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Choe shows producers' stockholding and hedg- expected available supplies, if output and price
ing decisions as a precautionary behavior against risks are negatively correlated. And they should
output and price risks. The traditional view is short-hedge more than the expected available
that producer stocks are held for their conven- supplies, if those risks are positively correlated.
ience yield. Choe's approach explains recent When the futures price deviates from the ex-
just-in-time inventory management and allows pected spot price (futures price bias), speculative
unified treatment of thz precautionary and trading dominates producers' futures positions.
speculative demands for stocks and the use of The demand for futures is highly sensitive to the
futures contracts. futures price bias, while the demand for stocks is

not.
Choe also assumes a more sensible prefer-

ence function so that demand functions for * It is well-known that commodity-exporting
stocks and futures are nonlinear. Stocking and developing countries face great price risk and-
hedging decisions, which are interdependent, are particularly with agricultural commodities-
solved simultaneously. As a result of these uncertain output as well. The optimal stocking
refinements, the optimal decision rules are and hedging rules Choe derives could have
significantly different. practical applications for these countries.

Several useful results emerge from Choe's Earlier analyses that considered only the
analysis: hedging problem typically suggest relatively low

optimal hedge ratios (the proportion of expected
e When both output and price risks exist, available supplies that is short-hedged); this ratio

stocks and futures can be combined to reduce the was also insensitive to expected availab:e
overall exposure to risks (measured by the supplies and to the degree of risk aversion.
precautionary premium or units of output the
producer is willing to pay for eliminating risks). The optimal decision rules Choe derives

suggest that the optimal hedge ratio is likely to
In an unbiased futures market (futures price be much higher than ratios given in earlier

equals expected spot price at the maturity of the studies. It depends on initial endowments, output
futures contract), commodity producers shouid and price expectations, and the degree of abso-
short-hedge (sell futures contracts) less than the lute risk aversion.
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TEE PRECAUTIONARY DEMAND FOR COMMODITY STOCKS

I. Introduction

This paper develops a theory of the precautionary demand for commodity

stocks. It posits that commodity stocks are held for precautionary purposes by

producers, consumers, and intermediate processors, while speculators hold stocks

on the expectation of capital gains from a subsequent price rise. Producer and

consumar stocks usually account for the largest share of commercial stocks' held

at any point in time. For example, at the end of 1990, stocks held by producers

and consumers of copper were 72 percent of all commercial stocks of the market

economy countries. Yet, the theory explaining the behavior of this class of

stocks has not progressed much beyond the concept of convenience yield, first

introduced by Kaldor (1939). This paper proposes an alternative theory. Holding

of stocks by producers arnd consumers is viewed as precautionary behavior towards

output and price risks. As a theory of behavior towards risks, the precautionary

stock demand model encompasses speculative demand by both producers and

consumers. Furthermore, both stocks and futures are treated as precautionary

instruments, in contrast to the dichotomy that only stocks provide convenience

yield while futures are hedging instruments.

Convenience yield has long been the standard explanation for positive stock

holding by producers and consumers when prices are expected to fall. It has been

broadly construed that stocks provide a service by just being there and therefore

command a premium over their market value. The precise meaning of the concept,

however, has not been made clear. According to Kaldor, "the yield of stocks of

raw materials ... consists of 'convenience', the possibility of making use of

them the moment they are wanted." Working (1948, 1949) and Telser (1958)

1 Stocks held by governments (such as U.S. strategic stockpiles) or
international organizations (such as the buffer stocks of the International
Rubber Organization) are considered as noncommercial stocks.
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advanced the view that the mere presence of adequate stocks could lower the costs

of producing a given level of output. Telser further suggested that "holdinq

stocks permits the rate of production or sales to be varied at lower cost than

would be incurred if the firm attempted to purchase stocks an they were needed."

On the other hand, Brennan (1958) and Cootner (1967) emphasized the marketing

aspect; that larger stocks allow flexibility in adapting to changing market

conditions and hence could result in greater revenue. The Working and Telser

interpretation applies to stocks of inputs while that of Brennan and Cootner

relates to stocks of outputs. Regardless, they share the view that stocks impart

a service by just being there, and this service commands a premium.

The convenience yield theory has not advanced much beyond conjecture.

Convenience yield has been presumed to be an increasing function of stock levels,

with the marginal yield diminishing rapidly as the stock level increases.

However, there has not been any attempt to offer a microeconomic foundation to

the theory. As a result, it has not been clear what factors might determine the

shape of the yield curve, nor in what units it might be measured. Further, should

the yield vary between commodities and over time?

Newbery and Stiglitz (1981, p. 196) attempted to define convenience yield

in terms of risk behavior, in essence, as the amount a risk-averse agent is

willing to pay for the marginal unit of stock in excess of that of a risk-neutral

agent. According to this definition, convenience yield can be either positive or

negative, depending on the sign of the covariance between price and marginal

utility. However, negative convenience yield runs counter to the concept

espoused by earlier writers and also cannot explain stockholding at times of

expected price declines.

In this paper, we begin by positing that producers hold stocks as a

precaution against unexpected variations in the output of the commodity. The

greater the quantity of stocks agents hold, the more secure they feel about

-2-



future uncertainty and the less willing they are to pay for the risk. The

reduction in the precautionary premium due to an additional unit of stocks (the

marginal precautionary premium) is expected to decline as the stock level

increases, in much the same way as the marginal convenience yield does. Both the

marginal precautionary premium and the marginal convenience yield should approach

zero as stocks increase to a sufficiently high level.

However, the recent advent of just-in-tim2 inventory management practices

suggests that as long as supplies are available with little chance of disruption,

there is no need to keep a substantial quantity of stocks. The increased use of

this practice suggests that stocks in and of themselves do not render productive

services or cost savings as presumed by the convenience yield theorists -- at

least not large enough to cover the costs of stock carryover. Stocks can be pared

down to the bare minimum if the possibility of disruptions to the smooth

operation of the firm can be essentially eliminated. The implication to be drawn

from this example is that precautionary demand theory is likely to have more

explanatory power for real world data than the convenience yield theory.

The precautionary stock demand model is a two-period expected utility

maximization model under stochastic output and prices, with or without futures

trading. The non-negativity constraint on stocks and the concavity of the utility

function imply a convex demand function for stocks, very much in line with what

the proponents of convenience yield had in mind.

The model has rich policy implications for the commodity-exporting

developing countries in answering questions such as the following: What is the

optimal level of physical stocks these countries should hold and how is this

affected by expectations and risk factors? To what extent should these countries

hedge their future output and stocks using futures contracts? Explicit algebraic

solutions to these questions are provided; such solutions are not elsewhere

available in the literature.
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The theory also has implications for commodity price determination,

including the relationship between expected spot and futures prices. Physical

stocks provide the linkage between the current and expected spot prices of

commodities, while the futures market determines the relationship between futures

and expected spot prices. The model solutions suggest that normally futures

markets will be biased when both output and price risks are present. The

direction of the bias, however. is not certain; the precautionary stock demand

theory does not necessarily support the theory of normal backwardation (the

phenomenon that futures prices tend to be lower than the expected spot price)

despite the presence of a positive precautionary premium.

This paper is divided into five sections. The next section considers the

stockholding problem of a competitive producer that faces only output risk.

Section III extends the analysis to the case where agents face both output and

price risks. Section IV introduces the possibility of trading in futures

contracts as well as in physical stocks. The last section concludes the paper.

IY. Competitive Producer with Output Risk

Consider the case of a competitive commodity producer who has to decide how

much of current output to carry over to the next period. The decision is

complicated by the fact that the producer's expected output in the next period

is subject to random variation. The uncertainty of output is particularly great

for agricultural commodities, but the problem exists for most other products in

one degree or other. For the sake of simplicity, we assume in this section that

the producer knows with certainty the next-period spot price of the commodity.

The competitiveness assumption allows us to derive the producer's storage rule

taking prices as given.

Output uncertainty is assumed to arise from purely random factors, such as
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weather and accidents. It raises problems for producers in at least two ways.

First, given the price output volatility implies revenue volatility. A large

revenue shortfall, if unprepared for, can neceesitate a producer having to make

costly adjustments to planned operations. Second, the producer has to cope with

the inability to satisfy customer demands or meet other contractual obligations.

Possible consequ .ices of failing to meet these demands include damage to the

firm's reputation as a reliable supplier; alternatively, the cost of quickly

finding substitutes could be high. One way of dealing with a potential output

shortfall is to maintain a cushion of physical stocks. This is an age-old method.

Grains have been routinely stored as a precaution against bad harvests (an old

example is the story of Joseph in Egypt). A more recent example is the strategic

stockpiling of petroleum in the wake of the oil price shocks. The critical

question in all of these cases is what should be the optimal level of such

stocks.

Consider a producer that operates for only two periods, the current period

(period 0) and the next period (period 1). At the end of the current period, the

producer knows the quantity produced during that period, Q., and the stocks

carried over from the preceding period, I0. Let AO = QO + XO, the total amount of

the commodity available to the producer at the end of the current period. Before

the beginning of the next period, the producer has to decide how much of AO to

sell and how much to carry over to the next period. If the producer sells SO,

then stocks carried over to period 1 are It = AO - SO. The equality implies that

commodities always have a positive value and therefore are not wasted.

As of period 0, the producer's output in period 1 is an unknown quantity,

5, where the tilde indicates that it is a random variable. We assume that

+ = , E(0) = 0, E(02) = n. E(.) is the expectation operator. In period 1,

the firm will have at its disposal the realized output during that period, plus

stocks carried over from the previous period, minus storage costs and wastage.

Thus, Li, + aIl, 0<6<1, where 1-6 is the proportion lost due to wastage and
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storage costs. Because of the two-period construction, we assume that the

producer sells the entire quantity of commodities at hand before the end of

period 1; i.e., SI = Al.2

The producer's revenue in each period is equal to the quantity of sales

times the price. We assume that the producer consumes all his revenues in each

period. Let CO and Cl denote the producer's consumption in the respective periods.

Then,

Co = PoSo = Po (AO -11)

el = Pig, = P1.( 1 +6I 1 ) (

The producer chooses the level of II so as to maximize

Max J = U(Co) + PEo V(( 1), O<P<l,

8.t. (1), O0I1sAO, (2)
2S, 00, Q03, Po, P1 given.

U and V are period 0 and period 1 utility functions, respectively. Eo denotes

expectation based on information available in period 0, and P is the time rate

of discount. The utility functions are assumed to be continuously differentiable

and are strictly concave; i.e., U',V'>O; U/1,V11<O; U"/',V"'1>O. It is assumed that

the producer can neither borrow nor lend physical stocks.

2 If the producer remains in business after period 1, it would be necessary
to allow for stock carryover to period 2. This essentially calls for an
extension to the multi-period case. Such an extension, however, has been feasible
only for a restricted class of utility functions that imply undesirable risk
behavior. Kimball (1990b) has shown that solutions of a two-period optimal
savings model closely mimic those of its multi-period counterpart. The two-period
moCel examined in this paper can also be viewed as the optimization problem of
the final two periods of a finite-horizon multi-period model. In fact, a
numerical solution of the multi-period problem can be obtained by using the two-
period stocking rule backwards iteratively, starting from the terminal year.
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Differentiating (2) with respect to II and setting the result equal to zero

yields the first order condition for the maximum:

POUI (CO) 28 8PI Eo VI (01) (3)

= If O<11<Ao0

where AO is assumed to be a positive number. When an interior soluticn obtA4n1s,

the marginal utility of consumption in the current period equals the expected

marginal utility of consumption in the next period discounted by the discount

factor, storage cost, and price differential.

When the expected next-period output is sufficiently large compared with

the current availability, it is possible to have a corner solution at I-O.

Actually, the producer may wish to carry negative physical stocks, if possible.

Thus, at I=O, the non-negativity constraint would have a positive shadow

price, equivalent to the net gain in utility by increasing current consumption

beyond A0 (by borrowing from next-period output). The other possible corner

solution is 11=AO, but this can be shown to be suboptimal. Under the assumption

that U(.)=V(.), if Il=A,, then,

J IX.-A = U(O)+PEOV(21+8AO)

U (AO) +PE0V(01) = J+Ao

Thus, under the circumstances postulated, Il=Ao is suboptimal and therefore will

not be attained.
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A. Precautionary Premium

To focus on the producer'I behavior towards risk, !.t is useful to introduce

the concept of precautionary premium. The concept also helps us solve che

stochastic equation in (3). Write out the expectations term of (3) and postulate

that there is a premium, ir, in units of next-period output, that the producer is

willing to pay to remove the output uncertainty; i.e.,

V1[P1 (Q1-I+811)J E0 V
1[F1 (Q1. .8I) (4)

In the terminology of Kimball (1990), it is called the equivalent precautionary

premium, in the sense that the certainty equivalent of J is Qi-s .

The above definition of precautionary premium is a direct extension of

Arrow and Pratt's equivalent risk premium. An approximate expression for it can

be found in much the same way Pratt (1964) used to derive an approximate formula

for equivalent risk premium. Applying Taylor series expansion on both sides of

(4) and rearranging terms yields

-9 (Pi*Q, I,Xi, Oe) -2° j o ,t5

where C=(Q>8I1 )P1 . Note that w>0 as long as V is strictly concave.

The precautionary premium measures the sensitivity of the decision

variab's, Il, to risk, wher.as the risk premium measures the degree of risk

aversion. Kimball defines -Vm/VV" as the index of absolute prudence, a measure

of precautionary motive, in much the same way Arrow-Pratt defined -V"/V' as the

index of absolute risk aversion. The higher the absolute prudence, the hicher the

precautionary premium, and the higher the precautionary demand for stocks.
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Kimball shows that -V'II/Vlk -VI/ V, if the index of absolute risk aversion

declines as income increases. Thus, under the declining absolute risk aversion

utility function, considered by many as more realistic than the case of constant

absolute risk aversion, absolute prudence is greater than absolute risk aversion.

Therefore, the precautionary motive to hold stocks could be quite strong.

Convenience yield represents cost savings or revenue gains due to the

(intangible) services provided by stocks. As such, it is conceptually different

from the precautionary premium which specifically limits the service provided by

stocks to risk reduction. Since stockholding is a precautionary behavior toward

risk, a risk-neutral agent will not hold precautionary stocks, nor will a risk-

averse agent when there is no risk.3 The convenience yield theory predicts

stockholding in both situations. Convenience yield is a function of the current

stock level while the precautionary premium is a function of the next-period

output and price variability. As a result, the precautionary stock demand model

has richer dynamic implications than the convenience yield model.

B. Solution with the Constant Relative Risk Aversion Utility Function

Substituting (4) into (3), the first-order condition becomes

3 Newbery and Stiglitz (1981, p.196) show that a risk-neutral agent will
hold stocks under output and price risks if

P=EV/

is positive. They define 4 as the measure of convenience yield. However,
according to this definition, a risk-neutral agent will not hold stocks if there
is only output risk and no price risk, because 4 becomes zero. Clearly, this
definition is not general enough to make convenience yield a theory of stock
holding under uncertainty.
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Po U'EPO(AO-II.)] P8 P1 V'[P1(U1+8x1,-n) (6)

From here on, we ignore the fact that r will be approximated by (5). Note that

(6) is a deterministic equation; the use of the precautionary premium allowed us

to convert a stochastic equation into a deterministic cne. This is, in fact, the

standard method of solving stochastic dynamic optimization problems.

Equation (6) can be solved for Is under specific assumptions about the

utility function. In this and subsequent sections we assume that the relevant

utility function exhibits constant relative risk aversion (CRRA), which takes the

form:

U(C) =C -o<)-l. (7)

The index of relative risk aversion is given by -CU"/U'=A, which is constant.

The index of relative prudence is given by -CU'/U"=1+1, which is also constant

and greater than relative risk aversion. If 1=0, CRRA degenerates into a linear

function, implying risk neutrality. If A=1, CRRA becomes the logarithmic utility

function that exhibits unitary relative risk aversion. If A<0, the utility

function becomes convex, implying that the agent is a risk lover. Henceforth, we

limit our analysis to the risk-averse case, O0<l<. Within this range, the higher

the value of 1, the greater the degree of risk aversion and prudence. With CRRA,

the indexes of absolute risk aversion (1/C) and absolute prudence ([l+;A]/C)

decline as consumption increases.

Two other important classes of utility functions widely used in the

literature are the constant absolute risk aversion (CARA) utility function and

the quadratic utility function. Most previous studies have used the CARA because

it lends itself to mean-variance analysis and hence to explicit solutions for the
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demands for stocks and futures. However, because of the constant absolute risk

aversion assumption, the resulting demand equations are linear in prices (see,

for example, Newbery and Stiglitz). In the following sections, it will be seen

that, with CRRA, demand equations are nonlinear in prices, which is intuitively

more appealing than the linear version. The quadratic utility function is ruled

out because it implies zero precautionary premium and therefore is unsuitable for

modeling precautionary behavior.

For the sake of simplicity and without loss of generality, assume that U

and V are both CRRA utility functions with the same A. The precautionary premium

in this case is approximated by

(1+A) o2 (8)
2 (0 +6I,)

Given the index of absolute prudence, the precautionary premium is an increasing

function of the variance of output and a declining function of the expected

output in the next period and stock carryover.

In the case of CRRA, the first-order condition (6) for an interior solution

is

Po1PO(AO-1 1 ) 1] - 6P 1 E[P1 (Q, .8I1 -n) -A. (9)

Substitute (8) into (9) and rearrange the terms to get a quadratic equation in

XI, which has the following two real solutions:
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I 8Ao-(1+2y8) Qli,*r (10)

where

( aY W( PO

q= (Q 1 +8AO) 2 +25y(1+8y) (l+)q2.

Non-negativity of Il requires that if a negative solution is obtained, then XI=0.

This constitutes a corner solution. Of the two solutions above, the one with the

negative square root term produces a negative solution for IX for a wide range

of reasonable values of variables and parameters. The other solution with the

positive square root term mostly produces a positive solution but a negative

solution is also possible for some extreme values of the variables and

parameters. When two solutions of (10) are put together, the optimal solution

will consist of a segment where XI=0 (corner solution) and a segment where XI>0

(interior solution). Henceforth, we focus on the interior solution.

A sufficient condition for obtaining an interior solution from (10) is

A&>P30. That is, producers will not carry stocks to the next period if the

expected next-period output is sufficiently larger than the currently available

supplies.

C. Sensitivities

What is the effect of output uncertainty on stockholding behavior? To

answer this question, suppose that the producer has perfect foresight regarding

next-period output. For such an agent, ae=O in equation (10) and it simplifies

to

-12-



IPf A=- 1Y. (11)
l+Y6

where the superscript (pf) denotes the case of perfect foresight. Stock holding

in this case is for the purpose of optimally allocating consumption over time in

a certain world. The condition for zero stock carryover in a certain world is

AO=yQ1, or

PI = ( Ao)

If Ab=Q1 and the agent is risk neutral, then the above becomes

pi = (6)'. (12)

Equation (12) is the intertemporal arbitrage condition for speculators in a

certain world.

It can be easily verlfied that 4-I =,q- (Q1 +8A0 ) >0. That is, the producer

holds more stocks under output uncertainty than under output certainty. We call

II-I°t the precautionary stockholding, the size of which depends on

28y(1.Oy) (1.)a8. Note that this term contains the numerator of the expression

for the precautionary premium in (8). Thus, the larger ae, the larger the

precautionary premium and the larger the precautionary stock demand. This

confirms the earlier statement that the precautionary premium measures the

sensitivity of stockholding to output risk.

The relationship between optimal Il and AO implied by a complete model of

a commodity market is known as the competitive storage equation, and has been the
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subject of investigation by Gustafson (1958), Deaton and Laroque (1990), and

Williams and Wright (1991), among others. The precautionary stock demand model

in (10) represents a competitive storage equation if prices in the equation clear

the market. An important feature of the equation is that it is nonlinear in AO.

To see this more clearly, differentiate (10) twice with respect to AO to get

MPS - a- 1+(Q1+8A0)q2 > o

TA0 2(1+y6)

1 ~~~~~~~~~~~(13)
a2 l 8q 2[1-(01+8AO)2q-1>

> 0,
2 (1+yb)

where the first partial derivative is recognized as the marginal propensity to

store (MPS). MPS is positive and increasing as a function of AO, confirming the

nonlinearity.

An interesting question is how MPS changes in response to output risk. To

find out, differentiate MPS with respect to O,

_ _ _ _ _ - 3 0

aay(14A) (Q1 +8A0) q 2 < ot (14)

where the negative value results from the declining absolute risk aversion

property of CRRA. There are two different ways of interpreting (13). First, it

says that MPS will be lower the higher the output risk. Second, the producer will

be less sensitive to output risk the greater the initial endowment (or wealth).

The second interpretation is intuitively easier to understand than the first,

although the two are equivalent.

Analytic expressions for the sensitivity of stockholding with respect to

the other variables and parameters are not simple enough to reveal their signs.
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Partial derivatives of (10) with respect to Q 1 8, 5,P 1 , for example, can be

easily derived but their signs are not immediately clear. However, it should be

expected that an increase in Q1 will reduce stock demand, while an increase in

P1 (a decrease in y) will increase it. The higher the cost of storage (the

smaller the 6) or the higher the time rate of discount (the smaller the 0), the

lower the demand for stocks. These expectations can be easily confirmed by

numerical simuiation for the appropriate range of values.

III. Competitive Producer under Output and Price Risks

In reality, producers usually have to deal with both output and price

risks. When this is the case, the problem is complicated by the fact that the act

of stock carryover in effect removes commodities from sale at a certain price in

the current period for sale at an uncertain price in the next period. Stocks,

therefore, increase exposure to the price risk, while reducing exposure to the

output risk. The problem is to find the optimal combination of the two. For the

moment, we ignore the possibility of hedging the price risk through futures

trading.

Since Muth (1961), the competitive storage literature has focused on the

speculative demand for stocks under price uncertainty. Little has been done about

optimal stockholding under output and price risks, with or without futures

trading. In this and the next section, we derive the optimal stockholding and

hedging rules for risk-averse producers.

A. The Precautionary Premium and the Optimal Stocking Rule

For a price-taking competitive producer, the market price of a commodity

may be taken as a random variable independent of his own sales or stock-holding
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decisions. We assume that , Pt+E, where E(E1) P (,E) E(g2)02. We do,

however, allow for certain covariance between output and price disturbances;

i.e., E(M§)-paOaG,. I

With output and price risks, the next-period consumption is expressed as

A 4 PA = A.O:l+8xd)

while the current-period consumption remains the same as in (1). The two-period

optimization problem in this case can be stated exactly as in (2). The first-

order condition for the optimum is

Po UJ(CO) k P8 E0 PIV'(4),
= if I4'O.

When both price and output risks are present, the equivalent precautionary

premium is defined as the payment in units of output the agent is willing to make

for having both 0 and I eliminated from (15). Let u represent the equivalent

precautionary premium defined by

PlV[plQl-++dl)] E B (Fj-9)VI[(T,+I)(Q$+I) (16)

where the supercript (*) stands for the case when output and price risks exist.

In order to derive the approximate expression for ', apply the Taylor-series

' Even under competitive conditions, a producer's output level could show
non-zero correlation with market prices if the random disturbance on output
applies to a large segment of producers; bad weather is a good example. An
extension of the model to the case where the market price depends on the
producer's sales decision or actual output level in the second period will
complicate the algebra but not the substantive part of the analysis.
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expansion on both sides of (16) around n*=O, 0=0, 1=0 to get

TIV07 [P(l8I S) X F3'V/(ZF3) =V/(,)

EO(P7§3.fV/E(F1+1) (5.+0+8Xj)] 

+- (52)P1V (cE) o(DE) [2(V 'I) ]

2( 12) 12V///(E + E (12) (Qi+8X1 ) [V'1 (ClV+l(C1 ) ]

and solve for n*

-(2p:.aca, C 1 - P*ea,QcF + a!P1 V'11+ (C) (17)
1P P P1 2 P 2 V"(C1)

where 4F= (QF8+8IZ). The precautionary premium for output and price risks is

larger (smaller) than the sum of precautionary premia for output and price risks

separately, if the covariance between output and price risks is positive

(negative).

To derive a closed-form solution for the optimal stocking rule, we assume

a CRRA utility function. Using -CZ1 11/V'=1+1 in (18), n* for CRRA is

pa0a8(l_A) o2(:_X)C1 oa2(I+X) (18)

Pi 2P� 2 C,

The optimal solution for X1 can be obtained from substitution of (18) into (16),

and the resulting expression into (15). The result is again a quadratic equation

in XI, which has two real solutions
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1 8AO.(1+2ay *)Q±b-: 8*TI (19)
28 (1ay'8)

where wee =. EQ1 *8(-by ) 2 +4cy 8(1+ay *8)

Yb 8

as

p 1

a =1+ 2

b p,a(1+1),

2

By the same logic as in the case of equation (10), the optimal interior

solution is likely to be given by the solution with a positive sign for the

square root term in ( 1 9 ).5 Note that if only the output risk is present, (19)

collapses to (10).

B. Speculative Demand for Stocks

When both price and output are uncertain, the producer's demand for stocks

consists of two components: the precautionary part and the speculative part. If

the price is expected to rise, stocks provide the opportunity for profits as well

as insurance against an output shortfall. In this case, both speculative and

precautionary demands will be positive. If the price is expected to decline, the

speculative demand will be negative while the precautionary demand will still be

S This statement requires the assum.ption that 0<1<1, a>0 and b>O. This

shows it is unlikely that we can obtain a positive solution for I, with -

in (19).

-18-



positive. To what extent will the speculative behavior affect the precautionary

demand?

The terms in (19) do not easily separate into the two components. To

measure each component, assume that the producer faces only the price risk and

that the output level is known with certainty. Output certainty Implies aO=O

and, hence, b=c=0. Then, (19) reduces to

IpXrAO-aY'Q 1 (20)
1+ay'8

where the superscript (pr) denotes the case of price risk only. Subtract (20)

from (19) to get

=I-IIpr= -(I+j8A,+by5) +~q
1 11 ~~~2 8(I+ay'8)

where the superscript (pc) denotes the precautionary component against the output

risk.

Not all of IPr is the speculative component of the stock demand because

the agent would hold some stocks even at zero expected profits. To separate the

speculative component from (20), suppose the arbitrage condition (12) holds under

perfect foresight. Then, (20) reduces to

,I,= Ao- (pa); Q15 (21)

where the superscript (ia) denotes stock demand purely for the purpose of

intertemporal allocation of consumption. Stock demand represented by (21)
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contains zero speculative element. Define

(.Q1+8A0 ) [ (P8) -- ay*](2
Is - IX -1 = (l+ay8)(1;-1) (22)

as the speculative component (ap) of the stock demand. Note that the speculative

demand will be positive, negative, or equal to zero depending on whether (8) -1

is greater than, smaller than, or equal to ay'. The intertemporal arbitrage

condition under price uncertainty is given by the zero speculative demand

condition, (P8)1I=ayt, which can be rewritten as

08) =( -1[1 %-) 62]. (23)

One can immediately note that the term in the square bracket above

represents the precautionary premium for price risk. Speculative demand for

stocks will be positive onll If the expected next-period price is greater than

the current spot price by a sufficient margin to cover the precautionary premium

for the price risk, in addition to the cost of storage and time rate of discount.

Collecting the components of the stock demand, we have

Note that total stock demand has to be non-negative, but not all individual

components need to be positive.
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C. Effects of Price Risk

What impact will price uncertainty have on stock demand? Will agents hold

more or less stocks under price and output uncertainty than under output

uncertainty alone? To answer these questions, one can compare (10) and (19) or

differentiate (19) with respect to 6,- Neither exercise, however, reveals a

clear answer a priori. Under price risk, stocks reduce exposure to the output

risk at the cost of increasing exposure to the price risk. Therefore, it could

be expected that the presence of price risk generally will dampen the demand for

stocks. However, the issue is more complicated than that because of the

correlation between price and output risks.

To find the impact of price risk, we use the numerical method with

plausible ranges of values for the parameters and initial conditions in equations

(10) and (19). Figure 1 shows the difference in stock demand, IX-XI for a range

of price variability. It turns out that if the price and output risks are

positively correlated, the additional price risk reduces the demand for stocks.

If the two are negatively correlated, the demand for stocks first increases as

the coefficient of variation of price risk increases and then declines after a

certain point. This is because an increase in price risk increases the overall

level of risk exposure if price and output risks are positively correlated, but

if the two are negatively correlated there is a high enough price risk at which

the overall level of risk exposure is smaller than at a low price risk.

As in the previous section, define MPS by

PS = l +[Q 1+8(Ao0 by)]/./. (24)
m aA 2(1+ayO)

A sufficient condition for a positive MPS is A 0>by*, which will hold for a

reasonable level of au or if p<O. Thus, under both output and price risks, the
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Figure 1: Effect of Price Risk on Storage
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competitive storage equation retains the positive slope for most situations.

Differentiating (24) again with respect to A. yields an expression similar to

(13), which can be shown to be positive. Thus, the nonlinearity of MPS is also

maintained under output and price risks.

To find the effect of the price risk on MPS, one can compare (13) and (24)

or differentiate (24) with respect to 6,. Neither, however, reveals the impact

unequivocally. Again, numerical calculations show that, for all possible ranges

of values for parameters and variables, MPS declines as 6, increases,

regardless of the value of p.
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IV. Precautionary Stock Demand under Futures Trading

Since futures contracts are available for a wide range of commcdities, it

is important to investigate how precautionary behavior adapts to futures trading

opportunities. Futures contracts allow agents to lock in the next-period price

in the current period, thus eliminating the price risk. Implications of futures

trading for commodity production and storage, and for market equilibrium in

general, have long been the subject of investigation. Past research has focused

on the effects of futures trading on production, market efficiency under futures

trading, and the use of futures for risk reduction and revenue stabilization. In

this section, we focus on derivation of the optimal storage and hedging rules

under output and price risks. These rules allow us to better understand the

nature of futures prices in relation to price expectations and risk behavior. We

also show how these rules differ from those of previous studies derived under

more restrictive assumptions.

Futures contracts have been considered primarily as an instrument for

hedging against price risk. Their use, however, is not so limited. Futures are

used e'tensively as a speculative instrument. For a producer facing output and

price risks, short hedging with futures reduces price risk but increases exposure

to output risk because the firm has to deliver the quantity hedged out of its

stocks at the contract's maturity or buy out the contract at the prevailing

market price. Physical stocks reduce exposure to output risk but increase

exposure to price risk. Under futures trading, exposure to output risk can also

be reduced by long hedging, by which means the agent can essure delivery of the

commodity. However, a long futures position increases exposure to price risk

because the quantity hedged may have to be sold at a yet uncertain price.

What is the optimal level of hedging for a producer facing both output and

price risks? The problem is more complicated than the case of price risk only

because the agent should take a short position to hedge against the price risk
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and a long position to hedge against the output risk. There is an apparent

conflict. Furthermore, the agent can use physical stocks to hedge against the

output risk. Optimal hedging rules for futures under output and price risks have

been investigated by Rolfo (1980), Newbery and Stiglitz (1981), and Anderson and

Danthine (1983), using the CARA utility function. These papers show that the

optimal hedge consists of a speculative component that depends linearly on the

futures price bias and a hedging component that depends on the correlation

between revenue and price. Marcus and Modest (1984) derive a multi-period optimal

production rule for risk-neutral agents under output and price risks and futures

trading. They find that the optimal production rule does not differ much from

that under price risk alone. This section provides explicit solutions for optimal

futures and stock positions simultaneously, under both price and output risks.

A. Optimal Hedging and Storage

Without loss of generality, let us assume that futures contracts do not

require margin deposits and transactions costs are zero. Then, a futures contract

entered into in the current period does not affect current-period consumption.

Unlike physical stocks, it cannot be used to allocate consumption over time.

Any profit or loss from futures trading materializes in the next period and

affects the next-period consumption by

6, = .6, 03. + 8 IfI +xI) -PfX, (25)

where XI is the futures position taken in the current period, for contracts

maturing in the next period. The agent is long on futures if X1>0, or short if

X1<0. Pf is the futures price of the commodity.

The agent's optimization problem is to maximize .7 in (2) with respect to
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iJS . . dl| 

Il and Xi, subject to (25) and initial endowments. The first order conditions for

the maximum are

POUI(C) P8EOPV/(C)

4 i loo, (26)

EoV, (el,) (Pi -P) = O 

The second condition above should hold as an equality for all values of XI and

non-negative values of Xi.

As before, the equivalent precautionary premium can be defined ar the

payment, if, in units of output that satisfy

[ I(QF+611-nf) + (P-Pt) Xl] = EOP1V'[P +8Il)+( P-P 2 )X1 ], (27)

where the superscript (f) denotes the case of futures trading. Again, using the

same steps as in (16), nz can be approximated by

f - (2pCO6.+X16) - 7 Al( 2+lo22 (28)Po*._ 2 10 (28)1

where = and A1=Q1+611 +X1. To solve (26), it is necessary

to use an approximation of P. EOV'(4). Let

Pf V'7P1 (Q1 +8.r-a
2 ) +(P1 -P2 )Xj = P2 EoV[LP(O1+8I) +(li-P2)Xl], (29)

then
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-rr r _ p o + - (Po(a.v+ 1 Y2(C (30)
2 2 ~VI' (C1)

Now we can substitute (27) through (30) into (26) to express the first

order conditions in terms of certainty equivalents. We again assume a CRRA

utility function. The two first-order conditions can be combined to express Xi

in terms of IX

Xl (AO-.T1) - (51.5I ) - dPO (31)

where 4. Ty~2PJ[- T~ Je =(pa) 16_-2 PO -1) [(1O PO)<

Equation (31) provides the optimal hedging rule, given XI. It consists of

three components. The first term in (31) is the speculative component that

depends, among other things, on the spread between the expected spot and futures

prices. The second term represents the pure hedging component that reflects the

agent's precautionary behavior against the price risk. The third term is what

Anderson and Danthine (1983) called the hedging adjustment term (HAT) to account

for the correlation between output and price risks.

In an unbiased futures market, in the sense that P=,P1 , the expected

capital gain from buying or selling a futures contract is zero. Therefore, there

will be no speculative demand for futures. In (31), the speculative component

is zero if and only if P,=Pl (note that 4=0 if P,=P1 ). This result is in

agreement with that of Anderson and Danthine (1983), among others, derived under

the CARA assumption. In a biased futures market, the producer's speculative

demand is positive or negative depending on whether the expected spot price is

higher or lower than the futures price.
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The second and third terms in (31) reflect the agent's precautionary

behavior. If the futures market is unbiased and output risk does not exist, the

first and third terms in (31) vanish and the producer's optimal futures position

will be short hedging the entire expected output plus stocks carried over net of

stocking costs. Under output uncertainty, however, the producer should short

hedge more or less than completely, depending on whether HAT is positive or

negative. The presence of HAT in (31) is the result of introducing output

uncertainty and the covariance between output and price risks, and was recognized

earlier by Newbery and Stiglitz (1981), Rolfo (1980), and Stiglitz (1983). The

sign of HAT depends on that of p. If the price and output risks are negatively

correlated and output falls below expectations, the producer will have to make

up for the shortfall by buying at a higher-than-expected price. Thus, the

producer needs to take precautionary measures by hedging less than completely.

If the price and output risks are positively correlated and output falls short,

price will also fall below expectations. The producer will be able to close the

short futures position at a lower-than-expected price. Thus, the producer does

not need to take a precautionary measure; instead, it is better to short more

than completely in order to take advantage of the opportunity for capital gains.6

Using (31) in (26) yields an explicit solution for II in terms of exogenous

variables and parameters. Since the first-order conditions involve two nonlinear

equations in two unknowns, the solution becomes very complicated. To simplify the

expressions, let

Then,

6 Anderson and Danthine noted that the presence of HAT alters some of the
earlier results concerning producer behavior under output uncertainty. They
showed that output uncertainty does not necessarily reduce the amount of hedging
by producers or the level of expected out. Further, they argued that the
availability of futures trading does not necessarily increase the planned output
of producers, in contrast to what Holthausen (1979) and Feder, Just, and Schmitz
(1980) showed for a producer facing price risk. Our model, with appropriate
extension, could corroborate the Anderson and Danthine proposition.
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21 ( ~~~~~~~~ppo ) ( po )

(I-( -8,(e2 (I -C) <t,I(

(0 S (1-C) v+( s= (I -C) 0-*,

T'=2 (1-C) 0-*, K.=pa86, [1-2(_C) 6;2]

£ 2d q (32)

where

d = a2_ wA(1+A). ) (6.)2,

h = -2(o[(1-C) ¢A 0 +CUQ] +* [EA*+-QC]

+. ( 1 +1) A0 (46,) 2 + ( 1-) paqo, [2 (1-C) ¢_4¢-,2_] +6(,

qe [CT* (AO+U1) b+(e+ (1-C) 4pGP6,3 2_24 [(C (86A+) +YQ

1 (C (1-C) t- .. (1+A) C (40,) 2) (8A0+Q1 ) -8C (1-C) ((2 (1-C) -62) ,-') pa66g1J

-4d(pO 0 ) 2 21+ 12+(I-C)26o-2] 22

B. Speculative Behavior and the Theory of Normal Backwardation

When both futures contracts and physical stocks are available, an agent can

speculate with either or both. It is immaterial which instrument is used as long

as the expected returns are the same. However, since physical stocks incur

storage costs while futures contracts, by assumption, do not imply transactions

costs, there is little reason for agents to speculate with stocks. Normally, spot

and futures prices move closely together, thus allowing speculators to focus on

futures contracts as the main speculative vehicle. Indeed, the optimal stock

demand given by (32) is insensitive to changes in price expectations in relation

to spot and futures prices, while the demand for futures in (31) is highly
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sensitive. Figure 2 shows the optimal solutions for stockholding and the futures

position for a hypothetical case, for a range of values for the futures price

bias, defined as the expected spot price minus the futures price. A negative bian

indicates contango, while a positive bias represents backwardation. It is shown

that as the market shifts from contango to backwardation, the agent moves rapidly

from a large short position to a large long position. Stock demand, however,

remains relatively stable. The result confirms the conjecture that futures

become the main speculative instrument when futures trading is available.

Figure 2 also plots the precautionary premium against futures price bias.

The premium is large when the bias in absolute terms is large and reaches a

minimum near zero bias. In fact, the precautionary premium would have been

exactly zero at the point of zero futures price bias (unbiased futures market),

had there not been output uncertainty. This is so because the producer faces zero

risk in an unbiased futures market with output certainty; the producer can

completely eliminate the price risk by using the futures price. It can be seen

that the effect of HAT on the precautionary premium is probably relatively small.

It can also be seen that the precautionary premium can be large when the futures

market is in substantial backwardation or contango, resulting in sizable futures

positions.

More formally, the precautionary demand model presented in this section

implies a relationship between the precautionary premium and futures price bias.

Equations (31), (32), (27), (28), and (26) imply

f( .P1 -Pf I Q1 gAP 0o,P,68, X, 0iO) * 0. (33)

The implicit function (33) takes a complicated form and it is not feasible to

show analytically the importance of the precautionary premium in explaining the
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Figure 2: Futures Demand and Precautionary Premium
as a Function of Futures Price Bias
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futures price bias. However, judging from Figure 2, two features of (33) stand

out. First, the precautionary premium could vary considerably across the spectrum

of futures price bias. Second, most of the variation in the precautionary premium

results from changes in the futures position.

When the market is in contango and the agent is short hedged, the amount

of precautionary premium the agent is willing to pay increases as the short hedge

position increases. The increase in the precautionary premium for an additional

unit of short hedge position may be called the marginal precautionary premium
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(MPP)O Similarly, MPP can be defined for the region of backwardation. Figure 3

plots the MPP implied by Figure 2. MPP is negative when the agent is in a short

hedge position, meaning that the precautionary premium increases as the short

position increases. It is positive when the agent is long on futures. Note that

MPP is a nonlinear function of the futures price bias but falls below the 45

degree line. When the market is in contango, the agent needs to be paid MPP for

shorting an extra unit of futures, but the market compensates him by only as much

as P.-PF . In Figure 3, the latter is smaller than MPP in absolute terms for a

wide range of futures price bias, meaning that the agent is willing to go short

to a greater extent than the market compensates him for his risk taking. For a

significant range of backwardation, MPP is smaller than P1 -P2 , meaning that the

agent wants to be compensated by more than the precautionary premium to take up

a long position.

In all, a substantial part of futures price bias is accounted for by the

precautionary premium, although the proportion varies depending on the agent's

futures position. The producer will be a short hedger for a wide range of futures

price bias, but could become a long hedger if the expected spot price is

sufficiently higher than the futures price.

C. Effects of Futures Trading on Storage

First, we ask the question whether agents will hold more or less stocks,

speculative and precautionary, under futures trading than without it. Prima

facie, it may be argued that since futures contracts offer costless means of

reducing the price risk, the producer can reduce the overall level of risk

exposure under futures trading compared to the situation where futures trading

does not exist. The producer's precautionary premium under futures trading will

be smaller than without it. To simplify, suppose the futures market is unbiased,

then *=O, C=1, *= 1 , -=@=-&=4= =- I, X- Kp
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Figure 3: Marginal Precautionary Premium
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and (32) reduces to

IS 8Ao- (1+28YO) Q1-6Y*pO..ve (34)
26 (1. 8 y")

where
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uf = (61+8AO)-6Y"po0 8d, 2 +28y*(1+8y') (1+) ae,

and the supercript (uf) denotes the case of an unbiased futures market.

First, let us compare (34) with (10) where there is no price risk. The two

look strikingly similar in that the price risk factor appears only in conjunction

with its correlation with the output risk and not as frequently as in (19). This

result reflects the (price) risk-reducing role of an unbiased futures market.

Comparing (34) with (10), it is immediately clear that I1 >I1 if p<O and vice

versa. That is, if p<O, the price increases when output falls short and the

producer can sell stocks at a higher-than-expected price. Therefore, the producer

would want to hold more stocks than in the case of price certainty. Recall that

an unbiased futures market does not afford the producer complete elimination of

the price risk if the output risk is present. On the other hand, if p>O, stocks

will face lower-than-expected prices when output falls short, thus reducing the

incentive to hold stocks. Thus, the optimal response is to reduce stockholding

but increase the short futures position.

For the more general case when price risk is present, (32) should be

compared with (19). However, the relative size of the two expressions is

difficult to ascertain algebraically. Figure 4 depicts the differences in stock

demand for a range of price risks. It is clear that the producer generally holds

more stocks under futures trading than without it. Also, the greater the price

risk, the more stocks the producer holds under futures trading. There is a minor

exception to this when the covariance is highly positive. The reason for this is

that the producer usually finds it desirable to short hedge expected output and

stocks to reduce the price risk and cover the increased exposure to the output

risk by increasing stockholding.

-33-



Figure 4: Price Risk and Storage with Futures
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V .Conlusions

This paper presents a formulation of the producer demand for physical

stocks and futures as a form of precautionary behavior. This formulation

overcomes the difficulties in the traditional explanation that involves

speculative demand on the one hand and convenience yield on the other. The model

provides simultaneous solutions for optimal stock carryover and futures positions

for a producer facing output and price risks. As such, it could be useful in

practical applications, including developing countries that rely on exporto of
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primary commodities.

When both output and price risks exist, stocks reduce exposure to the

output risk but increase exposure to the price risk. The resulting stock demand

equation explains a combination of speculative and precautionary demands for

stocks, overcoming the shortcoming of earlier models that failed to recognize the

simultaneous existence of output and price risks. Stock demand under output and

price risks could be larger or smaller than under output or price risk alone,

depending on the sign of the correlation between the two risks. The precautionary

premium also depends on this correlation and drives a wedge between current and

expected spot prices.

Futures contracts are a useful hedging and speculative instrument for

commodity producers and its availability lowers the precautionary premium agents

are willing to pay. In an unbiased futures market, commodity producers should

short hedge more or less than completely, depending on whether output and price

risks are positively or negatively correlated. Since producers usually should

short hedge, and this increases exposure to output risk, it is necessary to

increase stockholding under futures trading. The precautionary premium is non-

zero in an unbiased futures market. The demand for futures is extremely sensitive

to futures price bias, but the demand for stocks is not. In a biased futures

market, the precautionary premium could be large and be the main component of the

bias.

The optimal hedging rule derived in this paper could have useful practical

applications for developing countries heavily dependent on exports of primary

commodities. It incorporates improvements on earlier models in at least two

areas. First, it assumes a sensible preference function that yields nonlinear

demand functions for stocks and futures. Second, it solves stock-holding and

hedging decisions simultaneously. These refinements lead to optimal hedging rules

significantly different from those in earlier studies. For example, Rolfo's
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(1980) results for cocoa-producing developing countries suggest relatively low

optimal hedge ratios that are insensitive to output and stock levele, and to the

degree of absolute risk aversion. Increased exposure to output risk is the main

reason cited by Rolfo for the reluctance of these countries to hedge. This paper

suggests that, when output risk can be countered by stockholding, producers will

be more willing to hedge. The fact that cocoa producers have not been significant

users of futures trading may be because they normally ship out entire harvests

to industrial countries for processing and therefore are not adequately prepared

to deal with output risk. The optimal policy for these countries is to keep some

stocks and hedge a substantial portion of their expected output and stocks.

The model presented here requires further investigation and extension. It

awaits practical application to real world situations. Generalization to multi-

period stochastic optimization is an obvious extension.
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