
 

 
 

Working Paper 09-10 Departamento de Economía  

Economic Series (05) Universidad Carlos III de Madrid 

February 2009 Calle Madrid, 126 

 28903 Getafe (Spain) 

 Fax (34) 916249875 

 

 

Econometric Reduction Theory and Philosophy∗ 
 

Genaro Sucarrat
†
 

 
4 November 2008 

 

 

Abstract 

 

Econometric reduction theory provides a comprehensive probabilistic framework for the 

analysis and classification of the reductions (simplifications) associated with empirical 

econometric models. However, the available approaches to econometric reduction theory are 

unable to satisfactory accommodate a commonplace theory of social reality, namely that the 

course of history is indeterministic, that history does not repeat itself and that the future depends 

on the past. Using concepts from philosophy this paper proposes a solution to these 

shortcomings, which in addition permits new reductions, interpretations and definitions. 

 

JEL Classification: B40, C50 

Keywords: Theory of reduction, DGP, possible worlds, econometrics and philosophy 

 
 

                                                           
∗

 I am indebted to several people for useful questions, comments and suggestions at di®erent stages, 

including Farooq Akram, Luc Bauwens, Vincent Bodart, Giacomo Bonanno, Geert Dhaene, Juan Dolado, 

David F. Hendry, Sebastien Laurent, Michel Mouchart, Whitney Newey, Ragnar Nymoen, Fatemeh 

Shadman, David Veredas, anonymous referees, seminar participants at the Depto. de Lógica, Historia y 

Filosofía de la Ciencia at UNED, participants at the INEM 2008 conference, conference participants at 

(EC)2 2007, participants at ESEM 2007, seminar participants at the department of economics at 

Universidad Carlos III de Madrid, seminar participants at the department of economics at the University 

of Oslo and participants at the doctoral workshop in economics at Universite catolique de Louvain. The 

usual disclaimer about errors and interpretations being my own applies of course. The research has in part 

been financed by The Norwegian State Educational Loan Fund, Lise and Arnfinn Heje's Fund (Norway), 

and by the European Community's Human Potential Programme under contract HPRN-CT-2002-00232, 

MICFINMA 
†
 Department of Economics, Universidad Carlos III de Madrid (Spain). Email: gsucarra@eco.uc3m.es. 

Homepage: Http://www.eco.uc3m.es/sucarrat/index.html 

 



1 Introduction

When Trygve Haavelmo suggested that the n observations in a dataset could “be
considered as one observation of n variables. . . following an n-dimensional joint
probability law” (1944, p. iii), his main objective was to convert more economists
to the praxis of evaluating economic theories against economic data using statisti-
cal techniques. The deeper question about how the joint n-dimensional probability
distribution was related to economic and social reality more generally, however, he
remained agnostic about. In his own words, the existence of such a joint prob-
ability distribution “may be purely hypothetical” (same place, p. iii). Although
Haavelmo’s ideas had a profound and immediate impact on contemporary economic
analysis it nevertheless took until the 1970s and 1980s before a systematic approach
to the study of the relation between economic reality and models thereof in terms
of probability concepts developed in econometrics. At the centre of several impor-
tant contributions during these years, including Florens and Mouchart (1980, 1985),
Hendry and Richard (1982), Florens et al. (1990) and Spanos (1986), was the notion
of a “probabilistic reduction”, that is, a probabilistic simplification. In econometrics
the term “reduction” thus has a somewhat different meaning than in philosophy. A
probabilistic reduction consists in replacing a complex probabilistic structure with
a simpler one—for example through marginalisation and/or conditioning, and a
key objective of reduction theory is to study in terms of probability concepts the
information that is lost during the simplification process. Reduction analysis has
led to the development of important econometric concepts like weak exogeneity,
strong exogeneity and super exogeneity, see Engle et al. (1983), and underlies the
widely employed general-to-specific (GETS) methodology for empirical modelling
and model evaluation, see Campos et al. (2005) for a comprehensive overview.

Figure 1 provides a schematic summary of the relation between empirical econo-
metric models and social reality, and where probabilistic reduction theory belongs
in this relation. Simplified, one may distinguish between three types of economet-
ric models of social reality, namely representation models, estimation and inference
models and empirical models. A simple example of an empirical model is the esti-
mated linear regression

yt = â + b̂xt + êt, (1)

and a simple example of its estimation and inference counterpart is the classical
regression model

yt = a + bxt + et, et ∼ IIN(0, σ2). (2)

Assuming the estimation and inference model (2) is a valid representation in some
appropriate sense, it can be used to study to what extent the empirical model (1)
is a “good” depiction of reality in terms of estimator properties, residual properties,
proofs, simulations, in-sample and out-of-sample evaluation, and so on. In other
words, the study of the relation between empirical models and estimation and infer-
ence models corresponds to the traditional conception of theoretical econometrics.
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Of course, the distinction between empirical models on the one hand and estimation
and inference models on the other is not limited to linear, univariate models with a
single regressor. Both the empirical model and the estimation and inference model
can be multivariate and/or non-linear in form, in terms of probabilities rather than
in terms of conditional expectations, and further distinctions can be made between
(say) estimation models on the one hand and inference models on the other, and so
on.

Whereas estimation and inference models are intimately related to empirical
models, representation models differ in at least two important ways. First, whereas
the main purpose of an estimation and inference model is practical in the sense that
it is intended to be useful for estimation and/or inference purposes (or alternatively
useful for the theory behind estimators and/or inference procedures), the main pur-
pose of a representation model is not practical. Rather, the main purpose of a
representation model is to provide a more accurate, detailed and complete depiction
of reality from which estimation and inference models can be obtained as probabilis-
tic reductions (simplifications), so that the simplifications and losses of information
associated with estimation and inference models can be studied analytically. This
leads to the second key difference between estimation and inference models on the
one hand and representation models on the other. Whereas estimation and inference
models are not necessarily accurate, detailed and complete depictions of reality due
to the aim of being useful in econometric practice, representation models consti-
tute relatively accurate, detailed and complete depictions of reality. In figure 1 a
probability space

(Ω,F , P ) (3)

is cited as an example of a representation model, since this in a sense is the most gen-
eral probability structure. Finally, the study of to what extent probability concepts
are capable of accurately depicting social reality draws upon the relevant philosoph-
ical literatures, for example the philosophy of language and mathematics literatures,
the literature on whether human being possesses a free will, the philosophy of mind
literature, and so on.

The ideas and arguments in this paper applies generally to the available ap-
proaches to econometric reduction theory. However, in order to make the discussion
as specific and relevant as possible for econometric practice in general and economic
policymaking in particular, the discussion will be organised in relation to David F.
Hendry’s (1995, chapter 9) reduction theory. This choice is not restrictive and is
based on two observations. First, the starting points of the alternative approaches
to reduction theory are either equivalent to or obtainable through reductions of
Hendry’s starting point, the “economic mechanism”. The economic mechanism, ac-
cording to Hendry, is defined as the “complete set” of theory “variables relevant to
the economy under investigation” (1995, p. 345). The “Haavelmo-distribution”, the
oldest of the approaches, is obtained after five steps of simplification in Hendry’s
theory (1995, pp. 350-351), whereas Spanos’s (1999, p. 3) starting point, the
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“stochastic phenomenon”, may be interpreted as equal to or a simplified version of
Hendry’s economic mechanism.1 The approach of Florens et al. (1990) is Bayesian
and mathematically more advanced. However, their treatment is purely technical in
the sense that they remain silent about the worldly features that the initial prob-
ability structure purports to describe. So analytically their starting point may be
seen as equivalent to the underlying probability space in Hendry’s theory. The sec-
ond observation that justifies a focus on Hendry’s reduction theory is that Hendry
is arguably the most influential contributor to and proponent of the socalled GETS
methodology for econometric modelling and model evaluation. The GETS method-
ology is widely used among economic policymaking and research institutions—see
for example B̊ardsen et al. (2005), and Hendry explicitly invokes reduction the-
ory to justify the GETS methodology. The GETS methodology is also known as
the “LSE methodology” after the institution in which it originated, the “Hendry
methodology” after the most influential contributor, and sometimes even “British
econometrics” because the GETS methodology is less popular in the US, see Gilbert
(1989), Gilbert (1990), Mizon (1995) and Hendry (2003).

Although Hendry’s reduction theory provides a comprehensive and general frame-
work for the analysis of the relation between social reality and econometric models
thereof, it nevertheless has several shortcomings:

1. Hendry’s theory is unable to satisfactorily reconcile two seemingly conflicting
views of social reality. The first view is the commonplace theory of social reality
that the human world is made up of indeterministic, historically inherited particu-
lars. The exact meaning of this will be explained below in section 3, but crudely
it means that the course of history is indeterministic (indeterminism), that his-
tory does not repeat itself (particularism), and that the future depends on the past
(historical inheritance). The second and seemingly conflicting view is that there
are stable laws or regularities regarding the relationship between variables, an idea
which underlies most econometric practice. In Hendry’s theory the economic mech-
anism under study, that is, his representation model, is an regularity-entity that
can change over time. In other words, periods of no-change means the regulari-
ties of the economic mechanism are not changing. According to the commonplace
theory of social reality, however, there is no a priori reason for stable or enduring
regularities to exist, so their existence is an empirical question. Conceptually this
is not necessarily incompatible with Hendry’s theory. But since Hendry does not
give a probabilistic account on why and how the economic mechanism changes, his
theory is unable to provide probabilistic reduction analysis with reference to the
same initial or fundamental probability space. As a solution this paper proposes
that the outcome set in the fundamental probability space is specified as consisting

1In earlier work Spanos used the term “data-generating process” (DGP), that is, the result of
the first stage of simplification in Hendry’s theory, see Spanos (1986, pp. 20-21). However, it
should be noted that Spanos’s (1999, p. 3) idea of a stochastic phenomenon is not a probabilistic
notion.
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of indeterministic worlds made up of historically inherited particulars. This means
reduction analysis can be undertaken with reference to the same initial probability
space throughout all reductions in Hendry’s theory, and the (conditional) existence
of regularities and “true” models—either across time and/or space—can be obtained
as (conditional) reductions.

2. Hendry’s theory is in terms of discrete time and can therefore not provide reduc-
tion analysis on the relation between continuous and discrete time models. With the
proposed structure on the underlying outcome space reduction analysis on the rela-
tion between continuous and discrete time models is enabled. Indeed, the relation
between events of a wide range of additional temporal structures can be analysed,
including intervals, processes, overlapping intervals and processes, and combinations
of all of the aforementioned.

3. According to Hendry there objectively exists a “complete set” of theory variables
“relevant to the economy under investigation” (Hendry (1995, p. 345)). If the
course of history is indeterministic, if history does not repeat itself and if the future
depends on the past, the number of theory variables of objective relevance for any
economic event is likely to be infinite. In the words of David Lewis:

“Any particular event that we might wish to explain stands at the end of
a long and complicated causal history. . . We have the icy road, the bald
tire, the drunk driver, the blind corner, the approaching car, and more.
Together, these cause the crash. Jointly they suffice to make the crash
inevitable, or at least highly probable, or at least much more probable
than it would otherwise have been. . . But these are by no means all the
causes of the crash. For one thing, each of these causes in turn has its
causes; and those too are causes of the crash. So in turn are their causes,
and so, perhaps, ad infinitum.”—Lewis (1986a, p. 214)

In practice, however, any economic investigation may only focus attention on a
(relatively small) finite number of variables that may be of relevance for the purpose
of the analysis. Devising the outcome set as consisting of indeterministic worlds
made up of historically inherited particulars enables us to treat the formulation or
choice of theory variables as a simplification or the perspective from which we study
an issue, an idea which in economics has been associated with Weber (1994), Myrdal
(1953,1969) and Schumpeter (1949).

4. In Hendry’s theory the underlying probability space is transformed—again—when
data are collected. The theory is therefore unable to provide probabilistic reduction
analysis with reference to the same initial probability space of the relation between
the theory and data variables. The suggested structure of the fundamental outcome
set means the initial probability space does not change and enables a probabilistic
definition of the absence of data measurement error.
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The proposed structure of the outcome set also enables several new additional re-
ductions, interpretations and definitions, of which only one will be explored: A def-
inition of history is put forward that better conveys the uniqueness and dependence
of historical context in probabilistic conditioning on history.

The rest of this paper is organised into five sections. In the next, section 2,
the most relevant parts of Hendry’s reduction theory for the current purposes are
detailed. Section 3 motivates and describes the structure of the outcome space that
is proposed. In section 4 the first stage in econometric reduction theory is revisited
using the structure of the outcome set proposed in the previous section. Section
5 proposes a definition of history up to time t that more accurately account for
historical specificity when conditioning on history, and explores a resulting pair of
useful distinctions regarding the relation between history and information. Finally,
section 6 concludes.

2 The first stage in Hendry’s reduction theory

The purpose of Hendry’s reduction theory is “to explain the origin of empirical
models in terms of reduction operations conducted implicitly on the [data generating
process (DGP)]” (1995, p. 344), and his theory details twelve reductions associated
with various reductive actions whose order is not unique.2 The twelve reductions
are (1) the data-generation process, (2) data-transformation and aggregation, (3)
specification of the parameters of interest, (4) data-partitioning, (5) marginalisation,
(6) sequential factorisation, (7) mapping to I(0), (8) conditional factorisation, (9)
constancy, (10) lag truncation, (11) functional form approximation and, finally, (12)
the derived model (Hendry 1995, pp. 360-361 provides a summary). Since the focus
in this paper is on the beginning of his theory I concentrate on the first stage in
what follows.

The most informative account of the first stage of reduction is given in a single
paragraph in chapter 9 of Dynamic Econometrics (1995).3 Most of the paragraph
is about the concepts and actions involved in the first stage, so it seems useful
to reproduce it here almost in its entirety. Note however that I have modified
Hendry’s notation in order to retain a consistent notation throughout this paper.
Most importantly, random variables and vectors appear in capitals to distinguish
them from their realisations, which are denoted in small letters later. The passage
is:

“The analysis begins with the complete set of random variables {U∗
t} rel-

evant to the economy under investigation over a time span t = 1, . . . , T ,

2The “important point”, he says, “is that empirical relationships must arise from these reduc-
tions of the DGP” (same place, p. 345).

3Chapter 9 in Hendry (1995) is a revised version of Cook and Hendry (1994), which is based
on Hendry and Richard (1982).
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where the superscript ∗ denotes a perfectly measured variable U∗ =
(U∗

1, . . . ,U
∗
T ), defined on the probability space (Ω,F , P ) . . . The {U∗

t}
comprise all the potential variables from the economic mechanism un-
der study which operates at the level of U∗, and hence the vector U∗

t

comprises details of every economic action of every agent at time t in all
the regions of the geographical space relevant to the analysis. However,
many of the {U∗

ti} variables are either unobserved or badly measured, so
the term data is not strictly applicable to U∗

t . The mapping from the
economic mechanism to the data-generation process through the mea-
surement system is the first reduction, which can lose a vast amount
of information, and introduce inaccuracy but leads to a data-set which
is denoted by {Ut}. At a conceptual level, all variables {U∗

ti} are as-
sumed to be measured as {Uti} although for some variables, the level of
quantification may be low, possibly even an artificial entry of zero. The
probability space (Ω,F , P ) is transformed by the measurement process
(usually markedly) . . . ”—Hendry (1995, p. 345)

Thus the starting point of Hendry’s reduction theory is a set of theory variables de-
noted U∗ defined on the probability space (Ω,F , P ), and together U∗ and (Ω,F , P )
constitute the “economic mechanism” or “theory mechanism”, that is, the represen-
tation model in Hendry’s reduction theory. Furthermore, the actions of collecting
and recording the data (the measurement process) produces a dataset U defined on
an altered probability space (Ω′,F ′, P ′). This altered probability space (Ω′,F ′, P ′)
together with the data variables U is called the “data generating process” (DGP),
but Hendry provides no (probabilistic) account of the relation between (Ω,F , P )
and (Ω′,F ′, P ′). Schematically the first stage in Hendry’s reduction theory is sum-
marised in table 1.

3 The outcome set as consisting of possible worlds

If (Ω,F , P ) denotes a probability space with Ω, F and P being the outcome set,
the event set and the probability function, respectively, then in what follows the
elements ω ∈ Ω will be referred to as “worlds” or “possible worlds”. The purpose
of this section is to formulate and motivate the proposed structure of the worlds ω.
The proposed structure may be viewed as a probabilistic representation of a social
ontology, that is, a probabilistic representation of a theory of the nature of social
reality. However, I make no claim to philosophical originality nor to philosophical
rigour. The proposed structure is intended to be usefulness for econometric reduc-
tion theory rather than to provide ultimate, irrefutable solutions to philosophical
puzzles. For this reason the philosophical discussion and justification is minimal.
The proposed structure of the worlds ω is contained in definition 5 in subsection 3.4.
The preceding subsections motivate the ingredients of the definition and provide ad-
ditional details. Subsection 3.1 presents the idea of a possible world and shows that
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there is no loss of generality in interpreting the ω as worlds. Then, subsections 3.2
and 3.3 formalise the ideas of indeterministic particularism and historically inher-
ited particulars, respectively. Subsection 3.4 contains the definition of outcomes sets
consisting of indeterministic worlds made up of historically inherited particulars, to-
gether with some remarks. Finally, subsection 3.5 brings out the main differences
of the proposed structure compared with David Lewis’s ideas.

3.1 Possible worlds

The idea of a world is normally credited to the German philosopher and mathemati-
cian Gottfried Wilhelm Leibniz (1646 - 1716) (Crane 1995).4 Intuitively a world
contains everything in the past, everything in the present and everything in the
future, or in Leibniz’ own words “the entire sequence and the entire collection of
all existing things” (Theodicy, par. 8, G VI 107. Quoted in Parkinson 1995, p.
213). In contemporary philosophy the notion is often associated with David Lewis
(1941-2001), who describes worlds as consisting of

“the planet Earth, the solar system, the entire Milky Way, the remote
galaxies we see through telescopes. . . Anything at any distance at all is to
be included. Likewise the world is inclusive in time. No long-gone ancient
Romans, no long-gone pterodactyls, no long-gone primordial clouds of
plasma are too far in the past, nor are the dead dark stars too far in the
future, to be part of this same world”—Lewis (1986b, p. 1)

Nevertheless, Leibniz and Lewis differ in several important respects. In particular,
whereas Leibniz believed in the objective existence of only a single world, the actual
world, Lewis believed in the rather unusual thesis that also non-actual possible
worlds exist objectively and independent of thought, because “philosophy [his own?]
goes more easily” if we believe so (1986b, p. vii).5 This thesis Lewis referred to as
“modal realism”. Lewis argued that in favor of modal realism because, in his view,
its advantages outweighs its disadvantages. My own view differs most certainly
from Lewis’ regarding the existence of non-actual worlds, since I only see them
as useful mind-constructs not existing independent of thought. In this regard, if
the reader believes my view gives rise to philosophical issues, it should be recalled
that usefulness for econometric reduction theory takes precedence over philosophical

4Leibniz, being religious, argued that the world is perfect because among all the possible worlds
God must have chosen the most perfect one, a view that was ridiculed by Voltaire in his play
Candide (Crane 1995). In today’s philosophical usage, however, the term usually carries little or
no religious connotation.

5The whole book is a defence of this thesis but see in particular pp. vii-ix and pp. 133-135.
For a brief and amusing summary of other philosophers’ reactions to Lewis’s thesis, see Hawthorn
(1995, footnote 24 pp. 23-24).
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rigour, since the ideas proposed here are not intended to provide ultimate, irrefutable
solutions to philosophical puzzles.6

According to Leibniz and Lewis a world contains everything in the past, present
and future. But do we really need the whole world for the purpose of econometric
reduction analysis? Spatially, yes, if we want to ensure a complete analysis, but
for reduction theory purposes it is not necessary to be all-including backwards and
forward in time. What matters is that the worlds contain everything between a
start point and an end point, but the portions outside this interval are not really
necessary although including them makes little difference. Nevertheless, bounding
worlds temporally backwards in time entails an implicit conditioning on the realised
history preceding the starting point. Backwards bounding thus means probabilities
acquire an interpretation of special interest, but apart from this the only function
bounding serves is to simplify the exposition. Henceforth a world ω is therefore
devised as a non-stochastic continuous time process

{s(t) : t ∈ [0,∞) ⊂ R}

of worldly states-of-affairs s(t) at time t. The initial point t = 0 denotes an arbitrary
starting point, say, yesterday at midnight or four million years ago, and is not
restrictive.7 For some purposes it is necessary to provide an exact mathematical
structure of the states-of-affairs s(t), and one may straightforwardly sketch several
such structures. For example, each s(t) may be defined as equal to a countable
(finite or infinite) collection of “attributes”, say, s(t) = {a1, a2, . . .}. In words,
a1 is attribute number 1 of the states-of-affairs s(t), and so on. This structure is
very general and flexible, and accommodates a wide range of ontologies compatible
with substance and/or property atomism. A consequence of such a structure is
that the most foundational mathematical elements (the “atoms”) of the analysis are
properties {an} that belongs to a countable set denoted, say, a.

Interpreting ω as worlds retains the intuitive use of probability algebra. For
example, if we would like to say that A ∈ F denotes the event that (say) 10%
of the labour force of an economy is unemployed at t, then the only change in
interpreting the ω as a world is that A now denotes the set of all worlds in which
10% of the labour force of a certain economy is unemployed at t. More formally,
A = {ω : 10% unemployed at t}. If the worlds are bounded backwards, then the
interpretation becomes that A denotes the set of all worlds in which 10% of an
economy is unemployed at t given the history of the world up to t = 0. Another
common practice is to interpret the outcome set Ω as a set of possible “states-of-

6For further philosophical issues and references regarding the idea of a possible world useful
starting points are Forbes (1995) and Moravcsik (1995). For an alternative but related use of the
idea of a possible world by an economist, see Kluve (2004).

7What might be restrictive, though, is representing continuous time by means of real numbers.
The issue of which mathematical structure that best represents continuous time is, however, beyond
the scope of this paper.
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affairs” or “facts”. In possible worlds terminology a state-of-affair or fact at t is now
the set of all worlds in which a certain state-of-affairs or fact attains at t. Finally, the
possible worlds interpretation also accommodates “interval” events. For example,
we may want to devise an event A equal to the set of worlds in which 10% of the
labour force of an economy is registered as unemployed over the time interval, say,
[t0, t1] with t0 < t1. Or, A = {ω : 10% unemployed during [t0, t1]}.

3.2 Indeterministic particularism

“I am inclined”, in the words of Geoffrey Hawthorn, “to the view that the human
world consists of contingent particulars” (1995, p. 10). Contingency, in my inter-
pretation, refers to the thesis that social events are not connected in a deterministic
manner, a question that has occupied philosophers for thousands of years. There are
at least two philosophical literatures of relevance for this issue. The first is concerned
with whether human being is endowed with a socalled “free will” and if so what kind
of free will. The second literature is the socalled “philosophy of mind” literature and
starts from two seemingly contradictory views: On the one hand that human being
presumably is made up of a finite number of indivisible objects—usually referred to
as particles, and on the other hand that human being is capable of a presumably
infinite number of mental states (imagination, thought, and so on).8 Depending on
one’s views on free will and on the relationship between mind and matter, a variety
of possible views on how social events are connected is possible. Since I am unlikely
to convince the reader of my belief in the indeterminism thesis unless she or he is
already a believer I merely state the thesis as some sort of axiom that I start from.
Formally, with respect to the probability space (Ω,F , P ), indeterminism is simply
characterised by Ω containing more than one world ω.

Definition 1. Indeterminism The worlds ω ∈ Ω are said to be indeter-
ministic if there exists more than one world ω in Ω, and if there exists a
pair ω 6= ω′ such that ω ∩ ω′ 6= ∅, where ω, ω′ ∈ Ω.

If Ω contained only a single world, then this would imply that no other worlds are
possible and therefore that the course of history is deterministic. So Ω must contain
more than one world for indeterminism to hold. The intersection property ω∩ω′ 6= ∅
is needed in order to ensure true indeterminism, even when Ω contains more than
one world.9 To see this consider the situation where Ω contains only two worlds.

8Entries on “free will” and “determinism” are contained in virtually any philosophy or meta-
physics dictionary, see for example Honderich (1995) or Kim and Sosa (1995), and usually contains
suggestions for further reading. An accessible introduction to the issues is Searle (1991), which
is based on the author’s BBC lectures. Useful introductions to the philosophy of mind are Kim
(1996) and Heil (1998), the second being more advanced than the first. A good text on the rela-
tion between mind and recent biological currents is Ruse (1988). Texts that consider themselves
to specifically address issues of social ontology are Ruben (1985) and Pettit (1993). A useful
introduction to metaphysics as it is often conceived, a form of category theory, is Loux (1998).

9I am grateful to Jesús Zamora for pointing this out to me.
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Suppose further that the two worlds do not intersect and that one of the worlds is
the actual world. The only possible world is therefore the actual world, since the
other world is not compatible with any part of the actual world. An example of
intersecting worlds are worlds that share a common starting point s(0).

The meaning of the philosophical idea of a “particular” is best understood when
contrasted with its opposite, a “universal”. In brief, something is said to be of
particular nature if there exists only one of its kind, whereas something is said to
be of universal nature if it is one out of several of its kind or type. Another way
to put it is that a particular refers to the unique and non-repeatable, whereas a
universal refers to the repeatable. In the current context particularism concerns the
states-of-affairs s(t), and intuitively it is the thesis that, literally, history does not
repeat itself (no two states-of-affairs are exactly equal in all respects).10 Formally
this may be stated as follows.

Definition 2. States-of-affairs particularism. A world ω = {s(t) : t ∈
[0,∞)} ∈ Ω is said to be made up of states-of-affairs particulars if for all
pairs t, t′ ∈ [0,∞) such that t 6= t′ and s(t), s(t′) ∈ ω, then s(t) 6= s(t′).

In words, two states-of-affairs s(t) and s(t′), both of whom occur in the same world
ω can never be equal in all respect and so s(t) 6= s(t′) when t 6= t′. However, it
should be noted that the definition allows for s(t) and s(t′) to be equal in some
respects, that is, s(t)∩ s(t′) 6= ∅. For example, if we define states-of-affairs as equal
to countable sets of attributes, then s(t) ∩ s(t′) is simply the respects in which the
two states-of-affairs are equal.

3.3 Historically inherited particulars

A further thesis I start from is that the current and the future depend on and inherit
characteristics of the past. Differently put, every turn history takes contributes in
one or another way to the characteristics of the states-of-affairs of the future. This
thesis I shall call “historical inheritance”. Before providing a formal definition of
this property, however, we need the idea of a state-of-affairs process up to (but not
including) t:

Definition 3. States-of-affairs process up to t. The process ωt =
{s(a) : a < t, t ∈ (0,∞)} is said to be a states-of-affairs process up to (but
not including) t.

Intuitively, ωt is simply a history up to (but not including) t. The number 0 is not
included in the interval (0,∞) in order to ensure that a cannot be smaller than

10A further interpretation of the thesis that the human world is made up of particulars is that,
literally, people differ from each other: No two persons are equal in all respects at any point in
time. In the current context, however, the formal definition (definition 2) only contains the first
interpretation.
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0. This guarantees that ωt is non-empty and means that at least s(0) is always
contained in ωt. We can now define historical inheritance.

Definition 4. Historical inheritance. The outcome space Ω is said to
consist of worlds ω made up of historically inherited particulars if:

a) All ω ∈ Ω are made up of particulars.

b) For all pairs of unequal worlds ω1, ω2 ∈ Ω, that is, ω1 6= ω2: If ω1
t 6= ω2

t ,
then s1(t′) 6= s2(t′′) for all t′, t′′ ∈ (t,∞), where s1(t′) ∈ ω1 and s2(t′′) ∈ ω2.

In words, if two worlds contains the same history up to t (but not at t), then the
states-of-affairs of the two worlds differ from each other in at least one respect at
every point in the future.

3.4 Outcome sets consisting of indeterministic worlds made
up of historically inherited particulars

The proposed structure of the worlds ω is contained in definition 5 below. The
definition summarises the ideas so far and provides the starting point for the next
sections. The definition may be viewed as a probabilistic representation of a social
ontology, but it should be underlined that definition 5 constitutes a very general
description of the nature of social reality. Indeed, many simpler ontologies—both
deterministic and indeterministic—can be obtained as special cases by restricting
the worlds ω and the outcome set Ω.

Definition 5. Outcome set consisting of indeterministic worlds
made up of historically inherited particulars. Let (Ω,F , P ) be a
probability space and let each ω ∈ Ω be equal to a non-stochastic con-
tinuous time process {s(t) : t ∈ [0,∞)} with [0,∞) ⊂ R. The outcome
space Ω is said to consist of possible worlds made up of indeterministic and
historically inherited particulars if:

a) There exists more than one world ω in Ω and at least two unequal worlds
ω, ω′ ∈ Ω intersect: ω ∩ ω′ 6= ∅ (indeterminism)

b) For each ω ∈ Ω: For all pairs t, t′ ∈ [0,∞) such that t 6= t′ and s(t),
s(t′) ∈ ω, then s(t) 6= s(t′) (particularism)

c) For each pair of unequal worlds ω1, ω2 ∈ Ω, that is, ω1 6= ω2: If ω1
t 6= ω2

t ,
then s1(t′) 6= s2(t′′) for all t′, t′′ ∈ (t,∞), where s1(t′) ∈ ω1 and s2(t′′) ∈ ω2.
(historical inheritance)

Crudely, in lay-man’s terms, the first property a) states that the course of history
is indeterministic, the second property b) states that history does not repeat itself,
and the third property c) states that the future depends on the past. It should be
noted though that without conditions on the relation between Ω and F , we may
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not be guaranteed that the latter is a σ-field and that P is a probability function.
A rigorous analysis of which conditions on the relation between Ω and F that are
necessary for F to be a σ-field and P to be a probability function is beyond the
scope of this paper. Henceforth I assume such conditions, if necessary, hold.

3.5 David Lewis compared

The approach to possible worlds outlined above is both similar and different in many
ways from David Lewis’s ideas, so it may useful to bring out the main differences and
similarities more explicitly. The first main difference was alluded to in subsection
3.1 and concerns the existence of possible worlds. Whereas Lewis held that other
(non-actual) worlds exist objectively and independent of thought, a thesis he refers
to as “modal realism”, I believe they are fictions in the sense that they exist in our
imagination only. Second, Lewis’s aim is to provide a framework that “can serve
alike under indeterminism or determinism” (1986d, p. 179). The account outlined
here, by contrast, has specifically been formulated with indeterminism in mind, and
it is unclear (to me) how related they are in the case when the outcome space Ω
only contains a single world, a situation which can be interpreted as a version of de-
terminism. Third, Lewis’s account “is in terms of counterfactual conditionals about
probability; not in terms of conditional probabilities” (same place, p. 178). Here, by
contrast, counterfactual conditionals play no formal role role, and conditional prob-
ability may be interpreted as a measure of the causal “efficiency” of a conditioning
event (the antecedent) to bring about the consequent event, see section 5 below.

With respect to similarities the most important concerns the interpretation of
probability. Since events are sets of possible worlds, the conditional probability
P (B|A) is interpreted as the propensity of the event A to bring about the event
B. In other words, conditional probability applies to single instances of cases with
frequency versions being obtained as reductions. Furthermore, I coincide with Lewis
in interpreting the propensity, that is, the probability, in the objective sense as
opposed to the subjective, see Lewis (1986c) for his views on the relation between
subjective and objective versions of probability.

4 The first stage revisited

The probability space (Ω,F , P ) in definition 5 provides the starting point of this
section. The purpose of this section is to explain in more detail how and why the
shortcomings of the first stage in econometric reduction theory are resolved, and
to outline some new reductions. The section is organised into four subsections. In
subsection 4.1 the formulation of theory variables is treated as a reduction. Subsec-
tion 4.2 defines the DGP in relation to the initial probability space. Subsection 4.3
proposes formal definitions of the absence of data measurement error. Subsection
4.4 suggests how the existence of regularities may be viewed as a reduction. Finally,

12



subsection 4.5 develops concepts and ideas useful for the analysis of theory models
as reductions.

4.1 The formulation of theory variables as a reduction

Normative analysis is about how things should be, it is said, whereas positive analysis
is value-independent and “objective” investigation of how things are. But is positive
analysis entirely objective? Do we not, in any investigation, choose which questions
to address, which portions of social reality to study, and which categorical schemes,
concepts, techniques and language to employ? The idea that these choices are non-
objective in some sense is old and not controversial. Examples of economists who
held this view are Max Weber (1994), Joseph Schumpeter (1949) and Gunnar Myrdal
(1953, 1969), but similar ideas have been expounded by numerous philosophers
and social analysts (for example Max Horkheimer and Jürgen Habermas). Since a
world contains everything, the formulation of theory variables U∗ and the associated
probability function, denoted P ∗, can be treated as reductions that reflect some of
these choices.

Consider a set of theory variables U∗ delineated by the investigator.11 As-
suming that U∗ is defined on the probability space (Ω,F , P ), then the U∗ can
be interpreted as the theory variables selected for or considered in an economic
investigation. The initial or “fundamental” (Ω,F , P ) probability space does not
change over time because all change is accounted for by the worlds ω, and the
formulation of theory variables can therefore be seen as some sort of reduction or
pre-marginalisation with a methodological interpretation. A useful notion for this
purpose is the theoretical probability function P ∗, which is defined as the proba-
bility function associated with the smallest σ-field generated by the events of the
theory variables. For example, in the simple case where U∗ is equal to a single
theory variable U∗ that attains two values u∗1 and u∗2, then the smallest σ-field is
F∗ = {∅, A, AC , Ω} where A = {ω : U∗(ω) = u∗1} and AC = {ω : U∗(ω) = u∗2}.12 It
is always the case that F∗ ⊂ F , and in this specific example the values of P ∗ are
P ∗(∅) = 0, P ∗(A) = p∗1, P

∗(AC) = 1− p∗1 and P ∗(Ω) = 1. Also, since the probability
functions P and P ∗ can be defined in terms of sets of ordered pairs, we have that
P ∗ ⊂ P . In words, the theoretical probability function P ∗ provides a probabilistic
characterisation of the events F∗ associated with the theory variables, but not of all
the possible events in F . Differently put, F gives a richer characterisation of possi-
bilities than F∗, and the economic mechanism is defined as the theory variables U∗

11For expository simplicity he number of theory variables {U∗
ti} is henceforth assumed to be

finite for each t. Most of the argument that follows goes through in the case of non-finiteness as
well, but non-finiteness gives rise to conceptual and philosophical issues that will not be addressed
here.

12In this example it is assumed that {U∗ = u1} and {U∗ = u2} are mutually exclusive and
complete, that is, {U∗ = u1}∩{U∗ = u2} = ∅ (mutual exclusivity) and {U∗ = u1}∪{U∗ = u2} = Ω
(completeness).
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together with the “smaller” probability space (Ω,F∗, P ∗). This probability space
is “smaller” compared with the original probability space (Ω,F , P ), since F∗ ⊂ F
and P ∗ ⊂ P .

The formulation of theory variables can thus be viewed as reflecting which events
F∗ that are studied as opposed to the events not studied. This reduction I will
refer to as “pre-marginalisation”. I use the term pre-marginalisation because the
term marginalisation has a well-established and well-defined meaning in probability
analysis in general and in reduction theory in particular. For example, in Hendry’s
reduction theory marginalisation leads to reduction number five, see Hendry (1995,
chapter 9). The set F − F∗ can be interpreted as the events or portions of reality
that are not studied, and the set P − P ∗ the associated probabilities. Differently
put, F−F∗ together with P−P ∗ constitute the information loss associated with the
formulation of theory variables. To give an example of how pre-marginalisation is a
reduction in the sense that it constitutes the perspective or “conceptual lenses” we
view reality with, consider delineation of theoretical price and theoretical quantity.
In defining these two variables as the object of study, other aspects of the transaction
process are not included in the analysis. This is clearly an abstraction, since an
anthropologist or an institutional economist might be interested in whether the
parties engaged in any form of negotiation, whether there were implicit power-
relations governing the transaction process, or what the means of transactions were.
The selection of which portions of reality to study and the way they are depicted in
terms of variables can thus be treated as a reduction.

4.2 The DGP

The notion of a DGP is obtained in an analogous manner to the economic mecha-
nism. If we denote FD (⊂ F) the minimal σ-field σ(U) associated with the data vari-
ables U, and if we denote the associated minimal probability function for PD (⊂ P ),
then the DGP is defined as U together with the probability space (Ω,FD, PD). Rel-
ative to the initial probability space (Ω,F , P ) one source of the information loss is
analogous to that of theory variables, namely F − FD and P − PD. In the case
of no data measurement error, this is the only source of information loss. In the
more likely case of data measurement error, there may be additional (possibly sub-
stantial) sources of information loss. To reason for this is that the data variables
U can a life of their own and may be entirely unrelated to the theoretical variables
they purport to measure. To see this recall that any realisation of the data variables
U corresponds to the worlds in which the data were collected or could have been
collected. For example, for any realisation ut of Ut there is an associated set of
possible worlds {ω : Ut(ω) = ut} in which the realisation could have been obtained.
Similarly, for any series of realisations u1, . . . ,uT there is a set of possible worlds
{ω : U1(ω) = u1, . . . ,UT (ω) = uT} in which the series of realisations could have
been obtained. Whether these sets of worlds correspond to the set of worlds in
which the theory-concepts attain, is an entirely different question. Their relation
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can however be readily analysed via the initial probability space by means of suitable
concepts. I now turn to this type of analysis.

4.3 Data measurement error

In the methodological literature of the social sciences discussions of data measure-
ment error are often couched in terms of theoretical or nominal or concept definition
vs. measure or indicator or operational definition—see for example de Vaus (2001,
pp. 24-33), Punch (1998, pp. 47-48) and Crano and Brewer (2002, pp. 5-12). That
is, to what extent a data based measure, say, the number of people receiving unem-
ployment benefits, is capable of providing information about a theoretical definition,
say, the number of unemployed. An operational definition that satisfactorily pro-
vides the information sought is thus said to be measurement valid or concept valid.
Or, differently put, the more satisfactorily the operational definition measures the
theoretical definition, the smaller the data measurement error.

The idea of a probability space where the outcome set consists of indeterministic
worlds made up of historically inherited particulars enable us to formulate definitions
of data measurement error in terms of probabilistic concepts. The purpose of this
subsection is to put forward such concepts. To this end, recall that random variables
are denoted in capitals and their realisation in small letters. For example, a realisa-
tion of the theoretical vector of variables U∗ is denoted u∗ = (u∗1,u

∗
2, . . . ,u

∗
t , . . . ,u

∗
T ),

with u∗t = (u∗t1, u
∗
t2, . . . , u

∗
ti, . . . , u

∗
tI(t)) for each t, where the symbolism I(t) means

the number of theory variables can vary with t. Furthermore, u∗t1 ∈ X∗
t1, u∗t2 ∈ X∗

t2

and so on for each t, where the {X∗
ti} are arbitrary sets. Similarly, a realisation

of the vector of data variables U is denoted u = (u1,u2, . . . ,ut, . . . ,uT ), with
ut = (ut1, ut2, . . . , utj, . . . , utJ(t)) for each t, where the symbolism J(t) means the
number of data variables can vary with t. Also here ut1 ∈ Xt1, ut2 ∈ Xt2 and so on
for each t, where the {Xtj} are arbitrary sets. J(t) can differ from I(t) for any (or
all) t. Ideally a definition of measurement validity of U∗ should be sequential and
formulated for a sequence of pairs (U∗

1,U1), (U
∗
2,U2), . . . , (U

∗
t ,Ut), . . . , (U

∗
T ,UT ),

where at each t one may (or may not) condition on history and/or on data reali-
sations preceding t. However, such a definition complicates notation considerably
so I only provide the definition for a generic t only, (U∗

t ,Ut), since the extension
to t = 1, 2, . . . , T is straightforward. In what follows I will make use of the prob-
abilistic definition of a measurable variable, which is not related to what has been
called (data) measurement validity or absence of data measurement error hitherto.
This may cause some confusion and the reader is hereby warned. Now, recall the
probabilistic definition of a measurable variable:

Definition 6. Measurable variable. Let (Ω,F) and (Ω∗,G∗) denote two
measurable spaces, that is, F and G∗ are σ-fields on Ω and Ω∗, respectively,
and denote the elements of F and G∗ for F and G∗, respectively. A function
f : Ω −→ Ω∗ is said to be F -measurable if for all G∗ ∈ G∗ we have {ω :
f(ω) ∈ G∗} ∈ F .
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Intuitively Ω∗ contains the values of the measurable variable f , and in the case where
Ω∗ is Euclidean space then f is a random vector. For notational convenience I use
the symbolism f : (Ω,F) −→ (Ω∗,G∗) to mean that f is a F -measurable function
from Ω to Ω∗, with F and G∗ being the associated σ-fields. Now, consider the two
measurable variables

U∗
t : (Ω,F) −→ (X∗

t ,G∗t ) and Ut : (Ω,F) −→ (Xt,Gt),

where X∗
t = X∗

t1×X∗
t2×· · ·×X∗

tI(t) and Xt = Xt1×Xt2×· · ·×XtJ(t). The elements of
F , G∗t and Gt will be referred to as worldly events, theory events at t and data events
at t, respectively. Measurement validity of the data event Gt ∈ Gt with respect to
the theoretical event G∗

t ∈ G∗t can now be defined in terms of the extent of equality
between the worldly events {ω : U∗

t (ω) ∈ G∗
t} ∈ F and {ω : Ut(ω) ∈ Gt} ∈ F .

In words, to what extent the set of possible worlds associated with a certain data
realisation equals the set of worlds associated with the theory event it purports to
measure. Generalised the idea can be summarised in the following definition:

Definition 7. Measurement validity of data events. A data event
Gt ∈ Gt is said to be:

a) measurement valid with respect to a theory event G∗
t ∈ G∗t if {ω : Ut(ω) ∈

Gt} = {ω : U∗
t (ω) ∈ G∗

t}.
b) measurement invalid with respect to a theory event G∗

t ∈ G∗t if {ω :
Ut(ω) ∈ Gt} ∩ {ω : U∗

t (ω) ∈ G∗
t} = ∅.

c) partially measurement valid with respect to a theory event G∗
t ∈ G∗t if

{ω : Ut(ω) ∈ Gt} 6= {ω : U∗
t (ω) ∈ G∗

t} and {ω : Ut(ω) ∈ Gt}∩{ω : U∗
t (ω) ∈

G∗
t} 6= ∅.

For convenience we may say that a data event is measurement valid, invalid or
partially valid, respectively, since it is implicitly understood that the validity is with
respect to a certain theory event. The extension from events to variables is more or
less straightforward, so for convenience only the definition for measurement validity
is provided:

Definition 8. Measurement validity of a data variable. A data vari-
able Ut : (Ω,F) −→ (Xt,Gt) is said to be measurement valid if each Gt ∈ Gt

is measurement valid.

Implicitly the definition makes reference to a theory variable U∗
t : (Ω,F) −→

(X∗
t ,G∗t ) defined on the probability space (Ω,F , P ).
In the case where there is no measurement error, the DGP defined by the data

variables U together with the probability space (Ω,FD, PD) is equal to the economic
mechanism, which is given by (Ω,F∗, P ∗) together with U∗. In this case, there is
no information loss associated with the data measurement process. In practice,
however, the DGP and the economic mechanism are unlikely to coincide, and the
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information loss will be a function of the discrepancy between F∗ and FD. In
particular, we can attach probabilities to the events that make up the discrepancy
between F∗ and FD. For example, if the probability of the union of the set that
make up the discrepancy is zero, that is, P [

⋃∞
n=1(F∗ − FD)] = 0, then we may say

that U is measurement valid almost surely. Similarly, if P [
⋃∞

n=1(F∗−FD)] 6= 0 then
the probability may be interpreted as the (unconditional) probability of incurring
data measurement error. Of course, in most practical situations one is likely to be
somewhere in between the extremes.

4.4 The existence of regularities as a reduction

If the course of history is indeterministic, if history does not repeat itself and if
the future depends on the past, then there is no a priori reason for regularities to
exist. Their existence is entirely conditional on spatial and historical specificity. The
idea of a probability space where the outcome set consists of indeterministic worlds
made up of historically inherited particulars, enables us to treat the conditional
existence of such regularities, be it in terms of theory or data variables (or both),
as a reduction.

To see this consider the simple example of a two period sequence of (say) data
variables {Ut}, t = 1, 2, where Ut can attain the two values 1 and 0. If we define the
data events as A = {U1 = 1}, AC = {U1 = 0}, B = {U2 = 1} and BC = {U2 = 0},
respectively, then the smallest σ-field associated with the data events is FD =
σ({A,AC , B,BC}). The associated probability function is PD, that is, PD : FD →
[0, 1], and the question of interest is to what extent an estimation and inference
model PE represents PD satisfactorily. In particular, consider the possibility of
modelling the sequence {U1, U2} as an independent and identically distributed (IID)
sequence, with p and 1− p denoting the probabilities of 1 and 0, respectively. The
joint probabilities of the estimation and inference model would then be given by
PE(1, 1) = p2, PE(1, 0) = PE(0, 1) = p(1− p) and PE(0, 0) = (1− p)2, the marginal
probabilities are given by PE(Ut = 1) = p and PE(Ut = 0) = 1− p, respectively, for
t = 1, 2, and the conditional probabilities are equal to the marginals due to the IID
assumption. The estimation and inference model PE being a conditionally “true”
representation of PD can be defined in terms of the implied cross-restrictions of the
relation between PE and conditional PD. Specifically, denote C as the family of sets
{C1, C2, . . . , Cn, . . .} ⊂ F in which the relevant cross-restrictions hold conditional on
Cn ∈ C. Specifically, define FD

C as the σ-field generated by the data events together
with C, that is, FD

C = σ({A,AC , B,BC} ∪ C), and denote PD
C : FD

C → [0, 1]. Of
course, by assumption FD

C ⊂ F and PD
C ⊂ P . If we restrict ourselves to events Cn ∈

C such that P (Cn) > 0,13 then the most important (in this example) restrictions
that would have to be satisfied for PE to be an almost sure representation of PD

13This may be justified by the fact that the sets Cn where P (Cn) = 0 are probabilistically
unimportant.
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conditional on Cn are PD
C (1, 1|Cn) = PE(1, 1) = p2, PD

C (1, 0|Cn) = PD
C (0, 1|Cn) =

PE(1, 0) = PE(0, 1) = p(1−p) and PD
C (0, 0|Cn) = PE(0, 0) = (1−p)2, and PD

C (Ut =
1|Cn) = PE(Ut = 1) = p and PD

C (Ut = 0|Cn) = PE(Ut = 0) = 1 − p for t = 1, 2.
More generally we may say that the regularity PE exists (almost surely) conditional
on each set in C if all the relevant restrictions hold for each set C ∈ C. In the special
case where C = {Ω}, then PD(A) = PD

C (A|Ω) for each A ∈ FD
C .

The probability that the cross-restrictions will hold is P (
⋃∞

n=1 Cn). The greater
(unconditional) P (

⋃∞
n=1 Cn), the greater (unconditional) generality of the regularity

PE. However, greater unconditional P (
⋃∞

n=1 Cn) is not necessarily better. Indeed,
the key is the appropriateness of each Cn. For example, in many cases it is appro-
priate to condition on sets of worlds Cn that does not contain, say, the outbreak
of World War III or other kinds of events that might reduce the precision. To give
an example closer to econometric practice, suppose the error term of a regression is
N(0, 2) conditional on C1 and that a comparable regression’s error term is N(0, 3)
conditional on C2 with C1 ( C2 and P (C1) < P (C2). The generality of the second
regression is greater because C1 is strictly contained in C2, that is, the second regres-
sion holds in more worlds than the second regression. However, the first regression is
preferable as long as the worlds of interest for the investigation lay within C1, since
the first regression is more precise in terms of the standard error of the regression.

4.5 Theory models as reductions

A common practice in empirical econometric analysis is to start with a theory model
as if it were the economic mechanism. With respect to figure 1, however, a theory
model is an estimation and inference model since it is not a sufficiently accurate
nor complete depiction of social reality to be considered a representation model.
An example of starting with a theory model as if it were the economic mechanism
is microfoundations, that is, the practice of postulating a disaggregate model, a
“micro” model, then deriving an aggregate model (typically called a “macro” model)
implied by the disaggregate model, before finally estimating the aggregate model
subject to the restrictions implied by the disaggregate model. The disaggregate
starting model is thus the theory model. Another example is that of evaluating
discrete time volatility estimates by comparing them against estimates made up of
high-frequency data based on continuous time theory, see amongst others Andersen
and Bollerslev (1998), Andersen et al. (2003). In this literature a continuous time
semi-martingale typically serves as the theory model. Both of these approaches are
common in contemporary applied econometrics, the first through socalled stochastic
dynamic general equilibrium (SDGE) models, the second through the use of realised
volatility (and its cousins) as models of volatility. Nevertheless, neither micromodels
nor continuous time semi-martingales are equal to the economic mechanism, nor are
they sufficiently accurate nor complete enough to be considered as representation
models. So one may ask: To what extent do such theory models induce information
loss, simplifications and other sorts of restrictions? This subsection puts forward
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some concepts and procedures that sheds light on this issue. In brief it is proposed
that information loss may occur in at least two ways. First, in assuming that the
theory model, denoted P T , is a “true” representation, and second in restricting a
(conditionally valid) regularity, denoted PE, to be consistent with the theory model
P T . For example, with respect to the microfoundations approach, P T would be the
micro model whereas PE would be the macro model. The reductions and associated
information losses are summarised in table 2. For the sake of expository simplicity
no data measurement error is assumed. In the case of data measurement error, then
additional losses of information, simplifications and restrictions would be incurred.

In order to study the reductions that result from assuming that the theory model
P T holds, we may use an approach similar to that of the previous subsection. Let
{UT

t } denote the variables of the theory model, and let CT be the collection of
sets in which P T is a conditionally valid representation in some appropriate sense.
For example, CT may be the collection of sets in which P T is a conditionally valid
regularity. The unconditional probability of P T being true is then P (

⋃∞
m=1 CT

m), and
the implied (unconditional) reductions are thus Ω−⋃∞

m=1 CT
m and P (Ω−⋃∞

m=1 CT
m),

respectively.
The second way in which information loss or a restriction is induced as a result

of assuming that a theory model holds, is the consistency requirement between
the two models P T and PE, that is, that the latter is derivable from the former, or
alternatively that the former is more fundamental. Let {UE

t } denote the variables of
the derivable model, and let CE be the collection of sets in which PE is a conditionally
valid representation. The consequence of the consistency requirement is effectively
the restriction that both P T and PE are assumed to be conditionally valid, and
not only one of them. Now, this holds for the intersection between any pair of sets
CT

m, CE
n , where CT

m ∈ CT and CE
n ∈ CE. Due to an axiomatic property of probability

it is always the case that P (CT
m ∩CE

n ) ≤ P (CE
n ) for any pair CT

m, CE
n . In words, the

probability of PE being conditionally valid is always greater or equal to both P T

and PE being conditionally valid.
Although the assumption of a theory model being true is a probabilistic restric-

tion, this does not always imply that theory models are undesirable. Consider for
example the suggestion of Andersen and Bollerslev (1998) that financial volatility
estimates of empirical low-frequency discrete time models should be evaluated by
comparing them with high-frequency estimates based on continuous time theory. In
this case {UT

t } would be a continuous process with {UE
t } ⊂ {UT

t }. In words, {UE
t }

is treated as a sample of {UT
t }. The trade-off thus facing the econometrician in this

case is to choose between the restriction, say,
⋃∞

n=1 CE
n ∩

⋃∞
m=1 CT

m on the one hand,
that is, the restriction that both the discrete time and continuous time models hold,
and

⋃∞
n=1 CE

n on the other hand, that is, the probabilistically weaker restriction
that only the discrete time model PE holds. The probability that one of the models
hold—regardless of whether the other holds—is always equal to or greater than both
being valid, since P (

⋃∞
m=1 CT

m) is always greater or equal to P (
⋃∞

n=1 CE
n ∩

⋃∞
n=1 CT

n ).
As in the trade-off between the generality of a regularity on the one hand and its
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precision on the other, in econometric practice the fall in probability as a result of
postulating the validity of a theory model would have to be evaluated against any
possible gains in efficiency due to the reduction in measurement error, see Bauwens
and Sucarrat (2008, subsection 2.1) and Sucarrat (2008) for fuller discussions.

5 History and probabilistic conditionals

If the course of history is indeterministic, if history does not repeat itself and if
the future depends on the past, then human decisions take place in a historically
unique and dependent context that have a bearing upon decision-making. In time
series analysis, however, expectations conditional on a realisation of past variables
are incapable of fully conveying this historical specificity. To see this consider the
realisation of a discrete time series It−1 = {ω : X1 = x1, . . . , Xt−1 = xt−1}. In words,
the x1, . . . , xt−1 are the realised values of a time series from time 0 to time t − 1,
and It−1 is the event—the set of worlds—in which this specific realisation can come
about. In time series analysis it is common to condition on It−1 when one wants to
condition on history up to t − 1. However, the set It−1 is too large if one wants to
fully reflect the historical specificity of decision making contexts, since the realisation
x0, x1, . . . , xt can come about in counterfactual worlds as well, and not only in worlds
that contains actual history. This section proposes a definition of history up to t
that better conveys the uniqueness of historical context, and the definition may
be viewed as a probabilistic interpretation of Lewis’s (1986a, pp. 218-219) “whole
explanation”. The definition also leads to a useful distinction between two distinct
but compatible and complementary types of conditioning events, namely history on
the one hand and information on the other.

The section is made up of two parts. The first subsection contains the proposed
definition of history and explores its properties in terms of conditional probabilities.
The second subsection introduces a distinction between history and information,
which results in two further distinctions between correct and incorrect information
on the one hand, and between complete and incomplete information on the other.

5.1 History and conditional probability

Let Ht1 and Et2 denote a conditioning event and a consequent or explanandum event,
respectively, where t1 either precedes or is contemporaneous with t2.

14 When defined,
that is, when P (Ht1) > 0, the corresponding conditional probability P (Et2|Ht1) is
thus characterised by two dimensions, “causal” efficiency and historical possibility.
The value between 0 and 1 of the conditional probability refers to the degree of
effectiveness of the conditioning event Ht1 in bringing about the consequent event

14Recall, due to the structure of the underlying outcome space, the subindices t1 and t2 can be
interpreted as a wide range of temporal structures: Points in time, intervals of time, unions of
non-contiguous intervals of time, or combinations of any of these.

20



Et2 (causal efficiency), whereas historical possibility refers to whether the second
event Et2 is possible at all given the first event Ht1 . I will return to these ideas
shortly. Now, define history up to t as follows:

Definition 9. History up to t. Let ωt be a state-of-affairs process up to
t. An event Ht = {ω : ωt ( ω} ∈ F is said to be a history up to t.

In words Ht is a set that contains all the worlds that contains the state-of-affairs
process ωt as defined in definition 3, and intuitively Ht is exactly what its name
suggests, namely history up to t. When greater than zero, then the probability
P (Et2|Ht1) is therefore a measure of the effectiveness of history up to t1 in bringing
about Et2 . The event Et2 at t2 is said to be historically possible or possible for short
if at least one of its worlds is contained in history Ht1 , that is, if Et2 ∩ Ht1 6= ∅.
Similarly an event is historically impossible if Et2∩Ht1 = ∅, since Ht by construction
contains the set of worlds that contains the course of history up to and including t.
It should be noted that we may have Et2 ∩ Ht1 6= ∅ and P (Et2 ∩ Ht1) = 0 at the
same time, that is, that Et2 is historically possible but probabilistically impossible.
Another property of interest is that, when t1 is a point in time and all the worlds
in Ω contains the same starting point s(0), then we have that P (Et2|Ht1) → P (Et2)
when t1 → 0. In words this means the probability of an event Et2 conditional on
history up to point t1 tends to the unconditional probability P (Et2) as t1 goes to
the “initial” starting time 0 of the worlds ω. The reason for this is that Ht → Ω
as t → 0, since—by assumption—all the worlds ω in Ω are possible at the initial
starting point t = 0.

5.2 History vs. information

Let It−1 be the σ-field generated by the past variables {U1, . . . ,Ut−1} where It−1 ⊂
F . In dynamic econometrics the conditional expectation E(Ut|It−1 = It−1) is some-
times referred to as the conditional expectation of Ut on all the information up to
t−1, and sometimes as the conditional expectation of Ut on history up to t−1. To
see that E(Ut|It−1 = It−1) can neither be conditional on all the information up to t
nor on a history that fully conveys the specificity of historical context, let us distin-
guish between two distinct but compatible and complementary ideas, namely history
and information. If It−1 denotes an arbitrary non-empty “information event”, for
example a realisation {u1, . . . ,ut−1}, and if Ht−1 denotes history as it actually un-
folds up to t − 1, then two useful distinctions can be made: Between correct and
incorrect information of the past on the one hand, and between complete and in-
complete correct information of the past on the other. More formally, sets of correct
and incorrect information are characterised by It−1 ∩Ht−1 6= ∅ and It−1 ∩Ht−1 = ∅,
respectively, and sets of complete and incomplete correct information by It−1 = Ht−1

and It−1 6= Ht−1, respectively. This may then distinguish between three overlapping
cases of interest. The first case is when the information in the information-set It−1

is both correct and complete, and is of course unrealistic in econometric practice.
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Formally, It−1 = Ht−1. The second case is when It−1 contains some correct infor-
mation, but not all the (correct) information that exists. Formally, It−1 ∩Ht−1 6= ∅
and It−1 6= Ht−1. Finally, the third case of interest is when It−1 contains incorrect
information. Formally, It−1 ∩Ht−1 = ∅.

In econometric practice the information is both incomplete and subject to mea-
surement error (which is not necessarily the same as incorrect information), and this
suboptimal information is used in estimating conditional expectations. The “cor-
rect” or true expectation conditional on history up to t − 1 is given by E(Ut|F =
Ht−1), whereas what the econometrician in practice estimates is E(Ut−1|It−1 = It−1)
where It is an incomplete and possibly inaccurate information set. Denoting this
estimate by Ê(Ut−1|It−1 = It−1), we may say a key objective of econometrics is
that of efficiently choosing and making use of information such that our estimate
Ê(Ut−1|It−1 = It−1) is as close to E(Ut−1|F = Ht−1) as possible.

6 Conclusions

This paper has suggested that the initial outcome space in econometric reduction
theory can usefully be interpreted as consisting of indeterministic worlds made up
of historically inherited particulars. Although the human world is changing all the
time in indeterministic ways that have bearing upon the future, the interpretation
means that all the subsequent reductions can be analysed relative to the same initial
probability space. This resolves some shortcomings in econometric reduction theory
and enables several new reductions, concepts and interpretations, of which only a
few have been explored here. First, the formulation of theoretical variables can be
seen as the perspective from which an issue is studied, an idea which in economics
is associated with Max Weber, Joseph Schumpeter and Gunnar Myrdal. Second,
probabilistic definitions of data measurement error has been put forward. Third, the
existence of regularities have been obtained as a conditionally existent reduction.
Fourth, a suggestion of how restrictions implied by theory models can be studied in
terms of reductions, including the reductive relation between continuous time and
discrete time models, has been put forward. Finally, a definition of history that
better conveys the historical specificity and dependence of decision making contexts
when conditioning on the past has been proposed.

At a general level, the ideas put forward in this paper provides a bridge between
econometric (/probabilistic) reduction analysis and philosophy. This opens up many
possible lines for further research within the philosophy, theory and practice of
econometrics, but only one will be outlined here. There is already a voluminous
philosophical literature that employs the idea of possible worlds to shed light on
various philosophical issues, and by providing a bridge between these two literatures
econometrics can benefit from these insights—and possibly vise versa.
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Table 1: Starting point, action and the resulting reduction in Hendry’s theory associated
with the first stage of reduction

Reduction
no.

Starting point and resulting reduction Action

The economic mechanism un-
der study: The theory variables
U∗ = (U∗

1, ...,U
∗
T ) defined on the

probability space (Ω,F , P )

Data collection and recording of
Ut ∈ U, that is, the process of
trying to measure the U∗

t ∈ U∗

variables

1. The data generation process (DGP):
The data set U = (U1, ...,UT ) de-
fined on the transformed probability
space (Ω′,F ′, P ′)
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Social reality vs. econometric models:

Representation
model:

Estimation
and inference

model:

Empirical
model:

Social
reality

?≈
x

(Ω,F , P )
?≈
x

yt = a + bxt + et
?≈
x

yt = â + b̂xt + êt

Philosophy
and

mathematics:

Probabilistic
reduction
theory:

Proofs,
simulations,

model-
evaluation:

• Free-will

• Social causality

• Philosophy of
mind

• Philosophy of
language and
mathematics

• Measure and
probability theory

• Haavelmo (1944)

• Hendry and Richard
(1982)

• Engle et al. (1983)

• Florens et al. (1990)

• Hendry (1995, ch. 9)

• Spanos (1999)

• Theoretical
econometrics

• Out-of-sample
evaluation

Figure 1: Schematic overview of the relation between social reality and econometric
models
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