+1). The cash �ows

generated in such an economy are shown below.
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Year Market ret. Fund 1: Cash �ows (year end) Fund 2: Cash �ows (year end)

1 _ �100 0

2 20% �100 �100

3 15% 159 �100

4 5% 132 132

5 �10% 0 91

6 30% 0 0

The econometrician does not know the true parameter value and does not know which

cash �ow corresponds to which project. She only observes cash �ow amounts and timing.

She computes the value Vi;j of the mimicking fund for each fund i at the end of year j and

obtains the values shown below

Year Market ret. Mimicking fund 1: Year-end value Mimicking fund 2: Year-end value

1 _ V1;1 = 100 _

2 20% V1;2 = V1;1(1 + � � 0:20) + 100 V2;2 = 100

3 15% V1;3 = V1;2(1 + � � 0:15)� 159 V2;3 = V2;2(1 + � � 0:15) + 100

4 5% V1;4 = V1;3(1 + � � 0:05)� 132 V2;4 = V2;3(1 + � � 0:05)� 132

5 �10% 0 V2;5 = V2;4(1 + � � �0:10)� 91

Given that these funds are liquidated at year 4 and 5, respectively, both mimicking

funds should have zero value at the liquidation date, i.e. V1;4 = 0 and V2;5 = 0. Solving this

system of equations gives a unique solution at � = 1:5, which is the true value. Note that

setting V1;4 = 0 and V2;5 = 0 implies that one sets the compounded value of the investments

equal to the compounded value of the dividends, where the compounding is done using the

pricing model. Equivalently, one can equalize the discounted values.

3.1.3 Identi�cation

An important point is that of identi�cation. Each equation above being a third-order poly-

nomial, it may have multiple real solutions. In the above example, multiple real solutions
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exist only if the true beta is below -4. For instance, if the true beta is -5, the other solutions

are � = -18.8 and � = -12.8 for fund 1 and -25.5 and 7.2 for fund 2. Hence, there is a

unique solution to the system of two equations equal to -5.

Mathematically, the coe¢ cients in the polynomial will depend on the realized market

returns so that in general all solutions (except the �correct�value) will depend on the realized

market returns. Hence, as long as the market returns that funds face are di¤erent, it seems

that there is a unique solution. We do not have a formal proof for uniqueness of the solution

but we never �nd any cases in the examples we took. In addition, we have not found any

cases in the Monte Carlo simulations (section 3.5) nor any local minimum in the real data

estimation (section 4).

This indicates that it is important to consider funds that are active in di¤erent periods

(and subject to di¤erent market returns) for the identi�cation of beta. This makes intuitive

sense. It is by observing cash �ow amounts in di¤erent market environments that one can

learn about systematic risk.

3.1.4 Assumptions

Turning to our general framework, there are two key assumptions we make. Our �rst

assumption is a standard assumption in the performance measurement literature.

Assumption 1 : The latent return Rij;t on private equity project j of fund i in period t

is generated by a linear factor model with idiosyncratic shocks. For example, in case of a

CAPM (or one-factor market model) we assume

Rij;t = rf;t + �i + �irm;t + "ij;t (1)

where rf;t is the risk-free rate, rm;t is the market return in excess of the risk-free rate,

"ij;t and rm;t are independent; "ij;t and "ij;s are independent if t 6= s, but with "ij;t potentially

correlated across projects and E["ij;t] = 0. Below we discuss which assumptions we make

on these cross-sectional error correlations for the calculation of standard errors.

Assumption 2 : Some cross-sectional restrictions are placed on the �i and �i parameters.

An example of such an assumption is to assume that all funds have the same beta. This
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is what Cochrane (2005b) and Korteweg and Sorensen (2008) assume and what we assume

too for the main empirical part. Assumption 2 is necessary in this context because of a lack of

a time series of market values. Intuitively, since we observe only a cross-section of funds, we

need to impose some cross-sectional restrictions to prevent that we have an underidenti�ed

system. Assuming betas to be equal for all funds is, however, just one extreme case of

such an assumption. All we need is some restrictions to ensure identi�cation. For example,

below, we allow venture capital and buyout funds to have di¤erent � and �. Also, in an

extension, we specify that �i = b0 + bsize � ln(fund_sizei). In this case, virtually all funds

have a di¤erent beta. The pair of parameters (b0; bsize) however is the same for all funds.

An assumption we do not make is that cash �ows are exogenous or that we need to

observe some cash �ows in each time period. To illustrate this point, assume that cash

�ows are endogenous in the sense that investments are exited only if the market reaches a

certain cumulated performance. For example, it is often argued that investments are exited

only after the market went up by more than a certain amount. Let us assume that this

amount is 20%. In the table below we show what would be the new cash �ow pattern.

Solving for beta for this set of cash �ows leads to a unique solution which is again � = 1:5,

the true systematic risk level. The intuition for this result is that delaying a cash �ow by

one period simply means that the mimicking portfolio runs for one more period. This has

no consequence for the leverage level of the mimicking portfolio that matches our private

equity fund cash �ows. In our simulation study below, we also allow for endogenous cash

�ow timing and show in a more realistic setting that we obtain consistent estimates.

Year Market return Fund 1: Cash �ows (year end) Fund 2: Cash �ows (year end)

1 _ �100 0

2 20% 130� 100 = 30 �100

3 15% 0 �100

4 5% 132 132

5 �10% 0 0

6 30% 0 132
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3.2 The simple GMM approach and its limits

3.2.1 Derivation

We now develop the approach more formally. The underlying idea is as above and we

maintain the same two assumptions. The main changes compared to the above example are

that we i) allow for a mispricing parameter �, ii) introduce an idiosyncratic shock for each

private equity project as in equation (1), and iii) allow for a larger cross-section of funds.

The derivations are done with a one-factor market index model (including a constant

mispricing parameter �) for simplicity. A generalization to multi-factor pricing models is

trivial as long as the factors are traded assets in order to measure abnormal performance

with �.

Without loss of generality, we derive the moment conditions for a portfolio of funds

(fund-of-funds / FoFs). Each fund-of-funds i invests an amount Tij in project j at date

tij . There is a total of ni projects for FoF i (typically, a single private equity fund invests

in about 15 projects) and a liquidation dividend Dij is paid at date dij for each project.

The return of a project in each period is the return of the mimicking portfolio plus the

realization of an idiosyncratic shock. Hence the dividend of the project at date dij is given

by

Dij = Tij
dij
�

t=tij+1
(1 + rf;t + �+ �rm;t + "ij;t): (2)

If one would observe cash �ows at the project level and each project would have only

one investment and one dividend, one could estimate � and � by simply applying nonlinear

regression techniques to equation (2). In practice, however, cash �ows are only observed at

the fund level and it is not known to which project a given cash �ow belongs. This implies

that we have to discount or compound all cash �ows to a date that is common to all projects

in a FoF. Therefore, as we did in the above example, we now multiply equation (2) on both

sides by
Li
�

s=dij+1
(1 + rf;s + �+ �rm;s) where Li is the liquidation date of the last project in

the fund-of-funds i
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Dij
Li
�

s=dj+1
(1 + rf;s + �+ �rm;s)

= Tij
dij
�

t=tij+1
(1 + rf;t + �+ �rm;t + "ij;t)

Li
�

s=dij+1
(1 + rf;s + �+ �rm;s) (3)

Now, we take expectations on both sides of equation (3) with respect to idiosyncratic

shocks of all projects in a fund-of-funds. It follows from assumption 1 that idiosyncratic

shocks are independent from the factor returns and are not correlated over time. Hence,

the expectations of the cross-products of the form "ij;t"ij;s are equal to zero (as well as

higher-order cross-products) for t 6= s and we obtain

E[Dij
Li
�

s=dij+1
(1 + rf;s + �+ �rm;s)] = E[Tij

Li
�

t=tij+1
(1 + rf;t + �+ �rm;t)] (4)

This moment condition is the basis of our estimation methodology. Note that we treat

the market returns and risk-free rates as exogenous. In other words, we condition upon the

realized market returns and risk-free rates when constructing this moment condition.

Next, we use the sample equivalent of the expectations in equation (4) by averaging

across projects within a fund-of-funds. The left hand side of (4) for fund-of-funds i = 1;..; N

is then estimated by the sample counterpart of the compounded value (CV )

CV
Di(�; �) =

1

ni

niX
j=1

�
Dij

Li
�

s=dij+1
(1 + rf;s + �+ �rm;s)

�
(5)

and the right hand side of (4) is estimated by

CV
Ti(�; �) =

1

ni

niX
j=1

�
Tij

Li
�

t=tij+1
(1 + rf;t + �+ �rm;t)

�
(6)

As the number of projects per FoF tends to in�nity (ni !1), the average converges to the

expectation asymptotically. The �rst-step GMM estimator with identity weighting matrix

and N fund-of-funds is the solution of the following optimization
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min
�;�

NX
i=1

[CV
Di(�; �)� CV Ti(�; �)]2 (7)

We have just derived a generalization of what we did in the simple example above. The

parameters estimated from this optimization, which is a �rst-step GMM procedure, are

consistent under standard GMM regularity conditions. We label this method the �Net

Compounded Value (NCV) approach�.

Note that our approach di¤ers from the GMM estimation of the pricing kernel based

on the Euler equation, which is frequently applied in asset pricing (see Cochrane, 2005a, for

an overview) although it is similar in spirit. To illustrate this point, consider the standard

CAPM pricing kernel a+bRm;t. As shown in Cochrane (2005a, equation 8.3), the parameters

a and b can be found by imposing that the risk-free asset and market return are priced

correctly. Then, one can write an Euler equation for the cash �ows of the fund, and test

whether this equation holds or not (at the fund or fund-of-funds level). However, this does

not lead to direct estimates of the abnormal performance � or risk loading �: In principle,

the monthly � could be inferred from the pricing error on the Euler equation, but this

pricing error is a nonlinear and complicated function of �: The � is usually estimated in

this standard setup by Cov(R;Rm)=V (Rm): Given that we only observe irregular cash �ows

for private equity funds, estimating � in this way is not possible. In sum, in contrast to

the Euler equation approach, our method renders direct estimates of risk exposures and

abnormal performance.

3.2.2 Small-sample bias

In small samples, the extra compounding we do for most projects introduces a bias. In

this subsection, we provide an intuition for this bias using a simpli�ed framework. For the

general case, deriving the bias in closed-form proved to be unfeasible and we then rely on

a simulation study (section 3.5).

In our simpli�ed framework, we assume that all projects in a fund-of-funds (FoF) have

a takedown equal to 1; a duration of one period, and that the risk-free rate is zero. In this

case, the average realized dividend of FoF i is

14



1

ni

niX
j=1

Dij =
1

ni

niX
j=1

�
Tij(1 + �+ �rm;t(i) + "ij)

�
= (1 + �+ �rm;t(i) + "i) (8)

where "i = 1
ni

Pni
j=1 "ij and where rm;t(i) is the one-period market return that applies

to all projects in FoF i. Note that asymptotically, as ni tends to in�nity, "i tends to zero

("i !P 0).

To capture that the GMM-estimator compounds most projects beyond their dividend

date, we assume in this simpli�ed setup that the �nal liquidation date is t(i)+1, so that we

compound one period beyond the date at which the projects pay out their dividend. This

is like the �rst project done by fund 1 in the example in 3.1.2. This �rst project lives until

date 3 but its value is compounded to date 4.

Let � and � be the true parameter values, and e� and e� be the parameters over which
we optimize. In the simpli�ed setup, we use equation (8) to write the NCV-based GMM

estimation as follows

mine�;e�
NX
i=1

[
1

ni

niX
i=1

Dij(1 + e�+ e�rm;t(i)+1) (9)

� 1
ni

niX
i=1

(1 + e�+ e�rm;t(i))(1 + e�+ e�rm;t(i)+1)]2 (10)

= mine�;e�
NX
i=1

[((�� e�) + (� � e�)rm;t(i) + "i)(1 + e�+ e�rm;t(i)+1)]2
This expression shows that the �pricing error�(�� e�) + (� � e�)rm;t(i)+ "i is multiplied

by the compounding term (1 + e�+ e�rm;t(i)+1): Asymptotically, the "i�s tend to zero and e�
and e� are consistent estimators of � and �: In a small sample, however, minimizing these
�compounded pricing errors� generates a tendency to bring the (positive) term (1 + e� +e�rm;t(i)+1) closer to zero. In particular, as shown in the simulations below, this leads to
a downward bias for e�: Moreover, the goal function in equation (9) is not globally convex
because setting e� close to �1 gives a second local minimum (which may be lower than the

correct minimum in a small sample).
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Note that discounting the cash �ows back in time to the beginning of fund life leads to

a similar bias but in the other direction, because many project investments happen after the

inception date of the fund. To see this in our simpli�ed example, we discount back to one

period before the starting date of the project, in which case we can write the optimization

in the simpli�ed setup as follows (using equation (8))

= mine�;e�
NX
i=1

[
(1 + �+ �rm;t(i) + "i)

(1 + e�+ e�rm;t(i)�1)(1 + e�+ e�rm;t(i)) (11)

� 1

(1 + e�+ e�rm;t(i)�1) ]2 (12)

= mine�;e�
NX
i=1

[
(�� e�) + (� � e�)rm;t(i) + "i

(1 + e�+ e�rm;t(i)�1)(1 + e�+ e�rm;t(i)) ]2
Since we divide by (1+e�+e�rm;t(i)�1)(1+e�+e�rm;t(i)); we obtain an upward bias for (in

particular) e�; which is con�rmed by the simulation results. Moreover, this estimator su¤ers
from numerical problems: since the denominator in (11) has a cubic dependence on e� and
the numerator depends linearly on e�, the goal function in (11) tends to zero as e� ! 1.

Hence, the goal function is not globally convex. This is shown in Figure 1 in a more realistic

setting (the simulation study in section 3.5). Using this method is therefore problematic in

practice, especially if one does not have good starting values for the optimization algorithm.

We label this second method the �Net Present Value�(NPV) approach.

3.3 An improved GMM-style approach

The small sample bias that we document above comes from the extra compounding we

do to bring all projects to the �nal liquidation date. We study three ways to cancel this

e¤ect. The idea is to construct estimators that are insensitive to the choice of discounting

or compounding the cash �ows. These methods are a modi�cation of the GMM framework

and are all statistical consistent (see appendix 1 for a formal proof).
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3.3.1 Method 3: Public Market Equivalent approach (PME)

Above, we minimized the distance between the �nal value of dividends (the value of our

fund-of-funds) and the �nal value of the investments (the mimicking fund). An alternative

option is to minimize the distance between the ratio of these two values (known as Public

Market Equivalent, see Kaplan and Schoar, 2005) and unity. Asymptotically, this approach

is consistent as it is based on the same moment condition (equation (4)) as the two methods

above (see also appendix 1). However, small sample properties are di¤erent.

Estimation is then performed as follows

min
�;�

NX
i=1

[
CV

Di(�; �)

CV
Ti(�; �)

� 1]2 (13)

In this case, it is irrelevant whether one discounts or compounds all cash �ows since

the discounting/compounding term a¤ects the denominator and numerator in exactly the

same way.

To study the small-sample bias, we again turn to the simpli�ed case of equation (8). In

this case the estimation can be rewritten as

= mine�;e�
NX
i=1

[
(1 + �+ �rm;t(i) + "i)=(1 + e�+ e�rm;t(i)�1)(1 + e�+ e�rm;t(i))

1=(1 + e�+ e�rm;t(i)�1) � 1]2 (14)

= mine�;e�
NX
i=1

[
(�� e�) + (� � e�)rm;t(i) + "i

(1 + e�+ e�rm;t(i)) ]2

This method thus generates a �discounting�bias since the pricing error is divided by

(1 + e� + e�rm;t(i)); leading to an upward bias for e� in particular. However, relative to the
NPV-estimator, this bias will be smaller because there is less discounting than in equation

(11). Also, since both the denominator and numerator depend linearly on e�, the goal
function does not tend to zero as e� ! 1 so that there is a unique optimum for this

estimator. This is con�rmed in section 3.5 in a more realistic setting.
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3.3.2 Method 4: Natural Logarithm of PME approach (Log-PME)

Another option is to minimize the distance between the log of the �nal value of dividends

and the log of the �nal value of the investments. The underlying moment condition takes

logs at both sides of equation (4). Estimation is performed as follows

min
�;�

NX
i=1

[ln(CV
Di(�; �))� ln(CV Ti(�; �))]2 (15)

In our simpli�ed example, the estimator is the result of the following optimization

mine�;e�
NX
i=1

[ln(1 + �+ �rm;t(i) + "i)� ln(1 + e�+ e�rm;t(i))]2 (16)

This equation shows that there is no discounting or compounding bias. However, equa-

tion (16) generates a small-sample convexity bias because E
�
ln(1 + �+ �rm;t(i) + "i)

�
<

E
�
ln(1 + �+ �rm;t(i))

�
: As discussed above, this bias disappears asymptotically since "i

tends to zero as ni ! 1: In small samples, however, this creates a tendency to lower the

term (1 + e�+ e�rm;t(i)); leading to a downward bias for e�. In general, the estimator e� will
be biased as well, but quantitatively this bias is small (section 3.5 below). Like the PME

method, this method does not su¤er from numerical problems since this method is fully

insensitive to the choice of discounting or compounding cash �ows. This is con�rmed by

our simulations and empirical results. For example, we �nd a globally convex goal function

in our simulations, as shown in Figure 2.

3.3.3 Method 5: Exact Identi�cation (Method of Moments)

The �nal method is a simple method of moments where we set the number of fund-of-funds

equal to the number of parameters (N = 2 in case of the market model). Setting N = 2

delivers a special case of all methods discussed above, since in this case all methods will

give the same estimates. This is because in this setting the two moment conditions are

matched exactly, so that it does not matter how the moment conditions are compounded

or discounted. However, as discussed in the simple example in section 3.1.3, an important
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caveat is that with N = 2 we can have multiple solutions for � and �. Another disadvantage

is that reducing the number of moment conditions may lower the precision of the estimates.

Intuitively, we anticipate that it will be di¢ cult to estimate a beta from only 2 pairs of

portfolio performance and realized market performance (one pair per moment condition).

In our simpli�ed example, it is easy to show that solving the moment conditions in this

case boils down to setting the pricing errors for the two FoFs to zero

(�� e�) + (� � e�)rm;t(i) + "i = 0; i = 1; 2 (17)

Then, as long as rm;t(1) 6= rm;t(2) the estimators e� and e� are unbiased. However,

in a more realistic setting where the duration of projects is larger than one period, the

�rst-order conditions are not linear in e� and e� anymore, because products of the form
(1+ rf + e�+ e�rm;t(i))(1+ rf + e�+ e�rm;t(i)+1) will enter the pricing error formula. Hence, in
general this method generates a small-sample nonlinearity bias, which is also present with

the other 4 methods.

3.4 Portfolio formation and inference

In this section, we draw from the above analysis to discuss how to best form the portfolios

of funds. Next, we describe a bootstrap methodology to make inference in our context.

Finally, we discuss measures of goodness of �t.

3.4.1 Portfolio formation

The �rst order condition in equation (17) shows that in the one-period case, � is identi�ed if

rm;t(1) 6= rm;t(2); that is, if the di¤erent FoFs are subject to di¤erent market return shocks.

It is useful to derive the �rst order conditions for a case where the two FoFs are formed

such that each FoF has half of the projects in period t(1) and half of the projects in period

t(2). In other words, both FoFs have projects in both periods with equal weights. In the

simple one-period example, the �rst order conditions are

(�� e�) + 1
2
(� � e�)(rm;t(1) + rm;t(2)) + "i = 0; i = 1; 2 (18)
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In this case, � and � cannot be separately identi�ed. As was already indicated by

our simple example (section 3.1), this shows that it is important to create portfolio of

funds (FoFs) that have as little overlap in time as possible, to allow for cross-sectional

identi�cation of �: We thus suggest to group funds by vintage year in practice.

Finally, we noted above that the bias is a direct function of the variance of "i =

1
ni

Pni
j=1 "ij ; which is the average of the idiosyncratic shocks across projects within a fund-

of-funds. This suggests to group funds into funds-of-funds as much as possible. However,

reducing the number of FoFs implies that the time-overlap between the FoFs becomes larger.

When choosing the number of funds-of-funds, we thus face a trade o¤ in terms of precision

and bias. We will use a Monte Carlo simulation (section 3.5) to shed light on this trade-o¤.

3.4.2 Inference and goodness of �t

We have shown that a cross-section of cash �ow streams is su¢ cient to consistently infer

risk and abnormal return. Hence, not having the time series of market values does not

prevent such estimation. However, the lack of a time series of market values prevent the

direct estimation of the variance-covariance matrix. Hence, for inference, we rely on a

cross-sectional bootstrapping technique to obtain standard errors.

We resample the funds with replacement within each fund-of-funds, and then re-estimate

the alpha and the beta. By resampling at the fund level, we thus assume that the idio-

syncratic shocks of projects are perfectly correlated within a given fund but idiosyncratic

shocks to projects are uncorrelated between funds. Repeating the process 1,000 times yields

the bootstrap distribution of alpha and beta.6

We have also performed a block bootstrapping that takes into account the correlation

between funds within each fund-of-funds. We �rst divide funds within each fund-of-funds

into eight blocks constructed by a 2x2x2 sort on EU/US focus, fund size, and experience.

Within each block, the funds are assumed to be perfectly correlated. The blocks are then

drawn with replacement like the original bootstrapping. The results for block bootstrapping

6As discussed by Horowitz (2001), in some cases it is bene�cial to �re-center� the moment conditions
when performing the bootstrap analysis. We �nd similar standard errors when we re-center the moment
conditions. We also �nd that a bootstrap bias-correction for GMM hardly changes the estimates (Horowitz,
2001).
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are almost identical and thus not reported.

In the empirical section, we discuss a diagnostic test for the assumption that idiosyn-

cratic shocks of funds with di¤erent vintage years are independent. The results of this test

support this independence assumption.

3.5 Small-sample properties: A Monte Carlo Simulation

As discussed above, our GMM-style methodology generates asymptotically consistent esti-

mates of � and � but we expect small-sample biases. To evaluate their magnitude and to

evaluate the di¤erent methods, we run a Monte Carlo experiment.

We aim to mimic the size and characteristics of our main dataset (venture capital

funds). At the beginning of year = 1980,...,1993, 50 funds are started. They all invest $1

per project and start 3 projects per year for 5 years, so that a fund has 15 projects in total.7

The economy is speci�ed as in Cochrane (2005b). That is, the quarterly growth in value of

project j of fund i is assumed to be lognormally distributed:

ln(
Vij;t+1
Vij;t

) = 
 + lnRf;t + �(lnRm;t+1 � lnRf;t) + �ij;t+1; �ij;t+1 � N(0; �2) (19)

where �ij;t is i.i.d. normal across projects and over time.
8 Following Cochrane (2005b),

the probability that a project exits at time t is given by the following logistic function

1

1+e�a(ln(Vij;t)�b)
. That is, the project is more likely to exit as it reaches higher values. In

addition, a project is also more likely to exit if it reaches a low value. The probability of

exiting is then given by k�Vt
k ; with Vt < k. We thus incorporate endogenous timing of cash

�ows in our setup. Finally, if a project is still alive after 5 years, it is liquidated and a

dividend equals to its value is paid.

Following the remark in subsection 3.4, we group all the funds with the same vintage

7This number matches the venture capital sample that we describe below.
8As shown in Cochrane (2005b), the continuous limit of equation (19) can be used to obtain the � and

� for the CAPM in simple returns which gives � = � and

� = 
 +
1

2
�(� � 1)�2m +

1

2
�2 (20)

where �2m � V (ln(Rm)):
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year into a fund-of-funds (FoF). We thus have 14 moment conditions (one for each vintage

year). We set the risk-free rate to 4% p.a. and the log-return on the market index is

drawn from a normal distribution with 12% mean and 15% volatility (matches S&P 500

index distribution from 1980 to 2003). All the other parameter estimates are taken from

Cochrane (2005b): a = 1; b = 3:8; k = 0:25; � = 0:86: Alpha and beta are set to zero and

one respectively to simplify exposure (results are not sensitive to the true alpha and beta).

Results are shown in Panel A of Table 1. The intuition developed above is con�rmed. If

we compound cash �ows forward (NCV-approach) a small negative bias is present in alpha

(4 basis points per month) whereas if we discount cash �ows (NPV-approach) a positive bias

of similar magnitude is present in alpha (5 basis points per month). Also consistent with

the above arguments, the PME approach generates a bias in the same direction as the NPV

approach but smaller (2 basis points per month). The best approach is log-PME. The bias

is slightly negative (due to the convexity e¤ect discussed in section 3.3.2) but negligible (1

basis point per month). In addition, both the standard deviation and inter-quartile range

for the log-PME estimate are smaller than with any other method. Furthermore, the log-

PME approach estimates beta without any bias and with the highest precision compared

to other methods. Finally, to implement the method of moments (method 5) we create

two FoFs. The �rst FoF contains the �rst 7 vintage years, and the second FoF the next

7 vintage years. We �nd that this approach has signi�cant biases in both alpha and beta.

As explained above, by grouping vintage years we lose information on the relation between

portfolio performance and the associated market performance, making it di¢ cult to estimate

beta.

As mentioned above, the bias of our estimates depends on the size of idiosyncratic

shocks. We therefore show our results with a lower idiosyncratic volatility (Panel B) and

with a higher idiosyncratic volatility (Panel C). The low volatility level is set to 25% per

annum. This corresponds to the Ang, Hodrick, Xing and Zhang (2006) estimate for the

highest idiosyncratic volatility quintile of US stocks and is slightly larger than the idiosyn-

cratic volatility of the small growth stock portfolio of Fama-French (19% p.a.).9 The high

9See Table 6 of Ang, Hodrick, Xing and Zhang (2006), which provides total volatility estimates across
quintile portfolios. We correct these total volatilities for market volatility to obtain idiosyncratic volatility.
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idiosyncratic volatility level is simply about twice the benchmark case at 150% p.a.

Results show that, as suggested above, our estimate becomes very precise when idio-

syncratic volatility is at the level of individual stocks (Panel B). All the methods provide

unbiased estimates. Log-PME is still the most precise of all but the di¤erence with the

other methods is negligible. Turning to the high idiosyncratic volatility level, we see that

the di¤erences across methods are much larger. The NCV method gives an alpha of about

-50%, which is obviously wrong. The problem comes from a convergence to a corner (and

incorrect) solution close to -100%. In 75% of the simulations alpha converges to this near

corner solution. The NPV method is better but generates an economically signi�cant bias

of 70 basis points per month. The PME method generates less than half that bias (24 basis

points per month). Finally, the log-PME is very clearly the best method with a bias of only

4 basis points per month despite the extremely high volatility.

Note that the return distribution departs from lognormal in a complex way given the

various stopping rules. As a robustness check, we increase the maximum project duration

from 5 to 7 years (using the benchmark volatility level). Panel D of Table 1 shows that the

small-sample bias and precision hardly change relative to the benchmark case (Panel A).

In sum, despite the complex probability distribution and the fact that we do not use

any distributional assumption, our approach �nds estimates that are close to the true values

of risk and abnormal returns. Our estimator is thus not only asymptotically consistent but

its small-sample properties are good.

4 Data

We apply the methodology developed above to the estimation of risk and abnormal return of

venture capital funds and buyout funds. In this section, we provide key institutional details,

describe our data source, the content of our dataset, and our treatment of non-liquidated

funds.
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4.1 Data and institutional environment

The private equity funds that we study are organized as limited partnerships and have a

�nite life (typically 10 years). This structure is by far the most common in this industry.

Investors commit a certain amount of capital to a private equity fund. The fund "calls"

money from investors at di¤erent points in time up to the amount committed. Similarly,

funds distribute dividends at di¤erent point in time until its complete liquidation. The

timing of these cash �ows is typically unknown ex ante. The year when a fund starts is

called vintage year. Funds report quarterly Net Asset Values (NAVs) but these are often

equal to the amount invested.10

Data on both private equity fund cash �ows and quarterly NAVs are from Thomson

Venture Economics. Cash �ows are net of fees as they are what investors have received and

paid. This dataset is the most comprehensive source of �nancial performance of both US

and European private equity funds and has been used in previous studies (e.g., Kaplan and

Schoar, 2005) and covers an estimated 66% of both venture capital funds and buyout funds

(Phalippou and Gottschalg, 2007).

We consider all funds (with size over $5 million) raised between 1980 and 1993 as they

have reached their normal liquidation age (10 years) at the end of our sample time period

(2003). As discussed above, we construct venture capital fund-of-funds and buyout fund-

of-funds based on vintage years. We exclude vintage years with less than 10 funds; this

excludes buyout funds raised between 1980 and 1983 but does not a¤ect venture capital

funds.

Descriptive statistics are reported in Table 2. We have 958 funds, of which 686 have a

Venture Capital (VC) objective and 272 have a buyout (BO) objective. In total, we have

25,800 cash �ows. Our descriptive statistics are similar to what has been reported in the

literature.
10For further details on private equity fund contracts, see Axelson, Stromberg and Weisbach (2007),

Gompers and Lerner (1999, 2000), Metrick and Yasuda (2007) and Phalippou (2007).
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4.2 Estimating Final Market Values

Table 2 shows that two thirds of the funds report a positive NAV at the end of our sample

time period despite having passed their tenth anniversary. Existing work either treats these

�nal NAVs as a �nal cash �ow (Kaplan and Schoar, 2005) or writes them o¤ (Phalippou and

Gottschalg, 2007). One of the problems faced in the literature and which partly explains

these simple choices is that the conversion of NAVs into a market value necessitates an

estimate of risk.

In this paper, rather than making a judgement call, we estimate econometrically the

relation between NAV and market value. Speci�cally, we take the fully liquidated funds

at di¤erent ages, compute their realized market value (MV) as the net present value of

subsequent cash �ows where we discount with the pricing model estimated by our GMM

method. Then, for each age a=10,11,12, and 13, we separately estimate the following model

ln(1 +MVa;i(�; �)) = ba0 + b
0
a1Xa;i + "a;i (21)

The vector of explanatory variables Xa;i includes ln(1 + NAV ), the log of fund size, the

log of the time elapsed since the last dividend distribution, the log of the time elapsed

since the last NAV update, and fund�s performance multiple excluding NAV (sum of capital

distributed divided by sum of capital invested); where all variables are computed at age a:

Results from the regression (21) are shown in Table 3 - Panel A. We �nd that a 1%

increase in NAV leads to slightly less than 1% increase in market value and that this

elasticity decreases with age. Large funds and better performing funds tend to have higher

market values, hence more conservative accounting valuations. Funds that have not paid a

dividend for a long time have lower market values. Similarly, the NAV of funds that have

not updated their NAVs for a long time is signi�cantly exaggerated. This variable is the

most signi�cant of all explanatory variables. The average time since last NAV update is 1.5

years. An increase to 2 years would decrease market value by about 10% everything else

constant (taking the average coe¢ cient across the 4 speci�cations).

Some descriptive statistics for fully-liquidated funds are shown in Table 3 - Panel B.

The ratio of market value to NAV is between 100% at age 10 to 113% at age 13. Hence,
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for the sample of liquidated funds, NAVs are overall close to market values. However, as

several of the explanatory variables are statistically signi�cant, we �nd that there are large

cross-sectional di¤erences.

The next step consists of predicting �nal market values for the non-liquidated funds

by applying the regression coe¢ cients from equation (21) to the fund characteristics of the

non-liquidated funds.11 Results of the extrapolation are shown in Table 3 - Panel B. The

model predicts small market values compared to NAVs. The ratio of total market values

to total reported NAVs is between 21% (age 12) and 37% (age 10). Overall 70% of NAVs

are written o¤ according to the model. This is due to the di¤erent characteristics of non-

liquidated funds. Non-liquidated funds have not paid any dividends for about 3.5 years while

fully liquidated funds have on average paid a dividend 1 year ago. Similarly, non-liquidated

funds have not updated their NAVs for 2.5 years while liquidated funds have updated their

NAVs less than 6 months ago.12 As a consequence, the model predicts small market values.

We thus provide evidence that NAVs of old and inactive funds largely overstate the true

market value.

The results described above require a joint estimation setup. MVa;i(�; �) depends on

the discount rate, and is therefore a function of � and �. In turn, to apply our GMM

methodology and estimate � and �; we need the estimate of MVa;i(�; �) to run regression

(21) and predict the �nal market value of the non-liquidated funds. Hence, we simultane-

ously estimate � and � from the GMM equation (15) and the regression coe¢ cients in (21).

The results described above are those obtained when estimating a one-factor market model

(which we call CAPM for convenience). We �nd similar coe¢ cients for the Fama-French

model.
11Beyond the 13th anniversary (typically the maximum duration of a fund), we observe only very few

funds that have a positive NAV and are subsequently liquidated. For funds older than 13 years, we therefore
predict the market value at the end of their 13th anniversary and use the coe¢ cients from the age 13
regression. This predicted �nal market value is thus used as �nal dividend at age 13. This choice explains
why most of the funds in the prediction sample are in the age 13 category (N=434).
12These results are driven by a large number of funds that do not update their NAV or pay any dividends

for several years beyond age 10. This fact could be either a deliberate action of funds in an attempt to
"hide" bad performance (Phalippou and Gottschalg, 2007, report that these funds tend to have the lowest
performance), or result from a data entry convention (if a fund liquidates but investors do not report that
event to TVE then TVE keeps on repeating the latest NAV forever). Unfortunately, we cannot obtain
information from TVE on this issue.
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5 Risk and Return Estimates

In this section, we �rst report the estimates of risk and abnormal return of private equity

funds using the log-PMEmethodology (section 5.1). In section 5.2, we investigate di¤erences

in � and � across funds by allowing these parameters to be a function of fund characteristics

like size and experience. Finally, in section 5.3, we present several robustness checks for the

estimation setup and portfolio formation.

5.1 Benchmark Results

In section 3.5, we concluded that it was best to create one portfolio (fund-of-funds, FoF)

per vintage year and to use the log-PME approach. This is what we do here in the empirical

application. Note also that for each portfolio we add the cash �ows across funds, hence, we

value weight each fund within each FoF. Our estimate of risk and abnormal performance is

thus for $1 invested in either venture capital funds or buyout funds.

The results for the CAPM speci�cation are shown in the �rst speci�cation of Table 4 -

Panel A for venture capital funds and of Table 4 - Panel B for buyout funds. We �nd that

venture capital funds have a signi�cantly di¤erent risk pro�le than buyout funds. Venture

capital funds have a market beta of 3.21 with standard error 0.22. In contrast, buyout funds

have a market beta of about 0.33, estimated with a larger standard error of 0.38.

To provide some intuition for these GMM estimates, we inspect the patterns in our

data. Figure 3 shows the time series of average �dividend yields�for venture capital funds

and buyout funds. The dividend yield in month t for fund i is the sum of all dividends paid

over the previous twelve months divided by fund size. To obtain an aggregate dividend

yield, we take the average across all funds that are in their divestment phase, i.e. fund age

is between 4 and 10 years. On the same graph, we plot the 5-year moving annual average

of the S&P 500 returns. The idea is that if the stock-market does well during 5 years -

which is the average duration of an investment - then a high (low) beta asset will distribute

larger (smaller) dividends in the following year. On the �gure, it is apparent that the �rst

pick of the stock-market in 1995 and the rally of 1998-1999 goes hand-in-hand with a huge

spike in dividend yield for venture capital funds. When the stock market went down the
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following three years, so did the dividends. Our high estimate for the venture capital beta

re�ects these features of the data. Interestingly, the same �gure shows that buyout fund

dividends are smoother across years. In addition, venture capital dividend yield �uctuates

widely with a minimum of 5% and maximum of 80%. In contrast, the dividend yield for

buyout funds �uctuates between 5% and 25% per year and appears relatively �at. Figure

3 is thus consistent with our empirical estimates of risk.

The �nding of low beta and steady dividend yield for buyout funds may be surprising.

It is sometimes argued, however, that buyout funds hold companies that are in low beta

industries. Hence, despite the mechanical e¤ect of leverage on beta, buyout beta may be low.

An additional argument is that buyout funds make many changes to the companies they

purchase. The success of the changes operated by buyout funds may have little correlation

with stock-market returns. This could drag the beta towards zero. It may be argued

that the same holds for venture capital investments and yet their beta is high. A potential

explanation for this could be that an active IPO market is more important for venture capital

than for buyout. An active IPO market, in turn, is dependent on stock market returns.

Hence, venture capital investments success is likely to be more stock-market dependent than

buyout investment success.13

Note, however, that our estimates for buyout funds are less precise than for venture

capital. In addition, while the venture capital beta estimate is very robust to changes in

sample selection and method, this is less so for the buyout sample (section 5.3). This is

probably due to the smaller sample for buyout funds. Also, compared to venture capital

funds, buyout funds are more heterogeneous in terms of size, geographic focus (they are 50%-

50% Europe versus US focused while they are mainly US focused in venture capital), and

investment type.14 In unreported results, we have attempted to capture such heterogeneity

by making beta a function of observable characteristics (see also next section) but given

13Cao and Lerner (2007) �nd that once they are publicly listed, buyout backed companies have a beta of
1.3. However, the companies that go IPO may not be representative. Those that go public may have higher
betas. In addition, the beta of the same company may be di¤erent when it is in the fund�s hands and once
it is listed.
14Buyout funds make some investments in public equity, some growth equity investments which resemble

more late stage venture capital, and some management buyouts whose risk-return characteristics may di¤er
from the rest.
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the low number of observations for buyout funds, the estimates are often imprecise on

subsamples.

To assess the �t of the one-factor market model, we calculate for each of the 14 vintage-

year portfolios a pricing error. Instead of just comparing the di¤erence between the com-

pounded value of dividends and investments, we focus on a �monthly pricing error�for each

FoF by calculating how much the alpha needs to be increased or decreased such that the

value of dividends and investments are exactly equal to each other for this FoF. For venture

capital funds, we then �nd that the average absolute pricing error across funds is 0.20%

per month. Keeping in mind that part of this error represents idiosyncratic risk that is

not fully averaged out at the portfolio level, this average error is economically small. For

buyout funds, the average absolute error is larger at 0.56% per month. This higher pricing

error is mainly driven by one vintage year. Excluding this year brings the average absolute

error down to 0.35% but does not signi�cantly a¤ect the estimates.

As mentioned in section 3.4, standard errors are derived under the assumption that the

idiosyncratic shocks are independent between funds that have di¤erent vintage years. We

assess the validity of this assumption with the following diagnostic test. We calculate a

pricing error for each of the 14 moment conditions (i.e. the di¤erence between compounded

value of dividends and compounded value of investments; CV
Di(�; �)� CV Ti(�; �) in the

notation of section 3.2). We conjecture that if there is signi�cant cross-vintage-year de-

pendence, it is likely that two successive vintage years (e.g. 1980 and 1981) have more

correlated pricing errors than two vintage years that are further apart (e.g. 1980 and 1990).

Hence, our proposed diagnostic is to test for the presence of autocorrelation in the time

series of pricing errors. The results are reported in Table 4 below each speci�cation. The

error autocorrelation is negative in most speci�cations and never signi�cantly positive. To-

gether with the result that block-bootstrapping within a FoF generates similar results to

random bootstrapping (as discussed in section 3.4), these results are a strong indication

that the independence assumption we make for inference is reasonable on this dataset.

We also see that the precision of the estimates decreases when we add the Fama-

French factors (Table 4). Given that we perform a cross-sectional estimation, the parameter
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estimates are correlated to some extent and the correlation of these parameter estimates are

higher for the three-factor model. This makes it harder to precisely pin down the di¤erent

risk exposures. As shown in Table 4, the market betas are signi�cant in the Fama-French

speci�cation, but we do not �nd signi�cant exposure to the SMB and HML factors, except

for the exposure of buyout funds to SMB. Nonetheless, the signs of the exposures make

intuitive sense for venture capital funds as they resemble small growth stocks. Buyout

funds tend to co-move more with large stocks.

5.2 Return and fund characteristics

The literature has shown that some fund characteristics are related to returns and it is thus

important to incorporate these regularities in our estimations to increase precision. At the

same time, we shed light on the nature of these regularities. Kaplan and Schoar (2005) �nd

that fund returns (measured by Public Market Equivalent or IRR) are positively related to

the fund size. Our framework allows us to investigate whether this e¤ect is due to higher

abnormal performance or higher risk exposures. We make alpha and beta a function of

these characteristics using the following speci�cation

� = a0 + asize � ln(fund size) (22)

� = b0 + bsize � ln(fund size) (23)

Next, we form size-sorted portfolios (i.e. fund-of-funds) for each vintage year. This allows

us to pin down the e¤ect of size from the cross-section of moment conditions. If we would

use the 14 vintage-year portfolios, size e¤ects would only be identi�ed to the extent that

funds with di¤erent vintage year have di¤erent size. We thus form 2 portfolios per vintage

year, sorted on size.

We show results in speci�cations 3 to 6 in Table 4. We �rst include size in the alpha

speci�cation only (speci�cations 3 and 4) and con�rm that the performance is positively

and signi�cantly related to size. Like Kaplan and Schoar (2005), we �nd that this result is

highly signi�cant for venture capital funds and weaker for buyout funds.
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Next, we allow the beta to depend on size. For venture capital funds, the size e¤ect

in alpha becomes insigni�cant while the size e¤ect in beta is positive and signi�cant. At

the bottom of the panel we show economic magnitudes. We display the alpha and beta

evaluated at the �rst size-quartile (small) and third size-quartile (large). For alpha, there is

hardly any di¤erence (alpha is -1.34% for small funds and -1.24% for large funds). For beta,

however, the beta of small funds is 2.04 while it is 2.74 for large funds. The spreads are

similar in the Fama-French speci�cation. For buyout funds, the size e¤ect in alpha actually

becomes negative once we control for size e¤ects in beta. The beta of buyout funds depends

signi�cantly on fund size. It is signi�cant at the 1% level for the CAPM speci�cation and

at the 5% level for the Fama-French speci�cation.

In sum, we �nd that large funds� higher returns can be attributed to higher level

of systematic risk rather than abnormal performance. In unreported results, we have also

examined whether fund experience is related to alpha and beta. We have used fund sequence

as a measure of experience as in Kaplan and Schoar (2005). We found no signi�cant relation

between experience and alpha or beta.

5.3 Robustness

In this section, we investigate the robustness of our results. We �rst show results with

a di¤erent treatment of NAVs. Next, we show results for di¤erent samples and di¤erent

methodological choices. Finally, we discuss the inclusion of option-type features in our

framework.

5.3.1 NAV treatment

We begin by re-estimating abnormal return and risk with i) �nal NAVs treated as fair

market value (as in Kaplan and Schoar, 2005) and with ii) writing �nal NAVs o¤ (as in

Phalippou and Gottschalg, 2007). That is, we do not jointly estimate the �nal value of the

fund and the risk pro�le but, instead, make a simple assumption for the �nal value of funds.

Table 5 shows the results. VC beta decreases from 3.45 (�nal NAV treated as correct) to

2.98 (�nal NAV written o¤) in the CAPM speci�cation. The estimate we �nd in the main
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analysis is between these two values (3.21 for the CAPM speci�cation). Similar results are

observed for buyout funds. Interestingly, the e¤ect on abnormal performance is minimal.

This is because beta o¤sets the e¤ect of writing o¤ NAVs. As mentioned above �nal NAVs

are relatively large. Writing them o¤, therefore, should reduce performance substantially.

However, writing them o¤ also drives beta downwards. Consequently, the e¤ect on alpha is

minimal. For venture capital, alpha changes from -1.08% per month to -1.27% per month in

the CAPM speci�cation. The change in alpha is larger for buyout funds but not signi�cant.

Alpha changes from 0.37% per month to 0.62% per month in the CAPM speci�cation.

5.3.2 Change in empirical design

Table 6 shows estimates of alpha and beta (CAPM model) for di¤erent samples and di¤erent

methodological choices.15 On the left hand side, we show results for our benchmark case

where the moment conditions are weighted by the number of funds in the FoF. On the

right hand side, we show results when moment conditions are value weighted. We use the

log-PME method for all estimations except for one case where we use the PME method.

The default results (those shown in Table 4) are shown on the left hand side of the �rst line

(alpha is -1.24% and beta is 3.21 for VC and alpha is 0.49% and beta is 0.33 for BO).

The �rst result is that value weighting the moment conditions instead of equally weight-

ing them (as in Table 4) does not substantially change the estimated risk and abnormal

performance for venture capital, while for buyout funds the estimated beta is typically larger

in case of value weighting.

The second result is that varying the number of fund-of-funds (FoFs) has little impact

on the estimates. For each vintage year, we sort funds by size and create either 2, 3 or 4

portfolios. Irrespective of how many portfolios we create, we �nd similar beta estimates. A

partial exception is for BOs for which beta changes from 0.57 to 0.28 when moving from 2

to 3 FoFs per vintage year. This may be due to the lower number of buyout funds which

means that as the number of portfolio increases the number of funds in each portfolio quickly

decreases towards unity. This is also an indication that our estimates of BO fund risk and

15Each bootstrap calculation takes a day. Therefore, we do not report standard errors in this table.
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abnormal performance are not as precise as they are for VC funds.

Our third result is that estimates obtained by the PME method are similar to those

obtained by the log-PME method. This is an indication that the PME and log-PME

estimates are essentially not a¤ected by small-sample biases. As we saw above, the PME

method introduces an upward bias in alpha whereas the log-PME method introduces a

small negative bias. If our sample is large enough then the estimates provided by the two

methods are similar indicating that small-sample biases are minimal. For VC, alpha is

-1.20% with the PME method and -1.24% with the log-PME method. These values are

respectively -1.22% and -1.15% if we value weight the moment conditions. Consistent with

the above results, the estimates are less stable for BO funds. Alpha is 0.97% with the PME

method and 0.49% with the log-PME method (0.46% and 0.06% respectively if we value

weight the moment conditions.) Combined with the con�dence interval we obtain for the

benchmark estimate of the buyout beta (Table 4), it seems likely that the true buyout beta

is between zero and one, which is an interesting result but, unfortunately, it is di¢ cult to

give a more precise point estimate for BO funds. Again, this may be due to some uncaptured

heterogeneity (omitted factors) across BO funds or the smaller sample size for buyouts.

Our fourth result is that changing the time period does not signi�cantly change esti-

mates. Again, this is especially true for VC funds. Given the nature of our data, we provide

a sense of the impact of our choice of the time period (funds raised between 1980 and 1993)

by adding and removing one vintage year.

Our �fth result is that the sub-sample of US funds has similar risk-return pro�les as the

universe of funds. As non-US focused funds are a minority (especially in venture capital),

we cannot test for whether the risk pro�le is the same in the US-focused sample versus

the non-US focused sample. We can, however, run the estimation on the sub-sample of US

funds as a robustness test and as indicative evidence on whether US-focused funds o¤er a

di¤erent risk-return pro�le or not. We �nd that US-focused venture capital funds appear

only slightly riskier and have a slightly higher alpha than the universe. Again, one should

keep in mind that they represent the large majority of the universe. For buyout funds,

where the sample is evenly split between US and non-US, it is the opposite. US-focused
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funds have higher alphas and lower betas. However, the sample becomes quite small when

we separate US funds.

Finally, we run our estimations using di¤erent benchmark factor portfolios. We begin

by using a di¤erent market portfolio for the non-US focused funds. In the above analysis

we have used one market portfolio for all funds. Implicitly we have assumed that �nancial

markets are integrated. We now assume that �nancial market are perfectly segmented and

thus use non-US stock indices for non-US focused funds (with returns in US dollars to be

consistent with the cash �ow currency). The indices come from the website of Kenneth

French. We use either the Europe index or the UK index (as most non-US funds are UK-

based). For venture capital, the beta increases slightly from 3.21 (benchmark case) to 3.76

with the Europe index and 3.57 with the UK index. The alpha, however, increases slightly

compared to the benchmark case. For buyout funds, a similar result is obtained. Next, we

use the Nasdaq for venture capital funds. We �nd a lower beta (1.55 instead of 3.21) and

a higher alpha (-0.55% versus -1.24%). This result indicates that VC funds performance is

more closely related to that of the Nasdaq than that of the S&P 500. This means that part

of the large beta we �nd for the VC funds can be attributed to the fact that VC investments

resemble Nasdaq stocks, which, themselves, have a high beta. This is con�rmed when we use

the small-growth portfolio of Fama-French. There, we also obtain a similar beta as the one

obtained with the Nasdaq (1.70) but the alpha with respect to the small-growth portfolio is

positive. The small growth portfolio has had historically a very low performance which is

di¢ cult to explain. This result shows that although they co-move closely with small-growth

stocks, VC funds have a better performance than small-growth stocks. This result is similar

to what Cochrane (2005b) �nds with venture capital projects.

In sum, the robustness checks show that the VC results are robust and not subject

to small-sample biases. In contrast, the buyout sample is smaller and reliable inference

appears more di¢ cult.
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5.3.3 Option-type behavior in private equity

As a �nal robustness check, we analyze to what extent the payo¤s of private equity projects

resemble those of options. At �rst sight, one could consider including an option return as an

additional factor as commonly done in the hedge fund literature, or including a nonlinear

return function like max(Rm;t; 0) in the pricing model. However, in contrast to hedge fund

investments, private equity projects are long-term and it is thus unlikely that a monthly

option return or a nonlinear function of the market return will capture the long-term nature

of these projects.

Instead, we have incorporated one of the main features of long-term options in our

setup, which is that the beta of an option changes with its moneyness. For example, in the

Black-Scholes model the CAPM-beta of a call option equals

�c =
S

C
N (d1)�s (24)

These Black-Scholes betas of call options decrease as the stock price increases, or, equiva-

lently, when the option gets more in-the-money. Hence, if private equity projects resemble

call options, the beta of private equity funds should vary with the moneyness of the option.

In this case, the fund�s � can be approximated by a parametric function of the moneyness

level. In particular, to mimic the beta of call options, we model the �t as follows

�t = �0 + �1 log
St
S0

(25)

where St is the value of the stock market index at period t (so log StS0 is just the multi-

period return), and S0 denoting the value of the stock market index at the beginning of the

funds�vintage year (S0 will then vary across funds). If projects are similar to long-term call

options their moneyness should depend on the long-term equity index performance (�1 < 0):

In unreported results, we do not �nd evidence that �1 di¤ers signi�cantly from zero. Of

course, it may be that the option-type features of private equity funds are more subtle than

modelled here. Finding the best model to capture option-type features of private equity

funds is beyond the scope of this paper.
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6 Conclusion

We develop a new econometric methodology to estimate the risk and return of an asset

using cash �ow data. We then apply it to a sample of private equity funds. The GMM-type

methodology we device is based on moment conditions that state that expected discounted

dividends should equal expected discounted investments, where the discounting is done using

a factor pricing model of which the parameters are to be estimated. This methodology does

not use the self reported, stale and noisy intermediary Net Asset Values of funds, but

instead uses data on fund investments and dividends. An advantage of our approach is that

it allows us to leave the return distribution unspeci�ed. This is an appealing feature as

the return distribution is not directly observable given the lack of a time-series of market

values. The method is asymptotically consistent and we show how to optimize the small

sample performance by constructing appropriate moment conditions and fund portfolios. A

simulation study shows that the small-sample properties are satisfactory.

We �nd that venture capital funds have a high CAPM-beta, while buyout funds have a

much lower CAPM-beta. Venture capital funds have a signi�cantly negative alpha. Buyout

funds have a slightly positive alpha, but it is close to zero and statistically insigni�cant.

We also �nd that the Net Asset Values reported by funds that are inactive (no cash �ows

and no updating of Net Asset Values) near the end of their life are highly upward biased

estimates of their market value. Speci�cally, using a regression approach, we �nd that the

�nal market values of inactive funds that are 10 to 13 years old are about 30% of their self-

reported Net Asset Values. We incorporate the results of this regression in our estimation

of abnormal performance and risk exposure. The �exibility of our GMM model also enables

us to study the interaction between the characteristics of the funds and their alpha and

beta. We �nd that larger fund have similar abnormal returns as smaller funds but have

higher level of systematic risk. Finally, our method can be used for other limited life non-

traded private partnerships (e.g. mezzanine debt funds and some real estate funds) and for

corporate investments (the CFO observes a stream of cash �ows from a division/project

but no market values).
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Appendix 1: GMM with nonlinear functions
We derive the asymptotic behavior of both the PME estimator and the log-PME estima-

tor. We follow the standard way of deriving asymptotic normality of the GMM estimator.

Using general notation, the standard GMM moment condition can be written as

E (f(�0; xi)) = 0 (26)

where f(:; :) is a k-dimensional function. Let gN (�) = 1=N
NP
i=1
f(�; xi). The GMM

estimator is b�N = argmin gN (�)0WNgN (�), with WN a weighting matrix. For our PME and

log-PME estimators, the moment condition is

h (E (f(�0; xi))) = h(0) (27)

Normalizing h(0) = 0 (without loss of generality) our estimator is equal to b�N =

argmin� h(gN (�))
0WNh(gN (�)): Applying the mean value theorem we have

h(gN (b�N )) = h(gN (�0)) + @h(gN (e�N ))0
@�

(b�N � �0) (28)

where e�j is between �0;j and b�N;j . Then, using the �rst order condition @h(gN (b�N ))
@�0

WNh(gN (b�N )) =
0; and premultiplying the above equation by @h(gN (b�N ))

@�0
WN gives

0 =
@h(gN (b�N ))

@�0
WNh(gN (�0)) +

@h(gN (b�N ))
@�0

WN
@h(gN (e�N ))0

@�
(b�N � �0) (29)

which can be rewritten as

p
N(b�N��0) = � @h(gN (b�N ))

@�0
WN

@h(gN (e�N ))0
@�

!�1
@h(gN (b�N ))

@�0
WN

p
Nh(gN (�0)) (30)

Under standard regularity conditions, the delta-method implies that
p
Nh(gN (�0)) has

an asymptotically normal distribution and the premultiplying weighting matrices converge

to their probability limits, so that the estimator is consistent and asymptotically normal.
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Table 1: Monte Carlo Simulations 

This table shows results from a Monte Carlo simulation of a Cochrane (2005b) economy. Each year 

(from 1980 to 1993), a batch of 50 funds enters the economy. Each fund invests $1 per project and 

starts 3 projects per year for 5 years. The project return follows a log-CAPM with risk-free rate of 4%, 

equity risk premium of 8%, and (annual) market volatility of 15%. The probability of exit is computed 

each quarter using Cochrane’s parameter estimates (a, b, and k equals to 1, 3.8 and 25% respectively in 

his notation). Projects have a maximum life of either 5 years (Panels A, B and C) or 7 years (Panel D). 

1000 economies are simulated and we set the true alpha to zero and beta to one. For each economy, 5 

estimation methods are executed (Net Compounded Value, Net Present Value, Public Market 

Equivalent, Log Public Market Equivalent and Methods of Moments; see section 3.3). The mean, 

standard deviation, and inter-quartile range of the 1,000 estimated pair of parameters (alpha, beta; 

monthly frequency) are displayed. In panel A, the idiosyncratic volatility is set to 86% p.a. 

(Cochrane’s estimate). In Panels B and C, it is set to 25% and 150% p.a. respectively. Panel D reports 

results when the maximum duration for project is 7 years with 86% volatility p.a. 

 

Panel A: Benchmark 

  NCV NPV PME Log-PME MM 

Mean Alpha  -0.04% 0.05% 0.02% -0.01% 0.07% 

Std Alpha  0.23% 0.20% 0.20% 0.19% 0.57% 

Inter-Quartile  [-0.15%  0.07%] [-0.06%  0.15%] [-0.08%  0.12%] [-0.10%  0.09%] [-0.13%  0.19%] 

Mean Beta  1.00 0.98 1.00 1.00 0.93 

Std Beta  0.36 0.31 0.30 0.29 0.82 

Inter-Quartile  [0.83  1.16] [0.81  1.13] [0.85  1.15] [0.85  1.14] [0.70  1.24] 
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Panel B: Low volatility economy 

  NCV NPV PME Log-PME MM 

Mean Alpha  -0.00% 0.00% 0.00% -0.00% 0.00% 

Std Alpha  0.04% 0.03% 0.03% 0.03% 0.14% 

Inter-Quartile  [-0.02%  0.02%] [-0.01%  0.02%] [-0.01%  0.02%] [-0.01%  0.01%] [-0.02%  0.03%] 

Mean Beta  1.00 1.00 1.00 1.00 1.00 

Std Beta  0.06 0.05 0.05 0.05 0.24 

Inter-Quartile  [0.97  1.03] [0.98  1.02] [0.98  1.02] [0.98  1.02] [0.95  1.05] 

 

Panel C: High volatility economy 

  NCV NPV PME Log-PME MM 

Mean Alpha  -49.37% 0.69% 0.24% -0.04% 0.30% 

Std Alpha  29.58% 1.78% 0.72% 0.55% 1.35% 

Inter-Quartile  [-68.1%  -2.14%] [0.04%  0.90%] [-0.17%  0.53%] [-0.37%  0.22%] [-0.36%  0.62%] 

Mean Beta  0.33 0.66 0.97 0.95 0.86 

Std Beta  1.16 1.26 1.04 0.80 1.78 

Inter-Quartile  [-0.09  0.36] [0.15  1.25] [0.44  1.51] [0.53  1.41] [0.06  1.83] 

 

Panel D: Robustness – Maximum project duration increased to 7 years with benchmark volatility 

  NCV NPV PME Log-PME MM 

Mean Alpha  -0.04% 0.06% 0.03% -0.00% 0.08% 

Std Alpha  0.22% 0.21% 0.20% 0.20% 0.57% 

Inter-Quartile  [-0.14%  0.08%] [-0.04%  0.16%] [-0.06%  0.13%] [-0.09%  0.09%] [-0.13%  0.19%] 

Mean Beta  1.00 0.96 1.00 1.00 0.95 

Std Beta  0.35 0.33 0.32 0.31 0.86 

Inter-Quartile  [0.81  1.13] [0.79  1.11] [0.83  1.13] [0.84  1.13] [0.64  1.25] 
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Table 2: Descriptive Statistics 

This table shows descriptive statistics for our sample. We report: (i) the average and the median of the 

amount committed to funds in million of 2003 U.S. dollars (size); (ii) the total final Net Asset Value 

reported (December 2003), total capital distributed and total capital invested; (iii) the overall multiple 

(sum NAV + sum Distributed) / (sum Invested); (iv) the proportion of first time funds; (v) the 

proportion of non-US focused funds; (vi) the proportion of funds with positive final Net Asset Value; 

and (vii) the number of cash flows and the number of funds.  
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 All funds Venture Capital Buyout 

Mean size               ($ million) 170.40 90.86 371.02

Median size            ($ million) 63.98 51.82 133.38

Sum NAV              ($ billion) 27.93 8.08 19.87

Sum Distributed    ($ billion) 209.69 81.40 128.69

Sum Invested         ($ billion) 119.89 39.57 80.50

Multiple 1.98 2.26 1.85

First time funds 49% 46% 57%

Non-US funds 29% 22% 47%

Funds with positive final NAV 64% 63% 64%

Number of cash-flows 25,800 16,859 8,941

Number of funds 958 686 272
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Table 3: Final Fund Market Value Estimates 

Panels A shows the estimated relation between fund market value (MV) and fund characteristics for the 

sample of liquidated funds. Fund characteristics include reported Net Asset Value (NAV), fund size, 

time elapsed since last dividend distribution (LastDiv) and since last NAV change (LastNAV), and 

Profitability Index (present value of dividends over present value of takedowns). Market Values (MV) 

at a given age is computed as the present value of the subsequently realized cash flows. t-statistics are 

reported below for each coefficient in italics. The estimation is done separately for each age (10th 

anniversary to 13th anniversary). Panel B shows summary statistics of the liquidated sample and non-

liquidated sample including the predicted Market Values computed from the model in Panel A.  

      

Panel A: Market values as a function of fund characteristics – liquidated sample 

 Dependent variable: ln (Market Value) 

 Age 10 Age 11 Age 12 Age 13

     

Constant -0.06 -0.11 -0.42 -0.35

 -0.28 -0.39 -1.55 -0.98

ln(1+NAV) ***0.89 ***0.84 ***0.83 ***0.73

 19.30 16.50 16.32 11.68

ln(Size) 0.09 *0.12 **0.13 *0.13

 1.56 1.80 2.10 1.79

ln(LastDiv) **-0.09 *-0.10 -0.03 **-0.16

 -2.00 -1.86 -0.56 -2.11

ln(LastNAV) ***-0.25 ***-0.22 ***-0.28 ***-0.18

 -5.88 -4.26 -5.08 -2.55

Profitability Index -0.03 0.06 0.14 ***0.36

 -0.60 0.60 1.25 2.65

  

Adj. R-square 0.68 0.66 0.70 0.65

N-observations 280 226 182 136
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Panel B: Summary Statistics 

 

 

 

 

 

 

 

 Liquidated funds  Non-liquidated funds 

 Age 10 Age 11 Age 12 Age 13  Age 10 Age 11 Age 12 Age 13+ 

NAV        - Mean 35.32 30.96 21.15 19.76  78.47 48.55 56.09 55.89 

Size          - Mean 121.21 122.77 122.08 123.42  234.81 202.30 140.89 203.93 

LastDiv    - Mean 14.00 12.75 11.97 11.40  37.09 36.58 57.46 41.03 

LastNAV - Mean 7.39 5.82 5.60 5.26  22.22 23.54 37.62 29.77 

PI             - Mean 0.90 0.92 0.94 0.99  0.82 0.94 0.59 0.81 

   

NAV/Size 0.23 0.16 0.09 0.07  0.33 0.24 0.40 0.27 

MV/NAV 1.00 1.00 1.06 1.13   

Extrapolated-MV/NAV  0.37 0.32 0.21 0.29 

N_obs 280 226 182 136  79 50 50 434 
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Table 4: Risk and Abnormal Performance of Private Equity Funds 

This table shows results using the ‘log-PME’ estimation. Abnormal performance (Alpha) and risk 

loadings using either a one factor market model (S&P 500; specs 1, 3 and 5) or the three-factor Fama-

French model (specs 2, 4 and 6). Standard errors (obtained by bootstrapping) are below between 

parenthesis. Panel A shows results for Venture Capital funds and Panel B shows results for Buyout 

funds. Below each specification, the autocorrelation of the pricing errors computed over the 14 moment 

conditions is reported with their corresponding standard errors. At the bottom of the table, Alpha and 

Beta_Market are evaluated at the first size-quartile (small) and third size-quartile (large). Monthly 

alpha is shown in spec 1 and spec 2. In specs 3 and 5, the underlying models are respectively: R-Rf = 

a0+asize*ln(Size) + Beta_market*(Rm-Rf) + e and R-Rf = a0+asize*ln(Size) + (b0+bsize*ln(Size))*(Rm-

Rf) + e. Specs 4 and 6 are like specs 3 and 5 with the two Fama-French additional factors. 
 
Panel A: Venture Capital Funds 

  Spec 1 Spec 2 Spec 3 Spec 4 Spec 5 Spec 6
Alpha (%, monthly)  ***-1.25 -0.69     
  (0.05) (0.38)  

a0  ***-2.14 ***-2.08 ***-1.61 -1.05
  (0.22) (0.36) (0.42) (0.78)
asize  ***0.18 ***0.18 0.08 0.02
  (0.05) (0.05) (0.09) (0.14)

Beta_Market  ***3.21 ***2.57 ***2.70 ***2.85   
  (0.22) (0.49) (0.32) (0.52)  

b0  0.15 -0.62
  (1.50) (2.03)
bsize  *0.57 0.67

  (0.34) (0.44)
Beta_SMB  0.99 -0.26  0.46
  (0.78) (0.55)  (0.53)
Beta_HML  -0.56 -0.29  -0.17
  (0.42) (0.33)  (0.34)
      
Number obs.  686 686 686 686 686 686
Error autocorrelation  -0.16 -0.28 -0.31 -0.21 -0.26 -0.27

  (0.26) (0.26) (0.25) (0.25) (0.23) (0.24)
   
Alpha – Small funds  _ _ -1.53 -1.48 -1.34 -1.00
Alpha – Large funds  _ _ -1.30 -1.25 -1.24 -0.98
Beta – Small funds  _ _ _ _ 2.04 1.60
Beta – Large funds  _ _ _ _ 2.74 2.43

 



 

 

 

 

 

Panel B: Buyout Funds 

  Spec 1 Spec 2 Spec 3 Spec 4 Spec 5 Spec 6
Alpha (%, monthly)  0.49 0.13     
  (0.37) (0.44)  

a0  -0.08 -0.35 ***2.63 2.21
  (0.55) (0.77) (0.80) (1.41)
asize  0.07 0.08 ***-0.39 -0.35
  (0.08) (0.07) (0.13) (0.23)

Beta_Market  0.33 **0.94 0.23 0.57   
  (0.38) (0.44) (0.05) (0.54)  

b0  ***-3.37 *-3.16
  (0.68) (1.60)
bsize  ***0.64 **0.64

  (0.12) (0.28)
Beta_SMB  ***-2.05 ***-1.78  ***-1.58
  (0.79) (0.64)  (0.58)
Beta_HML  -0.16 0.13  0.34
  (0.86) (1.13)  (1.00)
      
Number obs.  686 686 686 686 686 686
Error autocorrelation  0.35 -0.08 0.18 -0.18 0.19 -0.11

  (0.30) (0.35) (0.36) (0.35) (0.35) (0.35)
   
Alpha – Small funds  _ _ 0.22 -0.03 1.02 0.77
Alpha – Large funds  _ _ 0.36 0.11 0.32 0.15
Beta – Small funds  _ _ _ _ -0.74 -0.54
Beta – Large funds  _ _ _ _ 0.42 0.60
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Table 5: Impact of final NAV treatment on risk and abnormal return 

This table is like Table 4. Instead of jointly estimating the final Net Asset Value (NAV) and the risk 

profile, it treats final NAVs either as market value or as worthless (written off). Betas and monthly 

alphas are shown with standard errors underneath. 

 

 Final NAV as market value Final NAV written off 

 Venture Capital  Buyout Venture Capital  Buyout 

 Spec 1 Spec 2  Spec 1 Spec 2 Spec 1 Spec 2  Spec 1 Spec 2

Alpha (%) ***-1.08 **-0.60  0.37 0.19 ***-1.27 -0.51  *0.62 0.13

 (0.06) (0.26)  (0.33) (0.38) (0.06) (0.42)  (0.36) (0.62)

Beta ***3.45 ***2.58  0.59 **1.06 ***2.98 ***2.27  0.14 0.75

 (0.17) (0.29)  (0.39) (0.43) (0.28) (0.45)  (0.35) (0.50)

SMB  **1.35  **-1.57 *1.32   **-2.56

  (0.40)  (0.71) (0.78)   (1.06)

HML  -0.34  -0.08 -0.64   0.40

  (0.37)  (0.66) (0.45)   (1.20)
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Table 6: Robustness Tests 

This table is like Table 4. It shows the alpha and beta for a CAPM specification for different empirical 

design. Moment conditions are either weighted by the number of funds of each fund-of-funds (N_funds 

weighted) or by the total size of each fund-of-funds (Value weighted). Parameter estimates are shown 

for different number of fund-of-funds (FoFs), method (PME instead of log-PME), time periods, sub-

sample (US-focused), and benchmarks. Benchmarks include Nasdaq, and Ken French value-weighted 

indices (Small growth 5x5, Europe dollar return, United Kingdom dollar return). 

 

  (N_funds) Weighted Moments  Value Weighted Moments 

  VC BO     VC  BO 

  Alpha Beta Alpha Beta Alpha Beta  Alpha Beta 

             

Default (Table 4)  -1.24 3.21 0.49 0.33  -1.22 3.13  0.06 0.75

     

Number FoFs per vint. year     

Default + 1 (2 FoFs)  -1.38 2.88 0.25 0.31 -1.24 3.12  -0.02 0.82

Default + 2 (3 FoFs)  -1.40 2.76 0.11 0.28 -1.23 3.18  0.03 0.73

Default + 3 (4 FoFs)  -1.38 2.65 -0.10 0.57 -1.23 3.17  -0.02 0.80

     

PME method  -1.20 3.19 0.97 -0.02 -1.15 3.04  0.46 0.41

     

Vintage cut (default is 1993)     

Default + 1 (1980-1994)  -1.24 3.22 0.63 0.16 -1.21 3.14  0.17 0.57

Default – 1 (1980-1992)  -1.26 3.15 0.47 0.38 -1.23 3.07  0.00 0.83

     

US focus only  -1.10 3.55 0.83 0.11 -1.11 3.50  0.37 0.50

     

Other benchmarks     

S&P500 and $-EU index  -0.94 3.76 0.59 0.34 -0.92 3.82  0.46 0.44

S&P500 and $-UK index  -1.10 3.57 0.40 0.47 -1.09 3.61  -0.02 0.87
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Nasdaq  -0.52 1.55 -0.47 1.47  

Small Growth  1.47 1.70 1.43 1.65  



Figure 1: GMM goal function as a function of alpha and beta for the NPV method in a simulated 

economy. 

 

beta 
alpha 

 

 

Figure 2: GMM goal function as a function of alpha and beta for the log-PME method in a simulated 

economy. 
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Figure 3: Fund dividend yields (average of the next 12 months dividend yields of funds in their 4th to 

10th year). Dividend yield is the sum of the dividends paid divided by fund size. S&P 500 returns are 

the 5 years cumulated returns, divided by 5. Time spans 1990 to 2003. 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Jan
‐9
0
Ju
l‐9
0

Jan
‐9
1
Ju
l‐9
1

Jan
‐9
2
Ju
l‐9
2

Jan
‐9
3
Ju
l‐9
3

Jan
‐9
4
Ju
l‐9
4

Jan
‐9
5
Ju
l‐9
5

Jan
‐9
6
Ju
l‐9
6

Jan
‐9
7
Ju
l‐9
7

Jan
‐9
8
Ju
l‐9
8

Jan
‐9
9
Ju
l‐9
9

Jan
‐0
0
Ju
l‐0
0

Jan
‐0
1
Ju
l‐0
1

Jan
‐0
2
Ju
l‐0
2

Jan
‐0
3

S&P 500

VC div yield

BO div yield

 

 50


