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Abstract 

Most econometric schemes to allow for heterogeneity in micro behaviour have two 

drawbacks: they do not fit the data and they rule out interesting economic models. In this paper 

we consider the time homogeneous first order Markov (HFOM) model that allows for maximal 

heterogeneity. That is, the modelling of the heterogeneity does not impose anything on the data 

(except the HFOM assumption for each agent) and it allows for any theory model (that gives a 

HFOM process for an individual observable variable). `Maximal' means that the joint 

distribution of initial values and the transition probabilities is unrestricted. 

We establish necessary and sufficient conditions for the point identification of our 

heterogeneity structure and show how it depends on the length of the panel. A feasible ML 

estimation procedure is developed. Tests for a variety of subsidiary hypotheses such as the 

assumption that marginal dynamic effects are homogeneous are developed. 

We apply our techniques to a long panel of Danish workers who are very homogeneous 

in terms of observables. We show that individual unemployment dynamics are very 

heterogeneous, even for such a homogeneous group. We also show that the impact of cyclical 

variables on individual unemployment probabilities differs widely across workers. Some 

workers have unemployment dynamics that are independent of the cycle whereas others are 

highly sensitive to macro shocks. 
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1. Introduction.

Models with a binary outcome that depends in part on previous realizations of

the outcome - dynamic binary outcome models - are common in applied micro-

econometrics. Some examples include: labour force participation (Heckman (1981),

Hyslop (1999)); smoking (Becker et al (1994)); �rms exporting (Bernard and Jensen

(2004)); stock market participation (Alessie et al (2004)) and taking up a welfare

program (Gottschalk and Mo¢ tt (1994) and Ham and Shore-Sheppard (2005)). The

usual time-homogeneous �rst order Markov model for unit i (= 1; ::N) in period t

(t = 0; ::T ) is:

Pr (yit = 1 j yi;t�1; xit) = F (�i + �yit�1 + �xit) (1.1)

where F (:) is a probability distribution function and yit is a binary variable indi-

cating, for example, that person i had some unemployment in period t. This �linear

index model�which only allows for a heterogeneous �intercept��i is widely used but

it does have problems; Browning and Carro (2006a) discuss these but it is worth

repeating the objections.

The �rst problem is that the imposition of common slope parameters (� and �)

restricts the class of structural models that are consistent with the reduced form

(1.1). For example, consider two people, a and b, with the same value of the x

variables (so we can ignore them), and for whom a has a lower probability of being

unemployed if they were employed in the previous year:

F (�a) < F (�b) (1.2)

For example, a might choose a �safer�job than b. Now suppose we impose the �same

slope�homogeneity assumption �a = �b = �. This implies:

F (�a + �) < F (�b + �) (1.3)

This rules out, for example, that a�s caution leads her to spend more time looking

for a �safe�job, so that her probability of remaining unemployed is higher than b�s.

Thus the choice of a statistical scheme for dealing with heterogeneity has substantive

restrictions on the set of admissible structural models.

The second problem with the conventional approach is that whenever we have

long enough panels to estimate the model for each unit individually with minimal

bias, we do �nd substantial heterogeneity in the both the �intercept� and �slope�

parameters in (1.1). A situation where this is the case can be found in Browning

and Carro (2006b). Additional evidence will be provided in the empirical illustration



in this paper. Here the binary variable is �having a spell of unemployment in a given

year�(see Hyslop (1999)).

Model (1.1) with maximal heterogeneity has:

Pr (yit = 1 j yi;t�1; xit) = F (�i + �iyit�1 + �ixit) (1.4)

In addition to the homogeneity restrictions, model (1.1) is imposing two kind of

parametric restrictions: the parametric form implied by the linear index and the

probability distribution function F (:). In this paper, we consider not only a semi-

parametric form but also the nonparametric case as well as having maximal hetero-

geneity all throughout the paper.1 A nonparametric time-homogeneous �rst order

Markov process with maximal heterogeneity will look directly at the transition prob-

abilities allowing them to be di¤erent for each individual:

Pr (yit = 1 j yi;t�1; xit) = pixy�1 (1.5)

where we have one parameter to be estimated for each i and value of x and the lag of

y. This does not impose any restrictions on the structural model (except, of course,

for the assumption of time invariance and no e¤ects higher than the �rst order that

de�ne the model considered in this paper) and it will �t any data that is generated

by a time-homogeneous �rst order Markov process (HFOM). For the simpler case

without x variables there is a one to one correspondence between (1.4) and (1.5)

and, therefore, any F (:) will give the same transition probabilities. For the general

case with x variables, a semiparametric form assuming a function F (:) in (1.4) will

impose some parametric restrictions that are not imposed in (1.5).

Identifying and estimating the whole set of transition probabilities in (1.5) -

the whole set of parameters if we consider (1.4) - or their distribution over the

population, allows us to obtain any parameter of interest in this problem, including

but not only, the average marginal e¤ect (also known as average partial e¤ect, APE)

of a explanatory variable over the outcome yit. This is important since di¤erent

studies and questions require us to obtain di¤erent parameters of interest. Moreover,

the average may not be a very informative measure because of the discrete nature of

the problem. For instance, the APE could be found to be very small only because of

a group in the population for which a change of a variable does not have enough e¤ect

as to change their yit given their other observable and unobservable circumstances.

In this case the APE will not be informative about other parts of the population for

1Notice also that in (1.1) an extra homogeneity assumption is imposed by assuming all i have
the same F (:). In our nonparametric approach this homogeneity assumption is not imposed either.
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which the impact can be very large because they are close to the margin that make

them change their yit. In this situation measures like the median marginal e¤ect

are more informative. Also, even if we look only at mean e¤ects, there is more than

one that could be of interest: the mean e¤ect for a randomly drawn individual (see

Chamberlain, 1984) or ATE in the treatment e¤ect literature, the average marginal

e¤ect of x when x = x1 only for those with x = x1 (see Altonji and Matzkin, 2005),

the �average treatment on treated�, etc.. Furthermore, identifying and estimating the

whole HFOM model will allow to obtain the entire distribution in the population of

the e¤ect of a variable over the outcome. In a program evaluation context, Heckman,

Smith and Clements (1997) present situations in which the entire distribution, and

not only the mean e¤ect, is the policy parameter of interest. In the IO literature it

is also of interest to identify the entire distribution of the individual price elasticities

when estimating demand functions; see for example Nevo (2001).

Given the di¢ culties in estimating (1.1) with small and �xed T (see Arellano

and Honoré (2001)), tackling (1.5) or (1.4) is a formidable task. In Browning and

Carro (2006b) we suggested two estimation methods for the simple case without x

variables, that rely on reducing the bias or RMSE for estimates based on each unit.

This gives estimates for each unit and then the distribution for (�; �) can be taken

as the empirical distribution of these estimates (or some smoothed version of it).

In Browning and Carro (2006b), identi�cation and estimation of (1.5) without

imposing any restriction on the distribution of (�; �) nor on the initial condition,

relies on the T dimension; that is, it is only consistent when T !1. In this paper
we propose an alternative approach that relies on large N . In general the model is

not nonparametrically identi�ed from a cross section of observations of �xed length

T .2 This negative result is our starting point in this paper: identi�cation from

the cross section is our goal since we do typically do not have panels with a very

large number of periods. Nevertheless, this negative result on identi�cation does

not imply that we cannot learn anything from a cross section of paths with a �xed

T . In general, some restrictions will have to be imposed on the distribution of

the heterogeneity to achieve point identi�cation. The interesting question is the

nature of the restrictions we have to impose, or how much information about our

model with maximal heterogeneity we can identify from a cross section of length

T . To answer this question we use �nite mixture distributions for the joint set of

unknown heterogenous parameters. We refer to this as the nonparametric discrete

scheme since no restriction is imposed other than there is a �nite and discrete

2In general, not even the restrictive model (1.1) with only one �xed e¤ect is identi�ed; see
Honoré and Tamer (2006).
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number of points of support on this distribution. An advantage of using this discrete

distribution is that it allows us to go from the full homogeneous case (one point of

support) to the totally unrestricted case (as many points of support as N) within

the same scheme. The identi�cation issue in this scheme will be: how many points of

support can we take for a given T? A major gain from looking at models identi�ed

from a cross section with �xed T is that there is no incidental parameters problem

nor �nite sample bias problem from not having a large number of periods.

Kasahara and Shimotsu (2009) take a di¤erent approach to a more general prob-

lem that includes the model we consider here, as well as other models. One of the

examples included in their paper to illustrate their results is model (1.4) without x

variables. However, for this case they do not give identi�cation conditions for an ar-

bitrary number of periods. For example, their most important result for our context

requires T � 8. Also they give stronger su¢ cient conditions than the conditions

derived in this paper, whereas here we derive su¢ cient and necessary conditions for

identi�cation.

A di¤erent and interesting analysis is to look at set identi�cation for the cases

that are not point identi�ed. In particular to derive bounds in the non-identi�ed

situation when no restriction or distribution is assumed for the heterogeneous pa-

rameters. Chernozhukov, Fernandez-Val, Hahn and Newey (2009) do this for the

average marginal e¤ect in models such as the ones considered here; they derive

results showing that bounds can shrink and converge as T grows.

In sections 2� 4 we study in detail the simpler dynamic HFOM model without

x covariates. Studying the model without x covariates helps understanding the

problem, and all the results derived for this case will be extended to the more

interesting case with covariates that is taken up in section 5. In sections 2 and 3

consider restrictions from the model and identi�cation respectively. In section 4 we

consider estimation and testing. Furthermore, the case without covariates will be a

worst case reference in terms of identi�cation; as we will show, having an exogenous

x that is not constant across individuals facilitates identi�cation. In Section 6 we

apply the techniques we develop to a long panel of Danish workers who are very

homogeneous in terms of observables. Section 7 concludes.

The principal contributions of paper are:

� We provide necessary nonparametric conditions for any panel data set with
binary outcomes to be consistent with a time-homogeneous �rst order Markov

(HFOM) process. These conditions are simple and fast to check.

� Assuming the data has been generated by a HFOM process (both with and

without covariates), we provide the limits (necessary and su¢ cient conditions)
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of point identi�cation for two types of distributions for the unobserved het-

erogeneity: parametric continuous and nonparametric discrete. In the latter

case, it is shown that we can have a much richer distribution than the two

point distribution usually found in applied work and still keep unrestricted

important features of the distribution of the heterogeneity such as the initial

condition or the correlation between the transition probabilities.

� We give exact results on how identi�cation depends on the length of the panel
and on the covariates.

� We provide a framework that allows that macro variables have di¤erent e¤ects
for di¤erent agents.

2. HFOM model restrictions.

2.1. The research question.

We consider �rst a dynamic discrete choice model with no covariates in order

to more easily study and understand the problem. The results derived for this

case will be very useful for the case with covariates. The data consist of paths

fyi0; yi1; ::::yiTgi=1;2;:::N where yit is the value of a binary variable for unit i. We

assume a time-homogeneous �rst order Markov (HFOM) process for each unit and

de�ne transition probabilities (1.5) in this case:

Gi = pr (yit = 1 j yi;t�1 = 0) (2.1)

Hi = pr (yit = 1 j yi;t�1 = 1) (2.2)

and the unconditional probability of a unit value for the initial observation:

Pi = pr (yi0 = 1) (2.3)

This direct formulation is much more convenient to work with than the usual econo-

metric speci�cation given in (1.4) for two reasons. The �rst reason is that we do

not have to specify any probability distribution function F (:), so we are nonpara-

metric in modeling this HFOM. This reason does not have much consequences in

this simpler model because allowing for maximal heterogeneity is enough to �t any

data that is generated by a HFOM process when there is no x covariates. There is

a one to one correspondence between (�i; �i) and (Gi; Hi) and, therefore, any F will

give the same (Gi; Hi) transition probabilities. However in case with covariates the

5



semiparametric form (1.4) will be imposing two kind of parametric restrictions: (i)

the parametric form implied by the linear index and (ii) the probability distribution

function F (:).

The second reason for this direct formulation is that parameters of (1.4) do not

have any meaning on their own, apart from being di¤erent from zero or their sign.

In contrast, (Pi; Gi; Hi) are probabilities and have a clear interpretation. Neverthe-

less the values of the parameters (Pi; Gi; Hi) are not usually of primary interest;

rather they can be used to generate any other �outcomes or parameters of interest�.

There are several candidates but the most widely considered for this model without

covariates are the marginal dynamic e¤ects:

Mi = Pr (yit = 1 j yi;t�1 = 1)� Pr (yit = 1 j yi;t�1 = 0)
= Hi �Gi (2.4)

and the long run proportion of unit values:

Li =
Pr (yit = 1 j yi;t�1 = 0)

Pr (yit = 1 j yi;t�1 = 0) + Pr (yit = 0 j yi;t�1 = 1)

=
Gi

1 +Gi �Hi
(2.5)

Given that these values are heterogenous in i, their distribution over the population

or some moments of them are the parameters of interest. An example, though not

necessarily the most informative measure, is the average marginal e¤ect

E [Mi] =

Z Z
(Hi �Gi) dF(G;H) (Gi; Hi) (2.6)

where F(G;H) (Gi; Hi) is the joint distribution of G and H we want to identify. An-

other common object of interest is the probability that yit = 1 in any given period t;

this is given by the Chapman-Kolmogorov equations applied to the initial probabil-

ity and the transition probabilities. As explained in the introduction, there is more

than one parameter of interest and identifying the whole HFOM model will allow

to obtain any of them, including the entire distribution of Mi in the population.

Given this, our research question is: given a large-H, �xed-T panel, what can

we (point) identify about the distribution of (P;G;H) over the population?
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2.2. Enumerating paths.

For the moment we can drop the i subscript. There are � = 2T+1 possible paths.

The probability of a path j is given by:

pj (P;G;H) = P
yj0 (1� P )(1�y

j
0)Gn

j
01 (1�G)n

j
00 Hnj11 (1�H)n

j
10 (2.7)

where nj01 is the number of 0! 1 transitions for path j and similarly for the other

three transitions. We shall often use the T = 2 case to illustrate general points;

Table 2.1 gives the probabilities for the eight possible paths. In all that follows we

shall always order paths using a binary representation for ordering the elements for

t = 0; 2:::T . Thus the �rst path is always 00::00, the second path is always 00::01

and the last path is always 11::11.

Case Path n00 n01 n10 n11 Probability of case j, pj
1 000 2 0 0 0 (1� P ) (1�G) (1�G)
2 001 1 1 0 0 (1� P ) (1�G)G
3 010 0 1 1 0 (1� P )G (1�H)
4 011 0 1 0 1 (1� P )GH
5 100 1 0 1 0 P (1�H) (1�G)
6 101 0 1 1 0 P (1�H)G
7 110 0 0 1 1 PH (1�H)
8 111 0 0 0 2 PHH

Table 2.1: Outcomes for three periods (T=2)

2.3. The general problem.

To consider the restrictions from the model and identi�cation we assume that we

are given population values for the probabilities of each of the � outcomes. Denote

the population values by �j for j = 1; 2:::�. Let (P;G;H) be distributed over [0; 1]
3

with an unknown density f (P;G;H). The population proportions are given by the

integral equations:

�j =

Z 1

0

Z 1

0

Z 1

0

pj (P;G;H) f (P;G;H) dPdGdH; j = 1; 2:::� (2.8)
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Since the p0js and the �j�s sum to unity, f (:) will be a well de�ned density:

1 =
P�

j=1�j =

Z 1

0

Z 1

0

Z 1

0

P�
j=1pj (P;G;H) f (p;G;H) dPdGdH

=

Z 1

0

Z 1

0

Z 1

0

f (P;G;H) dPdGdH (2.9)

The econometric issues are:

1. Given a set of observed �j�s for j = 1; ::2T , can we �nd a density function

f (P;G;H) such that (2.8) holds?

2. If we can �nd such a function for a given set of �j�s, is it unique?

3. If we can �nd a unique inverse function, is the inverse mapping a continuous

function of the values �j?

These are the usual set of conditions for a well posed inverse problem. The �rst

condition asks if the model choice (in this case the form of the pj (P;G;H) functions

due to the HFOM assumption) imposes any restrictions on observables. The second

is the classical identi�cation condition: given that the data are consistent with

the model, can we recover unique estimates of the unknowns, in this case, the

density f (P;G;H). The �nal condition requires that the estimate of the unknown

is �stable�in the sense that small changes in the distribution of observables lead to

small changes in the inferred unknowns. The continuity of the inverse mapping is

also useful for estimation since we can recover consistent estimates of the structural

form (in this case, f (:)) from consistent estimates of the reduced forms (the �j�s).

2.4. Restrictions.

Turning to the �rst question, we ask whether any observed �j�s that sum to unity

could be generated by a HFOM process. The answer is clearly going to be negative,

since the data might have been generated by, for example, a time-homogeneous sec-

ond order Markov scheme or a time-inhomogeneous �rst order process (or even more

general models). Thus the time-homogeneity �rst order assumption will usually im-

pose restrictions. The restrictions are a combination of equality restrictions and

inequality restrictions. Considering (2.7) and (2.8) we have the following equality

restrictions:

Lemma 2.1. Given two paths j and j0, if

yj0 = y
j0

0 ; n
j
00 = n

j0

00; n
j
01 = n

j0

01; n
j
10 = n

j0

10; n
j
11 = n

j0

11 (2.10)
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then �j = �j0.

Thus two population proportions will be equal if they have the initial value and

the same number of transitions. For example, for T = 3 (that is, four periods of

observation) the two paths 0010 and 0100 have the same initial value and the same

number of transitions and hence the same probability,

�0010 = �0100 =Z 1

0

Z 1

0

Z 1

0

((1� P ) (1�G)HGf (P;G;H)) dPdGdH; j = 1; 2:::� (2.11)

These are necessary conditions. There are further inequality restrictions. Consider,

for example, the case of T = 2; see Table 2.1. There are no equality restrictions of

the kind described in the Lemma. However, the restriction that G 2 [0; 1] imposes
that

p2 (P;G;H) = (1� P ) (1�G)G � 0:25 (2.12)

Thus we have:

�2 =

Z 1

0

Z 1

0

Z 1

0

p2 (P;G;H) f (P;G;H) dPdGdH � 0:25 (2.13)

Moreover, if �2 is actually equal to 0:25 then P = 0 and G = 0:5 which in turn

imposes �1 = 0:25. Although we have not been able to characterize the full set of

necessary and su¢ cient conditions for a given � vector to be generated by a HFOM

process, we show below how to test for them.

Using the Lemma above we can calculate the number of paths that are the same

for any T , without considering the distribution f (:). For small T this calculation

can be done by generating all the possible paths and counting with a computer.

However, the following proposition gives an simple analytic formula for the number

of di¤erent paths for any T , denoted by rT .

Proposition 2.2. The number of di¤erent paths in values of the vector � = (�1; :::; �j; :::; ��)
0

whose �j elements are de�ned in (2.8) is

rT = T (T + 1) + 2 (2.14)

The proof is given in Appendix A.1.

Table 2.2 presents the results for sample lengths of up to 16 and for 24 (the

number used in our empirical example below). The values in the column headed

rT give the number of �independent�values of the vector � and the column headed

9



# periods T � = 2T+1 rT RT

3 2 8 8 0
4 3 16 14 2
5 4 32 22 10
6 5 64 32 32
7 6 128 44 84
8 7 256 58 198
9 8 512 74 438
10 9 1024 92 932
11 10 2048 112 1936
12 11 4096 134 3962
13 12 8192 158 8034
14 13 16384 184 16200
15 14 32768 212 32556
16 15 65536 242 65294

24 23 � 16:8� 106 554 � 16:8� 106

Table 2.2: Numbers of posible paths, number of independent cases and number of
restrictions

RT gives the number of restrictions. For medium sized panels the reduction in

the number of equations is quite dramatic. For example, for T = 6 we have 128

equations and 84 restrictions. This simply highlights that the �rst order and time-

homogeneity assumptions impose strong restrictions if we have several periods of

observations.

It is convenient to partition paths into groups based on their having the same

probabilities. De�ne groups k = 1; 2; ::rT with �j = �j0 implying that j and j0 are

in the same group. Let nk denote the number of members of group k and re-write

(2.8) as:

�k = nk

Z 1

0

Z 1

0

Z 1

0

pk (P;G;H) f (P;G;H) dPdGdH; k = 1; 2:::rT (2.15)

Thus for T = 5, for example, we have 32 equations if the HFOM implications are

not rejected. Below we shall present a maximum likelihood estimator for our model.

When we do this, we shall show how to test for the restrictions implicit in the

assumption that our �nite sample data are generated by a HFOM process. We turn

now to identi�cation.
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3. Identi�cation.

Suppose the restrictions for the HFOM model developed in the previous section are

not rejected. It is clear that with a �nite set of path probabilities we cannot nonpara-

metrically identify a continuous density f (P;G;H) from the �nite set of equations

(2.15). If we had a continuous covariate and allowed that it had a homogeneous

marginal e¤ect on the parameters we could potentially identify the continuous dis-

tribution.3 Since we are here interested in identi�cation without imposing arbitrary

homogeneity schemes, this option is not open to us. This leaves us with two broad

alternatives.

3.1. Nonparametric identi�cation of the parametric distribution.

The �rst broad alternative is take a known parametric distribution function f (P;G;H; �)

where � is an unknown L-vector. Thus:

�k (�) = nk

Z 1

0

Z 1

0

Z 1

0

pk (P;G;H) f (P;G;H; �) dPdGdH; k = 1; 2:::rT (3.1)

The identi�cation issue is to ask whether we can identify the vector of parameters

�. The Jacobian is the matrix:

J =

�
@�k (�)

@�l

�
k=1;::rT ;l=1::L

(3.2)

In general we require that this matrix has a rank L, so that a necessary condition for

(local) identi�cation is L � rT . For example, if we take a 9 parameter distribution
for f (P;G;H; �) (three means, three variances and three covariances) then we could

not point identify with T = 2 (rT = 8) without imposing at least one restriction;

for example that P is uncorrelated with (G;H). If we take a mixture of two such

distributions we have 19 parameters (the two sets of distributional parameters and

the mixing probability) which would require T � 4. If we have a long panel then

many components are allowed; for example, with T = 23 we could theoretically

identify the parameters of a parametric model with 55 component nine parameter

distributions. Given the order condition L � rT , the rank of (3.2) would need to be
checked for the particular parametric form chosen.

3Subject to support restrictions that allow us to drive any probability to the limits of 0 or 1.
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3.2. Identi�cation for the nonparametric discrete scheme.

The second broad alternative assumption is that we have a discrete �nite mixture

distribution for (P;G;H). For this, we consider nonparametric identi�cation. We

take S distinct points of support f(P1; G1; H1) ; ::: (PS; GS; HS)g with probabilities
given by the (S � 1) vector � with non-negative individual values, �s, that sum to

unity. The discrete analogue to (2.8) is:

�j =
PS

s=1pj (Ps; Gs; Hs) �s j = 1; 2; :::� (3.3)

De�ne the (�� S) matrix A by:

Ajs = pj (Ps; Gs; Hs) ; j = 1; 2:::; 2
T+1; s = 1; 2:::S (3.4)

so that (2.15) can be written in matrix form as:

� = A� (3.5)

We take the support points and the probabilities to be unknown so that we have to

solve for the values of fP;G;Hg (the vectors of parameters) and �. We refer to this
as the nonparametric discrete scheme. The identi�cation issue is: how many points

of support can we take for a given T?

Certainly not any discrete distribution with �nite points of support will be iden-

ti�ed from �. For example, the following two distributions of fP;G;Hg with S = 3

(Ps; Gs; Hs)=

8><>:
(0:1; 0:4; 0:4) with Pr :�1 = 0:25

(0:1; 0:5; 0:5) with Pr :�2 = 0:50

(0:1; 0:6; 0:6) with Pr :�3 = 0:25

and

(Ps; Gs; Hs)=

8><>:
(0:1; 0:3; 0:3) with Pr :�1 = 0:0625

(0:1; 0:5; 0:5) with Pr :�2 = 0:875

(0:1; 0:7; 0:7) with Pr :�3 = 0:0625

give the same proportions with T = 2:

� = f0:2295; 0:2205; 0:2205; 0:2295; 0:0255; 0:0245; 0:0245; 0:0255g

Therefore we cannot identify the distribution of fP;G;Hg with S = 3, from the �

we observe when T = 2.

From (3.5), for given S; we have a mapping from unobservables to observables

12



given by:

� (P;G;H; �1; ::�S) = A (P;G;H) �

where the S-vector � is normalized to sum to unity. The Jacobian of this is a

� � (4S � 1) matrix which we denote J (T; S). For local point identi�cation we
require that the rank of J (T; S) is greater than or equal to the number of parameters.

In Appendix A.3 we show that, generically:

min (rT � 1; 4S � 1) � rank(J) � min (rT ; 4S � 1) (3.6)

Although we are unable to prove it, we conjecture4 that this bound could be tight-

ened to:

rank (J) = min (rT ; 4S � 1) (3.7)

If we have S points of support then we have 4S � 1 free parameters (one �s
is determined by the others). The parameters of these support points and their

probabilities can only be point identi�ed if the number of parameters is not greater

than the rank of J ; using (3.7), this requires:

S � rT + 1

4
= �T (3.8)

The �nal row of Table (3.1) gives the values for the maximum number of points of

support for a given T , denoted �T . Since we have non-integer values for �T we

can take S equal to the integer above �T and impose a small number of �common

value�restrictions on the (Gs; Hs) values and/or on the probabilities. For example,

for T = 2 we have �T = 2:25 so that we could take:

(P1; G1; H1) ; (P2; G2; H1) ; (P1; G1; H2) (3.9)

and 2 unrestricted values for the mixing probabilities; this gives a total of 8 unknown

parameters. As can be seen from Table (3.1), if we have a reasonably long panel (T =

7, for example) then we can have a relatively rich distribution with 14 independent

points of support. Even with a short panel (T = 4, for example) we can do better

than the two point distribution that is commonly used in applied work.

All the previous results can be summarized in the following propositions:

Proposition 3.1. For local identi�cation of fP;G;Hg and � in the system (3.5)

for a given T :

4Based on a great number of simulations.
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T 2 3 4 5 6 7 8 9 .... 23
rT 8 14 22 32 44 58 74 92 .... 554
�T 2:25 3:75 5:75 8:25 11:25 14:75 18:75 23:25 .... 138:75

Table 3.1: Rank of the Jacobian and maximum number of points of support

(i) A necessary condition is that the number of unknowns be smaller than rT =

T (T + 1) + 2.

(ii) A su¢ cient condition is that the number of unknowns be smaller than rT �1 =
T (T + 1) + 1, except for the particular cases with Ps = 0:5 for all s = 1; :::; S.

Proposition 3.2. If we consider only the identi�cation of the all the parameters
of the nonparametric discrete distribution of fP;G;Hg implied by a number S of
points of support in this distribution, then a necessary and su¢ cient condition for

local identi�cation in the system (3.5) for a given T is

S � integer
�
rT + 1

4

�
except for the particular cases with Ps = 0:5 for all s = 1; :::; S.:

The proofs are given in Appendix.

Finally we note that our use of a discrete distribution to capture heterogeneity is

fundamentally di¤erent to that suggested by Heckman and Singer (1984). They show

that the distribution of a continuous latent variable is nonparametrically identi�ed

for a particular parametric duration model. They then suggest that the continuous

distribution can be reasonably approximated by a discrete distribution with a small

number of support points. In contrast, in our scheme the continuous distribution is

not nonparametrically identi�ed and the recourse to a discrete distribution is one

route to nonparametric point identi�cation.

3.2.1. Quadrature discrete approach.

For completeness, we also discuss an alternative to the �nite mixture model which

is to take a quadrature approach in which we pre-specify S grid points

f(P1; G1; H1) ; ::: (PS; GS; HS)g

and then estimate the weights �. For the identi�cation in this quadrature scheme,

we require S � rT + 1 to identify the vector �. Given S points of support we can
construct the ��S A matrix as in (3.4) and (3.5). Note that here the relevant rank
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is rank(A) instead of rank(J). The support points should be chosen so that the A

matrix has rank equal to rT . Estimation then proceeds by using standard methods

to �nd a value � that satis�es: "
�

1

#
=

"
A

e0

#
� (3.10)

�� 0 (3.11)

where e is a vector of ones.

Bajari, Fox, Kim, and Ryan (2008) study in detail this approach and its prop-

erties in static random coe¢ cients discrete choice models for demand estimation in

IO. As they explain, the main advantage of this approach is that it is simpler to

estimate because our nonlinear system of equations is now linear. Furthermore, we

know that the values of the parameters for which we have to take grid points always

lie in the unit cube. The main problem is that this crucially depends on either being

able to take very many grid points or on the values you pre-specify. Given that we

have a panel with a not very large number of periods, the number of grid points is

not going to be very large for a fully characterization of the parameter space.5 With

respect to the pre-specify values, we do not have any other information that helps

in choosing them. And using any additional method to help choosing the best grid

points will break the simplicity that motivates this approach.

We tried this scheme in our empirical application, taking the maximum number

of grid points for our sample with T = 23. Taking 555 more or less equally spaced

points in the unit cube we found the �t to be very poor compared with using a �nite

discrete mixture distribution. Apart from that, there are some e¢ ciency problems

when comparing the linear estimator for the quadrature scheme with the MLE for

the mixture distributions we use in next sections.

4. Estimation and Testing against alternative models.

4.1. The time-homogeneous �rst order Markov model.

The identi�cation analysis above suggests the following estimation procedure. First,

estimate the proportions for each path and test for the model restrictions. If these

are not rejected, then impose the conditions and solve for the unknown parameters

using the identi�cation conditions.

5For example, with T = 8 we can not take more than 75 points to try to characterize the
joint distribution of (P;G;H) in the three dimensional parameter space with possible complex
correlations between the three parameters.
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In practice, it is much better and more e¢ cient to combine the two steps in a

maximum likelihood analysis. This is particularly the case given we cannot derive

analytically the inequality constraints that the HFOM imposes (see the discussion

in subsection 2.4).

Take the full heterogeneity model with S = �T so that we have a just identi�ed

model. Using the �rst form in (3.3), the structural model is:

�j =
PS

s=1pj (Ps; Gs; Hs) �s j = 1; 2; :::� (4.1)

De�ne a indicator �ij = 1 if unit i has path j and zero otherwise. For given para-

meters, the likelihood of a sample fyi0; yi1; ::::yiTgi=1;2;:::N is:

QN
i=1

Q�
j=1

�PS
s=1pj (Ps; Gs; Hs) �s

��ij
=
Q�
j=1

�PS
s=1pj (Ps; Gs; Hs) �s

�nj
(4.2)

where nj is the number of times a sequence j appears in the sample. Denote the

sample proportions for path j cj = nj=N . The log-likelihood function for the mixture

model is:

`mix =
NX
i=1

�X
j=1

�ij log
�PS

s=1pj (Ps; Gs; Hs) �s

�
(4.3)

= N
�X
j=1

cj log
�PS

s=1pj (Ps; Gs; Hs) �s

�
(4.4)

Note that N is irrelevant for the maximization. With an iid random sample cj ! �j

as N ! 1. from the structural model. The advantage of using the likelihood

framework for estimation is that we know how to use all the information on the

sample, how to make inference and how to test di¤erent models.

4.2. The unrestricted model.

A natural benchmark against which to test the HFOM model is the saturated model

with:

S = �;A = I; � = � or

S = 1;A = � (4.5)
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These both give the likelihood value:

`sat =

NX
i=1

�X
j=1

�ij log (cj) = N

�X
j=1

cj log (cj) : (4.6)

This can be used to derive a likelihood ratio statistic for the test of the Markov model

against the unrestricted alternative. In particular, if we do not reject the restriction

from (4.6) to (4.4) then we cannot reject that we have a time-homogeneous �rst

order model. In practice, the large number of zeros for most paths if T is moderately

sized leads to a distribution for the LR statistic that is very far from a �2distribution

with degrees of freedom equal to the number of restrictions (RT in table 2.2). In

this case, we should simulate the distribution of the LR statistic to calculate the

true the correct probability of the observed LR statistic.

4.3. The unrestricted HFOM model or restricted saturated model.

We can also write a closed form expression for the model with the HFOM equality

restrictions form subsection 2.4 imposed, using equation (2.15). Let k (j) denote

the group (running from k = 1; ::rT ) that path j belongs to. Then de�ne predicted

probabilities for path j = 1; ::� by:

ĉj =
1

nk(j)

X
j2k(j)

cj (4.7)

That is, we replace the unrestricted proportions for each path by the mean for the

group.6 The likelihood function is then given by:

`res_sat =

NX
i=1

�X
j=1

�ij log (ĉj) = N

�X
j=1

cj log (ĉj) (4.8)

This likelihood function also plays an important role in the estimation and choice of

the mixing model. If we take a mixture with the maximal number of components,

�T in Table 3.1 then it has a log likelihood value that is bounded above by `res_sat.

The mixture model will only attain this likelihood value if the observed ĉ vector

satis�es the inequality constraints discussed in subsection 2.4. Given the di¢ culties

of �nding global maxima when we have many components, having a benchmark value

is a considerable advantage. Denote the likelihood value of this mixture model by

`�mix. Now consider a model with fewer than the maximum number of points of

6To illustrate, consider the case T = 3. Paths 3 (0010) and 5 (0100) are restricted in the HFOM
model to have the same probability and so are paths 12 and 14. Therefore, ĉ3 = ĉ5 =

c3+c5
2 ;

ĉ12 = ĉ14 =
c12+c14

2 ; ĉj = cj , all other j.
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support: S < �T . We have the following ordering for the likelihood function values:

`sat � `res_sat � `�mix � `Smix (4.9)

As already discussed, the likelihood ratio statistic does not have a known general

distribution (see chapter 6.4 of McLachlan and Peel (2004)) but a test of the model

with a smaller number of points of support than �T can be constructed based on

the simulated distribution for the LR statistic, taking the restricted model as the

null.7

If we reject the �rst order time-homogeneous model, we have a number of al-

ternatives. We could try a time-homogeneous second order model; this would give

rise to similar calculations to those made above. Alternatively, we could continue to

maintain that the model is a �rst order Markov chain but with time-inhomogeneous

transition probabilities. One variant would be to assume a structural break. A sec-

ond variant has that the transition probabilities depend on observable time-varying

covariates. We consider that in the next section.

4.4. Testing for a second order Markov process

Although the test of the HFOM model against the saturated model allows for any

alternative, it may lack power since the alternative is not speci�ed. The obvious

alternative is a time-homogeneous second order process. Given the estimates of the

�rst order process, we can derive a standard LM test for this. The log-likelihood

of a time-homogeneous second order Markov process has the following form for the

predicted probabilities:

pj (P00s; P01s; P10s; G00s; G10s; H01s; H11s) =

P
1(yj0=0;y

j
1=0)

00s P
1(yj0=0;y

j
1=1)

01s P
1(yj0=1;y

j
1=0)

10s �

(1� P00s � P01s � P10s)1(y
j
0=1;y

j
1=1)G

nj001
00 (1�G00)n

j
000 G

nj101
10 �

(1�G10)n
j
100 H

nj011
01 (1�H01)n

j
010 H

nj111
11 (1�H11)n

j
110 (4.10)

7Given that we have a fully parametric model, simulating the distribution of the LR statistic
under the null seems preferable to subsampling methods.
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where 1 (:) is the indicator function and:

P01 = Pr (yi0 = 0; yi1 = 1) ; (4.11)

G10 = Pr (yit = 1 j yit�2 = 1; yit�1 = 0) ; (4.12)

H01 = Pr (yit = 1 j yit�2 = 0; yit�1 = 1) ; (4.13)

...

This has seven parameters per type s, instead of three. Three of them are to

account for the initial conditions, since now we have to condition on two previous

observations. The other four are the transition probabilities given by the second

order Markov process, what imposes less restrictions on the data than the �rst

order process. Therefore, the log-likelihood now depends on 8S�1 parameters.8 To
perform the LM test we have to:

1. Derive the log-likelihood with respect to fP00s; P01s; P10s; G00s; G10s; H01s; H11sgSs=1
and f�sgS�1s=1 . This gives the score vector denoted by g (:), and allows us to cal-

culate the outer-product of the score, denoted by h (:) :

2. Evaluate g (:) and h (:) at the estimated values of the parameters of the

�rst order Markov model
�nbPs; bGs; bHsoS

s=
;
nb�soS�1

s=1

�
. This means that we

evaluate g (:) and h (:) at P00s =
�
1� bPs��1� bGs�, P01s = �

1� bPs� bGs,
P10s = bPs �1� bHs�, G00s = G10s = bGs, H01s = H11s = bHs for s = 1; :::; S, andnb�soS�1

s=1
. Denote the values we get from this by bg and bh.

3. Then, the test statistic is

LM = bg0bh�1bg (4.14)

Under the standard regularity conditions this test statistic is asymptotically

distributed as {2b . The degrees of freedom are

b = (7S + S � 1)� (3S + S � 1) = 4S (4.15)

4.5. Homogenous marginal dynamic e¤ect.

We shall not consider the homogeneous case with (G;H; P ) the same for every-

one, since it is hardly considered a possibility. A less restricted model than the

8This means that we are keeping S constant. Related with this, it is important to notice that
to point identify a �rst order Markov model with S points of support does not imply that a second
order Markov model with S points of support can also be point identi�ed.
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homogeneous case is the usual ��xed e¤ect�case which only allows for one source

of unobservable heterogeneity. The latter is usually in the intercept of the index

in (1.1). A close analogue here is that we have a homogeneous dynamic marginal

e¤ect:

Hi =M +Gi for some constant M 2 [�1; 1] (4.16)

This test can be done using a standard LR test statistic of the (S � 1) restrictions
imposed.

4.6. Testing for time homogeneity.

As well as testing against a speci�c time homogeneous model, we can also derive

a test for time homogeneity. To do this, we split the sample into an estimation

sample fyi0; yi1; ::::yiEg and a hold-out sample fyiE+1; yiE+2; ::::yiTg. We estimate
the mixture model on the estimation subsample and test whether the predictions

for the hold-out subsample �t. To do this we take the same transition probabili-

ties for the hold-out subsample. To generate the distribution for period E + 1 (the

initial period for the hold-out sample) we use the estimated probabilities and the

Chapman-Kolmogorov equations to generate the relevant distribution. An alterna-

tive procedure is split the sample into two equal subsamples in terms of term (E

close to (T + 1) =2), estimate on each subsample separately and then test whether

the two sets of estimates are statistically di¤erent. A particularly simple variant of

a stability test of this sort this will be given in the empirical section.

5. Allowing for covariates.

5.1. Model and Parameters of Interest

In the presence of covariates in the model, our estimation is conditional on the

covariates, which are assumed to be strictly exogenous. As before, we look directly

at the conditional probabilities:

Hxi = Pr (yit = 1 j yi;t�1 = 1; xit = x)
Gxi = Pr (yit = 1 j yi;t�1 = 0; xit = x)

where Hxi and Gx are de�ned for each value x of xit, and at the unconditional

probability of a unit value for the initial observation:

Pxi = Pr (yi0 = 1jxi0 = x) (5.1)
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In addition to the marginal dynamic e¤ect and the long run proportion of unit values

mentioned for the model without covariates, (Pxi; Gxi; Hxi) can be used to generate

any other outcomes or parameters of interest. There are several candidates but the

most widely considered are those informing about the marginal e¤ects of the change

in a explanatory variable x over the probability of yit being equal to 1, (where for

notational convenience we consider only one covariate):

Mx0i = Pr (yit = 1 j yi;t�1; xit = x00 = x0 + 1)� Pr (yit = 1 j yi;t�1; xit = x0)

=

(
Hx00i �Hx0i if yit�1 = 1

Gx00i �Gx0i if yit�1 = 0
(5.2)

Given that the marginal e¤ects are heterogenous across individuals in the popula-

tion, the interest is usually in knowing their distribution or some moments. There

are many possible measures that could be considered. For example, there is more

than one mean e¤ect that could be of interest. Here we mention just two of them.

The �rst is expected e¤ect on the probability of y = 1 of a change in variable x

given the distribution of the unobservables conditional on x = x0 :

E(G;H)jx [Mijx0] =
Z Z

[(Hx00i �Hx0i) Pr(yit�1 = 1jxit = x0;Gxi; Hxi)

+ (Gx00i �Gx0i) Pr(yit�1 = 0jxit = x0;Gxi; Hxi)]dF(G;H)jx (Gxi; Hxijx0) (5.3)

This is equivalent to the parameter of interest estimated in Altonji and Matzkin

(2005). If x were a treatment indicator variable with x0 = 0 and x00 = 1, then (5.3)

would give the average Treatment on the Untreated e¤ect.

The second example is the average marginal e¤ect without conditioning on x:

E(G;H) [Mi] =

Z Z
[(Hx00i �Hx0i) Pr(yit�1 = 1jGxi; Hxi)

+ (Gx00i �Gx0i) Pr(yit�1 = 0jGxi; Hxi)]dF(G;H) (Gxi; Hxi) (5.4)

This is equivalent to the parameter of interest proposed by Chamberlain (1984)

de�ned there as the mean e¤ect for a randomly drawn individual. If x were a

treatment indicator variable with x0 = 0 and x00 = 1, then (5.4) would give the

Average Treatment E¤ect.

Equations (5.4) and (5.3) are the answer to di¤erent questions and with more

explanatory variables, averages over di¤erent distributions could be considered. On

the other hand, as explained in the introduction, average e¤ects may not be very

informative in nonlinear models such as this. In such a case other moments of the
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individual marginal e¤ects such as the median are more informative. Furthermore,

there are cases where the entire distribution of the marginal e¤ect over the popula-

tion is the object of interest; see Heckman, Smith and Clements (1997). In the IO

literature the object of interest is the entire distribution of the individual price elas-

ticities; see, for example, Nevo (2001). Identifying and estimating the distribution

of (Pi; Gxi; Hxi) allow us to obtain any possible parameter of interest since it fully

characterize the HFOM model.9

Adding covariates not only changes the number of transition probabilities we have

to identify, but also introduces the possibility of dependence between the probability

of being of each unobserved type and the covariates. We start with the simplest case:

a binary covariate that is constant over time. From there we move to covariates that

vary over time but are common to all individuals. Then, the case with covariates

that vary both over i and t is considered. A summarizing table with numbers for

representative cases can be found at the end of this section.

5.2. Covariates constant over time

We begin with the case in which we only have an x variable that is constant over

time and only varies across individuals; examples include year of birth and educa-

tion. That is, xit = xi for all t, and our data set is fxi; yi0;:::; yiTgNi=1. Here, it is
conceptually simple to extend our analysis. Continuing with similar notation, for a

binary xi, the time homogenous �rst order Markov model is fully characterized by:

P0i = Pr (yi0 = 1 j xi = 0) ; P1i = Pr (yi0 = 1 j xi = 1)
G0i = Pr (yit = 1 j yi;t�1 = 0; xi = 0) ; H0i = Pr (yit = 1 j yi;t�1 = 1; xi = 0)
G1i = Pr (yit = 1 j yi;t�1 = 0; xi = 1) ; H1i = Pr (yit = 1 j yi;t�1 = 1; xi = 1) (5.5)

As before, we consider a nonparametric discrete distribution for (P0i; G0i; H0i; P1i; G1i; H1i)

with S distinct points of support fP0s; G0s; H0s; P1s; G1s; H1sgSs=1 with probabilities
given by the (S � 1) vector �x with non-negative values �xs that sum to unity.

�x =

(
(�01; :::; �0S)

0 if x = 0

(�11; :::; �1S)
0 if x = 1

(5.6)

where �xS = 1 �
PS

s=1 �xS. The analysis and estimation is made conditional on

X, and therefore we are specifying and obtaining the distribution of the individual

parameters conditional on x. Nevertheless, the unconditional distribution can be

9Since the x variables are assumed to be exogenous, there is no problem in obtaining their
distribution from a random sample when needed.
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calculated from this conditional distribution and the distribution of x, which can be

obtained from the data.

The possible number of fxi; yi0;:::; yiTg paths we can observe is 2 � 2T+1. This
is equal to the 2T+1 paths of fxi = 0; yi0;:::; yiTg plus the 2T+1 paths of fxi =
1; yi0;:::; yiTg. The probability of a path j given x and (P0s; G0s; H0s; P1s; G1s; H1s)
is pj (x;P0s; G0s; H0s; P1s; G1s; H1s) =

=

(
P
yj0
0s (1� P0s)(

1�yj0)G
nj01
0s (1�G0s)

nj00 H
nj11
0s (1�H0s)

nj10 if x = 0

P
yj0
1s (1� P1s)(

1�yj0)G
nj01
1s (1�G1s)

nj00 H
nj11
1s (1�H1s)

nj10 if x = 1
(5.7)

So, we stratify the sample, making one strata for each value of x and we have

the same exact problem as in the case without covariates for each strata. As a

consequence, the rank of the Jacobian is min (2(4S � 1); 2rT ), where rT was de�ned
in (2.14). We have doubled the rank, but also the number of parameters. Then, we

can identify distributions with the same number of points of support S as in the

case without covariates, �T de�ned in (3.8).

If instead of a binary covariate we have a general discrete x variable that takes

Nx di¤erent values, we can easily repeat the same analysis and arrive at the same

conclusion. The number of parameters is now Nx(4S � 1), and the rank of the
Jacobian is min (Nx(4S � 1); NxrT ). This implies that the maximum number of

points of support we can identify is the same as in the case without covariates.

�Nx;T =
Nx(rT + 1)

4Nx
=
rT + 1

4
= �T (5.8)

If we have a continuous covariates, we can always discretise it on very many Nx
grid points and use this result in (5.8). Therefore, with covariates constant over

time we can nonparametrically identify as many points of support as in the case

without covariates.

Independence between � and x: If the probabilities of the S points of sup-

port of (P0i; G0i; H0i; P1i; G1i; H1i) do not depend on x, then �x = (�1; :::; �S)
0 for all

values of x. This reduces the number of parameters, but not the number of equa-

tions. There are (3SNx + (S � 1)) parameters and NxrT �independent�equations.
Therefore, the maximum number of points of support we can identify is

NxrT + 1

3Nx + 1
>
rT + 1

4
(5.9)
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The independence assumption allows us to identify distributions with higher number

of points of support.

5.2.1. Semiparametric model

In the previous analysis we have not only allowed for maximal (nonparametric dis-

crete) heterogeneity across i, but also we are not restricting our HFOM model to

have a particular functional form. In particular we have not imposed any restriction

on the way di¤erent values of xi a¤ects yit. Nevertheless, if xi is continuous, or a

cardinal discrete variable that takes many values, such as year of birth, then the

e¤ect of di¤erent values of x is usually restricted by a parametric form. The obvious

example is a linear index model:

Psi = F0(ps0 + ps1xi)

Gsi = F (gs0 + gs1xi)

Hsi = F (hs0 + hs1xi)

�si = F�(ds0 + ds1xi) (5.10)

where F0, F and F� are known cdf functions, such as the standard normal cdf or

the standard logistic function. The heterogenous parameters that have S points of

support and conditional probabilities �si are now (ps0; ps1; gs0; gs1; hs0; hs1). This is

equivalent to the representation

Pr (yit = 1 j yi;t�1; xi) = F (�i + �iyit�1 + �ixi + �ixiyit�1) (5.11)

where (�i; �i; �i; �i) follow a discrete distribution with S points of support.10

Therefore, the number of parameters here is 2 � (4S� 1) (= 8S� 2), and it does
not depend on the number of values of xi, Nx. However, the number of equations and

the rank of the Jacobian still depends on Nx. As previously shown this multiplies

rT by Nx. Therefore, the maximum number of points of support we can identify is

S � NxrT + 2

8
(5.12)

NxrT+2
8

is equal to rT+1
4
if Nx = 2 (the case with a binary x), but it is greater than

rT+1
4
for any Nx > 2.

According with (5.12), the more values xi takes, or the more we discretise

a continuous xi, the richer the distribution we can point identify. Given that
10Note that all possible interactions between yit�1 and xit are being considered. The number of

parameters could be reduced even more if those interactions were not included.
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limNx!1
NxrT+2

8
=1; we could potentially identify as many points of support as we

wish when we have a continuous covariate.

5.3. Covariates that only vary over time.

Consider the situation in which we add a covariate that it is common to all individ-

uals and only varies across periods: xit = xt for all i. For instance, this is the case

with aggregate variables being used in a micro study, or with time dummy variables.

Since we are studying identi�cation over the i population for a �xed T , we are only

going to observe a given and �xed realization of fxtgTt=1. This implies we only have
the 2T+1 possible paths given fxtgTt=1 that arises from the possible combinations of

fyitgTt=1 we can observe over the population of i. Then, the number of equations in
our system here are the same as in the case without covariates and the rank of the

Jacobian also depends on rT .

For the same reason, xt is not going to be an informative variable for the prob-

ability of yi0, nor for the distribution of the heterogenous parameters over the i

population, that is, Pr
�
sj fxtgTt=1

�
= Pr (s) = �s:

5.3.1. Binary variable

If xt takes only two values 0 and 1, for each point of support s we have

Ps = Pr (yi0 = 1 j x; s) = Pr (yi0 = 1 j s)
G0s = Pr (yit = 1 j yi;t�1 = 0; xt = 0; s) ; H0s = Pr (yit = 1 j yi;t�1 = 1; xt = 0; s)
G1s = Pr (yit = 1 j yi;t�1 = 0; xt = 1; s) ; H1s = Pr (yit = 1 j yi;t�1 = 1; xt = 1; s)

(5.13)

where the probability of s is given by the (S � 1) vector � with non-negative indi-
vidual values, �s, that sum to unity and it is independent of fxtgTt=1. This makes
6S � 1 parameters.
The probability of a path j given fxtgTt=1 and (Ps; G0s; H0s; G1s; H1s) is:

pjs = P
yj0
s (1� Ps)(

1�yj0)G
nj
01j0
0s (1�G0s)n

j
00j0 H

nj
11j0

0s

(1�H0s)n
j
10j0 G

nj
01j1
1s (1�G1s)n

j
00j1 H

nj
11j1

1s (1�H1s)n
j
10j1 (5.14)

where nj01j0 is the number of yt�1 = 0! yt = 1 transitions for path j given xt = 0,

nj01j1 is the number of yt�1 = 0 ! yt = 1 transitions for path j given xt = 1, and

similarly for the other three transitions. Here the probability of observing a path j

given fxtgTt=1 is �xj =
PS

s=1pjs�xs for j = 1; 2; :::2
T+1. If two paths have the same
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�
yj0; n

j
00; n

j
01; n

j
10; n

j
11

�
they will also have the same (yj0; n

j
00j0; n

j
01j0; n

j
10j0; n

j
11j0; n

j
00j1;

nj01j1; n
j
10j1; n

j
11j1), simply because we are dividing each n

j
yz in two n

j
yzjx using the

same fxtgTt=1 to divide both paths. For the same reason if they are di¤erent they
will be di¤erent here too. So the number of di¤erent equations is rT = T (T +1)+2

as without covariates.

Thus we can identify distributions with a smaller number of points of support S

than in the case without covariates. Speci�cally:

S � rT + 1

6
<
rT + 1

4
= �T (5.15)

5.3.2. Discrete covariates with Nx values.

As an example of a discrete common covariate, consider the national unemployment

rate (notionally a continuous variable between zero and 100) with rates rounded to

the nearest 0:1% (Nx = 1001). If we have a general discrete x variable that can take

Nx di¤erent values, we can easily repeat the same analysis. The only change is in

the number of parameters, which is equal to (2 + 2Nx)S � 1, provided Nx � T . If
Nx > T , the number of parameters is (2 + 2T )S � 1, because even though xt could
take more values, we only can observe in our population (T + 1) di¤erent values at

most; and x0 does not a¤ect our model for the reasons already explained. Then,

S � rT + 1

2(1 +Nx)
if Nx � T

S � rT + 1

2(1 + T )
if Nx > T (5.16)

5.3.3. K covariates: time dummies

Adding more xt covariates will only increase the number of parameters and we

can extend the previous analysis. However, this is not a very interesting case to

consider, because it is impossible to nonparametrically identify the marginal e¤ects

of an x1t variable given another continuous x2t variable, since we never observe

any individual with variation in x1t while keeping constant the value of x2t, nor

will we have other combinations of values of (x1t; x2t) than that in our �xed T

population. This problem is di¤erent than being nonparametric in the distribution

of the unobserved heterogeneity. A solution to it is the use of a semiparametric

model of the e¤ects of the covariates. We consider this in next subsection.

On the other hand a situation often found in practice that is relevant to consider

here, is the use of time dummies. These variables take deterministic values, and,

while treated as separate variables, the only meaningful situation is where one of
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them takes value one and all the other take value zero. If we add time dummies to

the model, we have K = T variables xt that can take Nx = 2 values each, but in a

deterministic way. So, we have (2 + 2T )S � 1 parameters: one G and H for each

time dummy. Then,

S � rT + 1

2 + 2T
(5.17)

This implies a very small number S for each T unless the number of periods is large.

For example, we need T � 8 for the identi�cation conditions of a model with S = 4
to be satis�ed. With T = 23 we cannot identify more than S = 11.

5.3.4. A semiparametric model

If Xt contains K discrete variables taking many values, then we can use a semipara-

metric model to capture the e¤ect of X. For each point of support s:

Gs = F (gs0 +
XK

k=1
gskxkt)

Hs = F (hs0 +
XK

k=1
hskxkt) (5.18)

where F is a known cdf, such as the logistic. In this case the number of parameters

is (2 + 2(K + 1))S � 1, and

S � rT + 1

2 + 2(K + 1)
(5.19)

For example, if K = 2 and T = 8, then S � 9:375; or if K = 2 and with T = 23,

then S � 69:375. This and values for other cases can be found in table 5.2.

5.4. Covariates that vary in both i and t

Finally we consider the case of xit covariates that have positive probability of taking

any value of their support at any i and t. For each point of support s:

Pxs = Pr (yi0 = 1 j xi0; s)
Gxs = Pr (yit = 1 j yi;t�1 = 0; xit; s)
Hxs = Pr (yit = 1 j yi;t�1 = 1; xit; s)
�Xs = Pr (sjxi0; :::; xiT ) (5.20)

With respect to �si we can have:

Case 1. Independence between �si and xit: �si = Pr (sjxi0; :::; xiT ) = Pr (s) = �s. Here
there are S � 1 parameters � to estimate, as in the case without covariates.
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Crawford and Shum (2005) is an example of an analysis in which permanent

unobserved heterogeneity is assumed to be independent of the covariates. This

case corresponds also with the assumption made in many papers using random

coe¢ cients discrete choice models.

Case 2. �si depends only on the �rst observation xi0: �si = Pr (sjxi0; :::; xiT ) = Pr (sjxi0).
This case corresponds with the assumptions made about permanent unob-

served heterogeneity in papers such as Keane and Wolpin (1997) and Carro

and Mira (2006). If we do not place any restrictions on this probability, with a

discrete xi0 variable that can take Nx values, there are (S�1)�Nx parameters
�si.

Case 3. �si depends on all the T + 1 observations of xit: �si = Pr (sjxi0; :::; xiT ) =
F�(ds0+

PT
t=0 ds1txit) where F� is a known cdf. Here there are (S�1)� (T +2)

parameters with one xit variable. Hyslop (1999) is an example where this is

the assumption made about unobserved heterogeneity.

Notice that in Case 3 we are using a semiparametric form. If we did not place

any restrictions of this kind, we would be allowing any new xiT+1 observation to

unrestrictedly a¤ect the probability of i being type s even though the type s is a

constant characteristic of i. Furthermore we would be treating di¤erently the same

value of xit if it were observed in di¤erent periods. This extreme �exibility would

break solving the identi�cation problem by having T ! 1, because more periods
would imply more (incidental) parameters to be estimated, with the number of

parameters growing faster with T than the identifying equation.

It is conceptually simple to extend our model if the additional covariates are

discrete. For a single binomial covariate we have:

P0s = Pr (yi0 = 1 j xi0 = 0; s)
P1s = Pr (yi0 = 1 j xi0 = 1; s)
G0s = Pr (yit = 1 j yi;t�1 = 0; xit = 0; s)
H0s = Pr (yit = 1 j yi;t�1 = 1; xit = 0; s)
G1s = Pr (yit = 1 j yi;t�1 = 0; xit = 1; s)
H1s = Pr (yit = 1 j yi;t�1 = 1; xit = 1; s) (5.21)

These are 6 parameters of each of the S points of support. Additionally, we have

a number of � parameters which varies depending on which of the three possi-

ble cases mentioned we have. The probability of a path j given fxitgTt=1 and
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T 2 3 4 5 6 7 8
rxit(T; 2) 60 184 472 1056 2132 3976 6964
rxit(T; 4) 464 2656 12088 45888 151456 447648 1210032
rxit(T; 6) 1548 12984 84852 454104 2079840

Table 5.1: Number of independent paths. Discrete covariate

(Ps; G0s; H0s; G1s; H1s) is:

pjs = P
yj0(1�x

j
0)

0s (1� P0s)(1�y
j
0)(1�x

j
0) P

yj0x
j
0

1s (1� P1s)(1�y
j
0)x

j
0

G
nj
01j0
0s (1�G0s)n

j
00j0 H

nj
11j0

0s (1�H0s)n
j
10j0 G

nj
01j1
1s (1�G1s)n

j
00j1 H

nj
11j1

1s (1�H1s)n
j
10j1

(5.22)

where nj01j0 is the number of yit�1 = 0 ! yit = 1 transitions given xit = 0 for path

j, nj01j1 is the number of yit�1 = 0! yit = 1 transitions for path j given xit = 1 for

path j, and similarly for the other transitions. The number of possible paths in our

system is 22(T+1), because we have 2T+1 possible paths of fyitgT+1t=0 given each one of

the 2T+1 possible observations of fxitgT+1t=0 . As in other cases, some of those paths

will give the same equation. The number of di¤erent equations is

rxit(T; 2) = 4

"
(T + 1) +

TX
m=1

m�1X
q=0

(T �m+ 1)
��
m� q
2

�
+ 1

���
m� q
2

�
+ 1

�
(q + 1)

#
(5.23)

where dxe gives gives the smallest integer greater than or equal to x and bxc gives
the largest integer less than or equal to x. (5.23) is a particular case of (5.24) with

Nx = 2. In the appendix we proof the more general formula (5.24).

Table 5.1 shows this number for some T . Notice that rxit(T; 2) � 2T+1 � rT .
Generalizing this to the case with a discrete covariate that takes Nx values,

we have that the number of possible paths is 2Nx(T+1). The number of di¤erent

equations is

rxit(T;Nx) = 2Nx
(T +Nx � 1)!
T ! (Nx � 1)!

+ 2Nx

TX
m=1

m�1X
q=0

(T �m+Nx � 1)!
(T �m)! (Nx � 1)!

��
m�q
2

�
+Nx � 1

�
!��

m�q
2

��
! (Nx � 1)!��

m�q
2

�
+Nx � 1

�
!��

m�q
2

��
! (Nx � 1)!

(q +Nx � 1)!
q! (Nx � 1)!

(5.24)

Table 5.1 shows this number for Nx = 2, 4, and 6 for several T . Notice that

rxit(T;Nx) grows very fast with Nx.
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The total number of P , G, H, and � parameters to be identi�ed in the three

cases considered are:

Case 1. 3NxS + S � 1 = (3Nx + 1)S � 1

Case 2. 3NxS +Nx(S � 1) = 4NxS �Nx

Case 3. 3NxS + (T + 2)(S � 1) = (3Nx + T + 2)S � (T + 2)

Therefore, the maximum number of points of support for the three di¤erent

relations between � and x are:

rxit(T;Nx) + 1

(3Nx + 1)
(5.25)

rxit(T;Nx) +Nx
4Nx

(5.26)

rxit(T;Nx) + T + 2

(3Nx + T + 2)
(5.27)

Looking at (5.25), (5.26), and (5.27), the more values xit takes or the more we

discretise a continuous xit, the richer the distribution we can point identify. Given

that the limit of these expression goes to in�nity as Nx grows, we could potentially

identify as many points of support as we wish when we have a continuous covariate

by discretising it in as many intervals as needed.

5.4.1. Semiparametric model

If xit is a continuous covariate, or discrete taking many values, it is usually restricted

with a parametric form the way di¤erent values of xit a¤ect the probabilities of

yit = 1. For example, for each point of support s:

Psi = F0(ps0 + ps1xi0)

Gsit = F (gs0 + gs1xit)

Hsit = F (hs0 + hs1xit)

and

�si = F�(ds0 + ds1xi0) or

�si = F�(ds0 +
TX
t=0

ds1txit)
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depending in whether we are in case 2 or 3 in the relation between � and x. F0,

F and F� are known cdf functions, like the standard normal cdf or the standard

logistic function. This is equivalent to the representation

Pr (yit = 1 j yi;t�1; xit) = F (�i + �iyit�1 + �ixit + �ixityit�1)

where (�i; �i; �i; �i) follow a discrete distribution with S points of support.

The number of parameters does not depend on the number of values xit can take:

Case 1. 6S + S � 1 = 7S � 1

Case 2. 6S + 2(S � 1) = 8S � 2

Case 3. 6S + (T + 2)(S � 1) = (8 + T )S � (T + 2)

The number of equations rxit(T;Nx) still depends on Nx and it is given by equa-

tion (5.24). The maximum number of points of support we can identify is

rxit(T;Nx) + 1

7
(5.28)

rxit(T;Nx) + 2

8
(5.29)

rxit(T;Nx) + (T + 2)

(8 + T )
(5.30)

Therefore, with a continuous variable in this semiparametric model, we could

potentially identify as many points of support as we wish, and for a given Nx there

are important gains from the semiparametric assumption.

If we have K covariates, then

Psi = F0(ps0 +
XK

k=1
pskxji0)

Gsit = F (gs0 +
XK

k=1
gskxkit)

Hsit = F (hs0 +
XK

k=1
hskxkit)

and similarly for �si. In terms of identi�cation, a covariate xit = xt for all i is the

additional covariate that will help the least. This extra covariate xt in a model with

a continuous xit, will imply two extra parameters in this setting. However it will

not change the number of equations, which can be as large as we want. This means

the previous result does not change when having more covariates.
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6. An empirical illustration.

6.1. Sample selection.

We consider the incidence of unemployment in a year for workers in Denmark from

1980 to 2003 (so that T = 23). We draw a sample of male workers with high school

education who were aged 25 at the beginning of 1980 and who are continuously

married to the same wife for all 24 years that we follow them. This is thus a very

homogeneous sample in terms of observables; we do this so that our �nding of con-

siderable heterogeneity cannot be attributed to insu¢ cient allowance for observable

heterogeneity. In all, we have 2571 such workers.11 We create a dummy variable yit
which is set to unity if worker i has any unemployment in year t (and zero otherwise).

The following Table gives some statistics for the sample.

Number Proportion
Total sample size 2571 �
No unemployment 936 36:4
At most 1 year with unemployment 1141 44:4
At most 2 years with unemployment 1291 50:2
At most 3 years with unemployment 1435 55:8
At most 5 years with unemployment 1710 66:5
At most 10 years with unemployment 2188 85:1
At most 20 years with unemployment 2519 98:0
Unemployment in all years 16 0:6

Table 6.1: Incidence of unemployment

6.2. The model without covariates.

The indicator variable yit is unity if worker i had a spell of unemployment in year t.

We begin with the model without covariates. The likelihood function value for the

saturated model, `sat (4.6), is �12; 252. The value for the saturated HFOM model,

`res_sat, (4.8), is �17; 449. The likelihood ratio statistic, 2
�
`sat � `res_sat

�
, is thus

10; 395.12 When estimating the mixture model we restrict the mixing probabilities

�s � 0:01 and we restrict Gs, Hs and Ps to be between 0:01and 0:99 to ensure that
11Denmark has an administrative panel that follows all of the population of about �ve million

from 1980 onwards. Consequently we can select very homogeneous strata without compromising
sample size. Indeed, the sample drawn here is, in fact, the population of men who ful�lled the
selection criteria.
12In an earlier version of this paper we developed a parametric bootstrap test for assessing

whether the HFOM hypothesis is rejected and for choosing S if it is not. Since this is controversial
(see Feng and McCulloch (1996)) and takes us too far from the main theme of this paper, we
do not present results here. In the next section we develop a valid test against an HFOM with
covariates.
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S df LR stat # �0s = 0:01

2 547 1; 063 0
3 543 701 0
4 539 605 0
5 535 536 0
6 531 512 0
7 527 500 0
8 523 494 0
9 519 491 1
10 515 491 2

Table 6.2: Fit for di¤erent numbers of support points

we do not assign zero probability to any path. The maximum number of support

points we could have for the HFOM model is 138 (see Table 3.1). In practice, we

cannot �nd more than a much smaller number than this; see Table 6.2. For ease of

reading, we present all likelihood function values for mixture models in LR terms

relative to the value for `res_sat; that is, the LR statistic shown is 2
�
`res_sat � `Smix

�
.

We also show how many mixing parameters are at the imposed minimum of 0:01.

As can be seen, it does not seem to be possible to estimate with more than nine

components; that is, `10mix ' `�mix.
Since we are concerned to illustrate the mechanics of our method, we shall side-

step the issue of the distribution of the LR statistics and simply take a convenient

value, S = 5. Table 6.3 presents the estimates for the model with 5 points of sup-

port. These display a number of features. First, all groups display positive state

dependence (Hs > Gs). Second, the marginal dynamic e¤ects (Hs �Gs) vary quite
considerably across groups. The LR statistic for the hypothesis of a homogeneous

marginal dynamic e¤ect,

Hs = Gs + (H1 �G1) for s = 2; ::5 (6.1)

is 421; this is distributed as a �2 (4) and represents a decisive rejection of this

homogeneity assumption. Moreover the (weighted) correlation between G and H is

�0:35; the conventional �one �xed e¤ect�assumption imposes that the correlation
is positive so that even the qualitative implication is wrong for the homogeneous

model.

To see the substantive implications of the estimates it is best to graph the implied

paths for the probability of being unemployed at some time during the year. This is

shown in the left panel of Figure 6.1 which graphs the probabilities implied by the

Chapman-Kolomogrov equations for the �ve groups against age (or year, since all
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Probabilities
Group P G H M �

p (y0 = U) p (U j E) p (U j U) H �G Proportion
1 0:27 0:01 0:87 0:86 0:34
2 0:64 0:10 0:69 0:59 0:28
3 0:01 0:03 0:48 0:46 0:24
4 0:73 0:36 0:82 0:46 0:08
5 0:25 0:18 0:34 0:16 0:06

Table 6.3: Parameter estimates with �ve support points

the workers in the sample are in the same birth cohort). The groups can be identi�ed

from their initial values given in Table 6.3. The �gure suggests a fascinating mix of

workers who rarely experience unemployment (group 3), those who are very prone

to unemployment (group 4) and those who start o¤ badly, but quickly ��nd their

feet�(groups 2 and 1). However, there is evidence that the HFOMmodel does not �t

the data well. This is shown in the right panel of the �gure which shows the average

proportions of unemployed for each year and the predicted mean from the model.

The estimation imposes that the two coincide at age 25 but they are conspicuously

di¤erent thereafter. A formal test for parameter stability can be constructed by

splitting the sample and estimating with dummy shifters for Hs and Gs for the

later period using. If we do this with a dummy variable that is unity for the last

11 periods we have an LR statistic of 384; given that we have an extra parameter

for each Hs and Gs this has a �2 (10) distribution. This formally con�rms the

time inhomogeneity that we see in the right panel of Figure 6.1. To capture this

time-inhomogeneity we turn to estimation adding the covariates to the model.

6.3. Model with covariates.

The right panel of Figure 6.1 suggests that we need to allow for time inhomogeneity

that is associated with age. There also seem to be cyclical deviations from a smooth

age pro�le. To capture these we include age and the aggregate unemployment rate as

covariates and the semiparametric speci�cation in (5.18).13 ; 14 We continue to keep

13Note that aggregate unemployment rate is endogenous by de�nition, because the endogenous
variable in our model is part of this explanatory variable. A solution to this is to construct an
aggregate unemployment rate excluding from the population the group we are using. Since our
group of workers represents less than 0.0001% of the working population, this will hardly have an
impact on the estimates.
14Other factors that we could take into account are other macro variables such as changes in the

UI system; individual time varying factors such as health or marital status and individual time
invariant factors such as parental background. Note that in this empirical illustration we have
taken account of the time invariant factor, cohort.
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S �xed at 5. We �rst present likelihood ratio statistics for including the extra sets of

variables. Since we have 5 points of support and we include regressors in the Gs and

Hs transition probabilities, we have 10 extra parameters for each covariate. Table

6.4 presents the LR statistics against the model with 5 points of support and no

covariates. As can be see, age and the aggregate unemployment rate are individually

and jointly highly signi�cant. Moreover, the �2 (10) statistic for the stability test

used in the previous subsection is 36; although formally this is a rejection, it is a

considerable improvement on the model without age and cyclical e¤ects.

Test against SFOM
Model df �2

Age and cycle 20 808
Age only 10 766
Cycle only 10 163

Table 6.4: Tests for age and cyclical e¤ects

As before, the implications of the estimates are most easily seen in �gures of

the unemployment sequences. These are given in �gure ??. The right hand panel
indicates that adding the age e¤ects remedies most of the mis�t seen in the earlier

�gure. The left hand panel shows that the impact of the business cycle is very

heterogeneous. For example, the group who have very low probabilities are hardly

a¤ected at all. However, the next prone group (with a starting value of 0:22) display

considerable cyclical variation. However, the group who have the highest propensity

to be unemployed (the highest curve after age 32) also seem to be una¤ected by the

cycle. Thus the link between the propensity to be unemployed and the impact of

the business cycle is not monotone. Estimates that did not allow for heterogeneity

would mask this e¤ect.

7. Conclusions.

This paper studies identi�cation from a panel with given T of a non-parametric and

a semiparametric dynamic binary choice model with maximal heterogeneity. The

more traditional linear-index speci�cation where only the constant term is individual

speci�c is extended since the latter imposes undesired restrictions on the economic

model and it does not �t the data. In contrast, our model allows variation in all

of the parameters (and even the distribution function) across individuals. These

models are not generally identi�ed from a cross section of �xed-T periods.

In our speci�cation the joint distribution of the initial observation and the tran-

sition probabilities is unrestricted, using nonparametric discrete mixture distribu-
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tions. We establish necessary and su¢ cient conditions for point identi�cation of our

heterogeneity structure and show how it depends on the length of the panel.

A conclusion from this study is that a model with a very �exible distribution

of the heterogeneity can be identi�ed from a cross section of T periods, even for T

as small as 3. The identi�cation is strengthened if we have continuous covariates

in the model. So a model that allows for maximal heterogeneity with a very rich

and �exible distribution can be point identi�ed. With such �exibility, important

features of the distribution of the heterogeneity such as dependencies of transition

probabilities on initial condition are unrestricted.

We show how to estimate using Maximum Likelihood. The asymptotic properties

of the estimator in sample size with �xed panel length are well known: it is consistent

and e¢ cient. We apply the techniques we study to a long panel of Danish workers

who are very homogeneous in terms of observables. One of our principal �ndings is

that the impact of cyclical variations on unemployment for individual workers are

heterogeneous with non-obvious relations. Findings in this application seems to us

very illustrative of the potential usefulness of our approach for applied work.
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A. Proofs.

A.1. Number of �independent�equations

Here we proof equation (2.14), that is, that the number of �independent�equations

in system (2.8) is

rT = T (T + 1) + 2

By Lemma 2.1, all we have to do is to count the number of di¤erent sets
�
yj0; n

j
00; n

j
01; n

j
10; n

j
11

	
that the j = 1; :::; 2T+1 possible paths can generate. Before counting, note that half

of the rT possible di¤erent paths have y0 = 0 and the other half have y0 = 1 and

this two halves are symmetric, so we can count only paths with y0 = 0 and multiply

its number by two. Notice also that, for y0 = 0 cases, n00 + n01 > 0, n10 + n11 > 0

only if n01 > 0, and that n10 2 fn01 � 1; n01g. We set n00 to count, starting with
the maximum value it can take:

- If n00 = T , then there is only one possibility: f(y0; n00; n01; n10; n11)g = f(0; T; 0; 0; 0)g
- If n00 = T � 1, then there is only 1 possibility: f(0; T � 1; 1; 0; 0)g
- If n00 = T � 2, then there are 2 possibilities: f(0; T � 2; 1; 1; 0) , (0; T � 2; 1; 0; 1)g
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- If n00 = T�3, then there are 3 possibilities: f(0; T � 3; 2; 1; 0) , (0; T � 3; 1; 1; 1) , (0; T � 3; 1; 0; 2)g
- If n00 = T �m, then there are m possibilities, which are:��

0; T �m;
�
m� q
2

�
;

�
m� q
2

�
; q

��m�1
q=0

(A.1)

where dxe gives gives the smallest integer greater than or equal to x and bxc gives
the largest integer less than or equal to x.

This goes until m = T: Therefore,

rT = 2

 
1 +

TX
m=1

m

!
= 2

�
1 +

T (T + 1)

2

�
= T (T + 1) + 2

where the 1 in
�
1 +

PT
m=1m

�
is accounting for the one case with m = 0, i.e.

f(0; T; 0; 0; 0)g. Note that for this proof it is not necessary to write the all the possible
di¤erent

�
yj0; n

j
00; n

j
01; n

j
10; n

j
11

	
sets. We only wanted to count them. However,

knowing (A.1) is going to be useful for the next proof.

A.2. Number of �independent�equations with covariates: rxit(T;Nx)

Here we proof equation (5.24), that is, that the number of di¤erent equations in the

case with xit covariate that takes Nx values and varies both in i and t is

rxit(T;Nx) = 2Nx
(T +Nx � 1)!
T ! (Nx � 1)!

+ 2Nx

TX
m=1

m�1X
q=0

(T �m+Nx � 1)!
(T �m)! (Nx � 1)!

��
m�q
2

�
+Nx � 1

�
!��

m�q
2

��
! (Nx � 1)!��

m�q
2

�
+Nx � 1

�
!��

m�q
2

��
! (Nx � 1)!

(q +Nx � 1)!
q! (Nx � 1)!

It can be seen in (5.22) that now we have to count the number of di¤erent setsn
yj0; x

j
0; n

j
00j1; :::; n

j
00jNx ; n

j
01j1; :::; n

j
01jNx ; n

j
10j1; :::; n

j
10jNx ; n

j
11j1; :::; n

j
11jNx

o
that the j =

1; :::; 2Nx(T+1) possible paths can generate. nj01jl is the number of yt�1 = 0! yt = 1

transitions for path j given xit takes the l-th value. Note that
PNx

l=1 n00jl = n00; so

the number of 00 transitions we have for the yt are being divided between n
j
00j1; :::,

and nj00jNx depending on the value of xit for each particular path. Therefore, we �rst

count the number of ways n00 can be arranged into those Nx possible transitions

without any other restriction than that (this includes that n00 transitions can be

arranged in a way that some of the Nx new transition counters are zero). For any
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given value of n00 = n this number is:

(n+Nx � 1)!
n! (Nx � 1)!

(A.2)

(A.2) gives the number for a given set with n00 = n. We now have to add this for

all the possible values of n00. The problem and formula (A.2) are the same for n01,

n10, and n11. The number of possible sets of fy0; n00; n01; n10; n11g and the sets have
being derived in previous appendix. There are rT possible sets and, from equation

(A.1), the �rst half of the rT sets of fy0; n00; n01; n10; n11g are8<:(0; T; 0; 0; 0) ;
(��

0; T �m;
�
m� q
2

�
;

�
m� q
2

�
; q

��m�1
q=0

)T
m=1

9=; (A.3)

The other half with y0 = 1 can be obtained similarly, and the total number will be

the number for y0 = 0 multiplied by two.

Therefore, combining (A.2) and (A.3) we have that the number rxit(T;Nx) of pos-

sible sets of
�
y0; x0; n00j1; :::; n00jNx ; n01j1; :::; n01jNx ; n10j1; :::; n10jNx ; n11j1; :::; n11jNx

	
is

given by equation (5.24) that has been written again in this appendix. TheNx comes

from the number of possible values of x0 that will give other di¤erent combinations

with everything else being equal.

A.3. Rank of J matrix.

A.3.1. Decomposition of matrix A

From equations (2.7) and (3.4), any element of a row j of matrix A is given by

Gn
j
01 (1�G)n

j
00 Hnj11 (1�H)n

j
10 multiplied by (1�P ) for j = 1; :::; �

2
and multiplied

by P for j = �
2
+ 1; :::;�. From the binomial theorem we have that

Gn
j
01 (1�G)n

j
00 Hnj11 (1�H)n

j
10 =

nj10X
z=0

nj00X
x=0

(�1)x(�1)z
�
nj00
x

��
nj10
z

�
G(x+n

j
01)H(z+nj11)

(A.4)

Based on this we can decompose matrix A as the product of two matrices:

A = CE (A.5)

where C will contain the coe¢ cients
�
(�1)x(�1)z

�
nj00
x

��
nj10
z

��
of (A.4) and E will

contain the corresponding G, H and P terms. The matrix C does not depend on

the value of the parameters and, therefore, it will be unique for a given T .
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E is the following 2eT � S matrix:

E =

"
(1� P1)E1 (1� P2)E2 ::: (1� PS)ES
P1E1 P2E2 ::: PSES

#
(A.6)

where

E0s =
h
1 Gs :: GTs Hs GsHs :: GT�1s Hs H2

s :: GT�2s H2
s : : : HT�1

s GsH
T�1
s HT

s

i
(A.7)

is a vector of dimension

eT =
(T + 1)(T + 2)

2
(A.8)

Notice that eT is the triangular number (T + 1). For instance, with T = 2

Es =
h
1 Gs G2s Hs GsHs H2

s

i0
De�ne C0 as �2 � eT matrix whose row j have the binomial coe¢ cients from the

path (i.e. the binary number with T + 1 digits) that correspond with the decimal

number (j�1) : j = 1; :::; �
2
. For instance, the third row with T = 2 corresponds with

the path 010, which is the three-digit binary number that represents the decimal

number 2. This way of using the corresponding decimal numbers to order the paths

and rows of C0, also implies the order of the elements of vector Es. Each row j

in C0 contains the coe¢ cients of the di¤erent terms of (A.4) plus the zeros needed

to �lling the rest of the row. A coe¢ cient
�
(�1)x(�1)z

�
nj00
x

��
nj10
z

��
is completely

de�ned by j, x and z; and it is in row j and column

(Z + nj11)(T + 2)�
(z + nj11)(z + n

j
11 + 1)

2
+ x+ 1 + nj01 (A.9)

of matrix C0.

De�ne C1 the same way as C0, but j = �
2
+ 1; :::; T . Each coe¢ cient of (A.4) is

in column given by (A.9) and row j � �
2
. Then,

C =

"
C0 0

0 C1

#
(A.10)

The dimension of C is � � 2eT . From (A.4) and (A.9) matrix C can be easily
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computed for any given T . For example, with T = 2

C =

2666666666666664

1 �2 1 0 0 0 0 0 0 0 0 0

0 1 �1 0 0 0 0 0 0 0 0 0

0 1 0 0 �1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 �1 0 �1 1 0

0 0 0 0 0 0 0 1 0 0 �1 0

0 0 0 0 0 0 0 0 0 1 0 �1
0 0 0 0 0 0 0 0 0 0 0 1

3777777777777775
(A.11)

with dimension 8� 12.

A.3.2. The rank of A.

It is important to note that C does not depend on S, G, H or any other unknown

value. It only depends on T , so we can calculate rank(C) for any given T , using

(A.4) and (A.9). Table 2.2 reports the rank(C), for T = 2; :::; 23. For all those

values of T , the rank of C is the number of equations that are di¤erent in the

system, rT :

rT = T (T + 1) + 2 (A.12)

We now can use the following two results about the rank of a product of two

matrices:

rank(A) � min(rank(C); rank(E)) � min(rank(C); 2eT ; S) = min(rT ; S) (A.13)
rank(A) � rank(C) + rank(E)� 2eT (A.14)

where (A.14) comes from the Frobenius rank inequality. Note that rT = T (T+1)+2

is smaller than 2eT = (T + 1)(T + 2).

The problem is that rank(E) depends on the values of the unknowns P;G;H.

For instance, for the special case with P1 = ::: = PS (S being large), we have the

rank of E is reduced so that rank(E) = eT ; and thus rT � eT � rank(A) � rT .

However, for many of the possible values of fPs; Gs; HsgSs=1 the rank of A will be

equal to min (rT ; S). Simulating many times the matrix A with large values of S (

S � �) and random draws for the the Ps�s, Gs�s and Hs�s we found that the rank of
A is given by: rT = T (T + 1) + 2.
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A.3.3. The rank of J

From (3.5) and (A.5), for given S we have a mapping from unobservables to observ-

ables given by:

� (P;G;H; �1; ::�S) = A (P;G;H) � �
= C � E (P;G;H) � � (A.15)

where the � S-vector is normalized to sum to unity by setting the last value equal

to the sum of the �rst S � 1 values. The Jacobian of this is a �� (4S � 1) matrix
which we denote J (T; S). For local point identi�cation we require that the rank of

J (T; S) is greater than or equal to the number of parameters.

(E � �) is a column vector of dimension 2eT . The Jacobian J can be written as

J = C �D(E � �) (A.16)

where D(E��) is the Jacobian of (E��). The dimension of D(E��) is 2eT �4S�1.
Then, from results about the rank of the product of two matrices we have:

rank(J) � min (rank(C); rank (D(E � �))) � min (rank(C); 2eT ; 4S � 1) (A.17)

rank(J) � rank(C) + rank (D(E � �))� 2eT (A.18)

The general form of D(E � �) for a given T is"
::: �Es�s ::: (1� Ps)@Es@Gs

�s ::: (1� Ps) @Es@Hs
�s ::: (1� Pl)El � (1� PS)ES :::

::: Es�s ::: Ps
@Es
@Gs
�s ::: Ps

@Es
@Hs
�s ::: PlEl � PSES :::

#
(A.19)

where Es is in equation (A.7), s = 1; :::; S and l = 1; :::; S � 1.
The rank of C has already been calculated on previous subsection. For most

of the possible values of fP;G;H; �g the rank of D(E� �) is equal to min(2eT �
1; 4S � 1).15 One exception is the case with Ps = 1 � Ps = 0:5 for all s = 1; :::; S,
where D(E� �) has a smaller rank Compared with rank(E), the condition that
P1 = ::: = PS is not enough to give a reduced rank of D(E� �): Given this, from
equations (A.17) and (A.18) and previous calculations of rank(C) (= rT ) we have

that for most of the possible values of fP;G;H; �g

min (rT � 1; 4S � 1) � rank(J) � min (rT ; 4S � 1) (A.20)

15Notice that in D(E� �) row e(T ) + 1 is minus the �rst row.
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because rT = T (T + 1) + 2 is strictly smaller than 2eT � 1 = (T + 1)(T + 2) � 1
for any T � 1. As a matter of fact simulations suggest a general form: rank (J) =
min (4S � 1; r (T )) for any (S; T ).

A.4. Identi�cation for each T .

A.4.1. Proof of proposition 3.1

The su¢ cient condition (part (ii)) in proposition 3.1 is a direct application of the

general inverse theorem. For local point identi�cation (i.e. unique solution to system

(3.5)) it requires that the rank of J be equal to the number of unknown parameters.

According with the bounds we have found, the rank of J is greater than or equal to

min (rT � 1; number of unknown parameters). Therefore, the requirement for this
case is that the number of unknowns be smaller than or equal to rT � 1.
To obtain the necessary condition (part (i)) in proposition 3.1 we use Theorem

5.A.1. in Appendix to Chapter 5 in Fisher (1966). That Theorem states that having

the rank being equal to the number of unknowns is a necessary condition for a local

identi�cation of a solution if that solution is a regular point. A point is de�ned as

regular when for all points in a su¢ ciently small neighborhood of it the Jacobian

has the same rank as in the point (see de�nition 5.A.1 in Appendix to Chapter 5

in Fisher, 1966). From our calculation it can be seen that rank of J is the same for

points considered in this theorem, and that this rank is smaller than or equal to rT .

Therefore, for local identi�cation it is necessary that the number of unknowns be

smaller than or equal to rT .

A.4.2. Proof of proposition 3.2

Firstly note that with S points of support there are 4S � 1 unknown parameters
to be identi�ed from a system with a maximum rank of J between rT � 1 and rT .
Secondly, note that rT + 1 is always an odd number. This implies that

integer

�
rT + 1

4

�
= integer

hrT
4

i
Then, Proposition 3.2 follows from Proposition 3.1.
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Figure 6.1: Probabilities with 5 points of support.

Figure 6.2: Probabilities with age and cyclical e¤ects.
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