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Abstract 

One of the most direct human mechanisms of promoting cooperation is rewarding it. We study 

the effect of sharing a reward among cooperators in the most stringent form of social dilemma. 

Thus, individuals confront a new dilemma: on the one hand, they may be inclined to choose the 

shared reward despite the possibility of being exploited by defectors; on the other hand, if too 

many players do that, cooperators will obtain a poor reward and defectors will outperform them. 

By appropriately tuning the amount to be shared we can cast a vast variety of scenarios, 

including traditional ones in the study of cooperation as well as more complex situations where 

unexpected behavior can occur. We provide a complete classification of the equilibria of the n-

player game as well as of the evolutionary dynamics. Beyond, we extend our analysis to a 

general class of public good games where competition among individuals with the same strategy 

exists. 
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1 Introduction

Despite the abundance of altruism in nature, the most widely used models of game theory for the

study of cooperative behavior, such as the Prisoner’s Dilemma and the game of Public Goods,

provide scenarios of evolutionary dynamics where defectors dominate cooperators. These models

embody the social dilemma of cooperation in which individuals can benefit from mutual coop-

eration but they can do better by exploiting the cooperation of others. Hence the importance of

supporting mechanisms for cooperation, such as iterated interactions and spatial structure forma-

tion, which have been explored by many authors since the seminal contributions of Axelrod (1984)

and Nowak and May (1992); see Doebeli and Hauert (2005) for a comprehensive review.

The social dilemma is relaxed in some pairwise interaction games for which, depending on the

partner’s action, cooperating can be the best option. In the famous Snowdrift game (also known

as Chicken or Hawk-Dove game), introduced by Maynard-Smith and G. Price (1973) and Sugden

(1986), given a partner’s decision, the best response is to do the opposite. On the contrary, in the

stag-hunt game, another important metaphor for the study of cooperation proposed by Rousseau

(1754) as an example of social contract (Skyrms, 2003), the social dilemma presents itself as a

coordination problem, where the best response, given a partner’s decision, is to do the same. These

models can be endowed with an evolutionary dynamics in which cooperators and defectors can

coexist at a stable equilibrium, or in which cooperation either evolves or vanishes depending on

the initial configuration of the system (Hofbauer and Sigmund, 1998; Nowak, 2006).

Even though the emergence and maintenance of cooperation, from a significant initial propor-

tion of cooperators, can be explained with these evolutionary models or by implementing mech-

anisms based on iterated or local interactions in spatial structures or in networks, the emergence

of cooperation from a single mutation is still a conundrum. The only game model which provides

an evolutionary scenario where a small proportion of cooperators invades defectors is the Har-

mony game (Licht, 1999), where the social dilemma has completely disappeared and it is better to

cooperate regardless the opponent’s decision.

In this work we present a non trivial solution of this conundrum which captures the essence

of the dilemma. The main idea is inspired by one of the most direct human mechanisms of pro-

moting cooperation: to reward. Sigmund et al. (2001) analyze a two-stage binary game in which
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each player can reward her cooperative opponent at the expense of her own payoff. We consider

an interaction group of n individuals sharing among cooperators a reward coming from an exter-

nal source. A context where this approach may apply is in team formation of animal societies

(Anderson and Franks, 2001), e.g. in cooperative hunting (Packer and Ruttan, 1988), and in mu-

tualistic situations in which selection imposed by hosts rewards cooperative behavior (see Kiers et

al. (2003) and references therein). If the reward is large enough for the interaction group it can

remove any social dilemma, but if it is not defectors can still exploiting cooperators despite the

reward. In this way, by appropriately tuning the reward, we can cast a vast variety of evolutionary

scenarios, including traditional ones in the study of cooperation as well as more complex situations

where unexpected and counterintuitive behavior can occur.

In order to consider shared reward in the most stringent form of social dilemma, we set our

framework on the Prisoner’s Dilemma (PD) game. To this aim we introduce a game in which

payoffs can be obtained from two sources: first, all players collect payoffs by playing a PD game

with their partners, and second, players who have chosen to cooperate share an extra payoff com-

ing from a pool. In the next section we analyze in detail the static game. Closed formulae for

the Nash equilibria are obtained and a parametric characterization in terms of the reward is dis-

cussed. Situations in which multiple interior equilibria occur are complete determined, as well

as the parametric settings in which equilibria increase, decrease or jump discontinuously with the

reward. In section 3 we analyze the evolutionary stability of the equilibria and provide the different

asymptotic scenarios of cooperation according to the replicator dynamics. A general framework

for the study of cooperation based on n-player games is discussed in section 4. There, we extend

some results obtained in previous sections to determine the possible different dynamical scenarios

that such general games can have. In particular, we prove that there are no more than two interior

equilibria for a wide class of social dilemmas introduced by Hauert et al. (2006). Section 5 is of

conclusions. Proofs of the main results are in the appendix.

2 The shared reward dilemma

In order to model systems that reward cooperation to raise reciprocal beneficial relationships, we

present the following game called the shared reward dilemma.

3



Consider an assembly of n players, each of whom can choose one out of two actions: cooperate

(C) or defect (D) with the rest of the n−1 players in an one-shot game (i.e. all player’s actions are

simultaneously performed). From their pairwise matches, players recollect payoffs according to a

PD game. In addition, players who have chosen to cooperate obtain an extra payoff coming from a

fixed reward ρ that is evenly distributed among all cooperators. We will be referring to this amount

as the shared reward.

To provide the strategic form of this game, we introduce some notation. For 1 ≤ i ≤ n, Xi

denotes the strategy of player i: Xi = 1 if she cooperates and Xi = 0 if she defects. Let Ci = ∑ j #=i Xj

be the number of cooperators among the opponents of player i. Payoffs of pairwise interactions

are denoted by the standard parameters of the PD game: a defector that exploits a cooperator

obtains the temptation T , but when she faces up another defector gets the punishment P; instead, a

cooperator meeting another cooperator receives the reward R (not to be confused with the shared

reward that we propose in this work!), but obtains the sucker’s payoff S when she confronts a

defector. Here T > R > P > S and S + T < 2R. By using this payoff notation, the total payoff of

player i is given by

Ui =






CiR+(n−1−Ci)S +
ρ

Ci +1
, if i cooperates,

CiT +(n−1−Ci)P, if i defects.
(1)

Since the game is symmetric, in the sense that the payoff to a particular player is independent

of her label and only depends on the players’ actions, a Nash equilibrium is a common strategy

for all players. The space of mixed strategies for player i consists of all 0 ≤ qi ≤ 1 such that

P(Xi = 1) = qi and P(Xi = 0) = 1− qi. In equilibrium, the random variables X1, . . . ,Xn are i.i.d.

according to a Bernoulli distribution and Ci is a binomial random variable independent of Xi. Then,

the expected total payoffs of an arbitrary cooperator and of an arbitrary defector when the rest of

the players play an equilibrium, are given by

fC(q) = E[Ui|Xi = 1] = (n−1)qR+(n−1)(1−q)S +ρµn−1(q), (2)

fD(q) = E[Ui|Xi = 0] = (n−1)qT +(n−1)(1−q)P, (3)

where µm(q) = E[(Sm + 1)−1], Sm being a binomial random variable which is the sum of m i.i.d.

Bernoulli’s random variables with mean q. As it was early observed by Chao and Strawderman
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(1972), µm(q) has the expression

µm(q) =






1, for q = 0,
1− (1−q)m+1

(m+1)q
, for 0 < q≤ 1.

(4)

2.1 The binary case

Let us begin by analyzing the game when there are just two players involved. This case is partic-

ularly simple because it reproduces the major binary games used in the study of cooperation. The

payoff matrix of this binary game (Gintis, 2000) can be easily obtained from (1) by making n = 2,

and it is shown in Table 1. Thus, depending on ρ, the game becomes a:

(i) Prisoner’s dilemma, if T > R+ρ/2 and P > S +ρ;

(ii) Snowdrift, if T > R+ρ/2 and P < S +ρ;

(iii) Stag-hunt, if T < R+ρ/2 and P > S +ρ;

(iv) Harmony, if T < R+ρ/2 and P < S +ρ.

C D

C R+ρ/2 S +ρ

D T P

Table 1: Payoff matrix of the binary case.

In order to reduce the number of parameters, it is convenient to introduce the scaled shared

reward δ = ρ/n(n− 1)(T −R), which in the binary case becomes δ = ρ/2(T −R), and the de-

fection ratio ζ = (T −R)/(P− S), which compares the excess of payoff of a defector when she

confronts a cooperator with the excess of payoff when she faces up a defector. In terms of these

two parameters, the conditions above can be rephrased as

(i) Prisoner’s dilemma if δ < min(1/2ζ,1);

(ii) Snowdrift if 1/2ζ < δ < 1;

(iii) Stag-hunt if 1 < δ < 1/2ζ;
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Figure 1: The mixed-strategy Nash equilibrium of the binary game as function of δ. The illustration

shows the qualitative behavior of the equilibria for the two scenarios ζ > 1/2 and ζ < 1/2. The

graphics correspond to ζ = 2 and ζ = 0.2.

(iv) Harmony if δ > max(1,1/2ζ).

Therefore, upon increasing δ the game changes from Prisoner’s dilemma, where the Nash equilib-

rium is both players defecting, to Harmony, where it is both players cooperating. But depending

on whether ζ > 1/2 or ζ < 1/2, the changes occurs via Snowdrift or via Stag-hunt, respectively.

These two games have a Nash equilibrium in mixed strategies, which can be obtained by equating

the expected payoff of a cooperator and a defector that confront a mixed strategy in which cooper-

ation is chosen with probability q. These payoffs can be obtained from (2) and (3) by taking n = 2

(hence µ1(q) = 1−q/2). Accordingly, the Nash equilibrium is

q =
1−2δζ

1− (1+δ)ζ
. (5)

If ζ > 1/2, q is a continuous increasing function of δ. If ζ < 1/2, q is a continuous decreasing

function on (1,1/2ζ), with discontinuity points at δ = 1 and δ = 1/2ζ. Figure 1 illustrates these

two scenarios. It is interesting to notice that, while for ζ > 1/2 there is a continuous monotonic be-

havior (although with threshold and saturation) of cooperation with the shared reward, for ζ < 1/2

the behavior is discontinuous and counterintuitive (cooperation decreases with increasing shared

reward). In section 3 we provide a more sensible discussion of this phenomenon in the context of

evolutionary dynamics.
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2.2 Nash equilibria for more than two players

Next, we provide a complete characterization of the Nash equilibria that can be reached for differ-

ent shared rewards when there are more than two players.

Theorem 1. Let δ = ρ/n(n− 1)(T −R) be the scaled shared reward of the game and ζ = (T −

R)/(P− S) the defection ratio. Then, the following three scenarios can be found for the shared

reward dilemma with a number of players n≥ 3:

A) For ζ≥ 1/2,

(i) if δ≤ 1/nζ, the unique Nash equilibrium is full defection (q = 0);

(ii) if 1/nζ < δ≤ 1, the Nash equilibrium is a continuous function of δ which increases from

0+ to 1, corresponding to the unique solution on (0,1] of

(ζ−1)x+1−δζ1− (1− x)n

x
= 0; (6)

(iii) if δ > 1 the unique Nash equilibrium is full cooperation (q = 1).

B) For 1/n≤ ζ < 1/2,

(i) if δ≤ 1/nζ the only Nash equilibrium is full defection;

(ii) if 1/nζ < δ < 1 the Nash equilibrium is a continuous function of δ which increases from

0+ to some limit smaller than 1, corresponding to the unique solution on (0,1) of (6);

(iii) if δ ≥ 1 there exists δc > 1 such that if δ > δc the unique Nash equilibrium is q = 1,

whereas if 1 ≤ δ ≤ δc there are two Nash equilibria corresponding to the solutions 0 <

q1 ≤ q2 ≤ 1 of (6) (equality, q1 = q2 holds only for δ = δc). The equilibria q1 and q2 are

continuous monotone functions of δ (increasing and decreasing respectively) and q2 = 1

when δ = 1.

C) For ζ < 1/n,

(i) if δ < 1 the only Nash equilibrium is full defection;

(ii) if 1≤ δ < 1/nζ the Nash equilibrium is a continuous function of δ which decreases from

1 to some limit greater than 0, corresponding to the unique solution on (0,1] of (6);
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Figure 2: Nash equilibria of the n player game as a function of δ. The illustration shows the

qualitative behavior of the equilibria for (a) ζ > 1/2, (b) 1/2 > ζ > 1/n and (c) ζ < 1/n. The

graphics correspond to (a) n = 10 and ζ = 1.1, (b) n = 10 and ζ = 0.2, and (c) n = 3 and ζ = 0.3.

(iii) if δ ≥ 1/nζ there exists δc > 1/nζ such that if δ > δc the unique Nash equilibrium is

q = 1, whereas if 1≤ δ≤ δc there are two Nash equilibria corresponding to the solutions

0 ≤ q1 ≤ q2 < 1 of (6) (equality, q1 = q2 holds only for δ = δc). The equilibria q1 and

q2 are continuous monotone functions of δ (increasing and decreasing respectively) and

q1 = 0 when δ = 1/nζ.

An upper bound for δc is given by

δc ≤
1
4ζ

n
(n−1)

(
1+

2ζ
n−1

)2

(
1− n−2

n−1
ζ
) . (7)

Proof. See the Appendix.

As an image is worth a thousand words, we outline in Figure 2 the different scenarios of Nash

equilibria that the theorem describes.

When the number of players n→∞ we obtain a simplified asymptotic version of Theorem 1 in

which only two of the three cases above remain:

Corollary 1. Let ρn be the shared reward of a shared reward dilemma for n players; let δ≥ 0 be

defined as

δ = lim
n→∞

ρn

n(n−1)(T −R)
, (8)
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and define δζ = 1/4ζ(1−ζ). Then, in the limit n→ ∞ we have

(i) full defection if δ = 0;

(ii) a unique mixed-strategy Nash equilibrium

q =
1−

√
1−δ/δζ

2(1−ζ)
(9)

if 0 < δ < 1;

(iii) two mixed-strategy Nash equilibria, 0 < q1 ≤ q2 < 1, where q1 is given by (9) and

q2 =
1+

√
1−δ/δζ

2(1−ζ)
, (10)

if 1 < δ≤ δζ and ζ < 1/2 (equality q1 = q2 = 1/2(1−ζ) only holds if δ = δζ), and

(iv) full cooperation otherwise.

Proof. See the Appendix.

The case ζ = 1/2 is singular because the Nash equilibrium jumps discontinuously from full

defection to full cooperation when the shared reward crosses δ = 1. The case ζ = 1 is of particular

importance because it reproduces the cost/benefit parametrization of the PD game, by making

T = b, R = b− c, P = 0 and S = −c, with b > c > 0. For this popular framework, suitable for

biological applications, our result shows that the equilibrium of the shared reward dilemma only

depends on the fixed amount ρ to be shared by the cooperators and of the cost c to cooperate,

but it is independent of the benefit b. An analogous result is observed in a spatial evolutionary

version of the shared reward dilemma (Jiménez et al., 2007). The limit case ζ → +∞ (equivalent

to P → S+) has also received special attention in the analysis of PD games on complex networks

(Nowak and Sigmund, 2000; Eguı́luz et al., 2005). Using Corollary 1, we can obtain an estimate

for the equilibrium when P→ S+, namely the smallest value between
√

ρ/n(n−1)(T −R) and 1.

3 Evolutionary stability

In population dynamics, the evolution of cooperation can be modeled in several ways. According

to the replicator dynamics (Hofbauer and Sigmund, 1998), the cooperative behavior in infinitely
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large populations is described by

dx
dt

= x(1− x)
[

fC(x)− fD(x)
]
, (11)

x(t) being the fraction of cooperators at time t and fC(x) and fD(x) the average fitness of coopera-

tors and defectors in the population, respectively. In this paper we consider the approach presented

by Hauert et al. (2006) to study replicator dynamics based on interaction groups of individuals.

The standard setup to obtain the replicator equation is to assume a large population of individuals

who randomly select partners to play a two-person game. In this alternative approach, players se-

lect groups of n−1 individuals and play an n-person game instead. This is a sensible approach to

study the evolutionary behavior of populations interacting through public goods games (Hauert et

al., 2006), and it is also a suitable approach to study the evolutionary behavior of the shared reward

dilemma. Let us denote PC(k) and PD(k) the payoffs of a cooperator and a defector, respectively,

in an interaction group of n players with k cooperators, according to the description of the shared

reward dilemma provided in section 2,

PC(k) = (k−1)R+(n− k)S +
ρ
k
, for 1≤ k ≤ n, (12)

and

PD(k) = kT +(n−1− k)P, for 0≤ k ≤ n−1. (13)

If the population is well-mixed, the number of cooperators at time t in an interaction group of n

individuals is a binomial random variable with mean nx(t). Let Sm be a binomial random variable

which is the sum of m i.i.d. Bernoulli’s random variables with mean x(t). Therefore, the average

fitness at time t are given by

fC(x(t)) = EPC(Sn−1 +1) = (n−1)x(t)R+(n−1)[1− x(t)]S +ρµn−1(x(t)) (14)

and

fD(x(t)) = EPD(Sn−1) = (n−1)x(t)T +(n−1)(1− x(t))P, (15)

corresponding to formulae (2) and (3) with q = x(t). Substituting (14) and (15) in (11), we model

the evolution of cooperation when a shared reward ρ is available for each interaction group.

It is clear that x = 0 and x = 1 are always zeros of the replicator equation (11), but there

will be further zeros at the solutions of fC(x∗) = fD(x∗) in the open interval (0,1). By the folk
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theorem of evolutionary game theory (Cressman, 2003), the asymptotic stability of these zeros

will depend on the sign of fC(x)− fD(x). For example, if it is positive, x = 0 is unstable whereas

x = 1 is stable, and if it is negative it is the other way around. But things change if fC(x)− fD(x)

changes sign in the interval (0,1). By Theorem 1, we can determine how many zeros (none, one

or two) has fC(x)− fD(x) in the open interval (0,1). On the other hand, since fC(0)− fD(0) =

n(n−1)(T −R)(δ−1/nζ), then x = 0 is stable if δ > 1/nζ and it is unstable otherwise. Thus, we

will find the following stability patterns, depending on the number of zeros of (6) in the interval

(0,1):

(I) if δ < 1/nζ (in this case there is either none or just one zero),

(a) if there are no zeros, x = 0 is stable and x = 1 unstable;

(b) if there is one zero 0 < x1 < 1, then x = 0 is stable, x1 is unstable and x = 1 is stable,

with x1 separating the basins of attraction of x = 0 and x = 1;

(II) if δ > 1/nζ,

(a) if there are no zeros, x = 0 is unstable and x = 1 stable;

(b) if there is one zero 0 < x1 < 1, then x = 0 is unstable, x1 is stable and x = 1 is unstable;

(c) if there are two zeros 0 < x1 < x2 < 1, then x = 0 is unstable, x1 is stable, x2 is unstable

and x = 1 is stable, and x2 separates the basins of attraction of x1 and x = 1.

All these situations are illustrated in Figure 3. There are some features worth noticing in this figure.

We can see that in the case ζ > 1/2, the outcome of the evolutionary game is as expected: there

is a threshold shared reward above which cooperation increases monotonically up to reaching

saturation. However, the two cases for which ζ < 1/2 have unexpected outcomes. One feature

common to both of them is that there is a critical value of the shared reward, δc, at which reached

asymptotic cooperation jumps discontinuously from a value q < 1 to full cooperation. In both

of them there is also a region of δ in which, depending on the initial fraction of cooperators,

the outcome may be full cooperation or a smaller fraction of cooperators. This smaller fraction

outcome may even be 0 in the case in which ζ < 1/n. We would like to remark here that, being

x = 0 unstable for any δ > 1/nζ, a single mutant in an interaction group of defectors spreads

cooperation in the population if the shared reward is sufficiently large.
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Figure 3: Equilibria of the replicator equation (11). Solid lines represent the asymptotically stable

solutions, while dashed lines represent the unstable ones.

4 A general framework for n-player games

We can define a more general setup for n-player games with two strategies (cooperate and defect),

like the one we have presented in this work, and extract some general conclusions. In this type

of n-player games, payoffs are functions of the total number of cooperators, namely k. A rather

general representation of the payoffs, which we will be discussing in a moment, amounts to write

a cooperator’s payoff as

PC(k) = βC(k)−χC(k), 1≤ k ≤ n (16)

and a defector’s payoff as

PD(k) = βD(k)−χD(n− k), 0≤ k ≤ n−1, (17)

with βC, βD, χC and χD nondecreasing functions.

If χC = χD ≡ 0 we recover the usual setup where the payoffs increase with the number of

cooperators. For instance, we recover the standard public goods game by taking βD(k) = bk/n and

βC(k) = βD(k)− c. With a more general increasing function βC we can model feasible situations

where a fixed cost is distributed among cooperators (e.g. βC(k) = βD(k)−c/k). In these examples,

the difference between payoffs of a cooperator and a defector only enters through the cost of

cooperation; however, the general setup also covers situations in which cooperators and defectors

are not equally efficient in taking advantage of a common resource (Hauert et al., 2006).

On the other hand, the functions χC and χD are suitable to model biological and economi-
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cal scenarios where competition among individuals with the same strategy exists. A model with

competition among defectors has already been considered by Hauert et al. (2006), who describe

situations in which the strength of competition increases with the number of defectors in the group.

Similarly, competition between cooperators may increase with k. The function χC(k) can represent

the loss in a cooperator’s payoff due to competition with other cooperators (e.g. for their share of

a common resource, such as a reward). Likewise, χD(n− k) describes the loss in a defector’s pay-

off due to competition with the other defectors. Under the assumptions we have made, χD(n− k)

is a decreasing function of k (i.e. an increasing function of the number of defectors n− k). For

this reason, PD(k) is always an increasing function of k and therefore the term −χD(n− k) can

be absorbed into βD(k). Thus we can assume, without loss of generality, χD = 0 and redefine the

defector’s payoff as

PD(k) = βD(k), 0≤ k ≤ n−1. (18)

Both, the games introduced by Hauert et al. (2006) and the present game are two particular

cases of this general framework:

1. The most general model based on synergy and discounting of cooperation in social dilemmas

considered by Hauert et al. (2006) can be described by the payoff functions

PC(k) =
b
n

1−wk

1−w
− c, 1≤ k ≤ n, (19)

PD(k) =
b
n

1− vk

1− v
un−1−k, 0≤ k ≤ n−1, (20)

where 0 < u ≤ 1 measures the strength of competition among defectors and w,v > 0 are

discounting (0 < w,v≤ 1) or synergy (w,v > 1) factors. Since the payoffs (19) and (20) are

increasing functions of k, we can just take χC ≡ 0 to express the model in the normal form

(16) and (18).

2. The normal form for the shared reward dilemma can be obtained by setting

βC(k) = k(R−S +ρ)+nS, χC(k) = R+ρk2−1
k

, 1≤ k ≤ n, (21)

βD(k) = k(T −P)+(n−1)P, 0≤ k ≤ n−1. (22)
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Repeating the arguments of section 3, the average fitnesses in a well-mixed population with a

fraction of cooperators equal to x are

fC(x) = EβC(Z +1)−EχC(Z +1), fD(x) = EβD(Z), (23)

Z being a binomial random variable with mean (n− 1)x. As we have discussed in section 3, the

dynamics can be fully characterized by knowing the number of interior rest points of the replicator

equation, i.e. the solutions of fC(x)− fD(x) = 0 in the open interval (0,1). The difference fC(x)−

fD(x) is the Bernstein polynomial of degree n− 1 (Devore and Lorentz, 1993) of the function

φ : [0,1]→ R defined by

φ(x) = βC
(
x(n−1)+1

)
−χC

(
x(n−1)+1

)
−βD

(
x(n−1)

)
. (24)

The number of zeros of a Bernstein polynomial on (0,1) is bounded above by the number of sign

changes of the corresponding function (Devore and Lorentz, 1993), φ(x) in our case. This permits

to obtain an upper bound to the number of interior rest points straight away from the analysis of

the function φ(x). Specifically, in standard biological and economical settings, where functions βC,

χC and βD have a defined convexity/concavity, such analysis may be straightforward. Incidentally,

Bernstein polynomials (the fitness functions that we are considering) are shape preserving, they

conserve the convexity of the function that generates them. For the synergy/discounting model

considered by Hauert et al. (2006), a straightforward analysis of its φ function permits to prove

that there can be no more than two interior rest points.

5 Conclusions

In this paper we have studied the effect of rewarding cooperation in a strict social dilemma. The

shared reward mechanism is based on the distribution of a fixed amount among all cooperative

individuals. By adding this payment to the standard payoffs of the Prisoner’s Dilemma, cooperators

and defectors in an interaction group confront a dilemma: on the one hand, individuals may be

inclined to choose for shared reward despite the possibility of being exploited by defectors; on the

other hand, if too many players do that, cooperators will obtain a poor reward and defectors will

outperform them. In the simplest case with only two players, we recover the traditional binary

games for the study of cooperation where the social dilemma is relaxed: stag hunt and snowdrift.

14



Although intuition suggests that in this game there should be a threshold shared reward above

which cooperation increases monotonically up to reaching saturation, the game exhibits more com-

plex situations. Scenarios with multiple interior equilibrium points can be obtained where there

are critical values of the shared reward at which cooperation jumps discontinuously. Also, coun-

terintuitive behavior where cooperation decreases as the shared reward increases can be obtained.

All arising scenarios have been characterized for the static game as well as for an evolutionary

version of the game based on the replicator dynamics. All in all we can conclude that the effects of

rewarding cooperation are not as straightforward as one might initially think, and demand a more

careful analysis. The origin of this complexity lies in the dilemma that the players confront and

the impossibility to know a priori how much reward a player can get by cooperating.

We have also provided a general setup to understand two-strategy games in which the payoffs

only depend on the total number of cooperators. The shared reward dilemma, as well as versions of

the public good games endowed with mechanisms that increase (synergy) or decrease (discounting)

the marginal contribution of each additional cooperator (Hauert et al., 2006), are all examples of

such general games. For them we provide an upper bound to the number of interior rest points that

the corresponding evolutionary games may have.

One important issue for the shared reward dilemma is where this shared reward comes from. In

the Introduction we have mentioned situations in Biology which can fit the setup of the shared re-

ward dilemma, as well as mechanisms of direct rewarding to foster more social behavior. To name

just one, companies have realized the need of searching for mechanisms that motivate, incentive

or encourage cooperative behavior among their employees in order to contribute to the effective

success of the teamwork. This context leads to another variant that we have not consider here: the

case in which the shared reward is detracted from the payoff of all players. This case is particularly

interesting for two reasons: first of all, for the feedback mechanism that it implies, and secondly,

because it models a common scenario of taxation and subsequent subside of only certain people.

Given the complexity of the shared reward game as we have analyzed it here, the results of this new

scenario are presumed very rich. This tax-subsidy scenario has already been explored by some of

us (Lugo and Jiménez, 2006) for a spatial evolutionary version of it. This item will be the subject

of a forthcoming work.
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Appendix

Proof of Theorem 1. For any x ∈ [0,1], let us define the “loss function”

φ(x) =
fD(x)− fC(x)
(n−1)(P−S)

= φ1(x)−δζφ2(x), (25)

where φ1(x) = x(ζ−1)+1 and

φ2(x) = nµn−1(1,x) =






n, for x = 0,
1− (1− x)n

x
, for 0 < x≤ 1.

(26)

(c.f. eq. (2)–(4)). First of all, for δ = 0 the only root of the loss function is at x = 1/(1−ζ), which,

for any ζ > 0, is outside the interval [0,1]. Hence φ(x) > 0 for all x ∈ [0,1] and the only Nash equi-

librium if full defection. Let us henceforth assume δ > 0. Function φ2(x) decreases monotonically

with x and, for any n > 2, is strictly convex within the interval [0,1]; instead, φ1(x) is a straight

line with nonnegative or negative slope depending on whether ζ ≥ 1 or ζ < 1, respectively. For

reasons that will be clear in a while, we need to consider separately the cases ζ ≥ 1, ζ < 1/n and

1/n≤ ζ < 1.

(a) Case ζ≥ 1:

As φ1(x) is nondecreasing, the loss function φ(x) monotonically increases with x and the only

Nash equilibrium depends on the signs of φ(0) = 1−δζn and φ(1) = (1−δ)ζ.

(i) If δ ≤ 1/nζ we have 0 ≤ φ(0) < φ(1) and the Nash equilibrium is full defection. This

equilibrium is strict for δ < 1/nζ.

(ii) If 1/nζ < δ < 1 we have φ(0) < 0 and φ(1) > 0, and the Nash equilibrium in mixed

strategies is the solution 0 < q < 1 of (6). Note that φ(x) decreases with δ, thus q increases

with δ.
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Figure 4: Relative situations of φ1(x) and δζφ2(x) (see text).

(iii) If δ≥ 1 we have φ(0) < φ(1)≤ 0 and the Nash equilibrium is full cooperation, which is

strict for δ > 1.

In the next two cases ζ < 1 and therefore both φ1(x) and φ2(x) are decreasing functions of x. As

φ2(x) is convex, the situations that can occur are all sketched in fig. 4.

(b) Case ζ < 1/n:

(i) If δ < 1 then φ(0) > 0 and φ(1) > 0 and we have the situation sketched in fig. 4(a). The

only Nash equilibrium is full defection.

(ii) If 1≤ δ < 1/nζ we have φ(0) > 0 and φ(1)≤ 0, so the situation is as sketched in fig. 4(b)

and therefore there will be a unique equilibrium 0 < q≤ 1. Note that q = 1 for δ = 1 and

decreases as δ goes to 1/nζ.

(iii) If 1/nζ ≤ δ then φ(0) ≤ 0 and φ(1) < 0. Thus we will have one of the two situations

plotted in figs. 4(d) and 4(e) depending on the slopes of φ1(x) and φ2(x) at x = 0 at the

crossover δ = 1/nζ, where φ(0) changes sign. If φ′1(0) > φ′2(0)/n the situation will be

as illustrated in fig. 4(d), and if φ′1(0) ≤ φ′2(0)/n it will be as in fig. 4(e). In the former

case there will be two Nash equilibria, 0 < q1 < q2 < 1, and in the latter the only Nash

equilibrium will be q = 1. As φ′1(x) = ζ−1 and

φ′2(x) =
nx(1− x)n−1−1+(1− x)n

x2 , (27)
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we have φ′1(0) = ζ−1 and φ′2(0) = −n(n−1)/2. The condition φ′1(0) > φ′2(0)/n reads

ζ > (3−n)/2, which holds for any n≥ 3. We thus find two equilibria, 0≤ q1 < q2 < 1,

which, upon increasing δ, approach each other (q1 increases and q2 decreases) up to δc,

where they coalesce in a unique Nash equilibrium q ∈ (0,1). Finally, for δ > δc the only

Nash equilibrium is full cooperation.

(c) Case 1/n≤ ζ < 1:

(i) If δ < 1/nζ then φ(0) > 0 and φ(1) > 0 and we have the situation sketched in fig. 4(a).

The only Nash equilibrium is again q = 0.

(ii) If 1/nζ ≤ δ < 1 (this case is empty if ζ = 1/n) then φ(0) ≤ 0 and φ(1) > 0, and we

have the situation depicted in fig. 4(c). There is a unique Nash equilibrium q ∈ [0,1)

determined by (6). Also q = 0 for δ = 1/nζ and increases as δ goes to 1.

(iii) If δ ≥ 1 then φ(0) ≤ 0 and φ(1) ≤ 0. In this case we may have two equilibria if the

situation of fig. 4(d) occurs, or just one if either δ > 1 and we have the situation of

fig. 4(e), or δ = 1 and the situation is like in fig. 4(f). The separation between the first

case and the last two cases depends on which scenario, fig. 4(d) or fig. 4(f) we have at

δ = 1. This, in turn, depends on the slopes of φ1(x) and φ2(x) at x = 1 when δ = 1: if

φ′1(1) < ζφ′2(1) then we will have fig. 4(d), and if φ′1(1)≥ ζφ′2(1) we will have fig. 4(f).

The former is equivalent to ζ < 1/2, the latter to ζ ≥ 1/2. So if ζ ≥ 1/2 the only Nash

equilibrium is q = 1, whereas if ζ < 1/2 there will be, for 1 ≤ δ < δc, two equilibria,

0 < q1 < q2 ≤ 1, which coalesce in a single one at δ = δc. For δ > δc the only Nash

equilibrium is q = 1.

The limiting value δc can be determined as the value of δ at which the curve φ1(x) is tangent to

δcζφ2(x) at a point xc ∈ (0,1). At this point the two equations

φ1(xc) = δcζφ2(xc), φ′1(xc) = δcζφ′2(xc), (28)

hold simultaneously. These two equations can be combined to yield

δcζ(1− x)n = x2
c(1−ζ)− xc +δcζ, (29)

[(n−1)− (n−2)ζ]x2
c − (n−1+2ζ)xc +δcζn = 0. (30)
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For xc to exist it is necessary that the second equation has a solution. The condition for this to

happen is

(n−1+2ζ)2−4[(n−1)− (n−2)ζ]δcζn≥ 0. (31)

Since ζ < 1/2 then (n−1)− (n−2)ζ > 0, so the above equation holds provided

δc ≤
(n−1+2ζ)2

4[(n−1)− (n−2)ζ]ζn
=

(
1+ 2ζ

n−1

)2

4ζ
(
1− n−2

n−1ζ
)

(
n−1

n

)
. (32)

This expresses an upper bound for δc. !

Proof of Corollary 1. As n→∞ only two of the three cases of theorem 1 remain, corresponding

now to ζ≥ 1/2 and 0≤ ζ < 1/2. Besides, eq. (6) becomes the quadratic equation

(ζ−1)x2 + x−δζ = 0, (33)

whose two solutions are

q1 =
1−

√
1−4ζ(1−ζ)δ
2(1−ζ)

, q2 =
1+

√
1−4ζ(1−ζ)δ
2(1−ζ)

. (34)

Both are real whenever 0≤ δ≤ δζ = 1/4ζ(1−ζ). On the other hand, q1 monotonically increases

with δ. If ζ ≥ 1/2, q1 runs from 0 to 1 as δ moves from 0 to 1; if ζ < 1/2, q1 goes from 0 to

1/2(1− ζ) as δ goes from 0 to δζ. As for q2, the condition for it to be within the interval [0,1]

is ζ ≤ 1/2 and 1 ≤ δ ≤ δζ. When ζ = 1/2 and δ = 1 then q2 = q1 = 1. When ζ < 1/2 then q2

provides a second solution, monotonically decreasing from 1 down to 1/2(1−ζ) as δ runs from 1

to δζ, where it coalesces with q1.

Finally, for δ > δζ we have

(ζ−1)x2 + x−δζ > 0, (35)

so the only Nash equilibrium is full cooperation. !
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