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Abstract 
We propose a method of estimating the Pareto tail thickness parameter of the unconditional 
distribution of a financial time series by exploiting the implications of a GJR-GARCH volatility 
model. The method is based on some recent work on the extremes of GARCH-type processes 
and extends the method proposed by Berkes, Horváth and Kokoszka (2003). We show that the 
estimator of tail thickness is consistent and converges at rate √T to a normal distribution (where 
T is the sample size), provided the model for conditional variance is correctly specified as a 
GJR-GARCH. This is much faster than the convergence rate of the Hill estimator, since that 
procedure only uses a vanishing fraction of the sample. We also develop new specification tests 
based on this method and propose new alternative estimates of unconditional value at risk. We 
show in Monte Carlo simulations the advantages of our procedure in finite samples; and finally 
an application concludes the paper. 
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1 Introduction

Estimation of the tail thickness parameter is the subject of a large and active literature. Koedijk,

Schafgans and de Vries (1990), Hols and de Vries (1991) and Wagner and Marsh (2005) showed the

advantages of modeling fat-tailed distributions of exchange rate changes. Stock returns are known

to have heavy tails following the work of Osborne (1959), Mandelbrot (1963), Fama (1965, 1976)

and Markowitz (1991). Classical extreme value theory was worked out for i.i.d. data but there have

been some extensions to the time series case. There are two general cases. The �rst case includes

stationary linear processes. In that case, the tail thickness parameter is the same as the tail thickness

of the error distribution and of the associated i.i.d. process that has the same marginal distribution

as the original process. This is true under quite weak conditions on the dependence of the process.

Also, in this case dependence does not a¤ect rates of convergence or even asymptotic distributions of

standard estimators like the Hill (1975) estimator, see Embrechts, Klüppellberg and Mikosch (1998)

so that standard error construction is particularly simple. The second case includes many nonlinear

processes and may have one or more violation of the above properties. For example, it is well

known that GARCH (Generalized Autoregressive Conditional Heteroskedastic, see Engle (1982) and

Bollerslev (1986) for more details) processes whose errors have light tails have heavy tails so that the

dependency model itself in�uences the tail thickness of the observed data. Indeed, this is one of the

original motivations for the ARCH/GARCH models, that they generate leptokurtosis from normal

innovations. The second issue is whether the dependence in�uences the asymptotic distribution of

standard estimators (see e.g. Hsing (1991), Dress (2000, 2003), Resnick and St¼aric¼a (1997, 1998) and

St¼aric¼a (1998)). This issue has received less treatment and there are few concrete results. In practice,

most applications to �nancial data appear to assume that the usual simple asymptotic distributions

go through, see e.g. Gabaix, Gopikrishnan, Plerou and Stanley (2006, page 493), where they note

that most of the methods used nowadays in practice for estimating power law exponents (including

the Hill (1975) estimator) assume independent observations.

Recent work has shown the precise relation between the parameters of the GARCH process and

the error distribution and the tail thickness parameter of the implied return series (see Mikosch

and St¼aric¼a (2000)). We use this relation as an alternative method of estimating the tail thickness

parameter. Provided the conditional variance is correctly speci�ed as a GJR-GARCH model of

Glosten, Jagannathan and Runkle (1993) and the error is i.i.d. or a martingale di¤erence sequence,

we show that the resulting estimator of tail thickness converges at rate
p
T to a normal distribution

(where T is the sample size). This is much faster than the convergence rate of the Hill estimator,

since that procedure only uses a vanishing fraction of the sample. Quoting Kearns and Pagan (1997,

page 173) in relation to the Hill estimator: �it seems unlikely that good estimates of a tail index

could be made unless the sample size available is quite large, since the asymptotic theory shows that

the convergence rate is �xed by m (the number of order statistics used in the computations) and this

can only rise slowly with T�. Moreover, quite recently, Wagner and Marsh (2005) have shown the
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poor �nite sample properties and large biases that the Hill estimator may produce. They propose an

alternative procedure to take into account fat tails involving numerical integration and subsampling.

The estimator that we use in this paper has also the objective of taking into account the fat tails,

but it is much easier to compute.

Therefore, our estimator has three main advantages in relation to the Hill estimator: (1) it has

a convergence rate of
p
T to a normal distribution; (2) there is no bandwidth parameter to choose

and it is easy to compute, just requiring a univariate grid search (Jansen and de Vries (1991) note

the di¢ culties of choosing in practice m in �nite samples); (3) We do not need to assume that the

error process is independent and identically distributed.

The idea to construct the estimator that we use in this paper has already been considered by

St¼aric¼a and Pictet (1997). However, they assume a-priori knowledge of the distribution of the

innovation in the GARCH process, in particular a normal or t distribution. Berkes, Horváth and

Kokoszka (2003) extended St¼aric¼a and Pictet (1997) to allow for not specifying that distribution

a priori in a GARCH(1,1). Quoting Berkes, Horváth and Kokoszka (2003), they show in a small

simulation study the performance of their estimator, however the goal of their study was �merely to

gain some insight into the behaviour of the estimator, and we do not view the results...as a guide

for practitioners; for this a more extensive study focusing on a speci�c application at hand would be

required�.

The main novelties in our paper are as follows. First, we extend the results of Berkes, Horváth

and Kokoszka (2003) to allow for observations that follow the GJR-GARCH(1,1) model of Glosten,

Jagannathan and Runkle (1993). Glosten, Jagannathan and Runkle (1993) and Linton and Mam-

men (2005) are examples that provide evidence of the importance of the GJR-GARCH model in

Economics and Finance. Indeed, our main results do not require that the error process is indepen-

dent and identically distributed. We also allow for the existence of dynamics in the mean equation.

Second, we provide a comprehensive simulation study that shows the good �nite sample properties

of our estimator versus the Hill (1975) estimator and another competitive estimators such as the one

proposed in Huisman et al (2001). Third, we also propose a new estimator of Value at Risk based

on the tail thickness estimator. The new estimator can be used as a speci�cation test of the type

of GARCH model, and we propose a Hausman type test to do this. Finally, several applications to

real data provide evidence of the advantages of this procedure.

The plan of the paper is as follows. In Section 2 we present the structure of the model. Section

3 shows the estimator while Section 4 provides the corresponding distribution theory. Section 5

presents simulation results that support the advantages of our estimator versus the Hill estimator

and an application to daily stock return and oil prices. Finally, Section 6 concludes. The proofs are

contained in the Appendix.
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2 The Main Tool

We frame the main idea in a rather simple model that ignores mean dynamics. This is partly for

pedagogic bene�t, but there are also some gaps in the theory with regard to processes with both

mean and variance dynamics. The method can be applied in such cases though, as we show below.

Suppose that

ut = "t�t (1a)

�2t = ! + u2t�1 + ��
2
t�1; (1b)

where "t is a stationary ergodic process with E ["tjFt�1] = 0 and E ["2t � 1jFt�1] = 0, where Ft
denotes the sigma �eld generated by fut; ut�1; : : :g; i.e., ut is a semi-strong GARCH(1,1) process.
Nelson (1990) shows that provided "2t is also i.i.d. non-degenerate and E ln("

2
t + �) < 0; that (1a)

and (1b) has a strictly stationary and ergodic solution and we can write

�2t = !

"
1 +

1X
j=1

Yj

i=1

�
"2t�i + �

�#
:

This case would be called the strong GARCH process. Linton, Pan, and Wang (2007) extend this

result to the semi-strong case where "t is not-necessarily i.i.d.

Mikosch and St¼aric¼a (2000) show the following result, which relates the tail thickness parameter

to the dynamic parameters of the GARCH process and the marginal distribution of the innovations.

We use relation (2) to generate estimators based on solving the sample equivalent equations. Let

At = "
2
t + �:

Proposition 1. Suppose that "t is i.i.d., that the law of lnAt is nonarithmetic, that E[lnAt] <

1; that Pr[lnAt > 0] > 0; and that there exists p0 � 1 such that E[Apt ] < 1 for all p < p0 and

E[Ap0t ] =1: Then the following statements hold:
(a) The equation

	(�) = E
h
A
�=2
t

i
� 1 = 0 (2)

has a unique solution in (0; p0).

(b) Assume additionally that ! > 0 and � satis�es (2). Then �2t is a stationary process. There

exists a positive constant c0 = E[(! + At�2t )
�=2 � (At�2t )

�=2
]=[(�=2)E(A

�=2
t lnAt)] such that

Pr (�t > x) � c0x��; as x!1

Pr (jutj > x) � E[j"tj�] Pr (�t > x) ; as x!1:

Moreover, the vector (u; �) is jointly regularly varying with index �:

For example, the IGARCH case has � = 2 for all values of ; � such that  + � = 1: For other

processes � varies with the parameters ; � and with the marginal distribution of "2t : This theorem

only requires the random variable At to have some positive moment.

3



We point out one important implication of the last sentence of proposition 1 (using a more

direct argument). For x > 0; Pr (ut > x) = Pr ("t�t > x) = Pr ("t1("t > 0)�t > x) : Furthermore, by

Breiman (1965) we have

Pr ("t1("t > 0)�t > x) ' c0E["�t 1("t > 0)]x�� as x!1:

Likewise, Pr (�ut > x) ' c0E[(�"t)�1("t < 0)]x�� as x!1: It follows that

lim
x!+1

Pr (ut > x)

Pr (�ut > x)
= c 2 (0;1); (3)

so that both tails of u share the same index. This is true no matter what type of asymmetry holds

in the distribution of "t; the asymmetry of "t a¤ects only c not �: By contrast, the conditional tail

thickness of ut given the past is the tail thickness of "t so that the magnitudes of either tail are

determined also by the magnitudes of the corresponding tail of "t: The upper and lower tail thickness

parameters can di¤er in the conditional distribution but not in the unconditional distribution. There

is some empirical evidence that the tails can be quite di¤erent with heavier tails on the downside for

some assets and vice-versa for other assets.

The relation (2) can be obtained for other GARCH type processes, so long as they have a random

coe¢ cient representation �2t = At�
2
t�1+Bt; where At; Bt are i.i.d. This includes asymmetric GARCH

and a number of other processes, see Straumann (2003) for speci�c results. We use the results for

the case of a GJR-GARCH(1,1) of Glosten, Jagannathan and Runkle (1993) where (1b) is replaced

by

�2t = ! + u
2
t�1 + �u

2
t�11 fut�1 < 0g+ ��2t�1 (4)

and where 1 f:g is an indicator function and At = ( + �1 f"t < 0g) "2t + �:
Remark 1. The results of Mikosch and St¼aric¼a (2000) do not extend in an obvious way to the

semi-strong case, except in the IGARCH case, because the semi-strong class of processes is so large

it contains many possible behaviours for tail indexes. However, we note that for any stationary

semi-strong process with innovation "t there exists an (associated) strong GARCH process, i.e., an

i.i.d. sequence zt with the same marginal distribution as "t generating (1a): Since 	(�) only depends

on the marginal distribution of "t; the � that solves 	(�) = 0 can be interpreted as the tail thickness

of the associated strong process.

Remark 2. Suppose that we observe yt with B(L)yt = ut; where B(L) = 1� b1L� : : :� bpLp is
a lag polynomial with all roots outside the unit circle, while the process ut obeys (1a) and (4). Then

what is the tail thickness of yt? Unfortunately, the existing results do not cover this case in general.

However, Ling and McAleer (2003, Theorem 2.2) show that the value of � for ut will be a lower

bound for the value of � of yt (since the existence of the �� th moment in ut implies the existence of
the �� th moment in yt): Therefore, if we ignore the dynamics in the mean equation, we can obtain
a lower bound of the value of � for yt. Moreover, as Lange, Rahbek and Jensen (2006) note, it has

been proved that in the special case of an AR(1)-ARCH(1), ut and yt are regularly varying with the
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same index and they share the same � (see also Borkovec (2000) and Borkovec and Klüppellberg

(2001)): A generalization of this result to the AR(p)-GARCH(1,1) is, from the best of our knowledge,

not available in the literature.

3 The Estimator

We propose an estimator of the parameter � for the GJR GARCH(1,1) case with autoregressive mean

dynamics (extending the results of St¼aric¼a and Pictet (1997) and Berkes, Horváth and Kokoszka

(2003)). Speci�cally, suppose that we observe the time series fy1; : : : ; yTg generated by

B(L)(yt � �) = ut; (5)

where B(L) = 1� b1L� : : :� bpLp is a lag polynomial with all roots outside the unit circle and the
process ut obeys (1a) and (4). Let � = (�; b1; : : : ; bp; !; ; �; �)> 2 Rp+5 denote the vector of unknown
parameters. We partition � = (�>1 ; �

>
2 )
>; where �1 = (�; b1; : : : ; bp)> and �2 = (!; ; �; �)>:

Let b� = (b�;bb1; : : : ;bbp; b!; b; b�;b�)> be some pT consistent estimator of � computed from the data

fy1; : : : ; yTg; and let b�2t = b! + bbu2t�1 + b�bu2t�11 fbut�1 < 0g + b��2t�1; t = 1; : : : ; T with some initial

values, where but = bB(L)(yt� b�); bB(L) = B(L;bb) = 1�bb1L� : : :�bbpLp; and de�ne the standardized
residuals b"t = but=b�t: De�ne also

bAt = �b + b�1 fbut < 0g�b"2t + b�: (6)

The estimator of tail thickness � is any solution b� to
b	T (�) = 1

T

TX
t=1

bA�=2t � 1: (7)

b	T (b�) = op(T�1=2); (8)

This can be computed by grid search over some suitable range, which we denote by K �R+.
This is a two-step estimator and it is not clear whether this is semiparametrically e¢ cient, Bickel,

Klaassen, Ritov, and Wellner (1993), even in the strong GARCH case. We should at least use an

e¢ cient estimator of the marginal distribution F" of "t: This distribution is subject to two restrictions,

namely E("t) = 0 and var("t) = 1; and it can be shown that the e¢ cient estimator of F"(e) when "t
is observed is

bF"(e) = 1

T

TX
t=1

1
�
"Nt � e

�
; where "Nt =

"t � 1
T

PT
t=1 "tq

1
T

PT
t=1("t � 1

T

PT
t=1 "t)

2

:

This suggests that one should use fully e¢ cient estimators of �; like the semiparametric estimator of

Linton (1993), and the rescaled residuals b"t = (b"t � 1
T

PT
t=1b"t)=q 1

T

PT
t=1(b"t � 1

T

PT
t=1b"t)2:
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There are several alternative estimators of � that do not use the GARCH structure at all. Ordering

the data as u1:T � u2:T � : : : � uT :T ; de�ne

H
(j)
T =

1

m

m�1X
i=0

(log uT�i:T � log uT�m:T )j

b�+T = H
(1)
T

b��T = 1� 1
2

0B@1�
�
H
(1)
T

�2
H
(2)
T

1CA
�1

b�T = b�+T + b��T :
Here, m = m(T ) is a smoothing parameter that satis�es m ! 1 and m=T ! 0: The estimatorb�+T was proposed by Hill (1975); it is consistent and asymptotically normal for i.i.d. data with
1=� > 0. It has been shown also to be consistent for dependent sequences (see Hill (2006)). Dekkers,
Einmahl, and de Haan (1989) proposed the moment estimator b�T and showed that is consistent and
asymptotically normal for all �: Gabaix and Ibragimov (2006) have recently suggested a �nite sample

improvement to the Hill estimator based on a simple adjustment. However, the rate of convergence

of these estimators is slower than root-n. Furthermore, only recently has the distribution theory for

these estimators been extended to a general time series context, see Hill (2006).

4 Distribution Theory

In this section we give the asymptotic distribution for b� de�ned in (8) in the semi-strong GJR-
GARCH(1,1) model. The estimator is in the class of two-step GMM estimators with some parameters

entering in a non-smooth way, and we adapt the proof strategy of Chen, Linton, and Van Keilegom

(2003) to this problem. We require quite weak conditions with respect to the existence of moments

of the observed series. We also give consistent standard errors for this general case. The distribution

theory simpli�es considerably when the strong GJR-GARCH assumption holds, as the in�uence

function of the estimator is a martingale di¤erence sequence. We propose some Hausman type tests

of the GJR-GARCH speci�cation under strong and semi strong assumptions.

Let F b
a be the �-algebra of events generated by a vector of random variables fZt; a � t � bg.

The stationary processes fZtg is called strongly mixing [Rosenblatt (1956)] if

sup
A2F0�1;B2F1k

jPr (A \B)� Pr(A) Pr(B)j � s(k)! 0 as k !1: (9)

For a matrix B; denote jjBjj = tr(B>B)1=2:
We will suppose that the estimator of �0 satis�es an asymptotic expansion

p
T (b� � �0) = 1p

T

TX
t=1

�t(�0) + op(1); (10)
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where the properties of �t(�0) are detailed below along with our other regularity conditions.

Assumption A

A1 We suppose that ("t; �t; �t) is a strictly stationary process satisfying E[�t] = 0; E ["tjFt�1] = 0;
E ["2t � 1jFt�1] = 0; and E (j"tj2r) < 1 and E (jj�tjjr) < 1 for some r > 2: The Lebesgue

density of "t exists and is boundedly di¤erentiable. Furthermore, ("t; �t; �t) is a sequence of

strong mixing random variables with mixing numbers �m; m = 1; 2; : : : ; that satisfy �m �
Cm�(4r�2)=(2r�2)�� for positive C and �; as m!1

A2 !; ; � and � are strictly positive

A3 �20 is a �nite positive constant and the initial values of "t and yt are drawn from the strictly

stationary distribution,

A4 E [ln (( + �1 f"t < 0g) "2t + �)] < 0; E[j( + �1 f"t < 0g) "2t + �j
p=2
] � 1 and E[j"tjp ln+ "t] <1;

A5 � 2 [�; p� �] � K for some � > 0:

A6 The quantity M 6= 0; where
M =

1

2
E
h
A
�0=2
t ln(At)

i
:

The asymptotic expansion (10) satisfying A1 can hold for the Gaussian QMLE under the semi-

strong GARCH model, Lee and Hansen (1994) and Jensen and Rabhek (2004a, 2004b), but also

for a number of other estimators like the semiparametric estimator of Linton (1993) and the LAD

estimator of Peng and Yao (2003). The extension from GARCH to the GJR-GARCH model involves

simply the use of the indicator function, and the asymptotic theory of the QMLE for the GJR-

GARCH and other types of asymmetric GARCH models is given in Straumann and Mikosch (2006).

For a very broad class of GARCH models, the mixing coe¢ cients �m would decay geometrically,

see for example Carrasco and Chen (2002), see also Meitz and Saikkonen (2006) for some results for

AR(p)-GARCH models.

Let �t = A
�0=2
t � 1; which depends only on "t and is mean zero by construction. Under the strong

GJR-GARCHmodel, �t is i.i.d., whereas under the semi-strong model it may be an autocorrelated se-

quence. De�ne At(�) = ( + �1 f"t(�) < 0g) "2t (�)+� = ( + �1 fut(�1) < 0g) "2t (�)+�, where "t(�) =
ut(�1)=�t(�) with ut(�1) = B(L; b)(yt � �) and �2t (�) = ! + u2t�1(�1) + �u2t�1(�1)1 fut�1(�1) < 0g +
��2t�1(�) � ! > 0; t = 1; : : : ; T; and let 	(�; �) = E[A

�=2
t (�)]� 1: Then de�ne

@	(�; �)

@�1
=

@

@�1
E
h
A
�=2
t (�)

i
@	(�; �)

@�2
=

@

@�2
E
h
A
�=2
t (�)

i
=
�

2
E

�
@At
@�2

(�)A
(��2)=2
t (�)

�
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for each �; �: The quantities @At(�)=@�2 are obtained from the standard recursions for GJR-GARCH

processes, see equations (27)-(30) in the appendix. Let

�t = �t +
@	(�0; �0)

@�>
�t

V = lrvar(�t)

where lrvar(�t) =
P1

j=�1 cov(�0; �j) denotes the long-run variance of the stationary process �t:

In the appendix we prove the following result.

Theorem. Suppose that assumptions A1-A6 hold. Then,
p
T (b�� �0) D�! N(0;
); 
 =M�2V:

This estimator converges faster than the Hill estimator and so is more e¢ cient. The asymptotic

variance re�ects the estimation of the parameters � as well as the tail thickness parameter �: St¼aric¼a

and Pictet (1997) propose the estimator with 	(�) =
R
A�=2(")f(")d" � 1; where f is a known

density either the Gaussian or t distribution. In that case the asymptotic variance is much simpler,

at least under the assumption that f is indeed the true density. One can also obtain joint asymptotic

normality of [
p
T (b� � �0);pT (b� � �0)] - these estimators are generally asymptotically mutually

correlated.

We next provide consistent estimators of the asymptotic covariance matrix. De�ne the following

quantities: b
 = cM�2bV ;
cM =

1

2T

TX
t=1

bAb�=2t ln( bAt)
bV =[lrvar(b�t)

b�t = bAb�=2t � 1 + @
b	(b�;b�)
@�>

b�t;
and b�t = �t(b�). Here, we use a standard long run variance estimator

[lrvar(b�t) = TX
j=�T

K(j=bT )bj
bj = 1

T

T�jX
t=1

b�tb�t�j; for j � 0; and bj = b�j for j < 0;
where K(:) is a weighting function and bT is a bandwidth sequence satisfying bT ! 0 and TbT ! 0.

Finally,

@b	(b�;b�)
@�1

=
1

2T�T

TX
t=1

h
A
b�=2
t (b�1 + �T ;b�2)� Ab�=2t (b�1 � �T ;b�2)i

@b	(b�;b�)
@�2

=
b�
2

1

T

TX
t=1

@At
@�2

(b�)A(b��2)=2t (b�);
8



where �T ! 0 and T�T ! 1: Under some additional conditions, e.g., Andrews (1991), we haveb
 P�! 
: In some cases, like the QMLE in a semi-strong GARCH process, �t is a martingale

di¤erence sequence and so part of the long run variance simpli�es; in even rarer cases, �t is a

martingale di¤erence sequence.

4.1 Durbin-Wu-Hausman Tests

The estimator we propose (extending the results of St¼aric¼a and Pictet (1997) and Berkes, Horváth

and Kokoszka (2003)) provides a consistent (and rapidly converging) estimator of the tail thickness

parameter under the special circumstances of our model, but when these conditions are violated our

estimator may be inconsistent. In this section we discuss how to use the two estimators to perform

some speci�cation tests.

The Hill estimator of � satis�es
p
m(b�+T � �) =) N(0;�)

as m = m(T ) ! 1 for some �; under quite general conditions on the dynamics, Hill (2006): In

particular, our particular class of volatility speci�cations is not required. Hill (2006) has shown that:

(a) under the strong GARCH(1,1) speci�cation the asymptotic variance � = �2 is as if the process

were i.i.d. with the same marginal distribution; (b) in the general case, the asymptotic variance

is larger and depends on some covariance terms. The result in (a) holds because although the

strong GARCH process has dependent extremes, a crucial stochastic array has linearly independent

extremes. This property is found in many similar strong GARCH type processes. However, this

property is not guaranteed to hold in for example a semi-strong GARCH process, and in this case �

is not necessarily equal to �2: Hill proposes an estimator of the asymptotic variance that is consistent

under general conditions, this is

b� = 1

m

TX
s=1

TX
t=1

K

�
s� t
bT

� bZs bZt; (11)

where bZt = [(ln(ut=um+1)))+� (m=T )b�+T ] and bT is some bandwidth sequence. If the strong GARCH
process is believed then instead one can estimate the asymptotic standard deviation by b�+T :
The above distribution theory can be used to provide a speci�cation test of the underlying

GARCH model based on a Hausman test. Under the strong GARCH speci�cation,b�� b�+Tb�+T =pm =) N(0; 1); (12)

and one can reject for large or small values of this statistic. Under the semi-strong GARCH speci�-

cation, b�� b�+Tqb�=m =) N(0; 1); (13)
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and one can reject for large or small values of this statistic. In either case it is only necessary to

estimate the asymptotic variance of the Hill estimator as it converges faster than the parametric

method. Another speci�cation test can be based on the implication of equal tail magnitude under

the strong GARCH speci�cation. That is, one can compute b�+LT using the data �u1; : : : ;�uT and
letting b�+UT = b�+T ; under the hypothesis of equal tails

b�+UT � b�+LTq
2b�=m =) N(0; 1): (14)

4.2 Value at Risk

Estimation of value at risk is an important application of tail thickness estimation. Nowadays, this is

often done through some dynamic model like ours. However, most applications compute conditional

value at risk, see McNeil, Frey, and Embrechts (2005, p161). We propose to use the dynamic model

but to compute the unconditional value at risk using the implied tail thickness parameter. Danielsson

and de Vries (2000) have reviewed the arguments concerning unconditionality and conditionality in

risk forecasting, and �nd arguments on both sides. One issue with the conditional approach is how

to apply it in a multiperiod context, since for example GARCH models do not aggregate well, Drost

and Nijman (1993).

From Proposition 1, we have

Pr [�t > x] �
1

2
E[j"tj�] Pr (�t > x) �

1

2
E[j"tj�]c0x�� � cx�� (15)

as x!1; where

c0 =
E[(! + At�

2
t )
�=2 � (At�2t )

�=2
]

[(�=2)E(A
�=2
t lnAt)]

:

Therefore, the value at risk (using negative returns) for small � is

� = Pr [ut > V ar�] � cV ar��� ;

which gives

V ar� = (c=�)
1=�:

We propose an estimate of c and hence of V ar� by exploiting the results of Proposition 1:

bc = 1

2

1

T

TX
t=1

jb"tjb� 1T
PT

t=1[
�b! + bAtb�2t�b�=2 � � bAtb�2t�b�=2]

[(b�=2) 1
T

PT
t=1(

bAb�=2t ln bAt)] : (16)

dV ar� = (bc=�)1=b�: (17)

The distribution theory of bc and hence of dV ar� follows from the joint asymptotic normality of

[
p
T (b���0);pT (b���0)] and certain sample averages; in particular both quantities arepT consistent
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and asymptotically normal, but with a very complicated limiting variance, which for the sake of space

we do not report here.

The Pareto tail assumption (15) in combination with the using the Hill estimator implies the

alternative estimator of c and hence of V ar� :

bc+T = 1

Tm

mX
i=1

u
b�+T
T�i:T i: (18)

dV ar+�T = (bc+T =�)1=b�+T ; (19)

as is known in the literature. These estimates both converge at the same rate as b�+T :
5 Numerical Work

5.1 Simulations

In this Section we provide simulations of our estimator versus the Hill estimator. We compare our

results to the existing ones in the literature (such as Groenendijk et al. (1995) and Huisman et al

(2001)) when that is possible; and that is why we use the process given in (1a)-(1b). All simulations

correspond to 10000 replications. The true value of ! is equal to 0:81 in all experiments. For the

process given in (1a)-(1b), 14 cases are considered. We draw from "t � N(0; 1) and we simulate from
the following speci�cations:

(1): (!; ; �) = (0:81; 0:1; 0:9) ; (2): (!; ; �) = (0:81; 0:1; 0:8) ; (3): (!; ; �) = (0:81; 0:15; 0:8)

(4): (!; ; �) = (0:81; 0:1; 0:5) ; (5): (!; ; �) = (0:81; 0:1; 0:3) ; (6): (!; ; �) = (0:81; 0:1; 0:1)

(7): (!; ; �) = (0:81; 0:5; 0:1) ; (8): (!; ; �) = (0:81; 0:9; 0:1) ; (9): (!; ; �) = (0:81; 0:3; 0:1)

(10): (!; ; �) = (0:81; 0:3; 0:05) ; (11): (!; ; �) = (0:81; 1; 0) ; (12): (!; ; �) = (0:81; 2; 0)

(13): (!; ; �) = (0:81; 0:48; 0) ; (14): (!; ; �) = (0:81; 0; 0) :

Cases 1-10 correspond to di¤erent GARCH type processes, and cases 11-13 correspond to ARCH

processes. The simulation exercise has been specially designed for comparison purposes with Groe-

nendijk et al. (1995) and Huisman et al (2001, Table 5). We consider two cases: when we estimate

the conditional heteroskedastic process and when it is not estimated. In this way, we can separate

the e¤ect of purely estimating � when the GARCH coe¢ cients are known, and when they are also

estimated.

5.1.1 The GARCH process is not estimated

Table 1 gives simulation results for samples sizes T=100, 200, 500, 1000, 1500 and where b� and its
true standard errors (s:e) are obtained according to the estimator of Section 3 using a grid search.

For computational purposes, the grid search of � in the simulations is in the interval from 0.01 to
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10 except in Cases 2 and 4-6, where since � takes the larger values, the search interval has been

extended from 0.01 until 30.

Table 1�: Without estimating the GARCH parameters

T=100 T=200 T=500 T=1000 T=1500

CASES � b�� � s:e: b�� � s:e: b�� � s:e: b�� � s:e: b�� � s:e:

1 2.00 1.63 2.18 1.08 1.73 0.44 1.60 0.28 0.90 0.10 0.72

2 12.5 -4.48 8.81 -2.49 8.37 0.34 5.29 0.13 5.41 -0.05 4.52

3 5.78 -0.69 3.68 -0.39 2.58 0.04 0.34 -0.17 0.27 -0.09 0.06

4 20.2 -13.62 7.77 -11.91 7.89 -11.67 6.69 0.44 10.92 0.46 8.55

5 23.0 -14.05 8.03 -15.65 8.18 -14.74 9.76 -1.40 11.03 -0.68 11.48

6 25.4 -14.51 8.24 -16.45 8.21 -14.96 7.68 -1.95 11.21 -0.65 11.51

7 4.41 0.35 1.14 0.18 0.72 0.08 0.59 0.03 0.29 0.02 0.24

8 2.00 0.03 0.34 0.05 0.32 0.02 0.30 0.00 0.15 0.00 0.12

9 7.93 -3.09 3.87 -1.91 3.63 -0.48 3.46 -0.01 1.50 0.10 0.97

10 8.15 -3.78 4.02 -2.75 3.90 -0.99 2.93 -0.30 2.01 0.07 1.21

11 2.00 0.10 0.42 0.04 0.29 0.00 0.26 0.01 0.14 0.01 0.11

12 0.62 0.05 0.23 0.02 0.17 0.00 0.17 0.00 0.10 -0.01 0.10

13 5.00 0.19 1.24 -0.02 0.82 -0.18 0.67 -0.25 0.32 -0.24 0.26
�The second column of Table 1 provides the true values of �. Some of them have been obtained from

Groenendijk et al. (1995), Huisman et al (2001) and the rest have been simulated. Under the assumption

of "t � N(0; 1); 	(�) = E[("2t + �)
�=2
]� 1 can be expressed in terms of generalized Laguerre

polynomials and the equation 	(�) = 0 can be solved numerically.

In order to compare our results in Table 1 with previous studies, Groenendijk et al. (1995) contain

simulation results for ARCH type processes when 10,000 observations are available. Table 2 shows

the values for our di¤erent ARCH processes (cases 11-13) and the true value of � obtained from

Groenendijk et al. (1995) with T=10,000: Comparing Tables 1 and 2, we obtain in Table 1 more

precise point estimates than the Hill estimator of � (i.e. b�+T ) in Groenendijk et al. (1995) for the
true values of � with even less than 1500 observations. Specially for large values of � such as case

13, our estimator in Table 1 performs much better than the Hill estimator, since for � = 5, we only

obtain b�+T =3.74 even with 10,000,000 observations, while b� = 5.19 even with T=100. Note again,
that the Hill estimator in Table 2 is shown for T=10,000 while in Table 1, we have much smaller

sample sizes. Note also that in Table 2 we have extended the simulation results of Groenendijk et

al. (1995) in cases 11, 13 and 14, since in those situations the Hill estimator does not provide a very

precise estimate with 10,000 observations. Even with a sample size of 10,000,000, the Hill estimator

o¤ers poor estimates for cases 13 and 14.

To get a comparison in the GARCH cases between Tables 1 and 2, we have extended again the

simulation results of Groenendijk et al. (1995) of the Hill estimator of � with m = 0:05T (m is the
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number of order statistics) for our cases 1-10. Note that DuMouchel (1983) suggests that m = 0:1T

is a good rule, and m = 0:05T is a very common approach used in practice. We see again how in

Table 2 for case 1, b�+T is still far for the true � = 2 even with 10,000 and 10,000,000 observations;
while in Table 1, our estimator already provides a value close to 2 for T=500 and 1000. Note as well

how the standard errors in Table 1 are also quite small for those sample sizes. Moreover, again for

large values of � such as cases 2 and 4-6, our estimator in Table 1 is able to provide estimates of �

that are much less biased than b�+T in Table 2.
Case 3 provides a comparison with the results in Huisman et al (2001, Table 5, page 212). Using

Huisman et al (2001) method, we get for sample sizes 100, 250, 500 and 1000 values equal to 7.04,

6.25, 5.88 and 5.56 respectively for the estimates of the true value of � = 5:78: We see in Table 1

that our estimates are more precise in �nite samples than those in Huisman et al (2001).

Also, another important feature of our estimator is that if we compare Tables 1 and 2, specially

for high values of �; the Hill estimator cannot provide estimates with small biases even with very

large sample sizes. We have also computed the Hill�s (1975) estimator by choosing m with a mean

squared error criterion by the bootstrap along the lines of Hill (2006), and the biases are not reduced

in this case either. Our estimator in Table 1 provide values very close to the true ones in �nite

samples. In case 14, when the true value of � goes to 1 (see Groenendijk et al. (1995, Table 2,

page 261)), the Hill estimator is able to reach a maximum estimated value of � equal to 4.72 for

10,000 observations and of 5.99 for 10,000,000 observations. As we can see from Tables 1 and 2,

specially for large values of � generated by fat tails of the GARCH model, the Hill estimator is not

able to produce a good estimate in �nite samples. In this simulation study we show that GARCH

models can produce very large values of �; and specially in this case, the Hill estimator does not

provide good �nite sample results. Kesten (1973) guarantees that our equation b	T (�) = 0 should

have exactly one positive solution.
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Table 2�: Monte Carlo results for b�+T
Groenendijk et al. (1995), T=10,000 T=10,000 T=10,000,000

CASES � b�+T b�+T s:e: b�+T s:e:

1 � � 2.78 0.60 2.29 0.04

2 � � 5.32 0.24 5.30 0.01

3 � � 4.09 0.22 4.08 0.01

4 � � 5.77 0.23 5.76 0.01

5 � � 3.72 0.54 5.82 0.01

6 � � 4.15 0.52 5.85 0.01

7 � � 3.63 0.22 3.61 0.01

8 � � 1.97 0.20 1.95 0.01

9 � � 4.83 0.22 4.84 0.01

10 � � 4.87 0.23 4.86 0.01

11 2.00 1.89 � � 1.97 0.01

12 0.62 0.64 � � � �

13 5.00 3.47 � � 3.74 0.01

14 1 4.72 � � 5.99 0.01
�In the second column we provide again the true values of � from Groenendijk et al. (1995).

5.1.2 The GARCH process is estimated

Table 3 shows the simulation results when the conditional heteroskedastic process is estimated. In

the �rst, seventh and ninth cases, we have an IGARCH(1,1) and we know that � = 2: Table 3 gives

again simulation results for samples sizes T=100, 200, 500, 1000, 1500. b�; true standard errors (s:e)
and asymptotic standard errors (a:s:e:) from the previous Theorem in Section 4 are provided.

Kearns and Pagan (1997), note in their page 173 how �it seems unlikely that good estimates

of a tail index could be made unless the sample size available is quite large, since the asymptotic

theory shows that the convergence rate is �xed by m (the number of order statistics used in the

computations) and this can only rise slowly with T�. Kearns and Pagan (1997) use around 29,000

observations to obtain a good estimate of the tail index when data is IGARCH(1,2); while Groe-

nendijk et al. (1995) need 10,000 observations to get precise estimates of the tail index for an

ARCH(1). We see in Table 3 how we can already obtain a very precise point estimate, with even

much less than 1500 observations.

Case 3 provides a comparison with the results in Huisman et al (2001, Table 5). Again, our

estimates have less bias than the ones in Huisman et al (2001). Note that one important remark is

that Huisman et al (2001) method needs to remove correctly parametrically the heteroskedasticity

by using a weighted-least squares estimation method, the same as in happens with our method that

needs a correct speci�cation of the conditional variance equation.
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Table 3: Estimating the GARCH parameters

T=100 T=200 T=500 T=1000 T=1500

CASES b�� � s:e: a:s:e: b�� � s:e: a:s:e: b�� � s:e: b�� � s:e: b�� � s:e:

1 -0.92 0.32 0.28 -0.72 0.57 0.47 -0.40 0.71 -0.22 0.64 -0.06 0.58

2 -3.65 7.85 6.23 -2.21 7.52 6.95 -1.21 5.21 -0.52 3.21 -0.12 3.11

3 -0.59 2.69 1.25 -0.28 2.51 2.35 -0.12 0.25 -0.09 0.15 -0.11 0.05

4 -11.5 6.51 5.23 -10.25 6.32 5.41 -10.1 6.01 -1.12 9.26 0.32 7.52

5 -12.8 7.56 6.25 -11.6 6.14 5.21 -10.5 5.98 -1.30 10.6 -0.61 10.2

6 -13.5 7.52 6.20 -12.2 7.12 6.15 -11.9 6.85 -1.45 10.7 -0.52 9.32

7 0.31 1.14 0.24 0.15 0.73 0.57 0.06 0.43 0.02 0.28 0.02 0.24

8 -0.30 0.40 0.17 -0.21 0.31 0.29 0.00 0.21 -0.08 0.17 -0.07 0.15

9 -0.92 3.14 0.25 -0.13 2.28 0.62 0.32 1.18 0.26 0.80 0.17 0.69

10 -1.68 3.96 0.26 -1.14 3.07 0.63 -0.25 2.53 0.26 0.87 0.18 0.73

11 -0.18 0.40 0.31 -0.01 0.30 0.32 0.00 0.19 0.01 0.13 0.02 0.12

13 0.09 1.26 0.38 -0.10 0.78 0.70 -0.21 0.46 -0.30 0.23 -0.25 0.27

5.2 Application

One of the conclusions from the previous Monte Carlo results, is that our new estimator seems to

have clear advantages compared with the traditional Hill estimator mainly when the true value of �

is large. We conduct now an empirical application to show the usefulness of our approach.

As Kearns and Pagan (1997) point out, there are many reasons why we want to have precise

estimates of �: For example, banks are interested in risk management and therefore, this relates

to the probability of having either a large positive or negative realization of the random variables

underlying the portfolios, i.e., computation of value at risk. Precise estimates of � can also help

us to discriminate between di¤erent probability models, and also, they can help us to �nd out how

many moments of the data exist (see e.g., Loretan and Phillips (1994)). All this justi�es the need to

concentrate our e¤orts in improving the estimation procedures of �: We proceed now to apply our

method to di¤erent economic time series data.

Jansen and de Vries (1991) analyzed the behavior of the returns of the daily S&P500, and they

used the Hill estimator to �nd an estimate for the � value. They analyzed the period 1962-1986.

They were worried about a structural change at 1973, so they split the sample size 1962-1986 in two

subperiods. The Hill estimate for the �rst subperiod (from 1962-1973) of � for the lower tail equals

3.71 and is 3.65 for the second period 1973-1986 (See Table 3, page 22 of Jansen and de Vries (1991,

page 22)). However, Jansen and de Vries (1991) ignore both the modeling of the conditional variance

equation and the dynamics in the mean equation.

Kearns and Pagan (1997) stated that Jansen and de Vries (1991) are neglecting a GARCH(1,1) in

the conditional variance by applying the Hill estimator. More recently, Linton and Mammen (2005,
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page 806) analyzed the behavior of the daily S&P500 in the period 1955-2002, and they �nd that

an AR(2)-GJR-GARCH(1,1) model is more adequate for these data. They use the standard GJR

model proposed by Glosten, Jagannathan and Runkle (1993) where

yt = d+ b1yt�1 + b2yt�2 +

utz}|{
"t�t ; (20a)

�2t = ! + u2t�1 + �u
2
t�11 fut�1 < 0g+ ��2t�1: (20b)

Our objective is to �nd out if by using explicitly an AR(2)-GJR-GARCH(1,1) model, we can get

better estimates for �: Note that, as discussed in Section 2, all the theory that we develop in Sections

2-4 is valid not only for the regular GARCH(1,1) model in the conditional variance, but also for

a GJR-GARCH(1,1). Therefore, following Linton and Mammen (2005), we �tted also an AR(2)-

GJR-GARCH(1,1) model for the two subperiods given in Jansen and de Vries (1991) as in (20a)-

(20b), and Table 4 shows the results. Note that in both subperiods, when we check for neglected

serial correlation both in the residuals and in the squares of the residuals, we cannot reject the null

hypothesis of neglected serial correlation with the diagnostic tests of Ljung-Box (1978). This provides

evidence that there is not dependence in b"t, and therefore, we can rely on the results of a strong-type
GJR-GARCH(1,1) model.

Table 4: Parametric estimation. Standard errors given in parenthesis

Period 1962-1973 Period 1973-1986

d 0.000209 0.000207

(0000120) (0.000153)

b1 0.272567 0.153900

(0.019799) (0.017629)

b2 -0.038826 -0.029361

(0.018731) (0.018262)

! 8.20E-07 6.43E-07

(1.35E-07) (1.88E-07)

 0.009253 0.025727

(0.008733) (0.005330)

� 0.197930 0.031138

(0.016906) (0.007163)

� 0.873158 0.951192

(0.011048) (0.005890)

From Table 4 and following Linton and Mammen (2005), the daily S&P500 can be better mod-

eled by an AR(2)-GJR-GARCH(1,1) compared with the regular GARCH(1,1) of Kearns and Pagan

(1997). Indeed we get statistically signi�cant results that there are asymmetric e¤ects in both sub-

periods. Then, we proceed as follows: for each of the two subperiods, we �t an AR(2) process to
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the daily returns of the S&P500. We take these residuals, and we �t a regular GJR-GARCH(1,1)

to those residuals. Note that the fact of estimating �rst the mean equation and later to take the

residuals to �t the conditional variance equation is a very common approach in empirical applications

(see, e.g., Ball and Torous (1999, page 2349)).

Later we take the �tted standardized residuals (b"t) from the GJR-GARCH(1,1) and we �nd a

grid search of � as in (8) where (see Straumann (2003))

bAt = �b + b�1 fb"t < 0g�b"2t + b�: (21)

Our results are given in Table 5. In Table 5, we also report the results for the upper and lower tail

Hill estimates, the statistics given in (12) and (14) and estimates of c de�ned in (3).

Table 5: Estimated values of � for daily returns of S&P500

1962-1973 1973-1986b�+LT ; lower tail Hill estimator� 3.71 3.65b�+T ; upper tail Hill estimator�� 2.76 3.53b� 11.95 5.76bc 1.043E-018 2.219E-011bc+T ; upper tail Hill estimator�� 6.002E-007 6.816E-008

Hausman test statistic given in (12) 39.58 8.26

Statistic given in (14) -2.92 -0.31dV ar� in (17) for � = 0:001 0.0558 0.0469dV ar+�T in (19) for � = 0:001 0.0680 0.0660
�Lower tail Hill estimator, given in Jansen and de Vries (1991, page 22, Table 3)

��We use m = 0:05T .

We get a value of b� that equals 11.95 from the grid search (taken in the interval 0.01 and 30) for

the period 1962-1973. So, in this case, the estimated value of � through the grid search (taking into

account the AR(2)-GJR-GARCH(1,1) structure) is much larger than the estimated value of � that

is obtained through the Hill estimator without having into account the AR(2)-GJR-GARCH(1,1)

(see Jansen and De Vries (1991, Table 3 in page 22)). However when we compute the Hausman test

statistic given in (12), we obtain a clear rejection that b� produces a consistent estimate of �:
If we apply the same procedure for the second subperiod, we get an estimated value of � equal to

5.76. So, we get a much higher value for � than Jansen and de Vries (1991) with the Hill estimator.

This is in accordance to the Monte Carlo results that we got in the previous section, where the Hill

estimator seems to have large biases for large values of �, while the estimator through the grid search

is able to reduce those biases in this case. We therefore �nd much more evidence of a structural

break than Jansen and de Vries (1991) in 1973 for the daily S&P500, when we take into account

explicitly an AR(2)-GJR-GARCH(1,1) model as Linton and Mammen (2005) for the estimation of
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� through b�. However, when we use the Hausman test statistic in (12), we reject the null hypothesis
that b� produces a consistent estimate of �: Therefore, in Table 5, we conclude that the Hill estimator
is preferred to b� in both subperiods. Moreover, there is statistically evidence through (14) that we
reject the null hypothesis that the upper and lower tails are equal in the �rst time period although

not in the second one. Figures 1 and 2 plot the values of b	T (�) in (8) as a function of � for the two
subperiods.
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Figure 1: b	T (�) for returns, 1962-1973.
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Figure 2: b	T (�) for returns,
1973-1986.

Table 5 also reports the estimates of c in (3) both with our proposed estimator (bc) and with the
Hill estimator

�bc+T � :
In Table 5, for the period 1962-1973 we obtain a value of b� equal to 11.95 but the Hausman type

test rejects that provides a consistent estimator, and the Hill estimator
�bc+T � is clearly preferable to

be used for value at risk purposes. For the period 1973-1986, although we obtain a very similar point

estimate for c both with bc and bc+T ; in this case, the Hausman type test advises the use of b�+T instead
of b�; and therefore, we prefer dV ar+�T instead of dV ar� in both time periods. Table 5 also providesdV ar+�T and dV ar� in both time periods for � = 0:001 as an example. Another important remark is
that for example in Figure 2 we have started the search of � at 0.01 and we do not evaluate the

function at 0. That is why the function in Figure 2 does not show clearly graphically that b	(0) = 0:
The same happens for the rest of the pictures.

In order to show more evidence of the di¤erent estimates of � that we can obtain with di¤erent

estimation procedures and that b� can be useful in some applications, we proceed now to analyze
di¤erent time series of oil prices. We obtained the data from the Oil Price Information Service

(OPIS)1. Petroleum product prices from OPIS have been the focus of attention of many authors in

the literature, such as Slade (1986), Pinkse, Slade and Brett (2002) and Doyle and Samphantharak

1http://www.opisnet.com/.

18



(2005). We have daily data (no weekends) from 12/21/1998 until 01/30/2004 of the prices on crude

oil price (crude), spot prices of gasoline (spot), and wholesale prices of gasoline (wholesale). We �rst

compute the returns on each of the prices as the �rst di¤erence of the logarithms, and the three

returns can be shown to reject the null hypothesis of a unit root with an Augmented Dickey Fuller

(1979) and Phillips and Perron (1988) tests. Later we �t a GJR-GARCH(1,1) model with a constant

in the mean equation for the returns of crude, an AR(1) with a constant in the mean equation and

a GJR-GARCH(1,1) for the returns of the spot prices and an AR(3) with a constant in the mean

equation and a GJR-GARCH(1,1) for the returns on the wholesale of prices of gasoline. These are the

models that allow not to reject the null hypothesis of neglected serial correlation both in the residuals

and in the squares of the residuals with the diagnostic tests of Ljung-Box (1978) for the three time

series. This provides evidence that we are in the presence of strong-type GJR-GARCH(1,1) models

in the three cases. Table 6 shows the estimates of the previous models following again the notation as

in (20a)-(20b), and where b3 corresponds to the coe¢ cient of the third lag of yt in the mean equation.

Later, we proceed as before, and we �rst �t, for example for the returns on spot prices of gasoline, an

AR(1) and a constant in the mean equation, we take the residuals, and we �t a GJR-GARCH(1,1).

We take the standardized residuals and we �nd a grid search of � as in (21). Table 7 shows the

results both when we use the Hill estimator (with the upper and lower tails) and when we use the

grid search.

Table 6: Parametric estimation. Standard errors given in parenthesis

Crude oil price Spot price Wholesale price

d 0.001196 0.000986 0.001389

(0.000679) (0.000833) (0.001137)

b1 � 0.145841 0.578887

� (0.029401) (0.028303)

b2 � � 0.039573

� � (0.033586)

b3 � � 0.071506

� � (0.030332)

! 0.000193 0.000264 4.70E-06

(3.96E-05) (6.64E-05) (8.05E-07)

 0.109841 0.041193 0.181225

(0.026642) (0.031633) (0.016175)

� 0.108119 0.147227 -0.148253

(0.034826) (0.047963) (0.018899)

� 0.534324 0.497042 0.875507

(0.070703) (0.108217) (0.009252)
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Table 7: Estimated values of � for daily returns of oil prices

Crude oil price Spot price Wholesale priceb�+LT ; lower tail Hill estimator� 2.55 3.15 3.96b�+T ; upper tail Hill estimator� 4.01 3.88 2.27b� 5.35 10.02 2.38bc 1.493E-008 2.692E-013 1.222E-005bc+T ; upper tail Hill estimator� 5.410E-007 7.855E-007 4.097E-005

Hausman statistic given in (12) 2.73 12.89 0.39

Statistic in (14) 2.11 1.07 -4.27dV ar� in (17) for � = 0:001 0.1253 0.1109 0.1571dV ar+�T in (19) for � = 0:001 0.1532 0.1584 0.2448
�We use m = 0:05T .

One interesting remark in Table 7 is that b�+LT is larger than b�+T for wholesale price (as expected);
however, this is not true for crude oil price and spot price. This fact is in accordance with for example

Table 2 in Jansen and de Vries (1991), where they also �nd in 3 of their 10 stocks that b�+LT is smaller

than b�+T : This again con�rms the existence of large biases in the Hill estimator that can produce that
in practice, we can get estimates of the Pareto exponent parameters where the lower tail is much

thicker than the upper tail.

Again, Table 7 con�rms that the Hill estimator tends to produce smaller values for the estimated

� than through the grid search. This is a �nding that we get repeatedly both in the Monte Carlo

results in the previous Section and in the applications. Figures 3 and 4 also show, for the cases of

crude oil price and spot price, the values of b	T (�) in (8) as a function of �: Note that the grid search
has been carried out in the interval [0:01; 30]. Figure 3 shows how b	T (�) equals zero for b� = 5:35:
However, Figure 4 shows how for spot price, the value of � for which the objective function equals 0

is 10.02. Figure 5 corresponds to wholesale price, where the values of � have been re-scaled to show

more clearly the point where the objective function equals 0.
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Figure 5: b	T (�) for wholesale price.
Table 7 also reports the results of the Hausman type tests of Section 4. The analysis of the

Hausman test in (12) shows that for spot price we clearly reject the null hypothesis that b� provides
a consistent estimator, so in this case we should use the Hill estimator. For crude oil price, the test

rejects at 1% (critical value 2.58) and 10% (critical value 1.64) although it is not a very clear rejection

at 1% (2.73 is not very far from the critical value of 2.58). And for wholesale price, the test cannot

reject that b� provides a consistent estimator.
The analysis of the test for equal tails in (14), reveals that we cannot reject that null hypothesis

for crude oil price and for spot price. Therefore, there are no gains in computing an upper tail and

a lower tail through the Hill estimator in these two cases.

Therefore, the conclusion is that for crude oil price there is some statistical evidence of the

advantage of b� to produce a less biased estimate of � instead of using b�+T ; and as obtained through
the Monte Carlo results in the previous Section, it produces a much higher estimate (5.35) than the
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upper tail from the Hill estimator (4.01). The Hausman type test in (12) does not provide a very

clear rejection at 1% signi�cance level, and also (14) reveals that there is not statistically signi�cant

evidence against equal lower and upper tails at 1%. For spot price there is statistical evidence that

the Hill estimator should be clearly used. And for wholesale price, there is evidence that b� provides
a consistent estimate of � that is higher than b�+T (and therefore b� is clearly preferred to b�+T in this
case). Moreover, there is also evidence that b�+LT is statistically signi�cantly di¤erent from b�+T for
wholesale price, and therefore both b� and b�+LT should be used in this case.

Finally, both bc and bc+T show very similar estimates of c. Since for both crude oil price and

wholesale price there is evidence of the advantages of using b� versus b�+T ; for these two series we prefer
the measure of value at risk given by (17) instead of (19), while for the case of spot price, (19) is

clearly superior. Table 7 also reports the values of dV ar� and dV ar+�T for example for � = 0:001. For

crude oil price, and wholesale price (where we prefer our new measure dV ar� versus dV ar+�T ), it is
clear that dV ar� produces a di¤erent result than dV ar+�T .
6 Conclusion

We propose a method of estimating a Pareto tail thickness parameter and gave its corresponding

distributional theory in the context of the GJR-GARCH model (extending the results of St¼aric¼a

and Pictet (1997) and Berkes, Horváth and Kokoszka (2003)). Provided the conditional variance

is correctly speci�ed, the resulting estimator of tail thickness converges at rate
p
T to a normal

distribution (where T is the sample size). This is much faster than the convergence rate of the

Hill estimator, since that procedure only uses a vanishing fraction of the sample. However, our

asymptotics are predicated on the correctness of the model for conditional variance at the least, and

this may be questionable. In the case where the model does not hold it would be nice to use the

new estimator in a �prewhitening�strategy as has been done in other literatures, namely spectral

density estimation, see Linton and Xiao (2002) for a recent discussion, but we have not been directly

able to carry this idea over successfully to estimating Pareto tails. One related approach that might

achieve similar objectives is due to Fan and Ullah (1999), which involves combining our estimator

with the Hill estimator so b�� = b�b�+T +(1�b�)b�; where the weighting sequence b� is data dependent and
satis�es: b� !p 0 when the GJR-GARCH model is true and b� !p 1 otherwise. It can be expected

that this procedure can be made
p
T consistent when the GJR-GARCH model is true but still retains

consistency otherwise. We also propose a new estimator in the literature of Value at Risk based on

the tail thickness estimator. The new estimator can be used as a speci�cation test of the GARCH

model, and we propose a Hausman type test to do this.

We �nd quite heavy tails for the daily stock return data and the various oil return series, there

being some discrepancies between the Hill estimator and our GJR-GARCH-based estimator. In some

cases, these di¤erences are statistically signi�cant. It is interesting that in some cases, the GJR-
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GARCH model-based estimator yields heavier tails than the Hill estimator, although the opposite

also happens. In any case, the tail thicknesses are quite substantial and their precise numerical value

has a big impact on the implied Value at Risk, which makes it very important to have the most

precise estimates possible. We hope that our methodology can contribute to that objective.

7 Appendix

Proof of Theorem. Consider the infeasible estimator e� that is any solution to
	T (e�) = op(T�1=2);

	T (�) =
1

T

TX
t=1

A
�=2
t � 1:

This estimator is a standard (parametric) �rst order condition estimator and its properties follow by

standard arguments. We �rst show consistency. First, we have by Andrews (1987) ULLN

sup
�2K

j	T (�)�	(�)j = op(1); (22)

because 	0(�) = E[A
�=2
t ln(At)]=2 < 1 and E[sup�0:j�0��j�� jA

�0=2
t ln(At)j] � E[jA(�+�)=2t j] < 1 for

some � > 0: Then by the uniqueness of �; we have e�!p �:

Furthermore,

0 = 	T (e�) = 	T (�0) + 	0T (�)(e�� �0);
where j���j � je���0j and 	0T (�) = (2T )�1PT

t=1A
�=2
t ln(At): By the Andrews ULLN again we have

	0T (�)
P�! 1

2
E
h
A
�=2
t ln(At)

i
=M;

where M is bounded away from zero and in�nity, since E[sup�0:j�0��j�� j	00(�)j] =
E[sup�0:j�0��j�� jA

�=2
t fln(At)g2j] <1: Also, by the CLT for stationary mixing processes we have

p
T	T (�0) =

1p
T

TX
t=1

h
A
�0=2
t � E

�
A
�0=2
t

�i
D�! N(0; V1)

V1 =

1X
j=�1

cov(�t; �t+j);

where �t = A
�0=2
t � 1 is mean zero. Therefore,

p
T (e�� �0) = �M�1

p
T	T (�0) + op(1)

D�! N(0;M�2V1):

We now turn to the feasible estimator. To establish consistency of b� it su¢ ces to show that
sup
�2K

���b	T (�)�	T (�)��� = op(1): (23)
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For any � we can write 	T (�; �) = T�1
PT

t=1A
�=2
t (�): Then we decompose

	T (�; �) = 	T (�; �0) + 	T (�; �)�	T (�; �0)
= 	T (�) + E[	T (�; �)]� E[	T (�; �0)] + �T (�; �);

where �T (�; �) = 	T (�; �) � E[	T (�; �)] � f	T (�; �0) � E[	T (�; �0)]g: The process �T (�; �) is sto-
chastically equicontinuous in � in the sense that

sup
�2K

sup
k���0k��T

j�T (�; �)j = op(1); (24)

where �T is a sequence of positive numbers tending to zero such that Pr[jj�� �0jj � �T ]! 1; such a

sequence is guaranteed by the consistency of b�: The result (24) follows by standard empirical process
theory since the parameters �; �2 enter in a nice smooth way, while the parameters �1 enters as shifts

inside an indicator function, see for example CLV (2003). Then it follows that with probability

tending to one

sup
�2K

���b	T (�)�	T (�)��� � �T sup
k���0k��T

sup
�2K

@E [	T (�; �)]@�
� @E [	T (�; �0)]

@�

+ op(1) = op(1):
It follows that (23) holds and hence b� is consistent.
To establish asymptotic normality of b� we Taylor expand to �rst order

0 = b	T (b�) = b	T (�0) + b	0T (�)(b�� �0); (25)

where � is an intermediate value. It follows from the consistency property that there exists a sequence

�T ! 0 with Pr[jb�� �j � �T ;pT jj� � �0jj � �T ]! 1: For this sequence we obtain

sup
�:j���0j��T

sup
�:jj���0jj��T

j	0T (�; �)�	0(�; �)j = op(1)

p
T sup
�:j���0j��T

sup
�:jj���0jj��T

j�T (�; �)j = op(1)

sup
�:j���0j��T

sup
�:jj���0jj��T

@E [	T (�; �)]@�
� @	(�; �)

@�

 = op(1);

by standard empirical process results. From this it follows that:

b	T (�0) = 	T (�0) +
@E [	T (�; �0)]

@�>
(b� � �0) + op(T�1=2)b	0T (�) = 	0(�0) + op(1):

In conclusion we obtain the expansion

p
T (b�� �0) = �M�1

"
p
T	T (�0) +

@	(�0)

@�>
1p
T

TX
t=1

�t

#
+ op(1): (26)
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The central limit theorem follows from the mixing assumption.

Note that "t(�) is di¤erentiable in �2 = (!; ; �; �)>; and we obtain:

@	T (�; �)

@�2
=
1

T

TX
t=1

@A
�=2
t (�)

@�2
=
�

2

1

T

TX
t=1

@At
@�2

(�)A
(��2)=2
t (�);

where:

@At
@!

(�) = 2 ( + �1 fut(�1) < 0g)
@"t
@!
(�)"t(�)

= � ( + �1 fut(�1) < 0g)
ut(�1)"t(�)

�3t (�)

@�2t
@!
(�); (27)

@At
@�
(�) = 2 ( + �1 fut(�1) < 0g)

@"t
@�
(�)"t(�) + 1

= � ( + �1 fut(�1) < 0g)
ut(�1)"t(�)

�3t (�)

@�2t
@�
(�) + 1; (28)

@At
@
(�) = 2 ( + �1 fut(�1) < 0g)

@"t
@
(�)"t(�) + "

2
t (�)

= � ( + �1 fut(�1) < 0g)
ut(�1)"t(�)

�3t (�)

@�2t
@
(�) + "2t (�); (29)

@At
@�
(�) = 2 ( + �1 fut(�1) < 0g)

@"t
@�
(�)"t(�) + "

2
t (�) (1 fut(�1) < 0g)

= � ( + �1 fut(�1) < 0g)
ut(�1)"t(�)

�3t (�)

@�2t
@�
(�) + "2t (�) (1 fut(�1) < 0g) ; (30)

where

@�2t
@!
(�) = 1 + �

@�2t�1
@!

(�) =

"
t�1X
i=0

�i + �t
@�20
@!

#
;

@�2t
@
(�) = u2t�1(�1) + �

@�2t�1
@

(�) =

"
t�1X
i=0

�iu2t�i�1 + �
t@�

2
0

@

#
;

@�2t
@�
(�) = u2t�1(�1)1 fut�1(�1) < 0g+ �

@�2t�1
@�

(�);

@�2t
@�
(�) = �2t�1(�) + �

@�2t�1
@�

(�) =

"
t�1X
i=0

�i�2t�i�1(�) + �
t@�

2
0

@�

#
:
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