
WALD TESTS OF I(1) AGAINST I(d) ALTERNATIVES:

SOME NEW PROPERTIES AND AN EXTENSION TO

PROCESSES WITH TRENDING COMPONENTS

B� J��� J. D	
��	a, J
��� G	���
	a, ��� L���� M��	��
b ∗

aDept. of Economics, Universidad Carlos III de Madrid.

bInstitut d ´Análisi Económica (CSIC).

June, 25, 2007

Abstract

This paper analyses the power properties, under fixed alternatives, of a Wald-type test, i.e.,

the (Efficient) Fractional Dickey-Fuller (EFDF) test of I(1) against I(d), d < 1, relative to LM

tests. Further, it extends the implementation of the EFDF test to the presence of deterministic

trending components in the DGP. Tests of these hypotheses are important in many macroeconomic

applications where it is crucial to distinguish between permanent and transitory shocks because

shocks die out in I(d) processes with d < 1. We show how simple is the implementation of the

EFDF in these situations and argue that, under fixed alternatives, it has better power properties

than LM tests. Finally, an empirical application is provided where the EFDF approach allowing

for deterministic components is used to test for long-memory in the GDP p.c. of several OECD

countries, an issue that has important consequences to discriminate between alternative growth

theories.
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1. INTRODUCTION

It is well known that tests of I(1) vs. I(0) processes reject very occasionally the null that a

time series {yt} is I(1) when the true DGP is a fractionally integrated, I(d), process, specially

if 0.5 < d < 1. This issue can have serious consequences for studies focusing on the medium

and long- run properties of the variables of interest. To mention only two: (i) shocks could

be identified as permanent when in fact they die out eventually, and (ii) two series could be

considered as spuriously cointegrated (i.e., a concept introduced and analyzed in Gonzalo and

Lee, 1998) when they are independent at all leads and lags. Further, these mistakes are more

likely to occur in the presence of deterministic components as, for example, in the case of trending

economic variables.

In view of this problem, the goal of this paper is twofold. First, we discuss the power behavior

of a recently proposed Wald test of I(1) vs. I(d), d ∈ [0, 1) relative to the one achieved by well-

known LM tests. In particular, we derive new analytical results regarding the non-centrality

parameters of LM and Wald tests under fixed alternatives and show that the latter tends to be

more powerful than the former even though they are asymptotically equivalent under local alter-

natives. Secondly, we extend this Wald-type testing procedure, originally derived for processes

without deterministic components, to the more realistic case where they are present.

Specifically, we focus on a modification of the Fractional Dickey-Fuller (FDF) test by Dolado,

Gonzalo and Mayoral (2002; DGM hereafter) recently proposed by Lobato and Velasco (2007a;

LV hereafter) which achieves an improvement in efficiency over the former. This test, henceforth

denoted as the EFDF (efficient FDF) test, generalizes the traditional DF test of I(1) against I(0)

processes without deterministic components to the broader framework of testing I(1) against

I(d) with 0 ≤ d < 1. The FDF and EFDF tests belong to the family of Wald tests and rely

upon the principle underlying the popular Dickey-Fuller (DF) approach. The idea is to test for

the statistical significance of the slope coefficient, ϕ, in a (possibly) unbalanced regression where

the dependent variable and the regressor are filtered in such a way that the resulting processes

are I(0) under the null and the alternative hypothesis, respectively. 1 Both DGM and LV set

∆yt as the dependent variable, where ∆ = (1− L) .2 As regards the regressor, whereas DGM

1 In the DF setup, these filters are ∆ = (1− L) and ∆0 = 1, so that the regressand and regressor are ∆yt and

yt−1, respectively.
2 As shown in DGM (2002), both regressors can be constructed by applying the truncated version of the
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choose ∆dyt−1, LV show that zt−1(d) = (1 − d)−1(∆d−1 − 1)∆yt improves the efficiency of the

test. These tests belong to the Wald family because the coefficient ϕ is linearly related to the

parameter of interest, d. Like in the FDF procedure, the EFDF test is based upon the t-ratio,

tϕ, of the OLS estimate of ϕ. Thus, non-rejection of H0: ϕ = 0 against H1: ϕ < 0, implies that

the process is I(1) and, conversely, rejection of the null implies that the process is I(d).

In order to compute either ∆dyt−1 or zt−1(d), an input value for d is required. One could

either consider a (known) simple alternative, HA : d = dA < 1 or, more realistically, a composite

one, H1 : d < 1. In the latter case, which is the one we focus on here, both DGM and LV show

that it suffices to use a T κ-consistent estimate (with κ > 0) of the true integration order, and

show that the limiting distribution of the resulting statistic is a N(0, 1).

Under a sequence of local alternatives approaching H0 : d = 1 from below at a rate of T−1/2,

LV (2007a, Theorem 1) prove that, with Gaussianity, the EFDF test is asymptotically equivalent

to the uniformly most powerful invariant (UMPI) test, i.e., the LM test introduced by Robinson

(1991, 1994) and later adapted by Tanaka (1999) for the time domain. Our first contribution in

this paper is to analyze the properties of Wald and LM tests in the case where the alternative is

fixed. Our findings here point out that, in line with the standard result about the better power

properties of Wald tests relative to LM tests (see Engle, 1984), the former fare better than the

latter in this dimension. Moreover, when compared to other tests of I(1) vs. I(d) which rely on

direct inference about semiparametric estimators of d, the EFDF test exhibits in general better

power properties, under a correct specification of the stationary short-run dynamics of the error

term in the auxiliary regression. This is due to the fact that the semiparametric estimation

procedures often imply larger confidence intervals of the memory parameter, in exchange with

less restrictive assumptions on the error term.3 By contrast, the combination of a wide range

of semiparametric estimators for the input value of d with an auxiliary parametric regression,

as the one discussed above, yields a parametric rate for the Wald tests.4 Thus, in a sense, the

Wald tests combine the favorable features of both approaches to improve power while reducing

binomial expansion of the filter (1 − L)d in the lag operator L to yt (t = 0, 1, ...), so that ∆d

+yt =
∑

t−1

i= 0
πi(d)

yt−i, where πi(d) is the i-th coefficient in that expansion, defined at the end of this Introduction. In the sequel,

we will refer to this truncated filter simply as ∆d.
3 See, e.g., Velasco (1999), Robinson (2003), Abadir et al. (2005), Shimotsu and Phillips (2005) and Shimotsu

(2006).
4 LV (2007b) have shown that a Gaussian semiparametric estimator, such as the one proposed by Velasco (1999)

suffices to achieve consistency and asymptotic normality in the analyzed Wald tests (see sections 2 and 3 below).
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the danger of misspecifying short-run dynamics.

Following the development of the unit root tests in the past, where the canonical zero-mean

AR(1) model was subsequently augmented with deterministic components (including drifts, and

linear, nonlinear and broken trends), our second contribution in this paper is to investigate how

to implement this Wald test when some deterministic components are considered in the DGP, a

case which was neither considered by LV nor by DGM. Although we will analyze other types of

trends, we will mainly focus on the role of a linear trend since many (macro) economic time series

exhibit this type of trending behavior in their levels. Our main result is that, in contrast with

what happens with most tests for I(1) against I(0), the EFDF test remains being efficient in the

presence of deterministic components and it maintains the same asymptotic distribution, insofar

as they are correctly filtered. In this respect, this result mimics the one found for LM tests when

deterministic components are present; cf. Robinson (1994), Tanaka (1999) and Gil-Alaña and

Robinson (1997).

Lastly, we wish to stress that, despite focusing the previous discussion on the case where

the error term in the DGP is i.i.d, the asymptotic results obtained here remain valid when the

disturbance is allowed to be autocorrelated, as it happens in the (augmented) DF case (ADF

henceforth). In this respect, DGM (2002, Theorems 6 and 7) have proved that, in order to remove

the autocorrelation, it is sufficient to augment the set of regressors in the auxiliary regression of

the FDF test with k lags of the dependent variable such that k ↑ ∞ as T ↑ ∞, and k3/T ↑ 0,
as in Said and Dickey (1984). This leads to the augmented FDF (AFDF) test. As regards the

EFDF test, we conjecture that a similar result holds, although we will confine our discussion

below, as in LV (2007a), to the case of finite-lag autoregressive processes. The procedure based

on the EFDF test turns out to be much simpler than accounting for serial correlation in the LM

framework. Further, we point out that the two-step procedure proposed by LV (2007a) can be

simplified to a feasible linear single-step estimation approach. An empirical application dealing

with testing the possibility that long GNP per capita series for several OECD countries may

follow nonstationary I(d) processes, yet with shocks that die out (supporting the hypothesis of

beta-convergence) instead of I(1) (no convergence), illustrates our proposed methodology.

The rest of the paper is structured as follows. Sections 2 briefly overviews the properties of

the EFDF test when the process is a driftless random walk under the null and derives new results

about the power of this test relative to the LM test under fixed alternatives. Section 3 extends

the previous results to the case where the process contains trending deterministic components
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(e.g., a linear trend), considering both the case of i.i.d. and autocorrelated errors. Section 4

discusses an empirical application of the previous test. Finally, Section 5 draws some concluding

remarks.

Proofs of the theorems are collected in the Appendix.

In the sequel, the definition of a I (d) process that we will adopt is that of a non-stationary

(truncated) process when 1 > d > 0.5. Those definitions are similar to those used in, e.g.,

Robinson (1994) and Tanaka (1999) and are summarized in Appendix A of DGM. Moreover,

the following conventional notation is adopted throughout the paper: Γ(.) denotes the gamma

function, {πi (d)} represents the sequence of coefficients associated to the expansion of ∆d in

powers of L , defined as

πi (d) =
Γ (i− d)

Γ (−d) Γ (i+ 1) .

The indicator function is denoted by 1(.). Finally,
w→ denotes weak convergence in D[0, 1]

endowed with the Skorohod J1 topology, and
p→ means convergence in probability.

2. THE EFDF TEST

2.1 Definitions

Like in Robinson (1994), we consider a process yt that is generated by an additive model,

namely as the sum of a deterministic component, µ(t), and an I(d) component, ut, so that

yt = µ(t) + ut, (1)

where ut = ∆
−dεt1t>0 is a purely stochastic I (d) process and εt is a zero-mean i.i.d. random

variable.

For the case where µ (t) ≡ 0,5 DGM introduced a Wald-type (FDF) test for testing the null

hypothesis of H0 : d = 1 against the composite alternative H1 : 0 ≤ d < 1, based on the

t-statistic associated to the hypothesis φ = 0 in the OLS regression

∆yt = φ∆
d̂T yt−1 + υt. (2)

If the value d is chosen under a composite H1 using a
√
T− consistent estimator of d, d̂T ,

DGM prove that the asymptotic distribution of the resulting t-statistic, tφ is N (0, 1). They

5 Alternatively, µ(t) could be considered to be known. In this case, the same arguments go through after

substracting it from yt to obtain a purely stochastic process.
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provide Monte Carlo evidence showing that, despite not being locally optimal (as Robinson’s

LM test is), its finite sample performance is more satisfactory than the LM test, except when

local alternatives with gaussian errors are considered. In this case, as will be discussed below,

the asymptotic relative efficiency of the FDF test is 0.8 (see LV, 2007b).

Recently, LV (2007a) have proposed the EFDF test based on a modification of regression

(2) that permits to achieve higher efficiency while keeping the good finite-sample properties of

Wald tests under the assumption of µ (t) ≡ 0 (or known). More specifically, their proposal is to

compute the t-statistic, tϕ, associated to the null hypothesis ϕ = 0 in the regression

∆yt = ϕzt−1 (d) + εt, (3)

where zt−1 (d) is defined as6

zt−1 (d) =

(
∆d−1 − 1

)

(1− d) ∆yt.

Note that, when ϕ = 0, the model becomes a random walk, ∆yt = εt, while, under the alter-

native, ϕ = (d− 1) < 0, it becomes a pure fractional process, ∆dyt = εt. The reason why the

EFDF test is more efficient than the FDF test is that, under H1, the regression model considered

in (2) with known d can be written as ∆yt = ∆
1−dεt = εt+(d− 1)εt−1+0.5d(d− 1)εt−2+ ... =

φ∆dyt−1 + εt + 0.5d(d− 1)εt−2 + ... with φ = d− 1. Thus, the error term υt in (2) is autocor-

related. Although OLS provides a consistent estimator of φ, since the regressor ∆yt−1 = εt−1 is

not in υt, it is not the most efficient one. By contrast, the regression model used in the EFDF

test does not suffer from this problem since, by construction, yields an i.i.d. error term.

Theorem 1 in LV (2007a), which we reproduce below for completeness, establishes the asymp-

totic properties of tϕ.

Theorem 1 Under the assumption that the DGP is given by yt = ∆−dǫt1(t>0), where d ≤ 1,

εt is i.i.d. with finite fourth moment, the asymptotic properties of the t-statistic tφ for testing

ϕ = 0 in (3), where the input of zt−1(d̂T ) is a T
κ−consistent estimator of d, for some d > 0.5

with κ > 0, are given by,

a) Under the null hypothesis (d = 1),

tϕ(d̂T )
w→ N (0, 1) .

6 A similar model was first proposed by Granger (1986) in the more general context of testing for cointegration

with multivariate series, a modification of which has been recently considered by Johansen (2005).
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b) Under local alternatives, (d = 1− γ/
√
T ),

tϕ(d̂T )
w→ N (−γh (d) , 1) ,

where h(̺) = Σ∞j=1j
−1πj(̺− 1)/

√
Σ∞j=1πj(̺− 1)2, 0.5 < ̺ < 1.

c) Under fixed alternatives (d < 1), the test based on tϕ(d̂T ) is consistent.

LV (2007a) show that the function h(.) achieves a global maximum at d = 1 where h(1) =
√
π2/6, and that h (1) equals the noncentrality parameter of the locally optimal Robinson’s LM

test (see subsection 2.2 below). Moreover, if a T κ-consistent estimator of d is used as input of

zt−1(d) with κ > 0, the asymptotic distribution of the EFDF test under the null is invariant to

the use of an estimated input d̂T (see, Robinson and Hualde, 2003, Assumption 3). A power-

rate consistent estimate of d can be easily obtained by applying any parametric
√
T -consistent

estimator of this quantity (such as Beran, 1995, Velasco and Robinson, 2000 or Mayoral, 2007)

but also, much less restrictively, by using some semiparametric estimators of d, as LV (2007a, b)

have shown. Among the latter class, the estimators proposed by Abadir et al. (2005), Shimotsu

(2006) and Velasco (1999) represent good choices since they also allow for the existence of the

deterministic components considered in section 3.

2.2 Power comparisons under fixed alternatives

As discussed in the Introduction, the closer competitor to the Wald (FDF and EFDF) tests is

the LM test proposed by Robinson (1991, 1994) in the frequency domain, subsequently extended

by Tanaka (1999) to the time domain. In this section we discuss the power properties of the

three competing tests under the case of fixed alternatives.7

We start with the LM test, denoted as LMT , which considers the null hypothesis of θ = 0

against the alternative θ �= 0 for the DGP ∆d0+θyt = εt. In line with the hypotheses considered

in this paper, we will focus on the particular case where d0 = 1 and −1 ≤ θ < 0. Assuming that

εt ∼ N(0, σ2), the score-LM test is computed as

LMT =

√
6

π2
T 1/2

T−1∑

j=1

j−1ρ̂j
w→ N (0, 1) , (4)

where ρ̂j =
∑

T
t=j+1∆yt ∆yt−j/

∑
T
t=1(∆yt−j)2 (see Robinson, 1991 and Tanaka, 1999).

7 The available results in the literature only establish the consistency of the Wald and LM test under fixed

alternatives. Yet, they do not derive the non-centrality parameters as we do below.
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Breitung and Hassler (2002) have shown that an alternative simpler way to compute the

score-LM test is as the t-ratio (tλ) of λ̂ols in the regression

∆yt = λx
∗
t−1 + et, (5)

where x∗t−1 =
∑ t−1

j=1 j
−1∆yt−j. Intuitively, since tλ =

∑
(∆ytx

∗
t−1)/σ̂e(

∑
(x∗t−1)

2)1/2 and, under

H0 : θ = 0, σ̂e tends to σ and plim T−1
∑
(x∗t−1)

2 = π2/6, then tλ has the same limiting

distribution as LMT .

As mentioned earlier, under a sequence of local alternatives of the type θ = γT−1/2 with

γ > 0, the LMT (or tλ) is the UMPI test. Under a sequence of local alternatives, LV (2007a)

have shown that the EFDF is asymptotically equivalent to the UMPI. This is so because when

d tends to 1, the indetermination 0/0 in the filter
(
∆d1−1 − 1

)
/(1− d1)⌋d1=1 used in the EFDF

test is easily solved by L’ Hôpital rule yielding the same linear filter as in the LM test, namely

−ln(1−L) = Σ∞j=1j−1Lj, so that the test becomes asymptotically equivalent to the LMT and tλ

tests. Hence, as stated in Theorem 1 above, when µ(t) ≡ 0 (or known) and d = 1− γT−1/2, the

limiting distribution of the the EFDF test is identical to that of the LM test, i.e., N(−γh(d), 1)
where h(.) is π/

√
6 for d = 1. DGM (2002, Theorem 3) in turn obtained that the corresponding

distribution of the FDF under local alternatives test isN(−γ, 1).Hence, the asymptotic efficiency

of the FDF test relative to the LM and EFDF tests is 0.78 (≃
√
6/π).

In the rest of this section, we analyze the case with fixed alternatives where, to our knowledge,

results are new. In particular, we derive the non-centrality parameters of the three above-

mentioned tests under an I(d) alternative where the DGP is assumed to be ∆dyt = εt with

d ∈ (0, 1). Hence, ∆yt = ∆
−bεt where b = d− 1 < 0. Then, the following result holds.

Theorem 2 If ∆dyt = εt with d ∈ [0, 1), the t-statistics associated to the EFDF and FDF tests,
denoted as tϕ and tφ, respectively, verify,

T−1/2tϕ
p

→−
(
Γ(3− 2d)
Γ2(2− d) − 1

)1/2
≡ cEF DF (d),

T−1/2tφ
p

→− (1− d)Γ(2− d)
[Γ(3− 2d)− (d− 1)2Γ2(2− d)]1/2 ≡ cF DF (d),

while, under the same DGP, the LM test defined in (4) satisfies that,

T−1/2LMT

p
→−

√
6

π2
Γ(2− d)

(1− d)Γ(d− 2)

∞∑

j=1

Γ (j + d− 1)
jΓ (j + 2− d) ≡ cLM(d),
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where cEFDF (d), cFDF (d) and cLM(d) denote the non-centrality parameter under the fixed

alternative d ∈ (0, 1) of the EFDF, FDF and LM tests, respectively.

Figure 1 displays the three non-centrality parameters for d ∈ (0, 1). As expected, the EFDF

and the LM tests behave similarly for values of d very close to the null hypothesis, whereas the

FDF test is slightly less powerful for these local alternatives. Nevertheless, despite being devised

to be the UIMP test for local alternatives, the LM test performs significantly worse than both

Wald-type tests when the alternative is not local. The EFDF tests performs slightly better than

the FDF test in line with LV’s (2007a) arguments about efficiency. The intuition for the worse

power performance of the LM test is that there does not exist any value for λ in (5 ) that makes

et both i.i.d. and independent of the regressor for fixed alternatives, implying that x∗t−1 does

not maximize the correlation with ∆yt. Although the results in Theorem 2 are asymptotic, for

realistic sample sizes the rejection rates of the Wald tests under the alternative are also larger

than those of the LM test, except when d is very close to unity and the error term is normally

distributed, in which case the EFDF and LM tests behave similarly. Thus, for fixed alternatives

with, approximately, d < 0.9, the EFDF (and maybe the FDF) test is bound to exhibit higher

power than the LM test.8

As regards semiparametric estimators, both the Fully Extended Local Whittle (FELW, see

Abadir et al., 2005) and the Exact Local Whittle estimators (ELW, see Shimotsu, 2006) verify

the asymptotic property
√
m(d̂T − d) w→ N

(
0, 14

)
for m = o(T

4

5 ). Test statistics for unit roots

are based on τd = 2
√
m(d̂T −1) w→ N (0, 1). Therefore, their rate of divergence under H1 : d < 1

is the nonparametric rate Op(
√
m) which is smaller than the Op(

√
T ) parametric rate achieved

by the Wald test.

8 Note, however, that in the case of the FDF test, despite having a more negative non-centrality parameter than

the LM test, its smaller efficiency (see the discussion after (5)) manifested by a larger variance in the denominator

of the t-ratio under H1, could imply lower power in some cases.
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3. THE EFDF TEST FOR TRENDING I(D) PROCESSES

3.1 i.i.d. case

In this section, we extend the EFDF testing approach to the more realistic case where µ (t) �= 0
and unknown. Our goal is to examine how this (unknown) deterministic term should be taken

into account when implementing the test.

Following Elliott et al. (1996), we consider two different types of µ (t) .

Slowly Evolving Deterministic component

Condition A. (Slowly evolving trend). The deterministic component µ (t) verifies

µ (t) = O(tδ), δ < 0.5.

Condition A is immediately satisfied if µ (t) is a constant term but also holds for a variety of

time functions, such as slowly increasing trends, (e.g., tδ, δ < 0.5 or log t).

In this case, it is straightforward to show that the stochastic component in yt dominates

the deterministic term when T is large. Hence, µ(t) has no effect either on the asymptotic
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distribution of the t-ratio statistic or on the efficiency properties of the test in the absence of

µ (t). Therefore, one can proceed to run regression (3) ignoring the presence of these slowly

evolving trends.

The following theorem presents the properties of the EFDF test when the DGP is given by

(1) and µ (t) verifies Condition A.

Theorem 3 (Slowly evolving trends) Under the assumption that the DGP is given by yt =

µ (t) + ∆−dǫt1(t>0), where d ≤ 1, ǫt is i.i.d. with finite fourth moment, and µ (t) verifies

Condition A, the asymptotic properties of the t-statistic tϕ for testing ϕ = 0 in (3) (denoted by

EFDFµ test), where the input of zt−1(d̂T ) is a T
κ−consistent estimator of d, for some d > 0.5

with κ > 0, are identical to those stated in Theorem 1.

Evolving Deterministic Components

Condition B. (Evolving trend). µ (t) is a polynomial in t of known order.

Under Condition B, the DGP is allowed to contain trending regressors in the form of polyno-

mials (of known order) of t. Hence, when the coefficients of µ (t) are unknown, the test described

above are unfeasible. Nevertheless, it is still possible to obtain a feasible test with the same

asymptotic properties as in Theorem 1 if a consistent estimate of µ (t) is removed from the orig-

inal process. Indeed, under H0, the relevant coefficients of µ (t) can be consistently estimated by

OLS in a regression of ∆yt on ∆µ (t) . For instance, consider the case where the DGP contains

a linear time trend, that is,

yt = α+ βt+∆
−dǫt, (6)

which, under H0 : d = 1, corresponds to the popular random walk with drift case. Taking first

differences, it follows that ∆yt = β+∆
1−dεt. The OLS estimate of β, β̂, (i.e., the sample mean of

∆yt) is consistent under both H0 and H1. In effect, under H0, β̂ is a T 1/2 -consistent estimator

of β whereas, under H1, it is T 3/2−d-consistent with 3/2− d > 0.5 (see Hosking 1996, Theorem

8). Hence, the following theory holds.

Theorem 4 (Evolving trends) Under the assumption that the DGP is given by yt = µ (t) +

∆−dǫt1(t>0), where d ≤ 1, ǫt is i.i.d. with finite fourth moment, and µ (t) satisfies Condition B,
the asymptotic properties of the t- statistic tϕ for testing ϕ = 0 in the regression

∆̃yt = ϕz̃t−1
(
d̂T

)
+ et (7)
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(denoted by EFDFτ test), where the input d̂T of z̃t−1
(
d̂T

)
is a T κ− consistent estimator of

d > 0.5 with κ > 0, ∆̃yt = ∆yt − ∆µ̂ (t), z̃t−1
(
d̂T

)
=

(
∆d̂T−1−1

)

(1−d̂T )
(∆yt − ∆µ̂ (t)), and the

coefficients of ∆µ̂ (t) are estimated by an OLS regression of ∆yt on ∆µ (t) , then the asymptotic

properties of the t-statistic tϕ for testing ϕ = 0 in (7) are identical to those stated in Theorem

1.

As mentioned above, Shimotsu’s (2006) semiparametric estimator provides power rate con-

sistent estimators of d ≤ 1 for the case where the DGP contains a linear or a quadratic trend

whereas Velasco’s (1999) estimator is invariant to a linear (and possibly higher order) time trend.

3.2 Serial correlation case: The invariant AEFDF test

Next, we generalize the DGP considered in (1) by assuming that ut follows an stationary

linear AR(p) process, namely, Φp(L)ut = ǫt1t>0 where Φp(L) = 1−φ1L− ...φpL
p with Φp(z) �= 0

for |z| ≤ 1. This motivates the following nonlinear regression model

∆yt = ϕ[Φp(L)zt−1(d)] +

p∑

j=1

φj∆yt−j + ǫt, (8)

which is similar to (3), except for the inclusion of the lags of ∆yt and for the filter Φp(L)

in the regressor whose significance is tested. Estimation of this model is complicated because

of the nonlinearity in the parameters ϕ and Φ = (φ1, ..., φp). Compared with the white noise

case, the practical problem arises because the vector Φ is unknown and therefore the regressor

[Φp(L)zt−1(d)] is unfeasible. For this reason LV (2007a) recommended to apply a two-step

procedure that allows one to obtain efficient tests also with autocorrelated errors.

3.2.1 Two-step procedure.–

For the case where µ (t) ≡ 0 (or known), LV (2007a) implement the two step procedure as

follows. In the first step, the coefficients of Φp(L) are estimated (under H1) by OLS in the

equation

∆d̂T yt =

p∑

t=1

φj∆
d̂T yt−j + at, (9)
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where d̂T satisfies the conditions stated in Theorem 1. The estimator of Φp(L) is consistent with

a convergence rate which depends on the rate κ. Second, estimate by OLS the equation

∆yt = ϕ[Φ̂p(L)zt−1(d̂T )] +

p∑

j=1

φj∆yt−j + vt, (10)

where Φ̂p(L) is the estimator from the first step, and d̂T denotes the same estimated input

used in that step as well. As LV (Theorem 2) have shown, the tϕ statistic in this augmented

regression is still both normally distributed and locally optimal. The test will be denoted by

AEFDF (augmented EFDF) test in the sequel.

For the case where the coefficients of µ (t) are considered to be unknown, a similar procedure

as that described in section 2.1 can be implemented and efficient tests will still be obtained.

If µ (t) is a slowly moving trend satisfying Condition A, the test based on regression (10)

can be implemented and the asymptotic properties stated in LV (2007a, Theorem 2) still hold

through. For the case where µ (t) satisfies Condition B, in order to maintain the good properties

of the test, it is necessary to substract these terms from the original variables prior to computing

regressions (9) and (10). As discussed before, the coefficients of µ (t) can be estimated by OLS

under the null and regressions (9) and (10) can be computed after conveniently substracting the

estimated deterministic regressors. For instance, if the DGP is defined as in (6), a consistent

estimator of β is obtained from the OLS estimator of a regression of ∆yt on a constant term.

Clearly, this estimator has the same properties in this case as those described in Section 3.1.

Then, regression (9) simply becomes

∆d̂T (yt − β̂t) = [1−Φp(L)]∆
d̂T (yt − β̂t) + at,

whereas regression (10) would be

∆̃yt = ϕ[Φ̂p(L)z̃t−1
(
d̂T

)
] +

p∑

t=1

φj∆̃yt−j + vt, (11)

and ∆̃yt = ∆yt − β̂ and z̃t−1
(
d̂T

)
=

(
∆d̂T−1−1

)

(1−d̂T )
(∆yt − β̂). In the case where µ(t) in the DGP

contains a quadratic term, ∆yt should be regressed on a constant and a linear time trend and

so forth for higher-order time trends.

The following theorem states the properties of the AEFDF test in the more general case where

short term autocorrelation is present.
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Theorem 5 Under the assumption that the DGP is an ARFIMA(p, d, 0) process defined as

Φp (L)∆
d(yt−µ (t)) = ǫt1t>0, where d ∈ (0.5, 1), ǫt is i.i.d. with finite fourth moment and Φp (L)

has all its roots outside the unit circle, the asymptotic properties of the t-ratio tϕ for testing

ϕ = 0 in (10) or (11) for µ (t) satisfying condition A or B, respectively, using a Tκ−consistent
estimator of d, d̂T , for some d > 0.5 with κ > 0, are given by

a) Under the null (d = 1)

tϕ(d̂T )
w→ N (0, 1) .

b) Under local alternatives (d = 1− γ/
√
T , γ > 0)

tϕ(d̂T )
w→ N (−γω, 1) .

c) Under fixed alternatives (d < 1) , the test based on is tϕ(d̂1) is consistent.

If d̂T verifies the previous conditions, then LV (2007a) have shown that,

ω2 =
π2

6
− κ′Ψ−1κ

where κ = (κ1, ..., κp)
′ with κk =

∑∞
j=k j

−1cj−k, k = 1, ..., p, such that cj ´s are the coefficients

of Lj in the expansion of 1/Φ(L) , and where Ψ = [Ψk,j], Ψk,j =
∑∞

t=0 ctct+|k−j|, k, j = 1, ..., p,

denotes the Fisher information matrix for Φ(L) under Gaussianity. Note that ω2 is identical to

the drift of the of the limiting distribution of the LM test under local alternatives (see Tanaka,

1999). Notice also that the use of semiparametric estimators for d is very convenient here, since

one can be agnostic about a parametric specification of the autocorrelation in the error terms

when estimating the input value of d.

3.2.2 Single-step procedure.–

Despite the fact that LV (2007a) proposed the above-mentioned two-step procedure to account

for autocorrelated errors, it is interesting to notice that a feasible linear single-step procedure

can also be applied with the same properties. In effect, under H1 the process for the detrended

variable, ∆̃yt, would be

Φp(L)∆̃dyt = εt, (12)

such that adding and substracting the process under H0, Φp(L)∆̃yt , it becomes
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Φp(L)∆̃yt = Φp(L)[1−∆d−1]∆̃yt + εt,

or

∆̃yt = ϕ[Φp(L)z̃t−1(d)] + [1−Φp(L)]∆̃yt + εt. (13)

The one-step method we propose is based on the following decomposition of the lag polynomial

Φp(L)

Φp(L) = Φp(1) +
1

∆d−1 − 1Φ
∗
p(L), (14)

where the polynomial Φ∗p(L) is defined by equating (13) to the standard polynomial decompo-

sition

Φp(L) = Φp(1) +∆Φ̃p(L). (15)

Hence,

Φ∗p(L) = (∆
d −∆)Φ̃p(L) = ∆

dΦ̃p(L)− [Φ̃p(L)− Φ̃p(1)]. (16)

Substitution of (13) into (12), using (15) and noticing that ϕ = d−1 and z̃t−1(d) =
∆d−1−1
1−d ∆̃yt,

yields

∆̃yt = ϕz̃t−1(d)−
Φ̃p(L)

Φp(1)
∆̃1+dyt +

1

Φp(1)
εt. (17)

In order to have only predetermined variables on the right hand side of (16), let us rewrite

Φ̃p(L) as (Φ̃p(L)− Φ̃p(0))+ Φ̃p(0) and ∆1+d as [∆d− 1+1]∆. Then, some simple algebra yields

∆̃yt = ϕ
Φp(1)

D
z̃t−1(d)−

Φ̃p(L)

D
[∆d − 1]∆̃yt −

Φ̃p(L)− Φ̃p(0)

D
+
1

D
εt. (18)

where D = Φp(1) + Φ̃p(0). Notice that the second and third regressors are predetermined since

(∆d − 1) and (Φ̃p(L) − Φ̃p(0)) do not include contemporaneous values of ∆̃yt. Hence, in this

model the AEFDF test can be done in a single step. For example, in the case of an AR(1)

disturbance, i.e., Φ1(L) = 1− φL, we have that Φ1(1) = 1− φ and Φ̃1(L) = Φ̃1(0) = φ, so that

(17) becomes
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∆̃yt = ϕ(1− φ)z̃t−1(d)− φ[∆d − 1]∆̃yt + εt, (19)

which, when implemented with a T κ−consistent estimator of d, d̂T , gives rise to a tϕ test with

the same properties as the test based on two steps.

3.3 Power comparison in finite samples

Monte-Carlo evidence in favour of the EFDF and FDF tests can be found in LV (2007a)

and DGM (2002), respectively, for the case where µ(t) ≡ 0. In what follows, we provide some

additional simulations when µ(t) = α + βt. Table 1 presents the rejection frequencies for local

alternatives at the 5% level of the EFDF, LM and Shimotsu´s ELW tests (denoted as ELWµ

and ELWτ , respectively). The DGP is yt = α + βt +∆
−dεt, which has been simulated 10, 000

times with εt ∼ n.i.d (0, 1), d = 1 − γ/T 1/2 for γ = {0, 0.5, 1.0, 2.0 and 5.0 } and T = {100,
400}. Shimotsu’s (2006) ELW estimator has been used for the input value of d, d̂T . The figures

corresponding to EFDFµ, LMµ and ELWµ are obtained by setting α = 1, β = 0, whereas those

for EFDFτ , LMτ and ELWτ pertain to α = 1, β = 0.2. As can be observed, for the smaller

sample sizes (when γ = 0) the LM test is slightly under-sized whereas the EFDF and ELW test

are slightly over-sized, specially when we allow for a linear trend. For this reason, we compute

size-adjusted power for γ > 0. The most relevant finding is that, as expected, both EFDF and

LM tests have similar power for the two smaller values of γ whereas the former has larger power

for γ = 2 and 5, with improvements up to five percentage points in some instances. In turn, the

ELW test behaves somewhat similarly to the other two tests for γ = 0.5 and 1.0, whilst it loses

quite a lot of power for the larger values of γ.

[Table 1 about here]

Table 2 reports the (size-adjusted) power when the errors are autocorrelated. The DGP is

now ∆dyt = εt/(1 − 0.2L), for several values of d = 1 − γ/T 1/2, using the the same values of

γ and T = {100, 400}. The AEFDF test is implemented using model (18). Although for this

AR(1) error term, power is lower than in the i.i.d. case, the power comparison across the three

tests is similar to the one above, with the AEFDF test performing better for the larger values

of γ. Lastly, in Table 3, we briefly report some results on the consequences of having departures

from Gaussianity in the distribution of εt. We simulate the same DGP as in Table 1, except
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γ = 5, but with errors following an i.i.d. (demeaned) χ2(1) distribution rather than n.i.d (0, 1).

The reported results correspond to the τ -version of the tests, reaching similar conclusions to the

ones discussed earlier.9

[Table 2 about here]

[Table 3 about here]

4. EMPIRICAL ILLUSTRATION

An interesting application of the theoretical results applied above is to examine whether

the time-series of GDP per capita of several OECD countries behave as I(d) processes with

d ∈ (0.5, 1). These are series which are clearly trending upwards and therefore provide nice

examples of the role of deterministic terms in the use of the EFDF test. As pointed out by

Michelacci and Zaffaroni (2000; henceforth, MZ), such a long-memory behavior could well explain

the seemingly contradictory results obtained in the literature on growth and convergence. The

puzzling result is that a unit root cannot be rejected in (the log of) those series and yet a 2%

rate convergence rate to a steady-state level (approximated by a linear trend) is typically found

in most empirical exercises testing the so-called unconditional beta- convergence hypothesis (see

Barro and Sala i Martín, 1995 and Jones, 1995). The explanation offered by MZ to this puzzle

relies upon two well-known results in the literature on long-memory processes, namely that

standard unit root tests have low power against fractional values of d in the nonstationary

range, and that for all values of d ∈ [0, 1) the effects of shocks die out. Notice that consideration

of GDP p.c as an I(d) process may be very reasonable since GDP is obtained as the aggregation

of value-added in a wide range of productive sectors which are likely to have different persistence

properties (see Lo and Haubrich, 2001). Thus, the aggregation argument popularized by Granger

(1980) applies strongly to this case.

Using Maddison’s (1995) data set of annual GDP per capita series for 16 OECD countries

during the period 1870-1994 and the log-periodogram estimator of d due to Robinson (1995),

MZ find that in most countries the order of fractional integration is in the interval (0.5, 1), theo-

retically compatible with the 2% rate of convergence found in the literature of beta-convergence

and, therefore, validating in this way their explanation of the puzzle. Since that estimation

9 Similar conclusions also hold when the error tem in the DGP follow a Student´s t distribution with 5 d.f.
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procedure is restricted to the range of I(d) processes with finite variance, namely, |d| < 1/2 ,

MZs proceed by first detrending the data and then applying the truncated filter (1 − L)1/2 to

the residuals, discarding the first ten observations to initialize the series.

The previous results have been criticized by Silverberg and Verspagen (2001) on the grounds

that the use of the Geweke and Porter-Hudak (GPH) semi-parametric estimation procedure,

as modified by Robinson, suffers from serious small-sample bias. Instead, they propose to use

the first-difference filter, (1 − L), to remove the trend, and then employ both Beran´s (1994)

nonparametric estimator and Sowell’s (1992) parametric ML estimator of ARFIMA models to

tackle short-memory contamination in the estimation of d. By using these estimation procedures,

Silverberg and Verspagen (2001) find, in stark contrast to MZ ’s results, that d tends to be either

not significantly different from unity or significantly above unity for most countries.

To shed light on this controversy, we apply the AEFDF test developed in Section 3.2 to the

logged GDP p.c. of a subset of thirteen of the main OECD countries, listed in Table 4, where

(under the null) the estimated intercept and its (Newey-West robust) standard deviation in the

regression ∆yt = β+ ut is reported.10 As can be inspected, the mean (average GDP p.c. growth

rate) is always highly significant making it convenient to use a model which allows for a linear

trend, as in (6), as the maintained hypothesis. Indeed, when the ADF and the Phillips-Perron

(P-P) unit root tests (not reported) were computed using Elliott et al. (1996)´s efficient GLS

detrending procedure, the I(1) null hypothesis could not be rejected in most cases11. The KPPS

test, which takes I(0) as the null, also yielded rejection in more than half of the cases, confirming

the high persistence of the series. Thus it seems clear that the levels of the series have a linear

trend and that deviations from such a trend are likely to be nonstationary. In addition, since

there were clear signs of autocorrelation in ut, an AEFDF test was applied to the series. The

number of lags of the dependent variable was chosen according to the AIC with a maximum lag

of length k = 5.

[Table 4 about here]

Pre-estimation of d using Shimotsu’s (2006) nonparametric approach allows one to estimate

a value of d for each country. The estimated values of d are always in the non-stationary range.

Taking into account that the standard error (s.e.) of this estimator is
√
1/4m with m = T 0.65,

10 Maddison’s (2004) dataset has been employed in this case, which adds 9 observations to the data considered

by MZ.
11 The only exceptions are Canada, Germany and the US with p-values of 0.045, 0.049 and 0.040, respectively.
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with a sample size of T = 134, it takes a value of 0.102 in all cases. Using this s.e., the value

d = 1 is included in an appropriate confidence interval of 12 out of the 13 countries, yielding

similar results to those in Silverberg and Verspagen (2001). Nevertheless, using the AEFDF test

with the above-mentioned estimated input value, d̂T , the first column of Table 5 shows strong

rejections of H0: d = 1 in 6 out of the 13 countries.12 As discussed earlier, the intuition for

this higher rejection rate is the higher power of the EFDF test relative to pure semiparametric

tests which yield wider confidence intervals. Thus, our results in almost half of the countries

seem to favor nonstationary I(d) processes with d < 1, in line with MZ´s conclusions. As Jones

(1995) first suggested, this evidence is inconsistent with endogenous growth theories for which

permanent changes in certain policy variables have permanent effects on the rate of economic

growth. We are aware that a definitely conclusion on this issue requires a deeper data analysis

in at least two directions: (i) testing long memory versus structural breaks, and (ii) deriving a

panel version of the proposed EFDF test. Both directions are being under current investigation

by the authors (for the former, see Dolado, Gonzalo and Mayoral, 2005).

[Table 5 about here]

5. CONCLUSIONS

This paper provides new theoretical results regarding gains in power, under fixed alternatives,

of applying a Wald test instead of the conventional LM test for detecting the presence of a

unit root in time-series data against the alternative of I(d), d < 1, possibly allowing for a

wide variety of deterministic terms in the DGP. The Wald test is based on the EFDF testing

approach (see LV, 2007a). Four main findings have been obtained. First, though the EFDF test

is asymptotically equivalent to the LM test under local alternatives, it has larger power under

fixed alternatives. This gain in power relative to the LM test may also hold for other Wald tests,

like the FDF test (see DGM, 2002) which are less efficient than the EFDF test. Secondly, if µ(t)

is slowly evolving trend (e.g, including just a constant term), then the EFDF test ignoring µ(t)

can be implemented without losing any of its optimal asymptotic properties. Thirdly, if µ(t) is a

12 When the estimated value of d was larger than unity, a value of d̂T = 1 was employed as an input to run the

test.
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polynomial in t of known order but unknown coefficients, then these properties remain identical

if one runs the EFDF test on the OLS residuals of the regression of ∆yt on µ(t) under the null

of d = 1. And, fourthly, under the presence of serial correlation, we show that the EFDF test

can be performed in a feasible linear single- step instead of the two- step procedure proposed by

LV (2007a). An empirical application regarding the issue of whether deviations from a trend of

GDP p.c. in a variety of countries follow an I(1) or a nonstationary I(d) where shocks die out

illustrates the usefulness and simplicity of the testing approach proposed here.

Interesting extensions under current investigation by the authors include testing fractional

integration versus I(0) allowing for structural breaks (see Dolado, Gonzalo and Mayoral, 2007),

testing for cointegration between two I(d) series which have a non-zero drift and where a constant

term or a linear trend is included in the regression model and finally, an extension of this

framework to panel data.
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APPENDIX

Proof of Theorem 2

Let us first consider the case where the true value of d is used to compute the test. In this

case, under the alternative hypothesis of ∆dyt = εt with εt ∼ i.i.d.(0, σ2), the tϕ(d) statistic

associated to the coefficient of zt−1(d), in the regression of ∆yt on zt−1(d) can be written as,

T−1/2tϕ(d) =

∑T
t=2∆ytzt−1(d)/T((∑T

t=2 (∆yt − ϕ̂zt−1(d))
2 /T

)(∑T
t=2 z

2
t−1(d)/T

))1/2 .

Using the results collected in Baillie (1996) stating that, if ∆byt = εt with b > −1, then the

variance (γ0) and the autocorrelation of order j (ρj) of yt satisfy γ0 = σ
2Γ(1−2b)/Γ2(1−b) and

ρj = [Γ (j + b) (1− b)/ (Γ (j − b+ 1)Γ(b))]. In the previous case, where ∆yt ∼ I (d− 1) ( hence

b = d− 1), it is easy to check that the numerator of T−1/2 tϕ(d) converges in probability to

∑T
t=2∆ytzt−1(d)

T
=

∑T
t=2(∆

1−dεt)(εt −∆1−dεt)

(1− d)T
p→ σ2

1− d [1−
Γ(3− 2d)
Γ2(2− d) ],

whereas the two terms in the denominator converge to

∑T
t=2 z

2
t−1(d)

T
=

∑T
t=2(εt −∆1−dεt)2

(1− d)2T
p→ σ2

(1− d)2 [
Γ(3− 2d)
Γ2(2− d) − 1],

and

∑T
t=2 (∆yt − ϕ̂zt−1(d))2

T

p→ σ2.

Replacing the previous limits in the expression for T−1/2tϕ(d) yields

T−1/2tϕ(d)
p→−

(
Γ(3− 2d)
Γ2(2− d) − 1

)1/2
≡ cEFDF (d). (A1)

Next, we examine the case where a Tκ− consistent estimator of d, d̂T , for some d > 0.5 with

κ > 0, is employed to construct the test. In this case, provided

T−1/2tφ(d)− T−1/2tφ(d̂T ) = op (1) , (A2)

the limit of T−1/2tφ(d̂T ) would also be given by expression (A1) . Following LV, we consider the

most critical component in this expression, i.e., the numerator of the difference in (A2), given
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by

T−1

(
T∑

t=1

∆ytzt−1 (d)−
T∑

t=1

∆ytzt−1
(
d̂T

))
.

Proceeding as Robinson and Hualde (2003), we just need to show that expression

T−1

(
T∑

t=2

(
∆1−dεt

)
εt −

T∑

t=2

(
∆1−d̂T εt

)
εt

)
(A3)

tends to zero in probability. It is straightforward to see that
∑T

t=1

(
∆1−dεt

)
εt

T
=

∑T
t=1 (εt + π1 (1− d) εt−1 + π2 (1− d) εt−2 + ...+ πt−1 (1− d) ε1) εt

T

p→ σ2.

since all cross-products tend to zero in probability. As for the second term in (A3) , it can be

written as ∑
ε2t
T

+ T−1
T∑

t=1




t−1∑

i=1

t−1∑

j=1

πi (1− d)πj

(
d̂T − d

)
εt−iεt−j


 ,

where the first term tends to σ2. By applying similar steps to those considered in LV (2007a,

expressions (26)-(28) in appendix 1), it is easy to show that the second term tends to zero

in probability. Hence, it follows that (A3) tends to zero in probability and the desired result

follows.

Likewise, the FDF test is based on the t-ratio

T−1/2tφ(d̃T ) =

∑
∆yt∆

d̃T yt−1/T((∑(
∆yt − φ̂∆d̃T yt−1

)2
/T

)
(
∑
(∆d̃T yt−1)2/T

)1/2 . (A4)

As before, when the true value of d is used as input then, by the Law of Large Numbers

(LLN), the numerator tends to (d− 1)σ2. With respect to the denominator, we have that

T−1
∑
(∆yt)

2 p→ σ2Γ(3− 2d)/ (Γ(2− d))2 and φ̂
p→ (d− 1) . Combining these results, yields

T−1/2tφ̂(d)
p→ (d− 1)Γ(2− d)
[Γ(3− 2d)− (d− 1)2Γ2(2− d)]1/2 ≡ cF DF (d). (A5)

If a consistent estimate of d, d̂T is employed to run the test, a similar strategy to that followed

above can be used to show that tφ̂(d) also converges to (A5).

Finally, by the LLN the LM test defined in (4), multiplied by T−1/2, satisfies that,

T−1/2LMT
p→
√
6

π2

T−1∑

k=1

1

k
ρk,
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where ρk is the (population) correlation function of a pure I (d− 1) process. Using the formula

for the autocorrelations given above, yields

T−1/2LMT
p→
√
6

π2
Γ(2− d)
Γ(d− 1)

∞∑

j=1

Γ (j + d− 1)
jΓ (j − d+ 2) ≡ cLM(d).�

Proof of Theorem 3

We consider first the case where d ∈ (0.5, 1) is a fixed number and then extend the proof to

case where it is stochastic. In the general case where µ (t) is different from zero, the t-statistic

on the coefficient ϕ from the OLS regression of ∆yt on zt−1 is a function of µ (t) given by,

tϕ (d, µ (t)) =

∑T
t=2∆ytzt−1(d)

ŜT (d)
√∑T

t=2 (zt−1 (d))
, (A6)

where Ŝ2T (d) = T
−1
∑T

t=2 (∆yt − ϕ̂zt−1 (d))2. We now show that the asymptotic distribution of

(A6) for the case where µ (t) satisfies Condition A is the same as in the case where µ (t) ≡ 0.
Following the same strategy as LV (2007a), we now prove that, for d �= 1,

tϕ (d, µ (t))− tϕ (d, µ (t) ≡ 0) = op (1) ,

which implies that the test computed ignoring the fact that the DGP contains slowly evolving

trends has the same asymptotic properties as in the case where µ (t) ≡ 0.
As in LV, we just analyze the most critical component of tϕ (d, µ (t)), which is the numerator,

since the analysis of the denominator is similar but simpler. Under H0, the numerator of (A6),

multiplied by T−1/2 (1− d)−1 , is given by,

T−1/2 (1− d)−1
T∑

t=2

∆ytzt−1(d) = T
−1/2

T∑

t=2

(∆µ (t) + εt)
((
∆d −∆

)
µ (t) +

(
∆d−1 − 1

)
εt
)

= T−1/2

(
T∑

t=2

εt
(
∆d−1 − 1

)
εt +

T∑

t=2

(
∆µ (t) (∆d −∆)µ (t)

)
+ (A7)

T∑

t=2

∆µ (t)
(
∆d−1 − 1

)
εt +

T∑

t=2

εt(∆
d −∆)µ (t)

)
. (A8)

We now show that if µ (t) = tδ, δ ∈ [0, 0.5) all the terms in (A7) and (A8) but the first,(
T−1/2

∑T
t=2 εt

(
∆d−1 − 1

)
εt
)
, converge to zero. Any other specification of µ (t) satisfying

Condition A can be dealt with analogously.
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To prove this, notice that the terms tδ and ∆−δ1(t>0) are of the same order of magnitude.

This is because ∆−δ1(t>0) =
∑t−1

i=0 πi (−δ) ≈ c
∑t−1

i=0 i
δ−1 = O(tδ) (see Davidson, 1994, Theorem

2-27), where c is a constant and the coefficients πi (−δ) are defined at the end of the Introduction.

The second term in (A7) verifies that,

T−1/2

(
T∑

t=2

∆µ (t)∆dµ (t)−
T∑

t=2

(∆µ (t))2
)

≈ T−1/2

(
T∑

t=2

t2δ−d−1 −
T∑

t=2

t2(δ−1)

)

= T−1/2
(
O
(
T 2δ−d

)
−O (1)

)
→ 0, (A9)

if d > 0.5 and δ < 0.5.

With respect to the first term in (A8),

T−1/2E

(
T∑

t=2

∆tδ
(
∆d−1 − 1

)
εt

)
= 0, (A10)

and

T−1V ar

(
T∑

t=2

∆tδ
(
∆d−1 − 1

)
εt

)
≈ T−1

(
σ2ε + σ

2
∆d−1ε

) T∑

t=2

t2(δ−1) → 0, (A11)

where σ2
∆d−1ε

denotes the variance of the stationary fractionally integrated process ∆d−1εt. Ex-

pressions (A10) and (A11) imply that
∑T

t=2∆t
δ
(
∆d−1 − 1

)
εt

p→ 0. The same type of argument

can be used to show that the second term in (A8) also converges to zero. Therefore, for d �= 1,
it follows that

(1− d)−1 T−1/2
T∑

t=2

∆ytzt−1(d) = (1− d)−1 T−1/2
T∑

t=2

εt
(
∆d−1 − 1

)
εt + op (1) , (A12)

which in turn implies that the distribution for the case where the DGP contains slowly evolving

trends is the same as that obtained with µ (t) = 0 for the case where d is a fixed number

∈ (0.5, 1) . Considering an stochastic input for d̂T amounts to show that

tϕ (d, µ (t))− tϕ
ols

(
d̂T , µ (t)

)
= op (1) ,

where d̂T satisfies the conditions stated in Theorem 1. It is easy to show, following the same

strategy as above, that the last three terms computed with the estimated input d̂T converge to

zero. Hence, the numerator of tϕ (d, µ (t))− tϕ
(
d̂T , µ (t)

)
can be written as

(d− 1)−1 T−1/2
(

T∑

t=2

εt
(
∆d−1 − 1

)
εt −

T∑

t=2

εt
(
∆d̂T − 1

)
εt

)
+ op (1) ,

27



and LV (2007a, Appendix 1) have shown that the first term of this expression also tends to zero.

The case where d = 1− γ/
√
T can be solved in an analogous fashion, taking into account the

derivations reported in Appendix 1 of LV (2007a). Finally, using the results in DGM and LV,

it is straightforward to prove the consistency of the test under fixed alternatives.�

Proof of Theorem 4

We start, as before, by analyzing the case where the input of zt−1, d, is fixed. We now show

that under H0 : d = 1, tϕ (d, µ (t) = 0)− tϕ (d, µ̂ (t))
p→ 0, where in this case tϕ (d, µ̂ (t)) is given

by,

tϕ (d, µ̂ (t)) =

∑T
t=2 ∆̃ytz̃t−1 (d)

ŜT (d)
√∑T

t=2 (z̃t−1 (d))
,

where ∆̃yt = (∆yt − ∆µ̂ (t)), z̃t−1 (d) = (1− d)−1
(
∆d−1 − 1

)
(∆yt − ∆µ̂ (t)) and Ŝ2T (d) =

T−1
∑T

t=2

(
∆̃yt − ϕ̂z̃t−1 (d)

)2
and µ (t) satisfies condition B.

For simplicity, we consider the DGP with a linear trend

yt = α+ βt+∆
−dεt, d ≤ 1, (A13)

since any other polynomial of t can be handled accordingly. Let β̂ be the OLS estimate of β,

computed after taking first differences in (A8). Then, β̂ = ∆yt, where ∆yt is the sample mean

of ∆yt. Notice that under (A13) , β̂ is a T 3/2−d-consistent estimator of β (see Hosking, 1996). As

in Theorem 2, we analyze the numerator of tϕ since the analysis of the denominator is similar

but simpler.

The numerator of tϕ (d, µ̂ (t)) multiplied by (1− d) is given by,

T−1/2 (1− d)
T∑

t=2

∆̃ytz̃t−1 = T
−1/2

T∑

t=2

εt
(
∆d−1 − 1)εt

)
+ T−1/2At,

where

T−1/2At = T
−1/2

(
β − β̂

)(∑(
∆d−1 − 1)εt

)
+
(
β − β̂

) T∑

t=2

τ t (d) +

(
T∑

t=2

(τ t (d)− 1)εt
))
,

with τ t (̺) =
∑t−1

i=0 πi (̺) and the coefficients πi (̺) are defined at the end of the Introduction.

It is easy to check that, under H0,

T−1/2At (d1) = Op

(
T−1

) (
op (T ) +Op

(
T−1/2

)
O
(
T 1−d

)
+Op

(
T 1/2

))
p→ 0.

The same strategy can be used to show that the denominator of tϕ (d, µ̂ (t)) equals the de-

nominator of tϕ (d, µ (t) = 0) plus some terms that go to zero in probability. This implies that
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tϕ (d, µ̂ (t))
w→ N (0, 1) .When d is replaced by d̂T , if tϕ (d, µ̂ (t))−tϕ

(
d̂T , µ̂ (t)

)
= op (1) , then the

asymptotic distribution corresponding to tϕ
(
d̂T , µ (t)

)
would be the same as that of tϕ (d, µ (t)).

Following the same steps as above, it is straightforward to show that T−1/2At

(
d̂T

)
tends to

zero. Then, the numerator of (1− d)
(
tϕ (d, µ (t))− tϕ

(
d̂T , µ (t)

))
can be written as,

(d− 1)−1 T−1/2
(

T∑

t=2

εt
(
∆d−1 − 1

)
εt −

T∑

t=2

εt
(
∆d̂T−1 − 1

)
εt

)
+ op (1) ,

and LV (2007a) have shown that this expression tends to zero under the conditions stated in

Theorem 1. Similar results can be easily obtained for the denominator. Hence, tϕ
(
d̂T , µ̂ (t)

)
w→

N (0, 1) .

Again, the case where d = 1− γ/
√
T can be solved in a similar manner, taking into account

the derivations reported in Appendix 1 of LV(2007a). Likewise, using the results in DGM and

LV, the proof of the consistency of the test under fixed alternatives is straightforward.�

Proof of Theorem 5

The proof of this theorem can be easily constructed along the lines of Appendix 2 in LV

(2007a) and Theorems 2 and 3 above. Therefore, it is omitted.�
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TABLES

TABLE 1

S��
 ��� P	�
�(∗) 	� EFDF, LM ��� ELW �
���, 5% S.L.

DGP: yt = α+ βt+∆
−dεt

d = 1− γ/
√
T ; α = 1; εt ∼ N(0, 1)

EFDFµ, (β=0) EFDFτ, (β=0.2) LMµ, (β=0) LMτ, (β=0.2) ELWµ, (β=0) ELWτ, (β=0.2)

γ\T 100 400 100 400 100 400 100 400 100 400 100 400

0 0.061 0.045 0.074 0.087 0.031 0.029 0.049 0.046 0.071 0.075 0.072 0.074

0.5 0.116 0.195 0.123 0.164 0.111 0.190 0.100 0.162 0.091 0.090 0.086 0.096

1 0.287 0.378 0.252 0.328 0.273 0.369 0.237 0.324 0.150 0.158 0.125 0.154

2 0.728 0.834 0.649 0.774 0.681 0.803 0.612 0.748 0.361 0.353 0.301 0.339

5 1.000 1.000 1.000 1.000 0.980 0.991 0.951 0.962 0.953 0.932 0.909 0.940

(∗) Size-adjusted power

TABLE 2

S��
 ��� P	�
�(∗) 	� AEFDF, LM ��� ELW T
���, 5% S.L.

DGP: yt = α+ βt+∆
−dǫt/ (1− φL)

d = 1− γ/
√
T ; φ = 0.2; α = 1; β = 0.2; φ = 0.2; εt ∼ N(0, 1)

AEFDFµ, (β=0) AEFDFτ, (β=0.2) LMµ, (β=0) LMτ, (β=0.2) ELWµ, (β=0) ELWτ, (β=0.2)

γ\T 100 400 100 400 100 400 100 400 100 400 100 400

0 0.061 0.066 0.075 0.065 0.033 0.031 0.029 0.050 0.058 0.056 0.057 0.053

0.5 0.093 0.091 0.075 0.085 0.079 0.077 0.070 0.079 0.097 0.072 0.083 0.070

1 0.139 0.154 0.108 0.155 0.112 0.151 0.091 0.134 0.139 0.121 0.121 0.118

2 0.328 0.352 0.237 0.342 0.285 0.338 0.224 0.314 0.321 0.278 0.312 0.291

5 0.952 0.973 0.840 0.942 0.891 0.947 0.811 0.914 0.910 0.898 0.814 0.890

(∗) Size-adjusted power.
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TABLE 3

P	�
�(∗) 	� EFDF, LM ��� ELW �
���, 5% S.L.

DGP: yt = α+ βt+∆
−dεt,

d = 1− γ/
√
T ; α = 1; β = 0.2; εt ∼ (demeaned) χ21

EFDFτ LMτ ELWτ

γ/ T 100 400 100 400 100 400

0.5 0.151 0.150 0.127 0.143 0.088 0.093

1 0.321 0.354 0.272 0.331 0.166 0.172

2 0.737 0.806 0.704 0.765 0.376 0.387

(∗) Size-adjusted power

TABLE 4

E���#��
� 	� β̂ ��� �	$��� �.
(β̂) �� ∆yt = β+ ut

Country Mean Robust s.e.

Australia 0.0148 0.004

Belgium 0.015 0.005

Canada 0.0195 0.005

Denmark 0.0184 0.008

France 0.0185 0.006

Germany 0.0176 0.007

Italy 0.0192 0.006

Netherlands 0.0154 0.006

Norway 0.0221 0.006

UK 0.0143 0.003

USA 0.0186 0.005

Spain 0.0199 0.005

Sweden 0.0193 0.005
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TABLE 5

AEFDF T
��

H0 : I(1) vs. HA: d < 1

Country tϕ(d̂T ) d̂T (s.e. = 0.10)

Australia -1.02 1.10

Belgium -0.74 0.98

Canada -2.58∗ 0.80

Denmark -0.72 0.99

France -1.82∗ 1.08

Germany -1.94∗ 0.83

Italy -0.18 0.98

Netherlands -1.76∗ 0.92

Norway -1.03 0.98

UK -1.94∗ 0.87

USA -3.50∗ 0.63

Spain -0.17 1.18

Sweden -0.07 1.12

Note.- (∗) denotes 5%-rejection.
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