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1 Introduction

Three major approaches in stochastic optimal control can be differentiated: dynamic

programming, duality and the maximum principle.

Dynamic programming obtains, by means of the optimality principle of Bellman, the

Hamilton–Jacobi–Bellman equation, which characterizes the value function; see Refs. 1–

5. Under some smoothness and regularity assumptions on the solution, it is possible

to obtain, at least implicitly, the optimal control. This is the content of the so called

verification theorems which appear in Fleming and Rishel (Ref. 1) or Fleming and Soner

(Ref. 3). However, the problem of recovering the optimal control from the gradient of the

value function by means of solving a static optimization problem remains, and this can

be difficult to do.

Duality methods, also known in stochastic control theory as the Martingale approach,

have become very popular in recent years because they provide powerful tools for the

study of some classes of stochastic control problems. Martingale methods are particularly

useful for problems appearing in finance, such as the model of Merton (Ref. 6). Duality

reduces the original problem to one of finite dimension. The approach is based on the

martingale representation theorem and the Girsanov transformation. We refer the reader

to Bismut (Ref. 7), Bismut (Ref. 8) and the monograph by Duffie (Ref. 9) for an account

of the theory and the references therein.

The stochastic maximum principle has been completely developed in recent years in

Peng (Ref. 10) and Yong and Zhou (Ref. 5). It is the counterpart of the maximum

principle for deterministic problems. The distinctive feature is the use of the concept of

forward–backward stochastic differential equations, which naturally arise governing the

evolution of the state variables and the corresponding adjoint variables. Antecedents of

the maximum principle are found in Kushner (Ref. 11), Bismut4 (Ref. 7) or Haussmann

(Ref. 12). Other developments, applicable to problems with differential equations with

random coefficients can be found in Marti (Ref. 13).

It is the aim of this paper to develop a new approach to stochastic control. The

novelty comes from the fact that we obtain a system of PDEs that a smooth Markov

4The maximum principle, duality methods and the concept of forward–backward stochastic differential

equations have its roots in the work of Bismut, who gave a very complete and rigorous theory regarding

these topics.

2



control must satisfy and that also provides sufficient condition for optimality, in the spirit

of the verification theorems. Although the system is obtained using classical methods—

the maximum principle applied to every initial condition—the authors have not found

any reference in the literature to the possibility of establishing a system of PDEs to

characterize the optimal control directly. The equations of this new system are of a

different type than the HJB. In the case considered in this paper, where the control does

not affect the diffusion coefficient in the state equation, both the HJB and the equations

of the new system are semilinear. There is an important difference, however, because the

nonlinearities in the first order derivatives in the former equation can be very general,

whereas in the latter they are always of quadratic type. This fact can be used to establish

the existence and uniqueness of smooth optimal Markov controls as it will be shown in

Section 5.

Our approach has the following limitations:

(i) we consider only problems where the diffusion coefficient is independent of the con-

trol variables;

(ii) the optimal control is interior to the control region;

(iii) controls are Markovian and of class C1,2;

(iv) the number of control variables is greater than or equal to the number of state

variables.

It is worth noting that many control problems share these properties, specially some

important models arising in Economics.

The idea to systematically obtain a system of PDEs for the optimal control date back

to the paper by Bourdache–Siguerdidjane and Fliess (Ref. 14) for deterministic control

problems. The method was later extended to differential games in Rincón–Zapatero et

al. (Ref. 15) and Rincón–Zapatero (Ref. 16).

The paper is organized as follows. In Section 2 we present the control problem and

the first hypotheses and notations. In Section 3 we find a system of partial differential

equations that a vector of optimal controls of class C1,2 must satisfy. Section 4 is devoted

to establishing sufficient conditions to guarantee that a vector of admissible controls satis-

fying the system is an optimal control of the problem. Hence sections 3 and 4 respectively,
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provide necessary and sufficient conditions for optimality. In Section 5 we present an ap-

plication of our results to a classical consumption model. Concluding remarks are stated

in Section 6.

2 Control Problem

In this section the framework for the stochastic control problem to be considered is pre-

sented. First we shall introduce some useful notation. The partial derivatives are indicated

by subscripts and ∂x stands for total derivation; the partial derivative of a scalar function

with respect to a vector is a column vector; given a real vector function g : Rn −→ Rm

and a vector z ∈ Rn, gz is defined as the matrix (∂gi/∂zj)i,j; for a matrix A, A(i) denotes

the ith column and Aij denotes the (i, j) element; vectors v ∈ Rn are column vectors and

vi is the ith component; finally, > denotes transposition.

Let a time interval [0, T ] with 0 < T ≤ ∞ and let (Ω,F ,P) be a complete probability

space. Assume that on this space a d–dimensional Brownian motion {w(t),Ft}t∈[0,T ] is

defined with {Ft}t∈[0,T ] being the Brownian filtration. Let E denote expectation under

the probability measure P.

The state space is Rn and the control region is some subset U ⊆ Rm, with m ≥ n.

This assumption will be explained later, in Remark 3.3. A U–valued control process

{(u(s),Fs)} defined on [t, T ]×Ω is an Fs–progressively measurable map (r, ω) → u(r, ω)

from [t, s]× Ω into U , that is, u(t, ω) is Bs ×Fs–measurable for each s ∈ [t, T ], where Bs

denotes the Borel σ–field in [t, s]. For simplicity, we will denote u(t) to u(t, ω).

The state process ξ ∈ Rn obeys the system of controlled stochastic differential equa-

tions of the form

dξ(s) = f(s, ξ(s), u(s)) ds+ σ(s, ξ(s)) dw(s), s ≥ t, (1)

with initial condition ξ(t) = x. ξu will sometimes be used to indicate the dependence of

the state variable with respect to the control u. An important feature of the above system

is that the noise coefficient, σ, is independent of the control variable, u. Here σ = (σij) is

an n× d matrix.

Definition 2.1 (Admissible Control). A control {(u(t),Ft)}t∈[0,T ] is called admissible if
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(i) for every (t, x) the system of SDEs (1) with initial condition ξ(t) = x admits a

pathwise unique strong solution;

(ii) there exists some function φ : [0, T ]×Rn −→ U of class C1,2 such that u is in relative

feedback to φ, i.e. u(s) = φ(s, ξ(s)) for every s ∈ [0, T ].

Let U(t, x) denote the set of admissible controls corresponding to the initial condition

(t, x) ∈ [0, T ]× Rn.

According to the definition, we are considering Markovian controls. If φ is time inde-

pendent, the corresponding control will be called a stationary Markov control. u and φ

will sometimes be identified in the notation.

Given initial data (t, x) ∈ [0, T ]× Rn, the criterion to be maximized is

J(t, x;u) = Etx

{∫ T

t

L(s, ξ(s), u(s)) ds+ S(T, ξ(T ))

}
, (2)

where Etx denotes conditional expectation with respect to the initial condition (t, x). In

the following, the subscript will be eliminated if there is no confusion. The functions

f : [0, T ] × Rn × U −→ Rn, σ : [0, T ] × Rn −→ Rn×d, L : [0, T ] × Rn × U −→ R,

S : [0, T ]×Rn −→ R, are all assumed to be of class C2 with respect to (x, u) and of class C1

with respect to t. The assumptions established so far will be assumed to hold throughout

the paper. Given that our aim is to solve the problem for every (t, x) ∈ [0, T ] × Rn, U
will often be written instead of U(t, x).

In the specification of the problem we have supposed m ≥ n, that is, the dimension of

the control variable is greater than or equal to the dimension of the state variable. This is

a crucial assumption for the following developments. However, for the sake of simplicity,

the case m = n will be considered first and then we will show in Remark 3.3 that the case

m > n can be reduced to the equality situation.

With a view to applying the stochastic maximum principle as it is stated in Yong and

Zhou (Ref. 5), an additional assumption will be imposed.

(A1) There exists a constant C > 0 and a modulus of continuity ω̄ : [0,∞) → [0,∞)
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such that for ψ = f, σ, L, S, we have

|ψ(t, x, u)− ψ(t, x̂, û)| ≤C‖x− x̂‖+ ω̄(‖u− û‖),

|ψx(t, x, u)− ψx(t, x̂, û)| ≤C‖x− x̂‖+ ω̄(‖u− û‖),

|ψxx(t, x, u)− ψxx(t, x̂, û)| ≤ ω̄(‖x− x̂‖+ ‖u− û‖),

∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U,

|ψ(t, 0, u)| ≤C, ∀(t, u) ∈ [0, T ]× U.

Consider a control satisfying property (ii) of Definition 2.1. Then the Lipschitz and

linear growth conditions on f and σ postulated in (A1) imply that the control also satisfies

(i), that is, it is admissible; see Yong and Zhou (Ref. 5), p. 114. However, the assumptions

are quite stringent and will only be used in the derivation of the quasilinear system as

a necessary condition for optimality. Sufficiency conditions, which will be established in

Section 4, do not make use of hypothesis (A1).

The backward evolution operator associated with (1) is given by

AφW (t, x) = Wt(t, x) +W>
x (t, x)f(t, x, φ(t, x)) + (1/2) Tr{(σσ>Wxx)(t, x)},

with W : [0, T ]× Rn → Rn of class C1,2 and where

Tr{σσ>Wxx} :=
(
Tr{σσ>W 1

xx}, . . . ,Tr{σσ>W n
xx}

)>
.

The value function is defined as V (t, x) = supu∈U(t,x) J(t, x;u). An admissible control

û ∈ U is optimal if V (t, x) = J(t, x; û) for every initial condition (t, x).

The standard approach adopted in the literature to determine an optimal control is

to solve the HJB equation

Vt(s, x) + max
u∈U

{
L(s, x, u) + Vx(s, x)

>f(s, x, u) + (1/2) Tr
{
(σσ>Vxx)(s, x)

}}
= 0, (3)

V (T, x) = S(T, x), t ≤ s ≤ T, x ∈ Rn. (4)

3 Necessary Conditions

Our purpose in this section is to find a system of PDEs that an optimal control must

satisfy. Let L2
F([0, T ]; Rn) be the set of all processes X(·) with values in Rn adapted

to filtration {Ft}t≥0 such that E
∫ T

0
‖X(t)‖2 dt < ∞. As previously stated, hypothesis
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(A1) allows us to apply the stochastic maximum principle, so that, if given the initial

condition (t, x), the pair (ξ, u) is optimal, with u ∈ U(t, x), then there exist processes

p ∈ L2
F([0, T ]; Rn), q ∈ (L2

F([0, T ]; Rn))
d

satisfying for s ∈ [t, T ] the first order adjoint

equations

dp(s) = −
(
Hx(s, ξ(s), φ(s, ξ(s)), p(s)) +

d∑
i=1

σ(i)
x (s, ξ(s))>q(i)(s)

)
ds+ q(s)dw(s), (5)

p(T ) = Sx(T, ξ(T )), (6)

where H(t, x, u, p) = L(t, x, u) + p>f(t, x, u) is the deterministic Hamiltonian function,

corresponding to the associated deterministic problem, with σ ≡ 0. A more precise

notation for the adjoint processes is p(s; t, x) and q(s; t, x) with s ∈ [t, T ], though in the

following, we will suppress the dependence with respect to the initial condition (t, x).

Furthermore, the following maximization condition

H(s, ξ(s), φ(s, ξ(s)), p(s)) = max
u∈U

H(s, ξ(s), u, p(s)) (7)

holds for every s ∈ [t, T ], P a.s.

For the next result, which establishes a necessary condition of optimality in terms of

a new system of PDEs, we define

Γ(t, x, u) := −f−>u Lu(t, x, u), (8)

and a “diagonal” matrix of suitable dimensions Σ> := diag(σ> σ>∂xΓ (φxσ)>). Ĥ{·}

will denote H{·} once (8) is substituted into it.

Theorem 3.1 (Necessary Conditions). Let assumption (A1) on the coefficient functions

be satisfied. Let φ ∈ U be an interior optimal Markov control such that det fu(t, x, φ) 6= 0

for all (t, x) ∈ [0, T ]× Rn. Then φ satisfies

0 = Ĥut + Ĥ>
uxf + Ĥ>

up

(
− Ĥx −

m∑
i=1

σ(i)
x

(
∂xΓσ

)(i)
)

+ ĤuuAφφ+
1

2
Tr{ΣΣ>∇2Ĥu}

(9)

and the final condition

Lui(T, x, φ(T, x)) + Sx(T, x)
>fui(T, x, φ(T, x)) = 0, i = 1, . . . , n. (10)
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Proof. Since that by assumption the maximizing argument is interior to U , (7) implies

Hui(s, ξ(s), φ(s, ξ(s)), p(s)) = 0, ∀s ∈ [t, T ], P a.s., (11)

for all i = 1, . . . , n. Assuming that fu is invertible for all (t, x, u) ∈ [0, T ]× Rn × U , it is

possible to obtain the unique solution of the above linear system in the adjoint variable

p, Lu + f>u p = 0, as

p = −f−>u Lu. (12)

An obvious consequence of (11) is dHui(s, ξ(s), u(s), p(s)) = 0 a.s. For an admissible

feedback φ, Itô’s rule is applicable to u(s) = φ(s, ξ(s)), hence omitting the arguments and

in differential notation

dui = dφi = φi
tdt+ φi

xdξ + (1/2)dξ>φi
xxdξ, i = 1, . . . , n. (13)

Applying again Itô’s rule to Hui for i = 1, . . . , n, we have

0 = dHui = Huit dt+∇Hui


dξ

dp

dφ

 +
1

2
(dξ> dp> dφ>)∇2Hui


dξ

dp

dφ

 , (14)

where ∇ and ∇2 denote the gradient and the Hessian matrix operators respectively, with

respect to the variables (x, p, u). Substituting (1), (5), (13) in the equality (14) and taking

into account that Huipp = 0 for all i, because the Hamiltonian is linear in p, the following

system of stochastic differential equations holds along (s, ξ(s), u(s), p(s)) a.s.:

0 =
(
Huit +H>

uixf +H>
uip

(
−Hx −

m∑
i=1

σ(i)
x q(i)

)
+H>

uiuAφφ+
1

2
Tr{ΣΣ>∇2Ĥu}

)
ds

+
(
H>

uixσ +H>
uipq +H>

uiuφxσ
)
dw(s).

(15)

Therefore, both the drift term and the diffusion coefficient of this system of SDEs must

be identically null a.s. In order to obtain a system of PDEs for the optimal control, we

must eliminate the adjoint vector p by means of (12). Equating the diffusion coefficient

to zero we get q = −f−>u (Ĥuxσ + Ĥuuφxσ) a.s., s ≥ t. In fact, q can be expressed as

q = (∂xΓ)σ, (16)

The possibility to write q as shown in (16) follows from the identities Huip = fui , Γx =

−f−>u Ĥux and Γu = −f−>u Ĥuu. The drift term in (15) also vanishes a.e., hence after
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substitution of (12) and (16), the system of PDEs (9) characterizing an admissible optimal

control is obtained. Note that (9) and (16) are valid a.s. along the optimal trajectory,

but at (t, ξ(t)) = (t, x), (9) holds with certainty.

The stochastic maximum principle also provides a boundary condition at time T for

the system of PDEs, which is implicitly given by (10). This follows from (6) and (12)

evaluated at t = T ; we will suppose that it is possible to obtain φ(T, x) := ϕ(x) for a

function ϕ sufficiently regular. For this is enough to check if the hypotheses of the Implicit

Function Theorem are fulfilled. �

Some comments about the structure of the system and comparison with the HJB

equation (3) are pertinent here. The system is semilinear because the terms involving the

second order derivatives of φ are independent of the solution. Furthermore, assuming the

invertibility of Ĥuu, the system is weakly coupled, that is, the second order derivatives

of φi appear only in equation i. The first order derivatives are coupled and appear in a

non–linear way derived from the quadratic–type terms

Tr{φxσ(φxσ)>Ĥuuu} and Tr{φxσ(φxσ)>Ĥupu(−f−>u Ĥuu)}.

This is a very interesting feature that will be used to show existence of an optimal policy

function in the model explored in Section 5. Whereas the HJB equation is also of semi-

linear type, the non linearity with respect to φx can be much more general and not only

of quadratic type. On the other hand, it must be pointed out that the HJB equation is a

single equation, whereas we have obtained a system of n PDEs, but with a more simple

structure.

Remark 3.1 It would be possible to replace the smoothness assumption on φ for a weaker

one. Given that all that is needed is to apply Itô’s rule, Theorem 3.1 is true if the class

of Markov controls is (W 1,2
l, loc([0, T ] × Rn))n, l ≥ 2, the space of functions such that the

weak partial derivatives of order 1 with respect to time and order 2 with respect to x are

in (Ll
loc([0, T ]×Rn))n; see Krylov (Ref. 2). Note that the hypotheses imposed imply that

Hu belongs to W 1,2
l, loc([0, T ]× Rn).

Remark 3.2 There is in the literature a different but closely related system of PDEs

which characterize the vector of adjoint variables under some regularity assumptions, see

equation (17) below. This system was obtained for the first time in Bismut (Ref. 7)
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and later in5 Elliot (Ref. 17). It is important to note that the system below depends

also on the optimal control and for this reason it appears with a simple structure. To

obtain the system for the adjoint variables we can proceed as follows. Let us suppose the

existence of a vector function γ of class C1,2 depending of the variables (s, y) and such

that p(s) = γ(s, ξ(s)), where p is the adjoint variable of the problem with initial condition

(t, x). Applying Itô’s rule to γ(s, ξ(s)) we have

dγ =
(
γt + γxf +

1

2
Tr{σσ>γxx}

)
ds+ γxσ dw. (17)

Once the validity of the maximum principle is established, by the uniqueness of solutions

of (5) we can match the diffusion terms and drift terms in expressions (5) and (17), to

obtain q = γxσ and

−
(
Hx +

n∑
i=1

(σ(i)
x )>q(i)

)
= γt + γxf +

1

2
Tr

{
σσ>γxx

}
.

Of course, the first equality is nothing but (16). Therefore we find that the second identity

is transformed into

γt + γxf +Hx +
m∑

i=1

(σ(i)
x )>γxσ

(i) +
1

2
Tr

{
σσ>γxx

}
= 0. (18)

For the derivation of this identity, the equal dimension condition between the state and

control variables is not needed. Furthermore, the equality q = γxσ allows situations

to be handled where the diffusion parameter σ also depends on the control variables,

u. In this case the elimination of optimal control variables is not so straightforward.

As already observed, the system (18) also depends on the unknown vector of optimal

controls. Supposing it is possible to obtain a sufficiently regular function ũ(t, x, z) such

that φ̂(t, x) = ũ(t, x, γ(t, x)), that is, ũ is the inverse function of Γ with respect to its

third component for all (t, x), then by substituting in the previous system of equations, we

obtain a system of PDEs that truly characterize the vector of adjoint variables. However,

writing the system for the optimal control does not require the inverse function ũ to

be found, which can be hard or impossible to do, even in scalar problems. Under the

conditions contemplated in this paper it is only necessary to solve the linear system (12)

to obtain γ(t, x) = Γ(t, x, φ(t, x)) and by substituting in (18), to arrive at the desired

PDE system for φ. Of course, this is simply system (9).

5In Elliot (Ref. 17) a misprint is registered making the equation shown different to that appearing in

Bismut (Ref. 7) and in (18) of the present paper.
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Remark 3.3 Case m > n. When the number of control variables is greater than the

number of state variables, m > n, the linear system in p is over–determinate. Because the

maximum principle holds, the existence of a solution to the over–determined system is

assured. This solution can be obtained as follows. Suppose that fu has rank n for all t, x, u;

then f>u fu has full rank n, hence from (11) p = −(fuf
>
u )−1fuLu. Now the argument runs

as shown above, obtaining a system of n PDEs for m > n unknowns. These equations can

be complemented with an algebraic relationship between the controls, which is obtained

from the fact that the system Hu = 0 admits a solution in p. In this way, m− n control

variables can be formally expressed by means of n of them.

In the case m < n, elimination of p is not so straightforward. Now, the procedure to

obtain a system of PDEs for the control would be to take n −m + 1 Itô differentials in

the identity Hu ≡ 0. This leads to PDE equations for the optimal control of higher order,

and of a very different nature than (9), hence this case will not be pursued in this paper.

4 Sufficient Conditions

The main objective in this section is to show that a solution of class C1,2 of (9)–(10),

maximizing the Hamiltonian function for all (t, x) and satisfying some additional assump-

tions, is an optimal Markov control for problem (1)–(2). This result is, therefore, similar

to the verification theorems in Fleming and Rishel (Ref. 1) or Fleming and Soner (Ref.

3).

The process ξ depends on the initial condition (t, x). In the following, ξj
xi will denote

the partial derivative of ξj with respect to xi.

We consider the following assumption:

(A2) E

{∫ T

t

(
γjσ

(j)

xl + q(j)
)
ξj
xi dw(s)

}
= 0, for every i, j, l = 1, . . . , n.

Remark 4.1 As is well known

E

{∫ T

t

|γjσjk
xl + qjk|2|ξj

xi|2 ds
}
<∞ ∀i, j, l = 1, . . . , n, ∀k = 1, . . . , d (19)

implies (A2). Another form to express (19) is writing ∂x(γ
>σ)(s, ξ(s)) ∈ (L2

F([t, T ]; Rn)d.

The following assumptions on the coefficient functions and on the Markov control φ̂ guar-

antee the fulfillment of (19).
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(i) For all i, j, l = 1, . . . , n,

|f j
xl(t, x, u)|+ |f j

ul(t, x, u)|+ |σij
xl(t, x)| ≤ C,

|f j(t, x, u)|+ |σij(t, x)| ≤ C(1 + ‖x‖),

for some constant C ∈ R;

(ii) φ̂ is admissible and E
∫ T

t
‖φ̂(s, ξ(s))‖l ds <∞ for all l ∈ N.

(iii) For every j, l = 1, . . . , n

|γj
xl(t, x)σ

lk(t, x)|+ |γj(t, x)| ≤ C(1 + ‖x‖κ),

for some constants C ∈ R, κ ∈ N.

Standard estimates in the theory of SDEs show that (i) and (ii) imply E{‖ξ‖l} < ∞
for all l ∈ N. Hypothesis (iii) then assures

E

{∫ T

t

|qjk|2 ds
}
≤

n∑
l=1

E

{∫ T

t

|γj
xlσ

lk|2 ds
}
≤ CE

{∫ T

t

(1 + ‖ξ‖κ)2 ds

}
<∞,

where we have used q = γxσ. On the other hand, (ii) and the boundedness of the functions

f j
xl , σ

jk
xl give E{‖ξj

xi‖l} <∞. Combining all the above estimates (19) obviously holds.

The following result establishes that the adjoint process p(s) = γ(s, ξ(s)) is the gradi-

ent with respect to x of the objective functional. This result, of independent interest, is

a previous step in the formulation of the sufficiency theorem that will be stated later.

Recall from the previous section that Γ denotes f−>u Lu and γ(t, x) denotes Γ(t, x, φ̂(t, x)),

where φ̂ is an admissible Markov control solving the semilinear system.

Proposition 4.1 (Shadow Price). Let φ̂ ∈ U be a solution of (9)–(10) such that assump-

tion (A2) is satisfied and fu(t, x, φ̂) is invertible for all (t, x) ∈ [0, T ]× Rn. Then

Jx(t, x; φ̂) = Γ(t, x, φ̂(t, x)) = p(t),

Jxx(t, x; φ̂)σ(t, x) = q(t),

for every (t, x) ∈ [0, T ]× Rn.

12



Proof. Applying Itô’s rule to p(s) = Γ(s, ξ(s), φ̂(s, ξ(s))), t ≤ s ≤ T , we obtain

dp(s) =
(
Γt + Γxf + ΓuAφ̂φ̂+

1

2
Tr

{
σσ>Γxx + 2φ̂xσσ

>Γxu + φ̂xσ(φ̂xσ)>Γuu

})
ds

+ (Γx + Γuφ̂x)σ dw(s),

where the arguments have been eliminated to simplify the notation. Taking into account

the identities

f>u Γη = −Ĥuη, f>u Γην = f>uνf
−>
u Ĥuη + f>uηf

−>
u Ĥuν − Ĥuην ,

that hold for every η, ν ∈ {u1, . . . , un, x1, . . . , xn}, and using that φ̂ solves (9), it is easy

to check that p satisfies (5) if we choose q = (∂xΓ)σ as in (16). Hence qjk =
∑n

l=1 γ
j
xlσ

lk.

Every ξj
xi satisfies the linear system of stochastic differential equations

dξj
xi =

n∑
l=1

f j
xlξ

l
xi ds+

d∑
k=1

n∑
l=1

σjk
xl ξ

l
xidwk, (20)

with ξj
xi(t) = δij, see Gihman and Skorohod (Ref. 18), with δij denoting Kronecker’s

delta. The product ξj
xip

j satisfies the following stochastic differential equation

d(ξj
xip

j) = pjdξj
xi + ξj

xidp
j + Aij ds, (21)

where Aij :=
∑d

k=1

∑n
l=1 σ

jk
xl ξ

l
xiqjk. Now by means of a simple calculation using (5), (20),

(21) and (18) the following equality holds

n∑
j=1

d(ξj
xip

j) = −
n∑

j=1

Lxjξj
xi ds+

d∑
k=1

Bik dwk, (22)

with Bik :=
∑n

j=1

∑n
l=1(σ

jk
xl ξ

j
xip

j + qjkξj
xi). Taking conditional expectations in (22) and

considering hypothesis (B), we obtain

n∑
j=1

E
{
ξj
xi(T )pj(T )

}
=

n∑
j=1

E
{
ξj
xi(t)p

j(t)
}
−E

{∫ T

t

n∑
j=1

Lxj

(
s, ξ(s), φ̂(s, ξ(s))

)
ξj
xi(s) ds

}
.

(23)

Obviously,
∑n

j=1 E
{
ξj
xi(t)p

j(t)
}

= pi(t) and because φ̂ verifies the final condition (10),

the equality
n∑

j=1

E
{
ξj
xi(T )pj(T )

}
=

n∑
j=1

E
{
Sxj(T, ξ(T ))ξj

xi(T )
}

13



holds. The following step is to interchange the order of integration and derivation and

also the expectation operator in (23) to obtain

Γi(t, x, φ̂(t, x)) = Γi(t, ξ(t), φ̂(t, ξ(t)))

= pi(t)

=
∂

∂xi
E

{∫ T

t

L
(
s, ξ(s), φ̂(s, ξ(s))

)
ds+ S(T, ξ(T ))

}
= Jxi(t, x; φ̂),

for all i = 1, . . . , n.

Finally, note that Jxx(t, x; φ̂)σ(t, x) = ∂xΓ(t, x, φ̂(t, x))σ(t, x) = q(t). �

Once we have identified the vector of adjoint variables with the gradient of the objective

functional, the system (9) can be expressed in conservative form. Since γ is the gradient

with respect to the variable x of the function J(t, x; φ̂), which is of class C3, γi
xj = γj

xi is

satisfied for every i, j = 1, . . . , n, because the crossed second order partial derivatives of

the function J coincide. By the same argument, γi
xrxj = γr

xjxi for all i, j, r = 1, . . . , n. On

the other hand, after some tedious calculations, we find

(
Tr{σσ>γx}

)
xr = Tr{σσ>γr

xx}+ 2
m∑

i=1

(σ
(i)
xr )>

( n∑
j=1

γj
xσ

ji
)

and substituting this expression in (18), we obtain

γt + ∂x

(
L+ γ>f +

1

2
Tr{σσ>γx}

)
= 0, (24)

where the fact that Hu = 0 holds at the optimal control has been used. It is interesting to

compare the structure of (24) which is expressed in conservative form, with that of (18),

which appears in non conservative form.

In terms of Γ(t, x, φ) (24) can be rewritten as

∂tΓ(t, x, φ(t, x)) + ∂x

(
H(t, x, φ(t, x)) +

1

2
Tr

{
σ(t, x)σ(t, x)>∂xΓ(t, x, φ(t, x))

})
= 0, (25)

with H(t, x, u) := H(t, x, u,Γ(t, x, u)).

Taking total derivatives, a system of partial differential equations of second order arise,

which is the same as (9). Expressing the system in conservative form is useful, because it

allows us in the next theorem to establish a sufficient result of optimality. It also makes

14



possible to obtain the value function from the control, as will be shown in the following

section.

Now we are in position to establish the following sufficient condition for optimality.

Theorem 4.1 (Verification Theorem). Let φ̂ ∈ U be a solution of (9)–(10) such that

assumption (A2) is satisfied and fu(t, x, φ̂) is invertible for all (t, x) ∈ [0, T ]×Rn. Suppose

further that the following maximization property holds for all (t, x) ∈ [0, T ]×Rn, for every

admissible Markov control u,

H(t, x, φ̂,Γ(t, x, φ̂)) ≥ H(t, x, u,Γ(t, x, φ̂)). (26)

Then φ̂ is an optimal Markov control for problem (1)–(2).

Proof. Let u be any admissible Markov control and ξu the associated process with initial

condition (t, x). We will omit the dependence of ξu on the initial condition in order to

facilitate the exposition. Let u(s) be u(s, ξu(s)). Applying Itô’s rule to J(s, ξu(s);u),

s ≥ t. We have

dJ(s, ξu(s);u) = AuJ(s, ξu(s);u) ds+ Jx(s, ξ
u(s);u)>σ(s, ξu(s)) dw(s). (27)

On the other hand, as shown in Yong and Zhou (Ref. 5), we can write the objective

functional as

J(s, ξu(s);u) = E

{∫ T

s

L(r, ξu(r), u(r)) dr + S(T, ξu(T )) | F t
s

}
∀s ∈ [t, T ], P–a.s.,

(28)

where {F t
s}s≥t is the filtration of the σ–fields generated by Brownian motion in the interval

[t, s]. The process

m(s) = E

{∫ T

t

L(r, ξu(r), u(r)) dr + S(T, ξu(T )) | F t
s

}
, s ∈ [s, T ]

is a square–integrable {F t
s}s∈[t,T ]–martingale, hence by the martingale representation the-

orem, we have

m(s) = m(t) +

∫ s

t

M(r) dw(r),

with M ∈ (L2
F(t, T ; Rn))d. Let us observe that m(t) = J(t, x;u), therefore

m(s) = J(t, x;u) +

∫ s

t

M(r) dw(r). (29)
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By (28) and (29)

J(s, ξu(s);u) = m(s)− E

{∫ s

t

L(r, ξu(r), u(r)) dr

}
= J(t, x;u)− E

{∫ s

t

L(r, ξu(r), u(r)) dr

}
+

∫ s

t

M(r) dw(r).

It then follows

dJ(s, ξu(s);u) = −E{L(s, ξu(s), u(s))} ds+M(s) dw(s). (30)

We get from (27) and (30)

E
{
Js(s, ξ

u(s);u) + L(s, ξu(s), u(s)) + J>y (s, ξu(s);u)f(s, ξu(s), u(s))

+
1

2
Tr{(σσ>)(s, ξu(s))Jyy(s, ξ

u(s);u)}
}

= 0,

This equality holds for all admissible u ∈ U , for all s ∈ [t, T ]. In particular, it holds for

φ̂, hence

0 = E
{
Js(s, ξ

u(s); φ̂) +H(s, ξu(s), φ̂, Jy(s, ξ
u(s); φ̂))

+
1

2
Tr{(σσ>)(s, ξu(s))Jyy(s, ξ

u(s); φ̂)}
}

≥ E
{
Js(s, ξ

u(s); φ̂) +H(s, ξu(s), u, Jy(s, ξ
u(s); φ̂))

+
1

2
Tr{(σσ>)(s, ξu(s))Jyy(t, ξ

u(s); φ̂)}
}
,

because Jy ≡ Γ, an identity which is proven in Proposition 4.1, and because of (26).

Expanding the Hamiltonian function we find that the latter inequality is equivalent to

E
{
L(s, ξu(s), u(s))) +AuJ(s, ξu(s); û)

}
≤ 0. Integrating and exchanging expectation and

integration we have

E

{∫ T

t

(L(s, ξu(s), u(s)) +AuJ(s, ξu(s); φ̂)) ds

}
≤ 0. (31)

Given that by the assumptions made∫ T

t

Jx(s, ξ
u(s); φ̂)>σ(s, ξu(s)) dw(s)

is a martingale, the application of Dynkin’s formula to (30) leads to

E{S(T, ξu(T ))} − J(t, x; φ̂) = E

{∫ T

t

AuJ(s, ξu(s); φ̂) ds

}
. (32)
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Substituting (32) into (31) we obtain

E

{∫ T

t

L(s, ξu(s), u(s)) ds

}
≤ J(t, x; φ̂)− E{S(T, ξu(T ))}, (33)

that is, J(t, x;u) ≤ J(t, x; φ̂). �

Remark 4.2 Condition (26) automatically holds when φ̂ is interior to the control set U

and the Hamiltonian function is concave with respect to u, for every t, x, p. To see this,

note that Hu(t, x, φ̂,Γ(t, x, φ̂)) = 0 is trivially fulfilled by the definition of Γ, hence φ̂ is

a critical point of the concave function u 7→ H(·, ·, u, ·), so φ̂ is a global maximum of H.

On the other hand, it is worth noting that the full strength of (26) is not really needed in

the proof. It only suffices that for every initial condition (t, x) and for every admissible

Markov control u the following holds

E
{
H(s, ξu(s),Γ(s, ξu(s), φ̂), φ̂)

}
≥ E

{
H(s, ξu(s),Γ(s, ξu(s), φ̂), u)

}
, (34)

where ξu is the state variable process associated to u.

Remark 4.3 (Infinite Horizon). Proposition 4.1 can be extended to the infinite–horizon

case, T = ∞, when the following transversality condition holds

lim
T→∞

E
{
γ>(T, ξ(T )) ξx(T )

}
= 0. (35)

By Proposition 4.1 (35) is the same as limT→∞ E
{
∂xV (T, ξ(T ))

}
= 0 for every initial

condition (t, x), that is, the long run behavior of the expected value function along the

optimal trajectory is independent of the initial condition x, for every x. With respect to

Theorem 4.1, two assumptions about the limit of J(t, x; φ̂) as t → ∞ must be added to

the hypotheses, in order to assure the optimality of φ̂. One of them is (35) which assures

the equality between pi and Jxi(t, x; φ̂), for i = 1, . . . , n. The other one is obtained by

substituting E{S(T, ξu(T ))} by J(T, ξu(T ); φ̂) in (33), given that, in the infinite horizon

problem, there is no residual function S. Taking limits when T tends to infinite in

expression (33), if the conditions

lim sup
T→∞

J(T, ξu(T ); φ̂) = lim sup
T→∞

V (T, ξu(T )) ≥ 0 (36)

and

lim
T→∞

E

{∫ T

t

L(s, ξu(s), u(s)) ds

}
= E

{∫ ∞

t

L(s, ξu(s), u(s)) ds

}
<∞
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hold for all admissible control u, then J(t, x;u) ≤ J(t, x; φ̂). The latter equality simply

means that the cost functional of the infinite–horizon problem makes sense for the class

of admissible controls.

Remark 4.4 In the deterministic case, σ ≡ 0, the system of partial differential equations

(9) is of course of first order, and quasilinear. The system for this case was first derived

in Bourdache–Siguerdidjane and Fliess (Ref. 14). Clearly, the results remain valid now

for C1 solutions and (A2) is not needed. In Rincón–Zapatero et al. (Ref. 15) and

Rincón–Zapatero (Ref. 16) an extension to differential games is provided.

Example 4.1 This is an ad hoc example, showing the advantages of our approach in

some models. Suppose n = m = 1, U = R, T = ∞ and that the functions L(t, x, u) =

e−ρt`1(u)`2(x), f(x, u) = f1(u)f2(x) and σ are of class C2. Assume that f ′1 and f2 are

different from zero and that the Hamiltonian is concave with respect to u. Furthermore,

suppose:

(i) there exists a unique constant û such that `1(û)f
′
1(û)− `′1(û)f1(û) = 0;

(ii) the function k = `2/f2 satisfies the linear second order differential equation

−ρk(x) +
1

2
(σ2(x)k′(x))′ = 0.

We have a lot of information about the problem and the question is whether this is enough

to obtain a solution to the HJB equation, which is given by

−ρV (x) + max
u∈R

{
`1(u)`2(x) + V ′(x)f1(u)f2(x)

}
+
σ2(x)

2
V ′′(x) = 0,

since we are considering stationary Markov controls. At first sight is not apparent what

the solution is; it is even difficult to get an idea of the explicit form of this non linear

equation, given that the maximization cannot be done explicitly. Let us turn our attention

to the PDE (25) for the optimal control which, in contradistinction, is always explicit.

We have

Γ(x, u) = − `
′
1(u)

f ′1(u)
k(x), H(x, u) =

`2(x)

f ′1(u)
(`1(u)f

′
1(u)− `′1(u)f1(u))

and then H(x, û) = 0 for all x ∈ R by (i). If we look at equation (25), we see that the

constant control û is a solution if

`′1(û)

f ′1(û)

(
ρk(x)− 1

2
(σ2(x)k′(x))′

)
= 0

18



holds and this is asserted in (ii). It can be easily shown that the solution of the HJB is

V (x) = − 1

2ρ

`′1(û)

f ′1(û)
σ2(x)k′(x). (37)

Further assumptions on the coefficient functions would imply that the constant control û

is the solution of the stochastic control problem and that V is the value function. Once

this solution is known, it is obvious that u = û is the maximizing argument in the HJB

equation, but without this knowledge, it is difficult to guess a tentative form for the

solution. It could be argued that the example is somewhat academic but it is worth

noting that it is the PDE (25) that has allowed their construction because it directly

characterizes the optimal control.

As an specific example, consider `1(u) = (au + b)1−1/a, `2(x) = xα, f1(u) = µ − u,

f2(x) = x, and σ(x) = σx, with 0 < α < 1, a > 1, µ ≥ 0 and σ > 0. The problem is

max
u

E

∫ ∞

0

e−ρtξα(au+ b)1−1/a dt

subject to dξ =
(
µ−u

)
ξ dt+σξ dω, ξ(0) = x > 0. This formulation models the exploitation

of a renewable resource by a single agent that derives utility both from the consumption

rate u and the stock level, ξ. The dynamics shows a technology that makes costly to

obtain the resource as it becomes scarce. We are supposing that the recruitment function

is linear.

If the constants ρ, σ and α are linked by ρ = (1/2)(1 − α)ασ2, then (ii) holds.

Imposing (i), we find that the optimal policy is the constant û = (1 − a)µ − b, which is

non–negative for suitable values of the parameters involved. From (37), the value function

is V (x) = (1/α)(aû+ b)1−1/axα.

5 Application to a consumption–savings problem

In this section we consider the classic economic problem of maximizing the utility derived

from consumption along a fixed period of time, in a stochastic environment. Our aim

is to give necessary and sufficient conditions for existence and uniqueness of the optimal

consumption process, by means of the theory developed in the previous sections. Given

the similarity of the model with those of the one–sector optimal economic growth, Merton

(Ref. 19), and the optimal management of a natural resource, Clark (Ref. 20), the results

apply also to these models with minor modifications.

19



More precisely, we study a simplification of the classic consumption–investment model

of Merton (Ref. 6). We suppose that the agent’s wealth is totally invested in a single

risky asset, without possibility for diversification in a portfolio of different financial assets.

5.1 Statement of the problem

In a complete probability space (Ω,F ,P) let w(t) be a d–dimensional Brownian motion,

adapted to the filtration F = {Ft}t≥0. The wealth ξ(t) is consumed at rate c(t) and the

remaining is invested in an asset with stochastic rate of return S1(t) given by

dS1(t) = S1(t) (µdt+ σdw(t)) , S1(0) = s0,

with µ ≥ 0 and where σ is a strictly positive d–dimensional row vector. Thus, given initial

wealth x, the wealth process obeys the SDE

dξ(s) = ξ(s)
dS1(s)

S1(s)
− c(s)ds = (µξ(s)− c(s)) ds+ ξ(s)σdw(s), ξ(t) = x. (38)

The class of admissible controls is given as in Definition 2.1, but incorporating the ob-

vious condition c ≥ 0. Given an initial state x and time t, the agent’s objective is to

choose a consumption process c(t) = φ(t, ξ(t)) maximizing the expected total utility of

consumption, discounted at rate ρ ≥ 0 and over a fixed time horizon [0, T ],

J(t, x; c) = Etx

{∫ T

t

e−ρ(s−t)U(c(s)) ds+ e−ρ(T−t)S(ξ(T ))

}
. (39)

We suppose that both the instantaneous utility U and the function S giving the utility of

wealth at the final time T are of class C3 on (0,∞); furthermore, U is monotone increasing

and strictly concave.

5.2 Solving the problem in the general case

Given the assumptions, the Hamiltonian, H(t, x, c, p) = U(c)+(µx−c)p, is strictly concave

with respect to c. By (8), Γ(s, x, c) = e−ρ(s−t)U ′(c) and the partial differential equation

(25) characterizing the optimal consumption c is

−ρU ′(c) + U ′′(c)ct + ∂x

(
U(c) + (µx− c)U ′(c) +

1

2
σσ>x2U ′′(c)cx

)
= 0, (40)
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with final condition c(T, x) ≡ ϕ(x) := (U ′)−1(S ′(x)), for x > 0; obviously, ϕ(x) = x if

S = U . Since positive consumption is not feasible if the wealth level is zero, we impose

the boundary condition c(t, 0) = 0 for all t ≤ T . This assures, moreover, that if the

wealth hits zero at some instant of time, then it remains zero. In order to obtain smooth

solutions, a natural hypothesis is ϕ(0) = 0. If ϕ(0) > 0, then the final condition associated

to the partial differential equation would be discontinuous, because c(T, 0) = 0.

Taking derivatives in (40) and defining τ = T − t the equation is

cτ −
σσ>

2
x2cxx − (ρ− µ)E1(c)− (µx− c+ σσ>x)cx −

σσ>

2
x2E2(c)c

2
x = 0, (41)

where E1 := −U ′/U ′′ and E2 := U ′′′/U ′′. Note that this PDE is degenerate.

In the following we will make another transformation in order to apply some recent re-

sults about global existence and uniqueness of solutions of non–linear parabolic equations.

Specifically, Theorem 3.1 of Constantin and Escher (Ref. 21) apply to initial boundary

value problems of the following type
ut − ∂x(a(t, x, u)ux) = F (t, x, u, ux), t > 0, x ∈ D,
u(t, x) = 0, t > 0, x ∈ ∂D,
u(0, x) = ϕ(x), x ∈ D,

(42)

where D is a bounded open domain in R. Note that we consider only the one–dimensional

case. The functions a and F are supposed to be of class C2 and C1, respectively, with

a(t, x, u) > η > 0 for all (t, x, u) ∈ R+ × D × R. We will suppose that ϕ is of class C2,

though in the formulation of Constantin and Escher (Ref. 21) less regularity is required.

It suffices that ϕ belongs to the Sobolev space W r,u
0 (D), the closure of the test functions

in W r,u(D), with 0 ≤ r < 1 + 1/u. Then, if F satisfies

|F (t, x, v, z)| ≤ A(v)z2 +B(v)|z|+ C(v), (t, x, v, z) ∈ R+ ×D × R× R,

for continuous and non–negative functions A, B and a continuous and positive function

C such that ∫ ∞

0

dv

C(v)
=

∫ 0

−∞

dv

C(v)
= ∞, (43)

then there exists a unique solution of class C1,2 of (42) globally defined on [0,∞)×D. It is

interesting to remark that the bounding condition appearing in F , of quadratic type with

respect to ux, is of special usefulness in the semilinear equations that we are studying,
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because the type of non–linearity appearing in these equations is precisely quadratic with

respect to ux, as it was previously stated.

Now we will accommodate our problem to this result. Define c̃ = c−ϕ. The equation

that c̃ satisfies is:

c̃τ −
σσ>

2
∂x(x

2c̃x) = F (x, c̃, c̃x), (44)

where

F (x, v, z) =
σσ>

2
∂x(x

2ϕ′(x)) + (ρ− µ)E1(v + ϕ(x)) + (µx− v − ϕ(x))(z + ϕ′(x))

+
σσ>

2
x2(z + ϕ′(x))2E2(v + ϕ(x)).

We consider for all k ∈ N, k > 1, the open sets Dk = (1/k, k) and the family of problems

(44) on each set [0,∞)×Dk. In this way, each of the sets Dk are open and bounded, the

condition c̃ ≡ 0 on {0} × ∂Dk holds and σσ>x2 ≥ η ≡ σσ>/k2 > 0 is satisfied. On the

other hand, for all k > 1 the following bound holds

|F (x, v, z)| ≤ Ak(v)z
2 +Bk(v)z + Ck(v),

where

Ak(v) =
σσ>

2
max
x∈Dk

x2|E2(v + ϕ(x))|,

Bk(v) = max
x∈Dk

{
|µx− v − ϕ(x)|+ |σσ>E2(v + ϕ(x))x2ϕ′(x)|

}
and

Ck(v) = max
x∈Dk

{
ϕ′(x)|ax− v − ϕ(x)|+ σσ>

2
x2|E2(v + ϕ(x))|(ϕ′(x))2 + |ρ− µ|E1(v + ϕ(x))

+
σσ>

2

∂

∂x
(x2ϕ′(x))

}
,

are continuous functions. Evidently, Ck(u) ≤ C̃k(u), where

C̃k(v) = a0 + a1v + a2|E2(v + a3)|+ |ρ− µ|E1(v + a4) (45)

for some positive constants a0, . . . , a4 depending on k.

Clearly, the hypotheses of Theorem 3.1 in Constantin and Escher (Ref. 21) are satisfied

in every set [0,∞)×Dk, with the possible exception of (43). Thus we proceed to impose

the condition ∫ ∞

0

dv

C̃k(v)
= ∞. (46)
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Notice that the other side condition,
∫ 0

−∞

(
1/C̃k(v)

)
dv = ∞, need not be checked here

because we are restricted to non–negative values of consumption. If (46) holds, then there

exists a unique global solution of class C1,2 in [0,∞)×Dk for each k, that we denote by c̃k.

By the uniqueness and the regularity of the solution, a global solution c̃ can be defined

as c̃(t, x) = c̃k(t, x) if (t, x) ∈ R+ ×Dk. It is evident that c̃ is the unique solution of class

C1,2 of (44) such that c̃ ≡ 0 in {0} × [0,∞) and, therefore, c = c̃ + ϕ is the the unique

solution of (41) satisfying c(0, x) = ϕ(x). Whence we have proved the following result.

Proposition 5.1 Let us suppose that ϕ is of class C2, ϕ(0) = 0 and (46) is satisfied for

every set of positive constants ai, for i = 0, . . . , 4. Then there exists a unique solution of

class C1,2 of (41) satisfying the appropriate final and boundary conditions.

A solution of (41), whose existence and uniqueness is assured in the conditions stated

in the above proposition, is not necessarily an optimal consumption process unless we

prove:

– it is admissible, that is, there exists a pathwise unique strong solution of (38);

– assumption (B) holds.

In order to verify the admissibility of the solution, we introduce the following hypothesis,

which guarantees the linear growth of the optimal consumption with respect to the level

of wealth. This and the local Lipschitzianity of consumption, guarantees the existence of

a pathwise strong unique solution of the SDE governing the wealth evolution.

(C1) There exist constants a > 0, A > 0 such that for all c, x, E1(c) ≤ a(1 + c) and

ϕ(x) ≤ A(1 + x).

To obtain the linear growth of c from assumption (C1) we will use the concept and

properties of viscosity solution, which was introduced in Lions (Ref. 7) for equations of

second order. We refer the reader to the Appendix of this paper for the definitions and the

statement and proof of two lemmas that will be used in this section, and to Fleming and

Soner (Ref. 3), which constitutes a good presentation of the theory and their applications.

Proposition 5.2 Under the hypotheses of Proposition 5.1, suppose lim
c→0+

U ′(c) <∞ and

that (C1) holds. Then there exists a unique optimal consumption function, which is

given by the solution of (41) satisfying the appropriate final and boundary conditions.
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Proof. Let us show that the solution of class C1,2, whose existence is assured by

Proposition 5.1, satisfies all hypotheses of Theorem 4.1. It is evident that the Hamiltonian

is strictly concave with respect to the control variable. From this, any admissible control

satisfies (26), as was stated in Remark 4.2. With respect to the admissibility of the

solution, the equality c(t, 0) = 0 guarantees that wealth never takes negative values.

On the other hand, the solution is locally Lipschitz because it is of class C1,2. Given

that Lemma 7.1 implies that the consumption growth is at most linear, we have assured

the existence of a unique global solution of the SDE (38) associated to c. Finally, all

assumptions stated in Remark 4.1, which assure (B), are obviously fulfilled in our model.

In particular, the second inequality displayed in (i) does not hold in general, but it does

for the optimal φ̂, because it grows at most linearly. �

Example 5.1 The problem with the exponential utility function U(c) = 1 − e−δc, with

δ > 0, and S such that ϕ satisfies (C1) is framed within the requirements of Proposition

5.2. Let us show this, point by point:

1. U is strictly concave and smooth.

2. For this utility function, E1(c) = 1/δ is independent of c, thus (C1) holds.

3. The function C̃k is given by

C̃k(v) = a0 + a1v + a2δ +
|ρ− µ|
δ

,

for positive constants a0, a1, a2. Of course,
∫∞

0

(
1/C̃k(v)

)
dv = ∞.

The situation is more delicate when the marginal utility at zero is infinite, lim
c→0+

U ′(c) =

∞, because checking hypothesis (B) is then difficult if the wealth may become null with

positive probability. Another difficulty is that Γ is not well defined when the consumption

is zero. Therefore, we will impose conditions in order that the wealth process associated

with the optimal solution is positive with probability one. In this case, the maximization

condition (34) obviously holds.

We introduce the following hypothesis:

C2. There exist constants a > 0, A > 0 such that for positive and small values of c

and x, E1(c) ≤ ac and ϕ(x) ≤ Ax.
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Now, given that when the wealth values ξ are near to 0, it is bounded below by a

geometric Brownian motion, thus the probability for ξ becoming 0 is null. In fact, for

values of ξ near zero, the following inequality holds by virtue of Lemma 7.2

ξ(t) = ξ(0) +

∫ t

0

(µξ(s)− c(s, ξ(s))) ds+

∫ t

0

σξ(s) dw(s)

≥ ξ(0) +

∫ t

0

(µξ(s)−Bξ(s)) ds+

∫ t

0

σξ(s) dw(s) > 0

with positive probability if ξ(0) > 0. In consequence, the same arguments as those used

in the proof of Proposition 5.2 now show that (B) holds.

We have proved the following result.

Proposition 5.3 Under the hypotheses of Proposition 5.1, suppose that lim
c→0+

U ′(c) = ∞
and that (C1) and (C2) hold. Then there exists a unique optimal consumption function,

continuous on [0, T ] × [0,∞) and of class C1,2 on [0, T ] × (0,∞), which is given by the

solution of (41) satisfying the appropriate final and boundary conditions.

Example 5.2 Consider U(c) = cδ/δ, with δ < 1 and let S be such that ϕ satisfies (C1).

Let us show that all hypotheses in the above proposition hold.

1. U is strictly concave.

2. For this utility function, E1(c) = −c/(δ − 1) satisfies (C1) and (C2).

3. The function C̃k is given by

C̃k(v) =
(1 + a2)v

2 + a1p+ a0

v + a3

for adequate non negative arbitrary constants ai, i = 0, . . . , 3. The corresponding

improper integral of 1/C̃k(v) is divergent.

6 Conclusions

This paper provides an alternative method for the analysis of stochastic optimal control

problems to the classical ones based on dynamic programming, duality, and the maximum

principle. The novelty of the approach we propose in this paper does not consists in the

25



tools we use in the construction of the theoretical framework—which heavily depend

on dynamic programming concepts and the maximum principle—but in the optimality

conditions, necessary and sufficient, that are obtained. These are entirely new. We do not

pretend to convey the reader the idea that our approach is superior to the existing ones—

we have remarked the limitations of the method in the Introduction—but to provide a

different perspective, based in a system of PDEs which directly characterize the optimal

controls, without resorting to the value function. A useful feature of the system of PDEs

introduced in the paper is that the gradient of the optimal control enters in a quadratic

way. This allows us to use recent results in the theory of parabolic PDEs to obtain

existence and uniqueness of the optimal policy in the classical consumption–savings model

with rather general utility functions.
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7 Appendix. Auxiliary results

Consider a non–linear partial differential equation of the form

ut + F (t, x, u, ux, uxx) = 0, (t, x) ∈ [0, T )× R, (47)

with initial condition

u(0, x) = ϕ(x), (48)

where F : [0, T )× R4 7−→ R is continuous and elliptic, that is,

F (t, x, u, ux, a+ b) ≤ F (t, x, u, ux, a), if b ≥ 0,

and where ϕ : R 7−→ R is continuous also.

Definition 7.1 A continuous function u : [0, T ] 7−→ R is a viscosity subsolution (resp.

supersolution) of (47)–(48) if u(0, x) ≤ ϕ(x) (resp. u(0, x) ≥ ϕ(x)) and for all smooth

function ω, such that u− ω attains a local maximum (resp. minimum) at (τ0, x0),

ωt(τ0, x0) + F (τ0, x0, u(τ0, x0), ωx(τ0, x0), ωxx(τ0, x0)) ≤ 0 (resp. ≥ 0).

If u is simultaneously a viscosity subsolution and a viscosity supersolution of (47)–(48),

then we will say that it is a viscosity solution of (47)–(48).

For equations where F is elliptic any solution of class C1,2 of the initial value problem

is a viscosity solution. On the other hand, there holds an important comparison property

for viscosity sub– and supersolutions, under certain additional hypotheses on F and on the

initial data. Specifically, any subsolution is always less than or equal to any supersolution,

as shown in Fleming and Soner (Ref. 3).

Lemma 7.1 Suppose that (C1) and the hypotheses of Proposition 5.1 are satisfied. Then

there exists a constant B > 0 such that for all t ∈ [0, T ], c(t, x) ≤ B(1 + x) holds for all

x.

Proof. The function c+(x) = B(1 + x) is a viscosity supersolution of the equation (44)

with initial data c(0, x) = ϕ(x), if B is chosen as

B ≥ max{A,α+ σσ> + max{0, (ρ− α)a}},
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such that (ρ−α)a(1+B)−B2 ≤ 0. In order to prove this fact, let ω be of class C1,2 such

that c− ω has a minimum in (τ0, x0) and c(τ0, x0) = ω(τ0, x0). In this case it is satisfied

ωx(τ0, x0) = c′+(x0) = B,

ωτ (τ0, x0) = 0,

ωxx(τ0, x0) ≤ 0.

It is thus easy to see that

ωτ (τ0, x0) + F (τ0, x0, ω(τ0, x0), ωx(τ0, x0), ωxx(τ0, x0)) ≥ 0

by the choice of B, where the meaning of F is obvious from (41). Moreover, c+(x) ≥ ϕ(x)

by the selection of B. Given that c is of class C1,2, it is a viscosity solution and, in

particular, it is a subsolution and therefore c ≤ c+ as claimed. �

Lemma 7.2 Suppose that (C2) and the hypotheses of Proposition 5.1 are satisfied. Then

there exists B > 0 such that the solution of (41) satisfies c(τ, x) ≤ Bx for x positive and

small enough.

Proof. As in the proof of Lemma 7.1, it is easy to see that in a certain interval (0, ε)

the function c+(x) = Bx is a viscosity supersolution of (41), taking

B = max{A,α+ σσ> + max{0, (ρ− α)a}}.

Given that the equation satisfies the comparison principle and that c is a viscosity solution

because it is of class C1,2 (and, therefore, a subsolution), c(τ, x) ≤ c+(x) = Bx in (0, ε).

�
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