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here by means of similarity relations. We assume that each agent builds procedural preferences 

defined on the space of expected payoffsstrategy frequencies attached to his current strategy. 

These preferences, together with an adaptive learning process lead to doubt-based selection 
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theoretical and the empirical relevance of these concepts 
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1 Introduction

Doubt, in everyday language, is closely related with the notion of uncertainty. In the Web-

ster’s Encyclopedic Unabridged Dictionary of the English Language, the entry

doubt (verb) is defined as ”to be uncertain in opinion”. Doubt (noun), on the other hand, is

”a feeling of uncertainty about the truth, reality, or nature of something”. The Merriam-

Webster Online Dictionary defines doubt (noun) as ”uncertainty of belief or opinion that

often interferes with decision-making”. In the present work we are going to relate doubts

with decisions. In real life choice situations, decision-makers feel unsure about the conse-

quences of their choices. Even experienced decision-makers often face doubts when making

choices in their domain of expertise. It is thus important to introduce the concept of doubt

in the theory of choice, either individual or strategic.

Uriarte (1999) develops a procedure for making choices under risk that introduces a

primitive function suggested by the findings of Kahneman and Tversky (1979). The domain

of that function is the set of probabilities for winning a prize and the function measured

implicitly levels of risk. In the present work, we change the domain of the function and

extend its formal possibilities. We now call it the doubt function and we investigate its

implications in a strategic environment. It is probably safe to say that strategic environments

are more cognitively demanding and raise more doubts than the environment in which one

has to choose among simple lotteries (in part because strategic uncertainty is typically of a

more ambiguous nature). Thus, we think that embedding the notion of doubt in a strategic

context is likely to be a fruitful enterprise.

Let us think of a game played continuously by two player populations. Each population

has a set of possible strategies from which to choose We may imagine the following two

separate but related stages in which doubts are likely to appear:

First stage: as a member of one population, I feel doubts about the exact consequences

of choosing any of the strategies that are available to me, because they depend on the

opponent’s reactions, which, in most cases, are uncertain.

Second stage: how do I cope with that feeling? Does the environment provide me with

information that I might use to construct an acceptable ”measure” of my level of doubts?

The first stage depicts the situation in which a subject is directly feeling doubts as a

consequence of the decision he is about to make. Let us talk about the second stage. When

players make choices continuously, they obtain information about payoffs, but also about the

2



fraction of fellow agents playing each strategy. If an agent observes that many others play

a given strategy, it is natural for him to entertain less doubts about whether that strategy

is a ”good” option.1 We shall assume that each individual has access to the information

about the proportion of agents of his player population playing each strategy. Then each

individual will use that information to build a ”measure” of the doubts originated by his

current strategy. This ”measure” will be called the doubt function. Doubts about a strategy

which decrease with the number of people using it are the most natural ones2 and a great

deal of the paper is dedicated to them. An additional feature of doubts, which we will also

discuss in this paper, is that they are also closely related to imperfect discrimination capacity

(of real numbers, such as strategy frequencies and expected payoffs).3

The purpose of the present article is to build a procedure, formally represented by a doubt-

based selection dynamic model, with which two opposing population of agents choose over

time strategies in a game. The players in both populations are assumed to use an adaptive

trial an error process of changing their strategies over time. They have an aspiration level

for their own welfare and change their strategies when their preferences do not reach their

aspiration. A process similar to this one, if preferences were determined by a standard payoff

function would yield the replicator dynamics of evolutionary games.4 In this paper, however,

preferences are determined by (typically decreasing) doubt functions and similarity relations.

We sketch now in some more detail the main pieces of the adaptive system that allow

an agent with bounded cognitive capacities to work his way in a complex and continuously

changing environment.

1. Doubt functions. All the agents are endowed with a doubt function that captures

their uncertainties about the degree of optimality of the strategy they are currently

using.

2. Similarity relations. Doubts and imperfect discrimination capacities are closely re-

lated. We model imperfect discrimination by means of (correlated) similarity relations.

1Economists have understood for a long time that imitation of “common” behavior is a widespread human

decision-making strategy (see e.g. Smallwood an Conlisk 1979 or Nelson and Winter 1982).
2Even if they are not the only possible type, as we shall see below.
3The work of Kahneman and Tversky has plenty of examples about how the human cognitive system copes

with such situations of limited capacity for discrimination. See, for instance, Tversky (1977), Kahneman

and Tversky (1979), Kahneman (2003) and the references therein.
4(see e.g. Cabrales 2000).
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The doubt function plays a central role in defining these similarity relations.

3. Preferences. Each agent uses the similarity relations to build, by means of a choice

procedure, a preference relation defined in the space of expected payoffs-strategy fre-

quencies attached to the agent’s current strategy.5 The preference relation will inform

the agent about his preferred (or aspiration) set. The resulting procedural preference

relation presents thick indifference classes. The (inverse of) distance from the current

vector of expected payoff-strategy frequency to the aspiration set (represented by the

preferred set) determines the agent’s degree of satisfaction with his current strategy.

4. Adjusting behavior. The agents’ satisficing behavior consists of choosing and switch-

ing strategies to minimize the distance to the aspiration set. This adjustment process

will give rise to different doubt-based selection dynamic systems depending on the

type of doubt functions. As mentioned earlier, a special role is given to the assumption

that the doubts of an agent decrease with the proportion of agents playing the same

strategy as the agent’s current one.

We, then, explore the properties of a doubt-based selection dynamic system for constant-

sum 2x2 games with a unique equilibrium in mixed strategies. We show that the Mixed

Strategy Nash Equilibrium is, under some conditions, a rest point for the system. More

specifically, let us assume the situation in which all agents operate under the doubt-full or

absent mode of play. We show that the system converges to population frequencies close

to the Mixed Strategy Nash Equilibrium when all agents are in the doubt-full mode of

play. The following interpretation can be given to this result. Agents are aware that the

proportions with which each strategy is being played over time are not truly random. Thus,

they experience high levels of doubts out of a fear of being exploited by opponents. The high

fear and the doubts together with the adaptive choices lead the system to the Mixed Strategy

Nash Equilibrium. Once in equilibrium, payoffs are equalized across strategies but the doubt

levels continue to be high and equal across strategies. Thus, we show the equilibrium is an

asymptotically stable point for the dynamical system in the doubt-full mode of play. We

also calculate the values of the doubt parameter that would stabilize the Mixed Strategy

Nash Equilibrium of 2x2 games, and illustrate this finding with explicit calculations both for

5The choice procedure is similar in nature to those described in Rubinstein (1988), Aizpurúa et al.(1993)

and Uriarte (1999) (2007)).
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the “Penalty Kick Game” of Palacios-Huerta and Volij (2007)6 and the “Matching Pennies

Game.”

The dynamics are rather different when agents have a very small level doubts (even if

they still decrease in the frequency of play). This is the doubt-less or alert mode of play, in

which agents’ doubts are very sensitive to strategy frequencies. In this situation, the only

rest point for the doubt-based dynamic system is the center of the simplex (and thus, only in

special circumstances it coincides with the Mixed Strategy Nash Equilibrium). However, in

this case any perturbation, however small, sends the system away from the equilibrium. An

interpretation for the result is that the extreme sensitivity to the “opinions” of others, leads

play to a situation where players imitate, whenever doubtful, the current most fashionable

action. This creates a tendency to diverge in population behavior. In addition, the doubtless

agents are quite satisfied with their current strategies and do not feel the need to experiment

with new strategies to exploit the differences in payoffs and strategy proportions. Hence,

a low level of imitation and strategy adjustment takes place, and the populations diverges

very slowly to a situation where initially popular strategies dominate..

There are also quite interesting intermediate cases, with strictly decreasing doubts that

are less extreme than the previous cases, in between the doubt-full and doubt-less modes

of play. In this case, we find a kind of herding behavior, which unlike the one in the

doubt-less mode, can be stable. The equilibrium of the doubt-based dynamic system is

not the Nash equilibrium and has the following feature: the most popular strategy has

smaller (expected) payoffs. This is a general characteristic of equilibria with decreasing

doubt functions. But in the doubt-full mode of play it is not so evident since the equilibrium

is close to being Nash, and in the doubt-less mode, we have unstable dynamics. We believe

that this feature of equilibria of doubt-based selection dynamic system is a relevant and

robust testable implication for our model, and we provide some preliminary evidence to

support it.

Finally, we should mention as well the case of constant doubts. This means that each

agent’s hesitations and feelings of uncertainty are not affected by the fraction of fellow

agents from his population playing the same strategy. Thus, society does not have any

direct influence on this type of agent. Then we show that the adjusting behavior would lead

6This interesting paper shows how professional football (soccer) players transfer the skills learnt in the

field to the artificial setting of a laboratory and yet play close to the mixed strategy Nash Equilibrium.
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us to a doubt-based selection dynamics that is closely related to the replicator dynamics.7

How does this work relate with the existing literature? Given the nature of the paper,

we think that it is in the realm of the experimental literature that we should look into.

Particularly, in the experiments where subjects are given information about the performance

of the other participants. In Tang (2001), for instance, the participants in the experiment

are given a precise information about the proportion of subjects playing each strategy as well

as the average payoffs in the two player populations. This experiment contradicts one of our

result, the one that says that the most popular strategy has smaller (expected) payoffs. To

our defense, it should be said that it is not very realistic to provide such a precise information,

-which, in fact, is only known by the experiment maker-, to subjects who are involved in

the experiment. In fact, this kind of information would eliminate the ”doubts” that the

involved subjects might feel, a feature that plays a central role in the build-up of our model.

In Binmore et al. (2001) a subject can compare his performance with the other subjects in

the same population by sawing their median payoff. While holding the same critical stand as

in the previous case, and taking into account that the information now is about payoffs, we

note that the spiral trajectory converging to equilibrium that these authors observe in the

experiment has a theoretical counterpart in the doubt-full case where the path to equilibrium

is shown to be a spiral (sink) as well.

Given the above limitations, we have looked for data coming from field experiment and

provide a supportive piece of evidence for our (doubt) equilibrium condition.

To conclude, we think that this paper, by insisting on doubts related with imperfect

perception, highlights the need of more evidence from fuzzier, that is, more realistic, exper-

imental environments.

2 A model of doubt-based selection dynamics

2.1 Notation

Consider a noncooperative finite game G in normal form, with K = {1, 2, ...., n} denoting

the set of players. For each player k ∈ K , let Sk = {1, 2, ....,mk} be her finite set of pure

7This result is yet another rationalization for the replicator dynamics. Other foundations for this dy-

namical system can be found in Binmore, Gale and Samuelson (1995), Weibull (1995), Cabrales (2000) and

Schlag (1998), among others.
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strategies, for some integer mk > 2 .

Imagine that there exist n large populations, one for each of the n player positions in

the game. Members of the n populations chosen at random -one member from each player

population- are repeatedly matched to play the game. In what follows, we shall speak of

players when referring to the game G and we shall speak of agents when referring to the

members of the populations. Each agent is characterized by a pure strategy. From now on,

we shall refer to the agent ki as a member of the player population k ∈ K who plays pure

strategy i ∈ Sk . Let fki(t) ∈ Fki = [0, 1] be the relative frequency of ki agents at time t,

with f(t) being the vector collecting such probabilities. Time index suppressed, πki(f) will

denote agent ki’s expected payoff given the population state f . Without loss of generality,

we may assume that payoffs are strictly positive and do not exceed one; hence, πki(f) ∈ Πki

= (0, 1]. Finally, πk(f) =
mk∑
i=1

fki(f) πki(f) is the average payoff in player population k ∈ K.

To simplify notation, we shall denote πki(f) as πki.

2.2 The doubt-based selection dynamics

We will be dealing with boundedly rational players by assuming that they have doubts about

how well they are playing the underlying game. Assume that every agent of each player

population is endowed with a (primitive) function that we call the “doubt function”. This

function, denoted dki, measures the doubts felt by agent ki about how good is his current

strategy i ∈ Sk , available to player population k ∈ K = {1, 2, ..., n}, as a response to the

strategies that the rest of players are using. Agent ki relates the doubts he is feeling with

the proportion of individuals who are using the same strategy as his current one. Therefore,

dki(fki) measures how ambiguous agent ki feels about the optimality of strategy i ∈ Sk,

given that the proportion of agents of his own population currently playing that strategy is

fki ∈ Fki.

We shall assume in this section that the agents are endowed with a strictly decreasing

doubt function. That is, an agent’s doubts about how well is playing gradually decrease when

he observes (or is informed) a larger number of agents from his player population playing

the same strategy as the one he is currently using. In other words, society does have an

influence upon this type of agents. Formally,

Assumption 1 The strictly decreasing doubt functions.
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Each agent ki is endowed with a differentiable doubt function dki in the set

D =

{
dki : Fki → [0, 1] : with f̂ki > f̃ki ⇒ dki(f̂ki) < dki(f̃ki)

and dki(0) = 1, dki(1) = 0

}

Given a proportion fki ∈ Fki , -known by the ki agent-, and the dki ∈ D, dki(fki) measures

the doubts (about how well is playing the game) felt by the agent ki when the proportion

of agents in player population k playing strategy i ∈ Sk at time t is fki.

Remark 2 To stress that we are not dealing always with a kind of “herding model of doubts”,

we highlight the following two types of doubt functions in D which are relevant for the results

of section 3:

1. Function dδ ∈ Dδ ⊂ D which, for every fki ∈ (0, 1), dδ(fki) is “close” to 0 (i.e.,

dδ(fki) < δ for all fki > δ, as in figure 1.

2. Function d1−δ ∈ D1−δ ⊂ D which, for every fki ∈ (0, 1), d1−δ(fki) is “very close” to 1

(i.e., dδ(fki) > 1− δ for all fki < 1− δ), as in figure 2.

When dki = dδ, for sufficiently small δ,we say that the agent ki is in the alert or doubt-

less mode and when dki = d1−δ, for sufficiently small δ, we say the agent is in the absent or

doubt-full mode.

When the doubt functions of D are in between these two extreme cases, then we may say

there is a kind of “herding effect on doubts” that grows stronger as we move away from those

cases.

2.2.1 Doubts and Imperfect Discrimination Modeled by (Correlated) Similarity

relations

In the present model, doubts are closely related to imperfect discrimination capacity (in

the present paper, of real numbers, such as strategy frequencies and expected payoffs). An

environment shaped by uncertainty and doubts about the correctness of the choices made

is effort demanding for the cognitive system of decision-makers. One way subjects cope

with the ambiguous nature of this situation is by simplifying its complexity; for instance,

by grouping numbers in intervals of similarity. Inside those intervals, whose size depend
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Figure 1: Doubt function of an agent in the alert mode of play. His doubts are almost 0 in

the interval (0, 1).

Figure 2: Doubt function of an agent in the alert mode of play. Figure 2: Doubt function of

an agent in the absent or doubt-full mode. His doubts are almost 1 in the interval (0, 1).
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on threshold levels that change continuously, values - of, say, expected payoffs -, are not

distinguished. We thus model subjects’ imperfect discrimination by means of correlated

similarities. Correlated similarities are an extension of the similarity relations defined by

Rubinstein (1988). Rather than being constant, they depend on the value of certain relevant

parameters. More specifically, the dki function defines the correlated similarity relations that

will capture agent ki’s imperfect discrimination of expected payoffs and strategy frequencies.

In the next lines we sketch how this is done (a complete account is given in Appendix A).

Let (πki, fki) be the vector of expected payoff-proportion of agents of player population k

attached to strategy i ∈ Sk at time t.

1. dki defines on the space of expected payoffs, Πki, correlated similarities of the difference-

type as follows: given fki, the similarity interval of πki is:

[πki − dki(fki), πki + dki(fki)]

Thus, given fki, dki(fki) defines the threshold level on Πki. Payoffs inside the similarity

interval are not discriminated by the agent. By Assumption 1, if fki increases, the

threshold, dki(fki), decreases and so the similarity interval of πki shrinks (giving rise

to the vertical cone-shaped form in figure 3). This means that when fki increases, the

discrimination capacity on the space of expected payoffs to strategy i, Πki, increases

(probably because the accumulated experience with strategy i has increased due to

the increased number of agents from population k currently playing strategy i). Thus,

there is one similarity relation on Πki, denoted SΠ[fki], for each fki ∈ (0, 1).

2. dki builds the λki function, which, in turn, is used to define on Fki correlated similarity

relations of the ratio-type. This function is defined as follows: given dki and a specific

fki ∈ (0, 1), then for all πki > dki(fki)

λki(πki) =
πki

πki − dki(fki)
> 1

Thus, there is one λki function for each fki ∈ (0, 1), so that, given πki,and fki attached

to agent k’s strategy i, with πki > dki(fki), the similarity interval of fki is:

[fki/λki(πki), fki.λki(πki)]
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The properties of the λki function that should be kept in mind for the remainder of the

paper are the following.

2.2.2 Properties of the λki function

1. Given dki and a proportion fki ∈ (0, 1), ∂λki(πki)
∂πki

< 0. This means that if the payoffs

at stake increase, the similarity interval of fki shrinks; in other words, the discrimina-

tion capacity on Fki = [0, 1] increases if the expected payoffs increase. This property

generates the horizontal wedge-shaped form of figure 3.

2. Suppose now that, other things equal, fki increases (decreases); in other words, since

dki is strictly decreasing, suppose that the doubts of agent ki decreases(increases).

Then, we would have a different λki function such that, since dki ∈ D has not changed,

the similarity intervals of fki will shrink (expand) for a given πki.

2.2.3 Procedural Preference Relation and Satisficing Behavior

We shall assume that each agent ki compares pairs of vectors in Πki × Fki with the aid of

the of the correlated similarity relations SΠ[fki] and SF [πki, fki], to decide which of the two

is preferred. The choice procedure, which is similar in nature to that of Rubinstein (1988),

but a bit more sophisticated due to the use of correlated similarity relations, gives rise to

the preference relation depicted in figure 3. A detailed description of how the preference is

built is given in Appendix A.

We assume that every ki agent chooses strategies with the purpose of minimizing the

distance to the aspiration set, which, here, is represented by the preferred set relative to

vector (πki, fki), and denoted as U = Uα ∪ Uβ ∪ Uδ in figure 3. In other words, this strategy

choice behavior tries to reduce the size of the indifference set ∼ki [(πki, fki)]: the thinner is

this set, the closer is (πki, fki) to its corresponding upper contour set U .

Note that the two properties of λki we highlighted above are useful to make it a good

measure of the variations in the size of the indifference set, and, therefore, a good measure of

the distance to the aspiration set. Thus, the function λki could be thought of as an indicator

of the degree of satisfaction of agent ki with his current strategy. The smaller the value of

λki, the happier would feel the agent with his current strategy. Hence, an agent chooses a

strategy to reduce the doubt level and/or increase the expected payoffs.
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Figure 3: Preference relation derived from a choice procedure based on correlated similarity

relations with decreasing doubts.

2.2.4 The Doubt-Based Selection Dynamics

Let
λki − 1

Σmk
i=1

λki

=
λki − 1

λk

denote the proportion of ki strategists who feel dissatisfied with strategy i at time t. Notice

that if λki increases this proportion increases .

We assume that time is divided into discrete periods of length τ . In every period, 1− τ

is the probability that the agent does retain his current strategy; thus, τ is the probability

that each agent does not retain his current strategy. We make now the following assumption

to build a selection dynamic model8

Assumption 3 When an agent feels dissatisfied with his current strategy, she will choose a

new strategy with a probability that is equal to the proportion of agents playing that strategy.

¿From Assumption 3, τ (λki−1)
λk

fki will denote the proportion of ki strategists who will

choose a new strategy (the outflow), and, since a particular strategy is chosen with a probabil-

ity that is equal to the proportion of agents playing that strategy, then τ
∑mk

j=1
(λkj−1)

λk
fkjfki =

8For a justification see, for example, Binmore et al. (1995).
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τ (λk−1)
λk

fki is the proportion of agents who will choose strategy i (the inflow), where λk =∑mk

j=1 λkjfkj.

Therefore,

fki(t + τ) = fki(t)− τ
(λki − 1)

λk

fki + τ
(λk − 1)

λk

fki

As τ → 0, in the limit we get the doubt-based selection dynamic equation:

•
fki = fki

[
λk − λki

λk

]
(1)

Remark 4 Doubts and Strategy Choice behavior

Note that if λki increases -because, other things equal, the doubts of agent ki increase-

the ratio of ki strategists who feel dissatisfied with strategy i at time t, λki − 1λk, increases

too, and therefore, the proportion of those agents prone to change strategy will increase too.

A similar effect will occur if, given a level of doubts, πki decreases. This connection, between

doubts and strategy choice behavior, provides an exact meaning to the notion of doubts in

this model, that coincides with the intuitive notion of doubts in a continuous decision-making

context. A doubtful agent would be one with a tendency to try new strategies.

To gain some intuition, let us now look at equation (1) in a less compact way. Let G be

a two-population constant-sum game with SI = {U,D} and SII = {L, R} denoting player

I and player II’s strategy sets, respectively. Let x denote the probability of playing U , y

the probability of playing L and I = [(x∗, 1− x∗) , (y∗, 1− y∗)] the Mixed Strategy Nash

Equilibrium, with x∗ > 0 and y∗ > 0.

To avoid the use of four different doubt parameters, we shall assume that the four doubt

functions are the same; that is, dki = d ∈ D (where k = I, II and i = U,D,L, R).

¿From (1), the doubt-based selection dynamics for G is represented by the following

system:

·
x =

x (1− x)

πU (πD − dD) + πD (πU − dU)
(πUdD − πDdU) ≡ G1(x, y)F1(x, y) (2)

·
y =

y (1− y)

πL (πR − dR) + πR (πL − dL)
(πLdR − πRdL) ≡ G2(x, y)F2(x, y) (3)

13



Clearly, a stationary point for the doubt-based system (2)-(3), with x∗ > 0 and y∗ > 0,

requires πUdD = πDdU and πLdR = πRdL. We call this point the Mixed Strategy Doubt

Equilibrium (MSDE).

2.2.5 Mixed Strategy Nash Equilibrium (MSNE) and Mixed Strategy Doubt

Equilibrium (MSDE)

We should distinguish between the Mixed Strategy Nash Equilibrium (MSNE) and the Mixed

Strategy Doubt Equilibrium (MSDE) for the doubt-based dynamic system (1).

1. In a MSNE the requirement is that all strategies in the support of the equilibrium have

equal payoffs; that is:

πki (f
∗) = πkj (f ∗) for all i, j with f ∗i > 0 and f ∗j > 0 and all k.

2. From (1) we deduce that for a MSDE the requirement is:

πki (f
∗)

d (f ∗i )
=

πkj (f ∗)

d
(
f ∗j

) for all i, j with f ∗i > 0 and f ∗j > 0 and all k

Note that in this case, the expected payoffs to the strategies in the support of the equi-

librium need not be equal, as it is required in the MSNE.

3 Doubt-based selection dynamics in constant sum games

We shall present in this section how subjects with limited cognitive capacities are capable

of adapting to the changes of a complex environment, learn interactively to become more

skillful in their choices and, eventually, reach, under some conditions, the socially optimal

outcome predicted by the theory for rational players.

3.1 Relationship between a MSNE and a MSDE

Let us recall what game theorists say about a MSNE:

“The point of randomizing is to keep the other player(s) just indifferent between the

strategies that the other player is randomizing among. One randomizes to keep one’s rivals

guessing and not because of any direct benefit to oneself.” (Kreps 1990, p 408).
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The doubt-based model is able to capture that state of players’ mutual guessing that

characterizes a MSNE. Assume that we are dealing with 2 × 2 constant sum games having

a unique mixed equilibrium with full support. Consider Player I; how would this player

interpret different values of (his own probability) x, say 0.2 and 0.6 ? A rational Player

I knows that Player II is randomizing to keep him indifferent between the strategies he is

randomizing among. Therefore, x = 0.2 and x = 0.6 will induce in Player I’s rational mind

the same level of doubts as to which is the best probability distribution, because both of them

have the same expected payoff. But, for the same reason, Player I’s equilibrium strategy in

the game will induce the same level of doubts as 0.2 or 0.6. In other words, Player I does

not see, both strategically and in a preference sense, any real difference between different

probability distributions in the open unit interval [0,1]. As a consequence, he will have

(nearly) equal level of doubts at any x in (0,1). The same will happen to Player II.

Hence, we ask first, which are the level of doubts embedded in the players’ mutual guessing

that characterizes steady states close to the the MSNE?. This is answered in Proposition

5 below, where we show that any interior MSNE converges to a MSDE if all agents are

playing in the doubt-full mode; that is, a MSNE is a Mixed Strategy Doubt-Full Equilibrium

(MSDFE). We also prove that when agents are in the doubt-less mode of play, the only rest

point of the system (2)-(3) is [(1/2, 1/2) , (1/2, 1/2)].

The second issue to deal with is the following: how is the MSNE reached? or,which is

the equilibrating process that may lead to the MSNE? This will be answered in Propositions

7 and 8 below.

We shall assume, without loss of generality, that dki(fki) = (1 − fki)
α. Assuming that

α ∈ (0,∞), we would obtain a large enough subclass of doubt functions in the set D. The

convex combinations of elements in this class belong to D as well. Note, in particular, that

this class contains the two extreme types of doubt functions introduced in Remark 1: when

α is very small, near zero, the doubt parameter characterizing agent ki, denoted as Ω = 1
α
,

is very high for any fki ∈ (0, 1). Then the function will have a graph looking like the one

of figure 2, and we shall say now that the agent is in the absent or doubt-full mode of play.

When α is very high, the graph of dki is close to the axes, as in figure 1, and so the doubt

parameter, Ω = 1
α
, is very small, for any fki ∈ (0, 1). This is the agent in the alert or

doubt-less mode of play. The results make use of these two modes of play and therefore

do not depend on the mathematical form of the doubt functions. On the other hand, with
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this class of doubt functions we can make numerical calculations in the examples presented

below.

Let G be a two-population, two-strategy, constant-sum game with

I = [(x∗, 1− x∗) , (y∗, 1− y∗)], x∗ > 0, y∗ > 0, denoting its MSNE.

Proposition 5

1. The (Euclidean) distance between an MSDE and MSNE converges to zero as δ goes to

zero if every agent plays with a doubt function in the D1−δ class; that is, if they play

in a doubt-full mode. Hence, an MSNE (x∗, y∗) ∈ (0, 1)× (0, 1) is an MSDFE.

2. Let dki(fki) = (1− fki)
α for all k, i. Then the (Euclidean) distance between an MSDE

and the central point of the simplex C = [(1/2, 1/2) , (1/2, 1/2)] converges to zero as

α goes to infinity. That is, if they play in a a doubt-less mode.

Proof: See appendix B

A straightforward corollary of Proposition 5 is the following:

Corollary 6 Let C = [(1/2, 1/2) , (1/2, 1/2)] and d any doubt function in D. Then, if C is

the MSNE of G, it is also an MSDE (i.e. a rest point of the doubt-based dynamic system

(2)-(3)).

This means that if C = [(x∗, 1− x∗) , (y∗, 1− y∗)] = [(1/2, 1/2) , (1/2, 1/2)] is the MSNE

of G, then it is compatible (in the sense of Proposition 5) with agents playing in any of the

two modes of play, doubt-full or doubt-less, as well as with agents endowed with any doubt

function of D in between those two extreme doubt functions.

Note that in a Mixed Strategy Doubt-Full Equilibrium (MSDFE), the indifference set

will be so thick that it will cover almost the whole space [0, 1]× [0, 1]. In a Mixed Strategy

Doubtless Equilibrium (MSDLE) the interior of the indifference set will be almost empty.

Even though every dki ∈ D is strictly decreasing, the exact values of the mixed strategy

equilibrium, (x∗, y∗), with x∗ and y∗ > 0, do not matter since every ki agent is endowed

either with a doubt function in the absent mode or in the alert mode. In particular, this

means that Proposition 5 does not impose any restriction on the equilibrium values that

fki might take nor it does relate those probability values with their corresponding expected

payoff values, πki, k = I, II and i = 1, 2, in a particular manner.
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3.2 Learning to Play a Mixed Strategy Nash Equilibrium (MSNE)

The question that we have not answered yet is: how the players do learn to coordinate in

the MSNE?

We want now to defend the MSNE concept by some specific adjusting behavior of our

rationally bounded players. We know that a fully rational player must avoid being guessed by

the opponents and that to achieve this he will behave in such a way so as to create a random

sequence of choices. This suggests that a doubtless mode of playing -that implies almost

no strategy switching behavior- would be far from being an adjusting process leading to the

Nash equilibrium, and indeed for most MSNE that is the case as proposition 5 shows. It

seems that, in an equilibrating process, what makes more sense is that players should behave

in the doubt-full mode. In our deterministic dynamic model, permanent doubt-full agents

will have a tendency to keep trying new strategies and, thus, generating not a truly random

sequences of choices, but individual processes of trial-and-error adjustments which could find

their way to the MSNE. In Proposition 7 below we show that this is the case: if every agent

behaves as if he were constantly with a high level of doubts, the agents’ adjusting behavior

would lead them to the MSNE and endow the equilibrium with a strong stability property.

Proposition 8 shows that the doubtless mode of play has just the opposite consequence.

Proposition 7 Let G be a two-population, two-strategy, constant-sum game with I∗ ≡
[(x∗, 1− x∗) , (y∗, 1− y∗)], x∗ > 0 and y∗ > 0, denoting its Mixed Strategy Nash Equilib-

rium. Then a point close to I∗ is asymptotically stable for the doubt-based dynamic system

(2)-(3) if every agent plays in the doubt-full or absent mode of play.

Proof: See appendix B

Proposition 8 Let G be a two-population, two-strategy game. If every agent is in the doubt-

less or alert mode of play (i.e. α is arbitrarily large) and the initial conditions of the doubt-

based dynamic system (2)-(3) are different from [(1/2, 1/2) , (1/2, 1/2)] , the system diverges

to a corner of the simplex.

Proof: See appendix B

Remark 9 Proposition 8 implies that the Mixed Strategy Nash Equilibrium of a constant

sum game is unstable.

17



One may then ask about why the modes of play of Proposition 7 and 8 would arise.

Needless to say, doubts are a subjective feeling and hence it is difficult to ascertain the

precise reason why they may arise in each particular case. Proposition 7 suggests that the

origin of high level of doubts lies in the fact that every agent seems to be aware that the

proportion with which each available strategy is being played and the sequence that the

agents, as a player population, are producing is not random. Thus, the high levels of doubts

felt by every member of each player population would arise from the fear of being guessed

and exploited by the opponent. As a consequence, since agents are very unhappy with their

current strategies (measured by a very high valued λki) a high proportion of agents will

experiment with new strategies in the next period. The fear and the doubts of the agents

will continue to be high and, joint with the choices that exploit the variations both in the

payoffs and in the strategy proportions, the adjusting behavior would lead the system to

the Mixed Strategy Nash Equilibrium. Once in the equilibrium, payoffs are equalized across

strategies and the doubt levels continue to be very high and equal across strategies too.

Thus, the doubt-full mode of play endow the MSNE with strong stability properties

Proposition 8 suggests that agents seem to be too confident and satisfied with the pure

strategies they are currently playing (they have a very low valued λki). With almost no

doubts, they would just produce small strategy choice changes, not taking care of the ran-

domness of their sequences. Thus, imitation is almost non existent and the resulting dynam-

ics is not sensitive enough to payoff and strategy proportion changes, however small. These

features would explain why the dynamics do not converge to equilibrium from any initial

point in the state space different from the equilibrium itself.

4 Examples

Example 10 The Penalty Kick Game

Palacios-Huerta (2003) found that the equilibrium theory predictions are observed in the

professional players’ behavior: (i) their choices follow a random process and (ii) that the

probability that a goal will be scored must be the same across each player’s strategies and

equal to the equilibrium scoring probability (that is, in the Mixed Strategy Nash Equilibrium

each player is indifferent among the available strategies). Palacios-Huerta and Volij (2007)
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extend this result by observing that professional players are capable of transferring their skills

from the field to the laboratory, a completely unknown setting for them, and yet behave in

a way that is significantly near the Nash equilibrium.

Palacios-Huerta and Volij (2007), from a sample of 2,717 penalty kicks collected from

European first division football (soccer) leagues during the period 1995-2004, built the fol-

lowing two player (Player I: the kicker and Player II: goal keeper) two strategy (Left, Right)

game.

( y) L R

( x)L 0.60, 0.40 0.95 , 0.05

R 0.90, 0.10 0.70, 0.30

where πI(i, j) denotes the kicker’s probability of scoring when he chooses i and the goalkeeper

chooses j, for i, j ∈ {L, R} .The Mixed Strategy Nash Equilibrium of this game is: x∗ =

0.363 64, y∗ = 0.454 55.

Football matches are continuously played and players’ game is based on the study of

the opponents in the field and watching their play on TV and in videotapes, so that their

behavior in the penalty kicks is collected and analyzed. Thus, there is a history of play of

each player and, hence, an interactive learning process. Thus, a natural issue is to investigate

the type of dynamic process that may lead to the result found by Palacios-Huerta (2003).

The doubt-based model seems to be a suitable model for this task.

The doubt-based selection dynamic system (2)-(3) corresponding to this game is the

following:

·
x =

x(1− x)((0.95− 0.35y)xα − (0.2y + 0.7)(1− x)α)

2(0.95− 0.35y)(0.2y + 0.7)− (0.95− 0.35y)xα − (0.2y + 0.7)(1− x)α

·
y =

y(1− y)((0.1 + 0.3x)yα − (0.3− 0.25x)(1− y)α)

2(0.1 + 0.3x)(0.3− 0.25x)− (0.1 + 0.3x)yα − (0.3− 0.25x)(1− y)α

The vector field defining (2)-(3) is

F (x, y) = (
x(1− x)((0.95− 0.35y)xα − (0.2y + 0.7)(1− x)α)

2(0.95− 0.35y)(0.2y + 0.7)− (0.95− 0.35y)xα − (0.2y + 0.7)(1− x)α
,

y(1− y)((0.1 + 0.3x)yα − (0.3− 0.25x)(1− y)α)

2(0.1 + 0.3x)(0.3− 0.25x)− (0.1 + 0.3x)yα − (0.3− 0.25x)(1− y)α
)
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Figure 4: The graph of the doubt function d(fki) = (1−fki)
0.231. The horizontal axis measures

the proportion fki of agents in population k playing the pure strategy i. The vertical axis

measures the doubt level associated to each fki.

We compute first the derivative DF (x, y) and then evaluate DF (x, y) at (0.363 64, 0.454 55)

to get the following Jacobian matrix:

DF (0.363 64, 0.454 55) =

[
α

1. 581 8−2×0.363 64α

0.146 29(−0.2×0.636 36α−0.35×0.363 64α)
0.790 91−0.363 64α

0.592 880.25×0.545 45α+0.3×0.454 55α

0.209 09−0.454 55α
α

0.418 18−2×0.454 55α

]

It is easy to see that for values of α ∈ (0, 0.231 88), all the eigenvalues of DF (0.363 64, 0.454 55)

have negative real parts and the associated determinants are all positive. Thus, the equilib-

rium (0.363 64, 0.454 55) is a spiral sink, for those values of α, and, therefore, it is asymptot-

ically stable. This means that the doubt functions of professional football (soccer) players

are in a set which includes one having a graph looking, approximately, like the one of figure

4. The latter would correspond to the player whose performance shows fewer level of doubts,

δ = 1/0.231 88 = 4. 312 6, for any frequency level in (0, 1).

Example 11 The Matching Pennies Game

20



( y) L R

( x) U 1, 0.5 0.5 , 1

D 0.5, 1 1, 0.5

The Mixed Strategy Nash equilibrium of this game is (1/2, 1/2), and the doubt-based

system (2)-(3) corresponding to the game is the following:

·
x =

x (1− x) (0.5 (1 + y) xα − (1− 0.5y) (1− x)α)

2 (0.5 + 0.25y − 0.25y2)− 0.5 (1 + y) xα − (1− 0.5y) (1− x)α

·
y =

y(1− y) ((1.0− 0.5x) yα − (0.5x + 0.5) (1− y)α)

2 (0.5 + 0.25x− 0.25x2)− (1.0− 0.5x) yα − (0.5x + 0.5) (1− y)α

We show now the conditions that makes (1/2, 1/2) asymptotically stable in the above

system. More specifically, we show that (1/2, 1/2) is a spiral sink.

The vector field defining (8)-(9) is

F (x, y) = (
x (1− x) (0.5 (1 + y) xα − (1− 0.5y) (1− x)α)

2 (0.5 + 0.25y − 0.25y2)− 0.5 (1 + y) xα − (1− 0.5y) (1− x)α ,

y(1− y) ((1.0− 0.5x) yα − (0.5x + 0.5) (1− y)α)

2 (0.5 + 0.25x− 0.25x2)− (1.0− 0.5x) yα − (0.5x + 0.5) (1− y)α )

We compute first the derivative DF (x, y) and then evaluate DF (x, y) at (1/2, 1/2) to

get the following matrix:

DF (1/2, 1/2) =

[
α

1. 5−2×0.5α
0.166 67

0.75−0.5α 0.5α

− 0.166 67
0.75−0.5α 0.5α α

1. 5−2×0.5α

]

We see that the elements jij(α) of the Jacobian matrix are three functions whose signs

depend on the value of the parameter α. Furthermore, these functions are all multiplied by
1

0.75−0.5α , and 0.75− 0.5α = 0 when α = 0.415 04. Then it is easy to see that only for values

of α in (0, 0.415 04) all the eigenvalues of the matrix DF (1/2, 1/2) have negative real parts.

As in the previous example, the equilibrium (1/2, 1/2) is a spiral sink.�
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5 Testable implications of doubt-based selection dy-

namics

Recall that in a Mixed Strategy Doubt Equilibrium (MSDE), the requirement is that for all

i, j with f ∗ki > 0 and f ∗kj > 0,
πki (f

∗)

d (f ∗ki)
=

πkj (f ∗)

d
(

f ∗kj

)
To satisfy the MSDE condition, we may have the following cases:

1. Agents are in the absent or doubt-full mode of play: then, for all k, and all i, j with

f ∗ki > 0 and f ∗kj > 0, d (f ∗ki)
∼= d

(
f ∗kj

) ∼= 1 and πki (f
∗) ∼= πkj (f ∗). Proposition 5,

shows that this happens in the Mixed Strategy Nash Equilibria.

2. Agents are in the alert or doubt-less mode of play: then, for all k, and all i, j with

f ∗ki = 1/2 and f ∗kj = 1/2, d (f ∗ki) = d
(

f ∗kj

) ∼= 0. Proposition 5 shows that when the

Mixed Strategy Nash Equilibrium is at C = [(1/2, 1/2) , (1/2, 1/2)] it coincides with

the Mixed Strategy Doubt-Less Equilibrium.

3. Agents are neither in the absent or doubt-full mode of play nor in the alert or doubt-

less mode of play: then, for all k and all i, j, with 0 < f ∗kj < f ∗ki < 1, since the

doubt functions are strictly decreasing, d (f ∗ki) < d
(

f ∗kj

)
, and thus, in order to satisfy

equilibrium condition we must have πki (f
∗) < πkj (f ∗).

The third case is clearly distinct from a Nash equilibrium. In words, the more frequent

strategies in a MSDE should have lower expected payoffs.

Notice that this condition applies as well as to a pure decision problem than to a non-

trivial game situation. So a supportive piece of evidence for our equilibrium condition could

come from consumer choice situations. Suppose that several brands of a product are sold

(say automobiles). For a particular category of product (a family sedan, a pickup truck),

sufficiently narrowly defined so that no horizontal or vertical differentiation of quality is

possible, the presence of multiple brands suggests according to standard theory that the

consumer should be (close to) indifferent between them (in our language πki (f
∗) = πkj (f ∗)).

Our model, on the other hand, suggests that the quality is lower for brands with higher

sales/market share. In our words, when f ∗ki > f ∗kj we should observe πki (f
∗) < πkj (f ∗). Table
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1, compiles statistics of mechanical troubles of cars compiled by the German Automobile Club

for 2002 (measured by the number of calls for towing-and-repairing to the Club per thousand

vehicles of that kind sold that year), as well as sales in February 2007. It is interesting to

note that for the three best kinds of car in all categories, there is a significant correlation

between sales of a model and mechanical troubles (a correlation coefficient of 0.65).9 This

is, of course, far from a proof of our result. The overall correlation coefficient is of rather

uncertain sign,10 but we suspect this is not a stable situation and the “worst” cars will

eventually exit the market. But it strongly suggestive and it points to an interesting testable

implication from our model.

Our conclusions could also be tested in the experimental laboratory. However, subjects

in experiments usually do not have information about the proportion of people using each

strategy. For example, the only experiment from those surveyed in chapter 3 of Camerer

(2003) in which agents are given that information is the one carried out by Tang (2001).

In that experiment, and contrary to our predictions, the most frequently played strategies

have a higher ex-post average payoff. We suspect, though, that the highly precise (and,

we would argue, unnatural) form of the feedback given to subjects eliminates the “doubt”

considerations that are important in the build-up of our model. Curiously enough, in the

experiment of Tang (2001) only about a fourth of the subjects participating in that experi-

ment used repeatedly this information on frequencies of play. We believe that more evidence,

and hopefully, from “fuzzier” (more realistic) environments would be useful to confront some

predictions made in this work.

9The same computation by category gives a number in excess of 0.75 for each one.
10And there are, of course, lots of omitted important variables
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Table 1: Quality and sales by category. Source: ADAC 2002

Model Mechanical problems Sales

Small cars

Fiat Punto 34,5 1176

Renault Clio 32,7 1506

Seat Ibiza/ Cordoba 28,3 1399

Opel Corsa 17,9 4983

VW Polo 16,2 4437

Ford Fiesta 15,9 2906

Medium-sized cars

Renault Mégane 46,2 1508

Ford Escort 27,8 2933

Opel Astra 16,7 5207

VW Golf/Vento/Bora 16,2 11072

Audi A3/S3 15,1 4052

Toyota Corolla 9.8 2236

Large cars

Volvo S40/V40 27,7 811

BMW 3 17,8 6043

Mercedes C 17,5 2848

VW Passat 16,1 7500

Audi A4/S4 14,0 5267

Mazda 626 10,2 754

Toyota Carina/Avensis 7,6 1025
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6 Constant doubt-based selection dynamics

The individual choice model that we are going to use in this section is derived from a choice

procedure introduced by Aizpurúa, Ichiishi, Nieto and Uriarte (1993), (referred to as AINU

from now on), in the space of simple lotteries. We consider now the case when the level of

doubts felt is constant, for any value of fki ∈ Fki. This means that society has no influence

upon the doubt level of the agents. Formally,

Assumption 12 The Constant Doubt Function. For all k ∈ K, i ∈ Sk and fki ∈ Fki, the

function dki : Fki → [0, 1] is constant; i.e.

dki(fki) = εk ∈ (0, 1)

We assume that the constant level of doubts εk felt by agent ki induces threshold levels in

both expected payoffs and strategy frequencies and that these threshold levels are described

by means of similarity relations.

As in the previous case, it is by means of Assumption 12 about the doubt function that

we may define a similarity relation on Πki = (0, 1] and correlated similarity relations on

Fki = [0, 1]. Suppose that (πki, fki) is the vector of expected payoff-strategy proportion

attached to strategy i at time t.

The similarity relation on Πki, denoted SΠki, is assumed to be of the difference type and

it is defined as follows

πkiSΠkiπ
′
ki ⇔ |πki − π′ki| ≤ εk

On Fki, we define now the correlated similarity relations as follows. First, for all πki(f) >

εk > 0 we build the function φki : Πki → (1,∞] as follows,

φki(πki) =
πki

πki − εk

> 1

Then, we can establish the following similarity relation (of the ratio-type) between fki and

other proportions in Fki, such as f ′ki, given πki.

fkiSFki(πki)f
′
ki ⇔

1

φki(πki)
5

fki

f ′ki

5 φki(πki)
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Figure 5: It is depicted the procedural preference %ki when doubts are constant.

We call SFki(πki) a correlated similarity relation because the similarity on Fki depends

on the level of expected payoff πki at period t. For values of πki 5 εk the function φki is not

defined and we assume that in that case that SFki(πki) is the degenerate similarity relation

(see Rubinstein (1988)).

Remark 13 The threshold level in the frequency space is inversely related to expected pay-

offs: ∂φki(πki)
∂πki

< 0. This means that as the expected payoffs at stake increases, the discrim-

ination on the frequency space Fki increases (generating the horizontal wedge type shape of

figure 5).

6.1 The Procedural Preference Relation

As in the previous case, we assume that agents use both SΠand SF (πki) to build a decision

procedure (see Appendix 1) that helps them to define at each period of time their preferences

on the product space Πki×Fki . The result of this procedure is the preference relation depicted

in Figure 5, where the darker part is vector (πki, fki)
′s indifference set and U = Ua ∪Ub ∪Uc

and L = La ∪ Lb ∪ Lc are the upper and lower contour sets, respectively. We assume that

the preferred set U represents agent ki’s aspiration set.

Assumption 14 Every agent in a given player position is able to observe the relative

frequency of every strategy available to that position. When an agent feels dissatisfied with
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his current strategy, he will choose a new strategy with a probability that is equal to the

proportion of agents playing that strategy.

We proceed as in the previous case and thinking of φki(πki) as a ”measure” of the distance

to the aspiration set or, equivalently, of agent ki’s degree of satisfaction with strategy i (for

simplicity we shall write φki instead of φki(πki)), we define the following ratio

φki − 1

Σmk
i=1

φki

=
φki − 1

φk

We take it as the proportion of ki strategists who feel dissatisfied with strategy i. Note

that, everything equal, this function increases with φki. Hence, an increase in φki, due to a

decrease in the expected payoffs πki, will increase the proportion of dissatisfied ki strategists.

As before, τ (φki−1)
φk

fki denotes the proportion of ki strategists who will choose a new

strategy at time t (the outflow). Since a particular strategy is chosen with a probability

that is equal to the proportion of agents playing that strategy, then τ
∑mk

j=1
(φkj−1)

φk
fkjfki =

τ (φk−1)
φk

fki denotes the proportion of agents who choose strategy i ; i.e. the inflow (where

φk =
∑mk

j=1 φkjfkj is the average perception in player population k at time t ).

Therefore

fki(t + τ) = fki(t)− τ
[φki − 1]

φk

fki + τ

[
φk − 1

]
φk

fki. (4)

Proposition 15 As τ → 0, equation (4) becomes

•
fki = fkiφk − φkiφk (5)

1. (a) If for all player position k ∈ K = {1, 2, ..., n} , the strategy set Sk consists of

two elements, i.e. if mk = 2 then, equation (5) is just the standard Replicator

Dynamics (RD) multiplied by a positive function (i.e. is aggregate monotonic).

(b) If mk > 2, then we obtain a selection dynamics that approximates the RD, but

preserves only the positive sign of the RD (i.e. is weakly payoff positive).

Proof: See appendix B
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Appendices

A Procedural preferences

We explain first the procedural preferences based on doubts that are strictly decreasing. The

choice procedure is an extension of the one introduced, in the context of simple lotteries, by

Uriarte (1999) which, then was used to build a model of evolutionary drift in Uriarte (2007).

The constant doubt case is much more simple and would not need additional explanations.

Let (πki, fki) be the vector of expected payoff-proportion of agents of player population

k attached to strategy i ∈ Sk at time t.

(b) dki builds the λki function, which is used to define on Fki correlated similarity relations

of the ratio-type. This function is defined as follows: given dki and a specific fki ∈ (0, 1),

then for all πki > dki(fki)
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λki(πki) =
πki

πki − dki(fki)
> 1

Thus, there is one λki function for each fki ∈ (0, 1), so that, given πki,and fki attached

to agent k’s strategy i, with πki > dki(fki), the similarity interval of fki is:

[fki/λki(πki), fki.λki(πki)]

The correlated similarity relation on Fki, denoted SF [πki, fki], changes with the value of

fki and,- by the property 1of the λki function, below-, with the value of πki.

Decreasing Doubts-Based Correlated Similarity Relations.

Given a pair of vectors, (πki(f), fki) and (πki(f), fki) in Πki × Fki, with fki , fki ∈ (0, 1),

we define similarity relations on Πki and Fki in the following way. To simplify notation, we

write πki(f) and πki(f) as πki and πki, respectively.

(i) On the space of expected payoffs, Πki, the doubt function dki defines correlated simi-

larities of the difference-type as follows: given fki we say that πki is similar to πki, ( formally

written as πkiSΠ[fki]πki ), if and only if |πki − πki| 5 dki(fki) , where |.| stands for absolute

value. Thus, there is one similarity relation on Πki, for each fki ∈ (0, 1)

Then the similarity interval of πki, given fki is:

[πki − dki(fki), πki + dki(fki)]

Note that dki(fki), the doubt level felt by
∑

agent ki given the proportion fki, becomes

the threshold level in the definition of this type of similarity relation. By Assumption 1, if

fki increases, the threshold, dki(fki), decreases and so the similarity intervals of πki shrink

(giving rise to the vertical cone-shaped form in figure 3).This means that when fki increases,

the discrimination capacity on the space of expected payoffs to strategy i, Πki, increases

(probably because the accumulated experience with strategy i has increased due to the

increased number of agents from population k currently playing strategy i). . When fki = 0,

the whole set Πki is similar to πki and when fki = 1 only πki is similar to itself.

(ii) On the strategy frequency space, Fki, dki defines correlated similarity relations of the

ratio-type as follows. First, we define the λki function: given dki and a specific fki ∈ (0, 1),

then for all πki > dki(fki)
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λki(πki) =
πki

πki − dki(fki)
> 1

Thus, there is one λki function for each fki ∈ (0, 1).

Now we may define on Fki correlated similarity relations of the ratio-type, as follows:

given πki and fki , we say that fki is similar to fki,( formally written as, fkiSF [πki, fki]fki

), if and only if 1/λki 5 fki/fki 5 λki. The similarity intervals are of the following type:

[fki/λki(πki), fki.λki(πki)]

These similarity intervals shrink as expected payoffs go from πki > dki(fki) to 1, giving rise

to the horizontal “wedge-shaped” part of figure 3. This means that perception increases if

the payoffs at stake increase.

The Procedural Preference on Πki × Fki

We shall assume that each agent ki compares pairs of alternatives in Πki × Fki with the

aid of the above pair of correlated similarity relations, SΠ and SF, to decide which of the

two is preferred. Thus, the agent may define his procedural preference %kion Πki × Fki and

know his aspiration set U at each t ( which we identify with the upper contour set of the

vector (πki, fki) at t ). That is, given a pair of vectors (πki, fki) and (πki, fki) in Πki × Fki ,

the vector (πki, fki) will be declared to be preferred to (πki, fki), i.e. (πki, fki) �ki (πki, fki),

whenever the agent ki perceives that one of the following three conditions is met. Note that

since (πki, fki) is to be preferred, the conditional similarity relation SΠ on Πki given fki and

the conditional similarity relation SF on Fki given πki and fki are to be used.

Condition α : πki > πki, and no πkiSΠ[fki]πki; while fkiSF [πki, fki]fki.

In words, πki is bigger than πki and, given fki , πki is perceived to be not similar to

πki ; while , fki is perceived to be similar to fki. Uα in figure 3 is the area implied by this

condition.

Condition β : fki > fki and no fkiSF [πki, fki]fki;while πkiSΠ[fki]πki.

In words, fki is bigger than fki and, given πki and fki, fki is perceived to be not similar

to fki; while, given fki, πki is perceived to be similar to πki.Uβ in Figure 3 is the area implied

by this condition.

Condition δ : πki > πki and no πkiSΠki[fki]πki; fki > fki and

no fkiSF [πki, fki]fki.
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That is, vector (πki, fki) is strictly bigger than (πki, fki) and no similarity is perceived in

both instances. Uδ in figure 3 is the area implied by this condition.

Whenever both expected payoffs and strategy proportions are perceived to be similar,

then the two vectors will be declared indifferent ; i.e. when πkiSΠ[fki]πki, πkiSΠ[fki]πki,

fkiSF [πki, fki]fki and fkiSF [πki, fki]fki, then (πki, fki) ∼ki (πki, fki). When none of these

four situations takes place, then the two vectors would be non-comparable (see figure 3).

B Proofs of propositions

Let

( y) L R

(x)U a11, b11 a12 , b12

D a21, b21 a22, b22

denote the 2 × 2 constant-sum game G, and I∗ ≡ [(x∗, 1− x∗) , (y∗, 1− y∗)] ,with x∗ > 0

and y∗ > 0, the Mixed strategy Nash Equilibrium of G. We may assume, without loss of

generality, that a11 > a21, then b11 < b21, a12 < a22, and b22 < b21. Recall that payoffs

are normalized so that they take values on (0, 1]. The doubt-based selection dynamics are

represented by the following system:

·
x =

x (1− x)

πU (πD − dD) + πD (πU − dU)
(πUdD − πDdU) (B.1)

=
x (1− x)

πU (πD − dD) + πD (πU − dU)
((a11y + a12(1− y))dD (1− x)− (a21y + a22(1− y))dU (x))

≡ G1(x, y)F1(x, y)

·
y =

y (1− y)

πL (πR − dR) + πR (πL − dL)
(πLdR − πRdL) (B.2)

=
y (1− y)

πL (πR − dR) + πR (πL − dL)
((b11x + b21(1− x))dR (1− y)− (b12x + b22(1− x))dL (y))

≡ G2(x, y)F2(x, y)

To simplify the proofs, we shall make use of the class of doubt functions dki(fki) =

(1− fki)
α with α ∈ (0,∞). No generality is lost, since the purpose is just to use the doubt-

full and doubt-less modes by making α close to 0 and ∞, respectively.
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Proof of Proposition 5:

1. We must first show that a Mixed Strategy Nash Equilibrium (MSNE) converges to

Mixed Strategy Doubt-Full Equilibrium (MSDFE) as δ converges to 0 in dki = d1−δ ∈
D1−δ ⊂ D (see Remark 2). Note that, by construction of the λki function, the denom-

inators of the system (B.1)-(B.2)) are positive.

An interior rest point of (B.1)-(B.2),(i.e. a MSDE), satisfies:

(a11y + a12 (1− y)) dD (1− x)− (a21y + a22 (1− y)) dU (x) = 0

(b11x + b21 (1− x)) dR (1− y)− (b12x + b22 (1− x)) dL (y) = 0

Then, if di ∈ D1−δ for i ∈ {U,D,L, R},

lim
δ→0

dU (x)

dD (1− x)
= lim

δ→0

dL (y)

dR (1− y)
= 1, for all (x, y) ∈ (0, 1)× (0, 1)

Now suppose that we are in the MSNE, (x∗, y∗) ∈ (0, 1)×(0, 1), of G and that di ∈ D1−δ.

Then, the strategies available to each player get the same expected payoff; that is

a11y
∗+a12 (1− y∗) = a21y

∗+a22 (1− y∗) and b11x
∗+b21 (1− x∗) = b12x

∗+b22 (1− x∗).

Thus,

lim
δ→0

(a11y
∗ + a12 (1− y∗)) dD (1− x∗)

(a21y∗ + a22 (1− y∗)) dU (x∗)
= lim

δ→0

(b11x
∗ + b21 (1− x∗)) dR (1− y∗)

(b12x∗ + b22 (1− x∗)) dL (y∗)
= 1

This, plus continuity, establishes the result.

2. We show that for all (x′, y′) ∈ (0, 1)× (0, 1) , with (x′, y′) 6= (1/2, 1/2), there exists an

α′ large enough that the rest point of (B.1)-(B.2) cannot be [(x′, 1− x′) , (y′, 1− y′)]

for any α ≥ α′ and then the result follows.

An interior rest point of (B.1)-(B.2) must satisfy:

(a11y + a12 (1− y)) dD (1− x)− (a21y + a22 (1− y)) dU (x) = 0

(b11x + b21 (1− x)) dR (1− y)− (b12x + b22 (1− x)) dL (y) = 0

For interior rest points, this implies that

(a11y + a12 (1− y))
dD (1− x)

dU (x)
− (a21y + a22 (1− y)) = 0

(b11x + b21 (1− x))
dR (1− y)

dL (y)
− (b12x + b22 (1− x)) = 0
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But since
dD (1− x)

dU (x)
=

(
x

1− x

)α

,
dR (1− y)

dL (y)
=

(
y

1− y

)α

Then if x′ > 1/2, there exists an α′ big enough that for all α ≥ α′(
x′

1− x′

)α

>
(a21y

′ + a22 (1− y′))

(a11y′ + a12 (1− y′))

and thus

(a11y
′ + a12 (1− y′))

(
x′

1− x′

)α

− (a21y
′ + a22 (1− y′)) > 0

If x′ < 1/2, there exists an α′ big enough that for all α ≥ α′(
x′

1− x′

)α

<
(a21y

′ + a22 (1− y′))

(a11y′ + a12 (1− y′))

and thus

(a11y
′ + a12 (1− y′))

(
x′

1− x′

)α

− (a21y
′ + a22 (1− y′)) < 0

The argument is equivalent for y′.�

Proof of Proposition 7

Let us take into account that in an interior stationary state, I∗ ≡ [(x∗, 1− x∗) , (y∗, 1− y∗)] ,

F1(x
∗, y∗) = 0 and F2(x

∗, y∗) = 0 in (2)-(3), where

F1(x, y) = (a11y + a12(1− y))(x)α − (a21y + a22(1− y))(1− x)α

F2(x, y) = (b11x + b21(1− x))(y)α − (b12x + b22(1− x))(1− y)α

and

∂F1(x, y)

∂x
= α(xα−1 (a12(1− y) + a11y) + (a22(1− y) + a21y) (1− x)α−1)

∂F1(x, y)

∂y
= xα (a11 − a12) + (a22 − a21) (1− x)α

∂F2(x, y)

∂x
= yα (b11 − b21) + (b22 − b12) (1− y)α

∂F2(x, y)

∂y
= α(yα−1 (b21(1− x) + b11x) + (b22(1− x) + b12x) (1− y)α−1)
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On the other hand, the Jacobian of the dynamic system J(x, y) evaluated at the steady

state (x∗, y∗) is:

J(x∗, y∗) =

 G1(x
∗, y∗) ∂F1(x,y)

∂x

∣∣∣
I∗

G1(x
∗, y∗) ∂F1(x,y)

∂y

∣∣∣
I∗

G2(x
∗, y∗) ∂F2(x,y)

∂x

∣∣∣
I∗

G2(x
∗, y∗) ∂F2(x,y)

∂y

∣∣∣
I∗


Noting in equilibrium that πUdD = πDdU and πLdR − πRdL; that is,

(a11y
∗ + a12(1− y∗))(x∗)α = (a21y

∗ + a22(1− y∗))(1− x∗)α

(b11x
∗ + b21(1− x∗))(y∗)α = (b12x

∗ + b22(1− x∗))(1− y∗)α

Hence,

G1(x
∗, y∗) =

x∗(1− x∗)

2(a11y∗ + a12(1− y∗))(a21y∗ + a22(1− y∗)− (x∗)α)

G2(x
∗, y∗) =

y∗(1− y∗)

2(b11x∗ + b21(1− x∗))(b12x∗ + b22(1− x∗)− (y∗)α)

Thus, the elements of the Jacobian matrix are the following:

j11 = G1(x
∗, y∗)

∂F1(x, y)

∂x

∣∣∣∣
I∗

=
x∗(1− x∗)α((x∗)α−1 (a12(1− y∗) + a11y

∗) + (a22(1− y∗) + a21y
∗) (1− x∗)α−1)

2(a11y∗ + a12(1− y∗))(a21y∗ + a22(1− y∗)− (x∗)α)

=
α((a12(1− y∗) + a11y

∗)

2(a11y∗ + a12(1− y∗))(a21y∗ + a22(1− y∗)− (x∗)α)

=
α

2(a21y∗ + a22(1− y∗)− (x∗)α)

j12 = G1(x
∗, y∗)

∂F1(x, y)

∂y

∣∣∣∣
I∗

=
x∗(1− x∗)((x∗)α (a11 − a12) + (a22 − a21) (1− x∗)α)

2(a11y∗ + a12(1− y∗))(a21y∗ + a22(1− y∗)− (x∗)α)

j21 = G2(x
∗, y∗)

∂F2(x, y)

∂y

∣∣∣∣
I∗

=
y∗(1− y∗)((y∗)α (b11 − b21) + (b22 − b12) (1− y∗)α)

2(b11x∗ + b21(1− x∗))(b12x∗ + b22(1− x∗)− (y∗)α)
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j22 = G2(x
∗, y∗)

∂F2(x, y)

∂y

∣∣∣∣
I∗

=
y∗(1− y∗)α((y∗)α−1 (b21(1− x∗) + b11x

∗) + (b22(1− x∗) + b12x
∗) (1− y∗)α−1)

2(b11x∗ + b21(1− x∗))(b12x∗ + b22(1− x∗)− (y∗)α)

=
α (b11x

∗ + b21(1− x∗))

2(b11x∗ + b21(1− x∗))(b12x∗ + b22(1− x∗)− (y∗)α)

=
α

2(b12x∗ + b22(1− x∗)− (y∗)α)

Hence, the J(x∗, y∗) matrix is

J(x∗, y∗) =

[
α

2(a21y∗+a22(1−y∗)−(x∗)α)
x∗(1−x∗)((x∗)α(a11−a12)+(a22−a21)(1−x∗)α)
2(a11y∗+a12(1−y∗))(a21y∗+a22(1−y∗)−(x∗)α)

y∗(1−y∗)((y∗)α(b11−b21)+(b22−b12)(1−y∗)α)
2(b11x∗+b21(1−x∗))(b12x∗+b22(1−x∗)−(y∗)α)

α
2(b12x∗+b22(1−x∗)−(y∗)α)

]

Recall that the real part of the eigenvalues of J(x∗, y∗) only depends on the sum of the

diagonal terms (the trace of the matrix):

Trace of J(x∗, y∗) = G1(x
∗, y∗)

∂F1(x, y)

∂x

∣∣∣∣
I∗

+ G2(x
∗, y∗)

∂F2(x, y)

∂y

∣∣∣∣
I∗

=
α

2(a21y∗ + a22(1− y∗)− (x∗)α)
+

α

2(b12x∗ + b22(1− x∗)− (y∗)α)

=
α

2

[
1

a21y∗ + a22(1− y∗)− (x∗)α
+

1

b12x∗ + b22(1− x∗)− (y∗)α

]
As the doubt parameter α approaches 0, the value of the level of doubts d(1−x∗) = (x∗)α

and d(1−y∗) = (y∗)α approaches 1. When α is nearly 0, written as α ∼= 0, agents are playing

in the absent or doubt-full mode and we can think of (x∗)α and (y∗)α as a constant number

very close to 1 (or, rounding up, just 1 ). Hence, we can rewrite the Trace of J(x∗, y∗) as

follows:

Trace of J(x∗, y∗) =
α

2

[
1

a21y∗ + a22(1− y∗)− 1
+

1

b12x∗ + b22(1− x∗)− 1

]
Note that the expected values πD = a21y

∗ + a22(1 − y∗) and πR = b12x
∗ + b22(1 − x∗),

the denominators of the trace, are smaller than 1 because payoffs take values in (0, 1] and

we are considering interior mixed equilibria. Thus, j11 < 0 and j22 < 0 and so the sign of

the trace is negative
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sign

[
G1(x

∗, y∗)
∂F1(x, y)

∂x

∣∣∣∣
I∗

+ G2(x
∗, y∗)

∂F2(x, y)

∂y

∣∣∣∣
I∗

]
< 0

Without loss of generality, we may assume that a11 > a21, then b11 < b21, a12 < a22, and

b22 < b21. Then, when the agents are playing in the absent or doubt-full mode the sign of

j21 × j12 =

(
y∗(1− y∗)((y∗)α (b11 − b21) + (b22 − b12) (1− y∗)α)

2(b11x∗ + b21(1− x∗))(b12x∗ + b22(1− x∗)− (y∗)α)

)
×

(
x∗(1− x∗)((x∗)α (a11 − a12) + (a22 − a21) (1− x∗)α)

2(a11y∗ + a12(1− y∗))(a21y∗ + a22(1− y∗)− (x∗)α)

)
=

(
y∗(1− y∗)((b22 − b21) + (b11 − b12))

2(b11x∗ + b21(1− x∗))(b12x∗ + b22(1− x∗)− 1)

)
×

(
x∗(1− x∗)((a11 − a21) + (a22 − a12))

2(a11y∗ + a12(1− y∗))(a21y∗ + a22(1− y∗)− 1)

)
< 0

is negative. Hence, the determinant associated to J(x∗, y∗) is Det J(x∗, y∗) = j11×
j22 − j21 × j12 and its sign is positive. Therefore, when every agent is in the absent or

doubt-full mode of play, the mixed equilibrium I∗ ≡ [(x∗, 1− x∗) , (y∗, 1− y∗)] is a sink and

therefore is an asymptotically stable equilibrium.�

Proof of Proposition 8

In the doubtless or alert mode of play, α is very high. Therefore, since

·
x =

x (1− x)

πU (πD − dD) + πD (πU − dU)
(a1yxα − a2 (1− y) (1− x)α)

·
y =

y (1− y)

πL (πR − dR) + πR (πL − dL)
(b1xyα − b2 (1− x) (1− y)α)

for α large enough

sign
[
·
x
]

= sign [(a1yxα − a2 (1− y) (1− x)α)] = sign [x− 1/2]

and, thus, if x(0) > 1/2, then limt→∞ x(t) = 1, whereas if x(0) < 1/2, then limt→∞ x(t) = 0.

The analysis is equivalent for y, thus establishing the result.�

Proof Proposition 15:

(a) Let Sk = {1, 2} be player population k’s strategy set. Without loss of generality, let

us refer to the dynamics of strategy 1. Then, by equation (1), we have
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•
fk1 = fk1φk − φk1φk (B.3)

=
εk

πk1(πk2 − εk) + πk2(πk1 − εk)
fk1(πk1 − πk)

=
εk

D(f)
fki[πki − πk]

where D(f) ≡ πk1(πk2 − εk) + πk2(πk1 − εk) > 0.

By equation (B.3), the growth rates
•

fki

fki
equal payoff differences [πki − πk] multiplied by

a (Lipschitz) continuous, positive function εk

D(f)
. This concludes the proof. (Note that, given

εk, a payoff difference [πki − πk] will have stronger dynamic effect if D(f) is low than if it is

high; if εk decreases, the dynamic effect of [πki − πk] decreases).

(b) Easy.�
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