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Abstract 
 

Year-ahead forecasting of electricity prices is an important issue in the current context of 
electricity markets. Nevertheless, only one-day-ahead forecasting is commonly tackled up in 
previous published works. Moreover, methodology developed for the short-term does not work 
properly for long-term forecasting. 
 
In this paper we provide a seasonal extension of the Non-Stationary Dynamic Factor Analysis, 
to deal with the interesting problem (both from the economic and engineering point of view) of 
long term forecasting of electricity prices. Seasonal Dynamic Factor Analysis (SeaDFA) allows 
to deal with dimensionality reduction in vectors of time series, in such a way that extracts 
common and specific components. Furthermore, common factors are able to capture not only 
regular dynamics (stationary or not) but also seasonal one, by means of common factors 
following a multiplicative seasonal VARIMA(p,d,q)×(P,D,Q)s model. 
 
Besides, a bootstrap procedure is proposed to be able to make inference on all the parameters 
involved in the model. A bootstrap scheme developed for forecasting includes uncertainty due 
to parameter estimation, allowing to enhance the coverage of forecast confidence intervals. 
Concerning the innovative and challenging application provided, bootstrap procedure developed 
allows to calculate not only point forecasts but also forecasting intervals for electricity prices. 
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1 Introduction

Forecasting electricity prices has been developed recently, since just a few years ago only

demand was predicted in centralized markets. Nowadays, however, electricity is traded under

competitive rules, like other commodities, and this has opened a new field of research. The

novelty of the problem and the special features that electricity presents (not being able to

be stored, and demand to be satisfied instantaneously, which are responsible for the largely

unpredictable behavior of its price) has created the need of developing specific models that

deal with this problem, since it has a great importance for a strategic sector in the economy

of any country.

Nowadays there are several ways to trade with electricity:

1. Forward markets and options, which are only well developed in some electricity markets,

like the European Energy Exchange (EEX) in Germany.

2. The pool, in which both the producers and consumers submit their respective generation

and consumption bids (for each hour) to the market operator. In the market of mainland

Spain the marginal price is defined as the bid submitted by the last generation unit

needed to satisfy the whole demand. This mechanism is shown in Fig. 1, and means

that for each day a 24-dimensional vector of prices is generated. Also this structure of

the data appears when analyzing other well known electricity markets like Nord Pool or

the PJM Interconnection (a regional transmission organization that plays a vital role in

the U.S. electric power system), where there is a load data and price data for each hour.

On the other hand, other electricity markets like New South Wales in Australia operate

in such a way that the resulting clearing price and accepted production and consumption

bids are determined every half an hour, so for each day 48 data are available.

3. Bilateral contracts: customers and generators can agree to trade a certain amount of

power at a certain price. But every contract implies a risk since the seller must purchase

every day in the Pool the amount of energy agreed. Having accurate long-term forecasts

(covering at least the length of the bilateral contract) reduces this risk. In this work we

compute forecasts for electricity prices, with forecasting horizon ranging from one day

to one year.
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Figure 1: Market clearing price. Spanish Market.

Most previous works are focused on computing short-term (one-day-ahead) forecasts of elec-

tricity prices or load forecasts. Nogales et al. (2002) applied transfer functions and dynamic

regression to forecast electricity prices. Contreras et al. (2003) forecasted electricity prices

of the Californian and Spanish markets by applying ARIMA models. Troncoso et al. (2002)

compared the kWNN (k Weighted Nearest Neighbours) technique with dynamic regression.

Crespo-Cuaresma et al. (2002) have suggested a group of univariate models to predict elec-

tricity prices in the Leipzig market, the most important spot market in Germany. Conejo

et al. (2005) compared several methods including wavelet approximation, ARIMA models

and neural networks, the extensive analysis is conducted using data from the PJM Intercon-

nection.. Nogales et al. (2006) forecasted the prices in the PJM Interconnection, through

transfer functions, showing that the inclusion of explanatory variables (like demand) does not

significantly reduce the prediction errors. For all of them the average error is around 13-

15%. Garćıa-Martos et al. (2007) computed short-term forecasts for every hour in the period

1998-2003, obtaining a prediction error around 12.61%. On the other hand, Cottet and Smith

(2003) and Koopman et al. (2007) provided load forecasts and periodic extensions of dy-

namic long-memory regression for the analysis of daily spot prices, respectively. Nevertheless,

long-term forecasting of electricity prices has been scarcely studied, and there is no published

works dealing with this issue. Moreover, methodology applied to short-term forecasting does
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not work properly in the long-run, as it will be shown in this work, so an specific methodology

must be developed for long-term forecasting of electricity prices.

Since a 24-dimensional vector of time series is considered instead of the complete time series,

following the well known parallel approach, a high-dimensional vector of series must be mod-

elled, so the number of parameters to be estimated growths and the ”curse of dimensionality”

arises. Besides, seasonality is present (due to strong dependence of prices and demand on

weather and economic and social activities), so not only regular dynamics but also seasonal

one must be estimated, the problem is more important.

Dimensionality reduction techniques for vectors of time series have been deeply studied and

many references can be quoted in this direction. Sargent and Sims (1977) and Geweke (1977)

were the first to propose a dynamic factor model. On the one hand, Stock and Watson (2002)

explores dimensionality reduction in panel data used to explain one variable. On the other

hand, Peña and Box (1987) proposed a simplifying structure for a vector of time series valid

only for the stationary case. Lee and Carter (1992) extended Principal Components Analysis

to the case in which the variables are time series, and compute long-run forecasts of mortality

and fertility rates by means of extracting a single common factor. Most recently, Peña and

Poncela (2004, 2006) extended the Peña-Box model to the Non-Stationary case.

However, there is not a specific dimension reduction technique that can be applied to vectors

of time series that present a seasonal pattern. There are many examples of this kind of data,

such as vectors of macroeconomic variables, metheorological data and time series coming

from electricity markets (load and prices). Bearing this in mind, till now, when reducing

dimension in vectors of time series with seasonal behavior, the only possible alternative was to

deseasonalize and then apply some of the references cited above in order to reduce the number

of parameters to be estimated.

In this work two contributions are introduced. First of all, Seasonal Dynamic Factor Analysis

(hereafter referred as SeaDFA) is presented. It allows extracting the common factors of a vector

of time series, and estimating the seasonal multiplicative VARIMA model that they follow,

so regular and seasonal dynamics can be modeled. Secondly, concerning inference procedures,

we propose an alternative bootstrap scheme to those derived by Stoffer and Wall (1991) and

Wall and Stoffer (2002), valid for all models that can be expressed under the state-space
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formulation. Bootstrap methods are considered for this purpose instead of other alternatives

such as Fisher information matrix (Shumway and Cavanaugh (1996)), since asymptotic results

are not of application if time series are not fairly long or the parameters fall near the boundary

of the parameter space.

Development of these two contributions are motivated by the analysis of time series of

electricity prices, which are relevant, both from the engineering and economic point of view.

Actually, a great number of recent references (Cottet and Smith (2003), Koopman, Ooms and

Carnero (2007)) focus that complex problem affecting all the agents involved in electricity

markets. SeaDFA is applied to compute year-ahead forecasts of electricity prices.

The rest of the paper is organized as follows. In Section 2 the Seasonal Dynamic Factor

Analysis (SeaDFA) and its estimation algorithm is introduced and explained. In Section 3

the bootstrap scheme developed for the SeaDFA is presented. In Section 4 a Monte Carlo

simulation study is provided to check the behavior of the proposed bootstrap procedure. In

Section 5 the model and its bootstrap scheme is applied to forecasting electricity prices in the

Spanish market. Finally, in Section 6 some conclusions are provided.

2 Seasonal Dynamic Factor Analysis (SeaDFA)

In this Section we present the Seasonal Dynamic Factor Model, that allows to deal with

common factors following a VARIMA(p, d, q)× (P,D,Q)s model with constant. In Subsection

2.1 we present the model specification, in Subsection 2.2 we present the relationship between

SeaDFA and state-space formulation. In Subsection 2.3 the estimation procedure is described.

2.1 The model

Let yt be a m-dimensional vector of observed time series generated by a r-dimensional vector

of unobserved common factors (r < m). We assume that vector yt can be written as a linear

combination of the unobserved common factors, ft, plus εt, to which we will refer from now
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on as specific components or specific factors.

yt = Ωf t + εt, (1)

where Ω is the m× r load matrix that relates the r-dimensional set of common factors to the

vector of observed time series yt, and εt is the m-dimensional vector of specific components.

The common dynamic structure of the m observed time series is included in the r common

factors, while the specific dynamic is captured by the specific factors. We suppose that the

specific components, εt, are white noise. Vector εt has zero mean, E[εtε
0
τ ] = 0 if t 6= τ, and

diagonal covariance matrix S = E[εtε
0
t].

Unobserved common factors ft can be non-stationary, including not only seasonal or regular

unit roots but also a seasonal or regular autoregressive and/or moving average pattern. We

assume that ft follows a seasonal multiplicative VARIMA model (p, d, q) × (P,D,Q)s with

constant as follows,

(1−B)d(1−Bs)Dφ(B)Φ(Bs)ft = c+ θ(B)Θ(Bs)wt, (2)

where φ(B) = (I − φ1B − φ2B2 − ... − φpB
p), Φ(Bs) = (I − Φ1B

s − Φ2B
2s − ... − ΦpB

Ps),

θ(B) = (I − θ1B − θ2B
2 − ...− θqB

q) and Θ(Bs) = (I − Θ1B − Θ2B
2s − ...− ΘqB

Qs) are

polynomial matrices r × r, B is the backshift operator such that Byt = yt−1, the roots

of |φ(B)| = 0 and |Φ(Bs)| = 0 are on or outside the unit circle, the roots of |θ(B)| = 0

and |Θ(Bs)| = 0 are outside the unit circle and wt ∼ Nr(0,Q) is serially uncorrelated,

E[wtw
0
t−h] = 0, h 6= 0. We also assume that the noise term of the common factors and the

observed series are also uncorrelated for all lags, E[wt, εt−h] = 0, ∀h. c is the constant of the
model of the common factors.

It should be noted that the model is not identifiable, since for any r × r non-singular

matrix H, the observed vector of time series can be expressed as a linear combination of a

new set of factors. To solve this identification problem, we can always choose either Q = I

or Ω0Ω = I. Therefore, the model is not yet identified under rotations, and we need to

introduce an additional constraint to be able to estimate the model. Harvey (1989) imposes

that ωij = 0, for j > i, where Ω = [ωij]. This condition is not restrictive since the factor model

can be rotated for better interpretation when needed.

The inclusion of the constant can be relevant if trying to compute long-term forecasts in
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the non-stationary case.

2.2 State-space formulation and its relationship with SeaDFA

In general, a linear unobserved component model with exogenous variables and time-invariant

system matrices can be written as a state-space model as follows:

xt = Aαt +Bβt + Cγt

αt = Dαt−1 + Fβt +Gδt

The first equation is known as the measurement or observation equation and relates the

observed m−dimensional series xt with the k-dimensional latent or unobserved state αt com-

ponents. A is the loading matrix, βt is the vector of exogenous variables and matrix B relates

the vector of observed series with the vector of exogenous variables. The additive observation

noise γt is assumed to be Gaussian with m×m covariance matrix S, and it is related with xt

by means of C. The second one is the transition equation. It relates the state-vector αt with

the state vector at time t− 1 by means of the transition matrix D. The additive noise of the

transition equation is δt, assumed to be Gaussian with r× r covariance matrix Q, and related

with αt by means of F, and uncorrelated with γt at all leads and lags.

The system matrices A,B,C,D, F,G,Q and S are assumed to be predetermined in the

sense that they are known at time t− 1, and since they are fixed the model is said to be time
invariant.

Bearing this in mind, (1) and (2) can be directly considered as an observation equation

without exogenous variables (A = Ω and C = I) and a transition equation, just writing the

VARIMA model adequately, using the multivariate extension of the state-space formulation

for ARIMA models proposed by Ansley and Kohn (1986).

yt = Ωf t + εt (3)

ft = c·1+Ψft−1 +wt (4)

As a particular case, an exogenous variable equal to one will be introduced in the transition

equation in order to estimate the constant in the model of the common factors. It is not
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necessary to include exogenous variables in the measurement equation that relates the vector

of observed time series with the set of common factors and the specific ones, thus βt = 1,∀t,
B is the null matrix and F = c.

For example, if there are r common factors, ft, that follow a VARIMA(2, 0, 0) × (1, 0, 0)4
model, φ(B)Φ(B4)ft = c + wt, where φ(B) = (I − φ1B − φ2B2) and Φ(B4) = (I − Φ1B

4)

are r × r polynomial matrices. The corresponding transition equation would be ft = Ψft−1 +

c +wt, where ft is a (r·(2 + 1·4))-dimensional vector containing the common factors at time
t and their five lags. The r-dimensional vectors c and wt are respectively (c1, c2, ..., cr)

0 and

(w1,t, ..., wm,t, 0r·(p−1))0. The (6r)× (6r) transition matrix is:

Ψ =



Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

Ir 0r · · · · · · 0r 0r

0r
. . . . . .

...
...
...

. . . . . .
...

0r · · · · · · Ir 0r


=



φ1 φ2 0r Φ1 −φ1Φ1 −φ2Φ1
Ir 0r · · · · · · 0r 0r

0r
. . . . . .

...
...
...

. . . . . .
...

0r · · · · · · Ir 0r


.

2.3 SeaDFA Estimation using the EM Algorithm

The previous state-space formulation depends on a set of parameters (c,Ψ,Ω,S, ...) that must

be estimated from the observed vector of time series. In this Subsection we present an esti-

mation procedure.

We use maximum likelihood under the assumption that the initial state is normal, f0 ∼
N(µ0,P

0
0), where µ0 and P

0
0 are the initial mean and covariance, and the errors εt and wt

are jointly normal and uncorrelated vector variables. For simplicity we also assume that

εt and wt are uncorrelated. Although it is not necessary to assume Gaussianity in εt and

wt, certain additional conditions would have to apply and adjustments to the asymptotic

covariance matrix would have to be made (Shumway and Stoffer (2006)).

In addition to the non-stationarity included in Peña and Poncela (2004 and 2006), in this

work we include the possibility of common factors following a multiplicative seasonal model
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with constant. Seasonality introduces some additional non-linear constraints between parame-

ters in matrix Ψ, and modifying the estimation procedure as we will show. Just for simplicity

we will explain the estimation algorithm for models with common factors without moving

average component.

The estimation is carried out by means of the EM algorithm (Shumway and Stoffer (1982))

using the state space formulation and the Kalman filter. The main problem EM algorithm

solves is that the common factors must also be estimated since they are also unknown. The log-

likelihood cannot be maximized directly, so it must be maximized iteratively, till convergence

is reached. The EM algorithm will be used for this purpose.

We use Λ = {c,Ψ,Ω,S,µ0,P00} to represent the vector of parameters containing:

• The constant of the model of the common factors, c.

• The transition matrix Ψ including the dynamics of the common factors.

• The loading matrix Ω that relates the observed vector of time series yt to the unobserved
set of common factors ft.

• The variance-covariance matrix of the noise of the measurement equation, (variance-
covariance matrix of the specific components), S, which is a diagonal matrix.

• The initial condition for the mean and variance of the state variables, µ0 and P00 respec-
tively.

One should bear in mind that the variance-covariance matrix of the residuals of the model for

the common factors, Q will be fixed as equal to the identity matrix, as explained in Subsection

2.1.

The common factors, ft, that will be obtained from the Kalman filter in the last iteration,

thus bft = ft|t = f tt = E[ft|Yt], where Yt = {y1, ...,yt}.

If unobserved common factors FT = {f0, f1, ..., fT} were known, in addition to the observa-
tions YT = {y0,y1, ...,yT}, then, we would consider the vector of time series V = {YT ,FT},
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as the complete data, and its joint density function would be given by the expression:

fΛ(YT ,FT ) = fµ0,P00(f0)
TY
t=1

fΨ,Q(f t|f t−1)
TY
t=1

fS(yt|f t)

Assuming Gaussianity of εt and wt, the log-likelihood of complete data, i. e., the likelihood

of vector V = {YT ,FT}, has the following expression:

lnLY,F (Λ) =
−1
2
{ln

¯̄̄
P00
¯̄̄
+ (f0 − µ0)0(P00)−1f0(f0 − µ0) +

+T ln |Q|+
TX
t=1

(ft −Ψf t−1 − Fβt)
0Q−1(ft −Ψf t−1 − Fβt) +

+T ln |S|+
TX
t=1

(yt − Ωf t −Bβt)
0S−1(yt − Ωf t −Bβt)}. (5)

Using properties of trace, traspose and inverse, and for the particular case in which the

exogenous varible is included to estimate the constant, equation (5) can be expressed as:

−2 lnLY,F (Λ) = ln
¯̄̄
P00
¯̄̄
+ tr((P00)

−1(f0 − µ0)(f0 − µ0)0) +

+T ln |Q|+
TX
t=1

tr(Q−1(ft −Ψf t−1)(ft −Ψf t−1)0)

−2·tr
TX
t=1

c0Q−1(ft −Ψf t−1) + tr
TX
t=1

Q−1cc0

+T ln |S|+
TX
t=1

tr(S−1(yt − Ωf t)(yt − Ωf t)
0). (6)

The vector bΛ(j) = nbc(j), bΨ(j), bΩ(j), bS(j), bµ(j)0 , bP0(j)0

o
includes all parameters estimated at the

jth iteration. Since (6) cannot be maximized directly as the common factors are unknown

the EM algorithm provides an iterative method for finding the MLEs of Λ, by successively

maximizing the conditional expectation of the complete data likelihood, using only a vector

of multivariate time series yt and subsequently maximizing the conditional expectation of

likelihood. It consists of two steps:

• E-step (Expectation step): We calculate the conditional expectation of −2 lnLY,F de-

fined in (6) given yt and Λ(j−1). Here we use the properties derived from the Kalman
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smoother (Shumway and Stoffer (2006)). The desired conditional expectations are ob-

tained as smoothers.

E{−2 lnLY,F (Λ)|yt,Λ(j−1)} = ln
¯̄̄
P00
¯̄̄
+ tr((P00)

−1[PT
0 + (f

T
0 − µ0)(fT0 − µ0)0]) +

+n ln |Q|+
TX
t=1

tr{Q−1(S11 − S10Ψ0−ΨS10 +ΨS00Ψ)}

−2·tr{Q−1
TX
t=1

(fTt −ΨfTt−1)c
0}+ T ·tr(Q−1cc0)

+n ln |S|+ tr{S−1
TX
t=1

(yt − ΩfTt )(yt − ΩfTt )
0 + ΩPT

t Ω‘}.(7)

where:

f tt = E(ft|Yt), PT
t = var(ft|Yt), Pt

t,t−1 = cov(ft, ft−1|Yt), Yt = {y0,y1, ...,yt}

S00 =
TP
t=1
(PT

t−1 + f
T
t−1f

T 0
t−1)), S10 =

TP
t=1
(PT

t,t−1 + f
T
t−1f

T 0
t−1)), S11 =

TP
t=1
(PT

t + f
T
t f

T 0
t ))

are obtained after running the Kalman filter and smoother, Shumway and Stoffer (2006).

• M-step (Maximization step): The conditional expectation of the log-likelihood, lnLY,F (Λ),

is maximized with respect to the parameters we want to estimate. An explicit expression

for bΨ cannot be obtained, since some non-linear constraints appear between the elements
of the transition matrix. As an example for illustrating these nonlinear constraints we

consider, for instance, for quarterly data, a multiplicative seasonal operator having the

form:

(Ir − Φ1B
4)(Ir −φ1B −φ2B2)

The corresponding VAR operator isΨ(B) = Ir−Ψ1B−...−Ψ6B
6 = Ir−φ1B−φ2B2−Φ1B4+

Φ1φ1B
5 + Φ1φ2B

6, so that Ψ1 = φ1,Ψ2 = φ2,Ψ3 = 0k,Ψ4 = Φ1,Ψ5 = −Φ1φ1,Ψ6 = −Φ1φ2.
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Hence, the coefficients Ψ1, ...,Ψ6, are determined by φ1,φ2 and Φ1. Due to these non-linear

constraints, the terms in equation (7) involving Ψ, where the vector of constants also appears.

TX
t=1

tr{Q−1(S11 − S10Ψ0 −ΨS10 +ΨS00Ψ)}− 2·tr{Q−1
TX
t=1

(fTt −ΨfTt−1)c
0}+ T ·tr(Q−1cc0)

(8)

should be minimized respect to Ψ by means of an optimization procedure with non-linear

restrictions. We have used a subspace trust region method and it is based on the interior-

reflective Newton method described in Coleman and Li (1994, 1996). Each iteration involves

the approximate solution of a large linear system using the method of Preconditioned Conju-

gate Gradients (PCG). The TOMLAB toolbox for Matlab 6.5 has been used for its computa-

tional implementation.

The other parameters we want to estimate (not affected by non-linear constraints), can be

obtained maximizing (7) with respect to them, which yields:

vecbΩ = E2S−111 + (S−111 ⊗ S)F02(F2(S
−1
11 ⊗ S)F02)

−1(g2 − F2vec(E2S−111 )), (9)

where E2 =
TP
t=1
(ytf

T 0
t −MfT 0t ), M =

TP
t=1
(yt−ΩfTt ), and F2 vecΩ = g2 allows to include linear

restrictions between the parameters in Ω (see Wu, Pai and Hosking (1996)). F2 is a matrix

whose number of rows is equal to the number of linear restrictions to be imposed on Ω and

its number of column coincides with the length of vecΩ. And g2 is a vector whose length is

equal to the number of restrictions.

Finally, the value of S that maximizes the conditional expectation of the likelihood is:

bS = 1

T

TX
t=1

((yt − bΩfTt )(yt − bΩfTt )0 + bΩPT
t
bΩ‘), bµ0 = fT0 , bP00 = PT

0 . (10)

The E and M step are repeated alternatively till convergence is reached, i.e., till the difference

between conditional likelihood in two consecutive iterations is small enough.

Summarizing, the steps to estimate the SeaDFA using EM would be:

1. Initialize the procedure, giving initial values to c,Ψ,Ω, S,µ0 and P
0
0. Q is fixed to be

the identity matrix.
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2. Specify F2 and g2, bearing in mind the linear constraints affecting Ω.

3. Obtain f tt , f
T
t , P

T
t , P

T
t,t−1 ∀t from the Kalman filter and smoother.

4. Calculate Ψ(i+1) maximizing expression (8) subject to the corresponding nonlinear con-

straints, and Ω(i+1), S(i+1), bµ0 and bP00 from equations (9) and (10), as well as the

conditional likelihood (7).

5. If (E(−2 lnLY,F (Λ))−E(−2 lnLY,X(Λ
i−1))) < ε, with ε small enough and prefixed, then

stop.

If convergence has not been reached, then steps 3, 4 and 5 are iteratively repeated.

3 Bootstrap scheme for Seasonal Dynamic Factor Analy-

sis

In this Section we provide a bootstrap scheme for assessing uncertainty to the maximum

likelihood estimates of parameters of our Seasonal Dynamic Factor Model, as well as computing

forecast intervals.

Furthermore, since SeaDFA is a particular case of a model that can be written using the

state-space formulation (as shown in Subsection 2.1). This bootstrap scheme is able to asses

precision of estimates of any linear state-space model. This is an advantage, since a wide

range of statistical and econometric models can be represented under this formulation. In

fact, many authors have focused on estimation of time series model by state-space methods

(see Harvey (1992), Durbin and Koopman (2001)).

Application of classical inference methods relying on asymptotic theory is subject to the

disposal of large data sets, as investigated by Ansley and Newbold (1980), among others. For

this reason bootstrap techniques are a powerful alternative to inference procedures based on

Fisher Information Matrix. Moreover, bootstrap methods have a main advantage, since they

allow to take into account the uncertainty due to parameter estimation, which enhance the

coverage of the confidence intervals for the forecasts.
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The existence, under certain conditions, of this asymptotic theory involving the consistency

of parameter estimates obtained by maximum likelihood and state estimators obtained from

the Kalman filter (see Ljung and Caines (1979) or Spall and Wall (1984)) has allowed other

authors (Stoffer and Wall (1991), Wall and Stoffer (2002)) to be able to develop procedures for

bootstrapping state space models, resampling from the innovations and generating bootstrap

replicas of the model under study using the innovation form representation, see Anderson and

Moore (1979). Our procedure is an alternative that generates replicas of the model resampling

not only from the observation equation residuals but also from the transition equation, once

consistent estimates of parameters and state variables have been obtained.

In Subsection 3.1 we present the bootstrap scheme for making inference on the parameters

of the model. Bootstrap scheme for computing forecast intervals is provided in Subsection 3.2.

A simulation study is carried out in Section 4.

3.1 Inference on the parameters of the SeaDFA

By means of the new bootstrap procedure we will obtain percentile based confidence intervals

for each element in loading matrix Ω, as well as for the parameters of the VARMA model

for the common factors, Ψ, and the constant c, and variance-covariance matrix of the specific

factors, S. We will be able to test the significance of the elements in these matrices.

The bootstrap scheme consists of the seven subsequent steps:

1. The model defined by (3), (4) is estimated following the EM algorithm described in

Section 2. Once this has been completed, as explained in section 2.3, the parameters

involved, bc, bΨ, bΩ, bS, bµ0, bP00, are available. Besides, we have consistent estimates, bft, of
the state variables, ft derived from the Kalman filter at the last iteration.

2. The specific factors are calculated: bεt = yt − bΩbft.
One should bear in mind the relationship between bεt and εt, and their variance-covariance
matrices. S = E[εtε

0
t] and Sbε= E[bεtbε0t]. Since εt = bεt + (εt − bεt) it is verified that

S = Sbε + var(εt − bεt) = Sbε + Scorrection, because the cross products are zero. The term
Scorrection = var(εt − bεt) can be considered as a correction factor, as in the model pro-
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posed in Harvey, Ruiz and Sentana (1992). An expression for var(εt − bεt) in terms of
the estimated loads and the variance of the state variables is derived in Appendix A.

3. Draw B resamples, ε∗e,t, from Feε, the empirical distribution function of the centered and
corrected specific factors,

Feε(x) = 1

T

TX
t=1

I(eεe,t ≤ x), eεe,t = S−1/2bε (bεt − ε)bS1/2.
4. Calculate bwt = bft − bΨbft−1.
5. Draw B resamples, w∗j,t, from Few, the empirical distribution function of the standardized
residuals of the VARIMA model for the common factors.

Few(x) = 1

T

TX
t=1

I( ewj,t ≤ x) and ewt,j =
bwt,j − wt,j

σbwj,t , where j = 1, ..., r.

We use the standardized residuals since one of the constraints imposed for identifiability

of the SeaDFA is Q = I. In the general case of a linear state-space model we would

reescale bwt using cQ and cQbw = E[ bwt bw0
t], as it was done for the estimated specific

factors, bεt to obtain eεt.
6. Generate B bootstrap replicas of the common factors using the transition equation:

f∗t = bΨf∗t−1 +w∗t .
7. Generate B bootstrap replicates of the SeaDFM, using bootstrap replicas of the common

and specific factors obtained in steps 3 and 6, respectively:

y∗t = bΩf∗t + ε∗t .
From estimating the SeaDFA for each replica obtained in step 7, we have bc∗, bΨ∗, bΩ∗ and bS∗

and their respective bootstrap distribution functions, bF ∗bc∗ bF ∗bΨ∗ bF ∗bΩ∗ bF ∗bS∗. They are used to compute
percentile based confidence intervals for all these parameters using the following expression:

[q∗(α/2), q∗(1− α/2)],

where, for example, when calculating intervals for the constant of the model, q∗(·) = bF ∗−1bc∗ .

14



Finally, bootstrap confidence intervals for the loads, ωij, and VARMA parameters, Ψij,

are obtained from the corresponding bootstrap distribution functions, F ∗ω∗i,j and F ∗Ψ∗i,j , of the

elements (i, j) of matrices Ω∗ and Ψ∗ respectively.

The percentile based confidence intervals for loads and VARMA parameters will allow, for

example, testing the equality of loads, or if the parameters of the VARMA model of the

common factors are significant or not. The results obtained can be used to impose constraints

between loads or VARMA parameters that can be applied in a subsequent estimation of the

SeaDFA.

3.2 Bootstrap procedure for forecasting

Related to forecasting, the main objective is to obtain not only point forecasts but also an un-

certainty measure for them. Bootstrap techniques have been applied for this purpose (Alonso

et al. (2002), Thombs and Schucany (1990)). The previous scheme can be modified if we want

to obtain bootstrap confidence intervals for the forecasts of vector yt. The conditional distrib-

ution of future observations given the observed vector of time series should be replicated. The

final state is fixed for the common factors ft.

The first steps of the bootstrap procedure for forecasting coincides with the seven steps

proposed in the previous Subsection. The following are the forecasting steps.

8. The future bootstrap observations for common factors are calculated using the relation-

ship: f∗t+h = bΨ∗f∗t+h−1 +w∗t+h,
where f∗t = bft if t ≤ T , T is the length of the vector of time series, f∗t+h = (f

∗
t+h,1, f

∗
t+h,2, ...f

∗
t+h,r)

0

and the future bootstrap observations ε∗e,t+h = (ε
∗
e,t+h, ε

∗
e,t+h, ..., ε

∗
e,t+h)

0 are generated re-

sampling from Feε.
9. The future bootstrap observations are calculated for vector yt using the relation y

∗
t+h =bΩ∗f∗t+h + ε∗t+h.

Finally the bootstrap distribution function of y∗t+h is used as estimator of the conditional

distribution of yt+h given the observed sample. Bootstrap confidence intervals are obtained
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using the quantiles of the bootstrap distribution function F ∗y∗
t+h

. The (1−α)% forecast interval
for yt+h is the following:

[q∗(α/2), q∗(1− α/2)],

where q∗(·) = bF ∗−1y∗
t+h
are the quantiles of the estimated bootstrap distribution.

4 Simulation study

In this Section the bootstrap procedure introduced in the previous Section is validated by

means of a Monte Carlo simulation. We also check the performance of the SeaDFA. We report

the results for the following models, which have been selected to check the behavior of the

bootstrap scheme under different conditions:

Model 1: In the first experiment a common nonstationary factor (common trend, I(1) with

constant (c = 3)), for m = 4 observed series. Ω =(1, 1, 1, 1)0, E(εt) = 0, var(εt) = S = I4 and

E(wt) = 0, var(wt) = Q = σ2w = 1. This model has been selected because it appears in Peña

and Poncela (2004), and we have added the constant to validate its estimation, since we have

included this possibility in our model.

Model 2: The second model considers a common nonstationary factor (1−B)(1−0.5B)ft =
wt, for m = 3 observed series, Ω =(1, 1, 1)0, E(εt) = 0, var(εt) = S = I4, E(wt) = 0, var(wt) =

Q = σ2w = 1.

Model 3: In the third model under study we check the performance of our procedure when

there is a seasonal pattern. There is a common nonstationary factor following a seasonal

multiplicative ARIMA model (1 − B7)(1 − 0.4B)(1 − 0.15B7)ft = wt, for m = 4 observed

series, Ω =(1, 1, 1, 1)0, E(εt) = 0, var(εt) = I3, E(wt) = 0, var(wt) = σ2w = 1.

R = 100 realizations of each model have been generated and estimated, and P = 1000

future values yT+h have been generated for different forecasting horizons, h = 1, 3, while three

sample sizes, T, have been considered: 50, 100 and 200. For each vector of series simulated

and estimated B = 500 bootstrap resamples have been generated as described in the previ-

ous section, and the corresponding model was estimated. The (1 − α)% prediction intervals
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[Q∗M(α/2), Q
∗
M(1− α/2)] were computed.

The coverage is estimated as CM = {Q∗M(α/2) ≤ yPT+h ≤ Q∗M(1−α/2)}, where yPT+h is the
vector of future values generated in first step. Meanwhile, using LT = y

P (1−α/2)
T+h −yP (α/2)T+h , and

LB = Q∗M(1 − α/2) − Q∗M(α/2) we obtain the ”theoretical” and bootstrap interval lengths.

LT is the estimated ”true” mean interval length, and CT is the nominal coverage.

The results for Model 1, and nominal coverage 80% and 95%, are shown in Table 1 and

Table 2 respectively. It can be observed that even for small or moderate lengths the values

obtained for coverages are correct. Besides, and although we focused on coverages for the

forecasts, when checking the coverages for the parameters of the model, the results obtained

are also correct.

The results for Model 2 and 3, and nominal coverages 80% and 95% are shown in Tables 3,

4, 5 and 6 respectively. The bootstrap scheme developed for SeaDFA also performs reasonably

well in Model 2 and Model 3 since the coverage and length tend to the nominal values as the

sample size grows.

The results for Model 2, and nominal coverages 80% and 95%, are shown in Tables 3 and 4

respectively.

5 Application: Forecasting electricity prices in the Span-

ish Market

In this Section the SeaDFA and its bootstrap scheme are applied to compute point forecasts

and forecast intervals for electricity prices in the Spanish market. Most previous works com-

pute short term forecasts for electricity prices (Nogales et al. (2002), Contreras et al. (2003),

Conejo et al. (2005), Garćıa-Martos, Rodŕıguez y Sánchez (2007)), load forecasts (Cottet

and Smith (2003)), or analysis of several markets spot prices (Koopman, Ooms and Carnero

(2007)), but long term forecasting of electricity prices is a difficult issue not commonly tackled

up to now. Besides, we have selected the Spanish market, which is less predictable than others

sometimes considered for study, such as PJM interconnection or Nordpool. Less predictability
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Table 1: Model 1. Coverage 80 percent.

Lag Sample size Series CM (se) Coverage (below/above) LT LB (se)

h T m Theoretical 80% 10.0%/10.0%

1 50 1 76.697 (0.524) 11.578/11.725 3.601 3.561 (0.027)

2 77.252 (0.446) 10.563/12.185 3.603 3.589 (0.025)

3 76.522 (0.407) 10.599/12.879 3.610 3.575 (0.025)

4 76.539 (0.512) 10.666/12.795 3.626 3.572 (0.026)

100 1 76.757 (0.429) 11.871/11.372 3.619 3.561 (0.019)

2 77.504 (0.483) 11.710/10.786 3.621 3.614 (0.020)

3 77.418 (0.418) 12.137/10.445 3.610 3.614 (0.021)

4 77.036 (0.410) 12.270/10.694 3.624 3.591 (0.023)

200 1 77.443 (0.493) 10.470/12.087 3.609 3.610 (0.020)

2 76.698 (0.461) 11.120/12.182 3.627 3.555 (0.017)

3 77.285 (0.409) 10.794/11.921 3.625 3.592 (0.018)

4 76.749 (0.455) 10.979/12.272 3.629 3.571 (0.019)

h T m Theoretical 80% 10%/10% LT LB (se)

3 50 1 78.325 (0.322) 10.458/11.217 5.138 5.115 (0.028)

2 78.402 (0.368) 10.101/11.497 5.114 5.109 (0.031)

3 78.227 (0.310) 9.964/11.809 5.101 5.091 (0.023)

4 78.319 (0.340) 10.033/11.648 5.121 5.113 (0.030)

100 1 78.300 (0.290) 10.889/10.811 5.135 5.101 (0.022)

2 78.259 (0.276) 11.321/10.420 5.142 5.098 (0.023)

3 78.621 (0.272) 11.261/10.118 5.126 5.135 (0.024)

4 78.492 (0.290) 11.384/10.124 5.119 5.101 (0.023)

200 1 78.437 (0.327) 10.235/11.328 5.098 5.094 (0.023)

2 78.653 (0.317) 10.198/11.149 5.105 5.120 (0.023)

3 78.714 (0.296) 10.077/11.209 5.105 5.121 (0.023)

4 78.307 (0.318) 10.319/11.374 5.129 5.080 (0.022)
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Table 2: Model 1. Coverage 95 percent.

Lag Sample size Series CM (se) Coverage (below/above) LT LB (se)

h T m Theoretical 95% 2.5%2.5%

1 50 1 93.161 (0.327) 2.989/3.850 5.559 5.513 (0.041)

2 93.376 (0.262) 2.663/3.961 5.515 5.536 (0.038)

3 92.897 (0.297) 2.684/4.419 5.549 5.488 (0.037)

4 92.849 (0.323) 2.786/4.365 5.541 5.497 (0.040)

100 1 93.323 (0.243) 3.283/3.394 5.549 5.506 (0.030)

2 93.496 (0.297) 3.297/3.207 5.539 5.556 (0.035)

3 93.484 (0.242) 3.340/3.176 5.527 5.545 (0.035)

4 93.477 (0.275) 3.429/3.094 5.528 5.523 (0.034)

200 1 93.411 (0.322) 2.909/3.680 5.517 5.504 (0.028)

2 93.296 (0.274) 2.987/3.717 5.531 5.474 (0.030)

3 93.358 (0.270) 3.027/3.615 5.537 5.510 (0.030)

4 93.069 (0.316) 3.117/3.814 5.552 5.488 (0.032)

h T m Theoretical 95% 2.5%/2.5% LT LB (se)

3 50 1 94.123 (0.193) 2.473/3.404 7.845 7.819 (0.040)

2 93.961 (0.195) 2.544/3.495 7.834 7.839 (0.048)

3 93.790 (0.169) 2.346/3.864 7.798 7.786 (0.033)

4 94.005 (0.186) 2.452/3.543 7.853 7.844 (0.045)

100 1 93.927 (0.185) 2.788/3.285 7.838 7.784 (0.035)

2 94.150 (0.171) 2.943/2.907 7.850 7.848 (0.039)

3 94.083 (0.161) 3.015/2.902 7.845 7.852 (0.037)

4 93.981 (0.177) 3.030/2.989 7.840 7.806 (0.038)

200 1 94.009 (0.176) 2.694/3.297 7.835 7.794 (0.033)

2 94.006 (0.170) 2.758/3.236 7.837 7.785 (0.033)

3 94.063 (0.174) 2.814/3.123 7.815 7.798 (0.038)

4 93.962 (0.192) 2.781/3.257 7.806 7.766 (0.032)
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Table 3: Model 2. Coverage 80 percent.

Lag Sample size Series CM (se) Coverage (below/above) LT LB (se)

h T m Theoretical 80% 10%/10%

1 50 1 74.822 (0.979) 11.855/13.098 3.634 3.749 (0.040)

2 74.330 (1.041) 12.268/13.402 3.639 3.747 (0.039)

3 74.993 (0.901) 11.979/12.834 3.623 3.754 (0.039)

100 1 73.969 (0.815) 11.438/14.974 3.634 3.643 (0.029)

2 75.105 (0.835) 11.638/13.255 3.639 3.718 (0.027)

3 74.870 (0.878) 11.492/13.961 3.623 3.657 (0.026)

200 1 73.833 (0.693) 13.407/12.477 3.632 3.577 (0.021)

2 74.793 (0.658) 13.131/12.376 3.621 3.563 (0.018)

3 73.904 (0.679) 13.479/12.487 3.636 3.561 (0.019)

h T m Theoretical 80% 10%/10% LT LB (se)

3 50 1 75.372 (0.621) 11.931/12.255 6.668 6.525 (0.078)

2 75.444 (0.676) 12.236/12.211 6.672 6.532 (0.082)

3 75.462 (0.597) 12.011/12.303 6.668 6.514 (0.082)

100 1 76.873(0.431) 10.503/12.823 6.668 6.617 (0.043)

2 77.703 (0.397) 10.791/12.350 6.672 6.658 (0.046)

3 77.219 (0.455) 10.912/12.605 6.668 6.598 (0.047)

200 1 77.787 (0.424) 11.654/10.988 6.659 6.698 (0.044)

2 78.014 (0.431) 11.242/11.229 6.662 6.675 (0.046)

3 78.021 (0.391) 11.690/11.222 6.651 6.669 (0.048)
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Table 4: Model 2. Coverage 95 percent.

Lag Sample size Series CM (se) Coverage (below/above) LT LB (se)

h T m Theoretical 95% 2.5%/2.5%

1 50 1 91.842 (0.681) 3.721/4.182 5.559 5.866 (0.084)

2 91.702 (0.638) 3.729/4.432 5.571 5.880 (0.083)

3 92.169 (0.546) 3.577/4.084 5.543 5.852 (0.080)

100 1 92.116 (0.467) 3.481/4.916 5.559 5.674 (0.052)

2 92.501 (0.583) 3.685/4.232 5.571 5.763 (0.048)

3 92.194 (0.557) 3.185/4.560 5.543 5.715 (0.047)

200 1 91.716 (0.483) 4.431/4.143 5.550 5.515 (0.032)

2 91.943 (0.422) 4.309/3.907 5.542 5.519 (0.033)

3 91.972 (0.441) 4.404/3.924 5.552 5.537 (0.036)

h T m Theoretical 95% 2.5%/2.5% LT LB (se)

3 50 1 92.122 (0.423) 3.764/4.034 10.212 10.031 (0.123)

2 92.150 (0.433) 3.967/3.955 10.212 10.047 (0.131)

3 92.406 (0.387) 3.642/3.753 10.169 10.094 (0.127)

100 1 93.801 (0.231) 2.981/3.800 10.212 10.242 (0.076)

2 93.743 (0.232) 2.948/3.421 10.212 10.370 (0.079)

3 93.418 (0.267) 3.077/3.528 10.169 10.256 (0.085)

200 1 93.982 (0.252) 3.125/3.004 10.079 10.390 (0.071)

2 94.071 (0.229) 2.974/3.128 10.161 10.369 (0.069)

3 94.053 (0.255) 3.005/3.223 10.120 10.320 (0.070)
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Table 5: Model 3. Coverage 80 percent.

Lag Sample size Series CM (se) Coverage (below/above) LT LB (se)

h T m Theoretical 80% 10.0%/10%

1 50 1 72.143 (0.794) 13.435/14.422 3.642 3.409 (0.033)

2 71.917 (0.753) 13.514/14.569 3.628 3.350 (0.030)

3 71.020 (0.737) 14.066/14.914 3.624 3.305 (0.030)

4 71.552 (0.733) 13.834/14.614 3.618 3.340 (0.030)

100 1 70.871 (0.725) 15.964/13.165 3.623 3.277 (0.026)

2 71.339 (0.599) 15.337/13.324 3.601 3.275 (0.020)

3 71.427 (0.641) 15.283/13.290 3.631 3.276 (0.023)

4 71.208 (0.538) 15.154/13.638 3.627 3.263 (0.024)

200 1 71.427 (0.461) 12.902/15.671 3.623 3.259 (0.018)

2 70.759 (0.569) 13.784/15.457 3.629 3.223 (0.022)

3 70.851 (0.577) 13.837/15.312 3.637 3.225 (0.021)

4 71.484 (0.553) 13.053/15.463 3.609 3.251 (0.020)

h T m Theoretical 80% 10.0%/10%

3 50 1 72.564 (0.670) 14.088/13.348 3.785 3.499 (0.032)

2 72.856 (0.728) 14.046/13.098 3.799 3.490 (0.031)

3 71.837 (0.686) 14.690/13.473 3.795 3.432 (0.030)

4 72.019 (0.677) 14.589/13.392 3.794 3.459 (0.030)

100 1 72.827 (0.509) 14.060/13.113 3.801 3.447 (0.027)

2 72.504 (0.503) 14.373/13.123 3.799 3.422 (0.023)

3 72.185 (0.454) 14.319/13.496 3.789 3.405 (0.028)

4 72.254 (0.450) 14.182/13.564 3.805 3.425 (0.025)

200 1 71.7800. (480) 13.606/14.614 3.789 3.391 (0.019)

2 72.095 (0.471) 13.512/14.393 3.793 3.421 (0.022)

3 71.823 (0.469) 13.752/14.425 3.796 3.395 (0.020)

4 71.735 (0.473) 13.678/14.587 3.784 3.387 (0.021)
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Table 6: Model 3. Coverage 95 percent.

Lag Sample size Series CM (se) Coverage (below/above) LT LB (se)

h T m Theoretical 95% 2.5%/2.5%

1 50 1 91.841 (0.503) 3.676/4.483 5.552 5.501 (0.049)

2 91.597 (0.457) 3.855/4.548 5.555 5.400 (0.043)

3 91.386 (0.406) 4.02874.586 5.543 5.356 (0.046)

4 91.841 (0.447) 3.874/4.285 5.536 5.413 (0.048)

100 1 90.985 (0.474) 5.001/4.014 5.513 5.310 (0.042)

2 91.176 (0.390) 4.827/3.997 5.521 5.312 (0.034)

3 91.319 (0.363) 4.671/4.010 5.555 5.312 (0.041)

4 90.996 (0.368) 4.943/4.061 5.577 5.269 (0.040)

200 1 90.621 (0.349) 4.020/5.359 5.547 5.180 (0.037)

2 90.320 (0.378) 4.346/5.334 5.562 5.097 (0.040)

3 90.368 (0.369) 4.348/5.284 5.546 5.131 (0.034)

4 90.636 (0.372) 4.080/5.284 5.484 5.125 (0.038)

h T m Theoretical 95% 2.5%/2.5%

3 50 1 91.693 (0.460) 4.075/4.232 5.758 5.619 (0.050)

2 91.295 (0.456) 4.404/4.301 5.808 5.559 (0.052)

3 90.866 (0.438) 4.627/4.507 5.817 5.510 (0.042)

4 91.043 (0.428) 4.469/4.488 5.828 5.529 (0.047)

100 1 92.071 (0.340) 4.025/3.904 5.780 5.549 (0.044)

2 92.029 (0.315) 4.296/3.675 5.814 5.563 (0.040)

3 91.579 (0.294) 4.296/4.125 5.816 5.478 (0.045)

4 91.936 (0.299) 4.091/3.973 5.800 5.526 (0.044)

200 1 91.490 (0.376) 4.189/4.321 5.791 5.503 (0.050)

2 91.559 (0.329) 4.063/4.378 5.793 5.509 (0.049)

3 91.359 (0.344) 4.286/4.355 5.798 5.438 (0.043)

4 91.441 (0.311) 3.952/4.607 5.792 5.481 (0.041)
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can be justified from two points of view:

1. There is a higher proportion of outliers and a lesser degree of competition.

2. During peak hours the Spanish market shows even higher dispersion. This fact causes

more uncertainty in periods of high demand, producing less accurate forecasts.

Because of these reasons computing long-term forecasts for electricity markets in the Spanish

market is a good challenge for testing the performance of the SeaDFA, and also a novelty since

there is no related previous published works.

Our objective is calculating forecasts for the whole year 2004 using data from 1st January

1998 up to 31st December 2003, so the forecasting horizon ranges from 1 day up to 1 year. In

Subsection 5.1 the numerical results concerning the estimation and inference of SeaDFA for

electricity prices are shown. In Subsection 5.2 forecasting results are provided.

5.1 Estimation of SeaDFA for electricity prices in the Spanish Mar-

ket

The main objective is forecasting the hourly prices for the whole year 2004 using the SeaDFA

estimated for 1998-2003 data. A 24-dimensional vector of time series can be built if considering

the series of prices in the 24 hours of each day. This is known as the parallel approach, some

references including this modelling are Grady et al. (1991) and Cottet and Smith (2003). The

seasonality we must deal with when using electricity market data is weekly. The frequency

has been reduced when splitting the complete time series into 24 hourly time series and daily

seasonal pattern does not appear. Figure 2 shows the 24 hourly time series considered. And

Figure 3 a detail of the last two months in 2003. A common dynamic in the vector of time

series of hourly prices can be observed.

The test proposed by Peña and Poncela (2006) for our vector of 24 hourly time series, gives

a preliminary idea about the number of common factors, in our case two factors. Furthermore,

we also check the diagnostics by means of the auxiliary residuals, using the procedure proposed

by Harvey and Koopman (1992), and the previous result about the number of factors is
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Figure 2: 24 hourly time series of electricity prices (1998-2003).
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Figure 3: 24 hourly time series of electricity prices (September-December 2003).
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Figure 4: Histogram for bootstrap replicates of the constant of the models, c1 and c2.

confirmed. It is not the case of our application but if the diagnostics was not correct we would

increase the number of common factors and reestimate the model.

For the two unobserved common factors, we have fitted a VARIMA (1, 0, 0)× (1, 1, 0)7. The
equation of this model is given in (11).

[I −B7]

I −
 Φ1,11 Φ1,12

Φ1,21 Φ1,22

B7


I −

 φ1,11 φ1,12

φ1,21 φ1,22

B


 f1,t

f1,t

 =
 c1

c2

+
 u1,t

u1,t


(11)

We have estimated this model, and used the bootstrap procedure described to make inference

on the parameters involved. We have detected that the constant is not significant (this can

be observed in Figure 4, note that zero is included in the 95% percentile based confidence

interval of the constants).

The model is reestimated including these constraints, i.e.:
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Figure 5: Histogram for bootstrap replicates of the parameters of the models.

[I −B7]
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I −
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 f1,t

f2,t

 =
 w1,t

w2,t



The coefficient φ121, that relates the first common factor f1,t with the first lag of the second

factor is not significant as it is shown in Figure 5. Once again the test for significance is

percentile based, using the bootstrap distribution function.

When the SeaDFA is again reestimated including the constraint φ121 = 0, all the other coef-

ficients remain significant, finally the model estimated for the set of two unobserved common

factors is given in 12.

[I −B7]

I −
 Φ111 Φ112

Φ121 Φ122

B7


I −

 φ111 φ112

0 φ122

B


 f1,t

f2,t

 =
 w1,t

w2,t


(12)

Once all the parameters of the seasonal VARIMA model are significant, we present the
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loading matrix obtained in Figure 6. There is a clear relationship between loads and boxplot

of hourly prices as shown in Figure 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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4
x 10

−4 Loads, second common factor

Hours

Figure 6: Loads, unobserved common factors.

The common part of each hourly time series of prices are obtained by multiplying loads by

unobserved common factors obtained. The first common factor gives positive loads to every

hourly time series, larger in those hours in which both the level and variance of the prices are

higher. The second one separates between night and day hours.

According to Figure 7 we have selected hours 4, 9, 12 and 21 because of their represen-

tativeness and we provide in Figure 8 the centered log-prices in these hours in the period

September-December 2003 (the final period considered to estimate SeaDFA), as well as the

part explained by the common factors. The difference between each series and the common

part explained by the unobserved common factors is the specific component.

5.2 Point forecasts and prediction intervals

We will now provide the results obtained when calculating forecasts for electricity prices in

2004, using the data from 1st January 1998 through 31st December 2003. Thus, the forecasting

horizon is varying from 1 day up to 1 year, since the last data we used corresponds to the last
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Figure 7: Boxplot of hourly prices (1998-2003).
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day in 2003, no matter for which day of 2004 we are computing the forecast.

Given the complexity of the problem we have decided to follow the idea proposed by Or-

tega and Poncela (2002), where autoregressive processes were fitted for the specific factors.

However, since the main objective of this work is long-term forecasting, the effect of specific

factors on long-term forecasts it is not relevant.

The accuracy metrics we use (Mean Average Percentage Error, and MAPE2, see definitions

below), have been selected because they have been used in the literature for evaluating the

forecasting performance of the models developed for forecasting in electricity markets, (Conejo

et al. (2005)). Let pt,d be the price in day d in the Hth hour, and bpt,d its forecast computed,
then the error measurement et,d (for each hour of each day) is defined as et,d = |pt,d − bpt,d| /pt,d.
Using et,d, the subsequent accuracy metrics can be defined for each day:

emediand = median(e1,d, e2,d, ...e24,d) (13)

emeand =
1

24

24X
t=1

et,d (14)

And using expression (13) and (14) MAPE and MAPE2 are obtained for a D-day period.

MAPE =
1

D

DX
d=1

emeand

MAPE2 =
1

D

DX
d=1

emediand

Since there is no published work on long-run forecasting of electricity prices we will relate

our results with short-term ones. We will also compare our results to those obtained with

some methods that has been specifically developed for short-term forecasting in the Spanish

market. We will use as a benchmark model the best mixed model proposed in Garćıa-Martos

et al. (2007), that uses a combination of several seasonal ARIMA models for different lengths

of time series. We will illustrate the fact that the available accurate models for short-term

forecasting do not work properly in the long run.

Besides, we will also check short-term forecasting performance of SeaDFA. Although SeaDFA

was not developed for this purpose, we get accurate forecasts even comparing them with others

obtained by methods specifically designed for the short-term.

30



Table 7: Monthly prediction errors. SeaDFA, DFA (Peña and Poncela (2004), Mixed Model

(Garćıa-Martos et al. (2007))

SeaDFA DFA (2004) Mixed model (2007)

MAPE (%) MAPE2 (%) MAPE (%) MAPE2 (%) MAPE (%) MAPE2 (%)

January 25.02 24.42 23.86 22.49 31.9 29.87

February 18.61 16.2 21.93 19.84 35.72 33.34

March 23.55 22.11 24.57 22.06 46.2 46

April 20.3 19.66 34.41 30.5 39.42 38.8

May 18.96 16.71 33.68 29.1 41.82 42.22

June 19.36 17.57 29.77 33.6 45.31 46.37

July 20.6 19.08 33.6 26.28 46.52 48.21

August 14.55 13.94 31.7 23.17 45.72 48.61

September 25.39 26.19 25.48 24.82 53.36 61.27

October 18.44 17.72 25.84 23.92 51.94 61.48

November 23.26 21.98 26.21 24.52 52.92 56.67

December 30.67 29.11 27.09 26.04 56.59 60.29

Year 2004 21.56 20.39 28.17 25.52 45.62 47.76

The numerical results obtained for year 2004 are shown in Table 7.

The MAPE for the whole year is 21.56% and the MAPE2 is 20.39%. These results should be

related with those obtained for the short-term, which are around 13-15%, and the forecasting

horizon is 24 hours, (Contreras et al. (2003), Conejo et al. (2005), Nogales et al. (2006)). With

the mixed model provided in Garćıa-Martos, Rodŕıguez and Sánchez (2007), the short-term

prediction error obtained when computing forecasts for every hour in the period 1998-2003 is

12.61%. We will use this as benchmark model, because it is the best one in the short-term

for the Spanish Market. However, when using this mixed model for long-term forecasting the

MAPE for the whole year is 45.62% and MAPE2 is 47.76%. This illustrates the fact that

the models developed for the short-term do not work properly when the forecasting horizon

increases.
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Figure 9: Forecasts and real prices, May 2004.

Non-stationary Dynamic Factor Analysis derived in Peña and Poncela (2004, 2006) could

be an alternative in which only regular part of the dynamics can be modeled. Fitting a

VARIMA(9,1,0), MAPE and MAPE2 are respectively 28.17% and 25.52, which both illustrates

the great reduction in the error compared to the mixed model, as well as the importance of

including seasonality in DFA, since SeaDFA reduces MAPE to 21.56% and MAPE2 to 20.39%.

In Figure 9 we provide results for May 2004, so forecasting horizon varies from four months

and one day (1st May 2004) up to five months (31st May 2004). MAPE is 18.96% and MAPE2

is 16.71%. MAPE obtained when using the model described in Garćıa-Martos, Rodŕıguez and

Sánchez (2007) is 41.82% and MAPE2 is 42.22%, and MAPE and MAPE2 obtained with DFA

(Peña and Poncela (2004, 2006) are respectively 33.68% and 26.28%. Furthermore, the level

of the prices has been adequately captured. This point is relevant for long run forecasting.

In Figure 10 the results for August 2004 are shown. The forecasting horizon varies from

seven months and one day (1st August 2004) up to eight months (31st August 2004). MAPE

is 14.55% and MAPE2 is 13.94%. The MAPE obtained when using the model described in
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Figure 10: Forecasts and real prices 2004.

Garćıa-Martos, Rodŕıguez and Sánchez (2007) is 45.72% and the MAPE2 is 48.61%. MAPE

and MAPE2 with DFA are 31.7% and 23.17% respectively.

Furthermore, when taking into account only the third week in each month (often the last

or the one before last is used to check accuracy of forecasting models, Conejo et al. (2005)

and Contreras et al. (2003) ) and calculating the MAPE with SeaDFA for these twelve weeks

19.75% is obtained, which again reflects the accuracy of SeaDFA and its great performance.

Considering only the third week in each month the result is slightly better than considering

all weeks (MAPE 21.56%).

Figure 11 shows the results for the third week in February (16th-22nd February 2004). Fore-

casting errors are provided in Table 8. These results have been obtained using once more the

SeaDFA estimated for the prices in 1998-2003, so the forecasting horizon varies from 7 weeks

up to 8 weeks. The MAPE for this week is 16.38%. Using the mixed model in Garćıa-Martos

the MAPE is 34.78%. Besides, and to illustrate that the SeaDFA is not only valid for medium

and long term forecasting but also for the short-run, we provide in Figure 12 and Table 8
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Table 8: Prediction errors, long term forecasting, 16-22 February 2004.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 MWE

SeaDFA 37.17% 13.00% 12.00% 9.83% 18.99% 9.94% 14.70% 16.38%

Mixed model 27.04% 29.30% 29.62% 29.21% 34.50% 44.54% 49.22% 34.78%

respectively the forecasts and errors obtained for the same week in February 2004, but having

estimated the model using data up to 15th February, and reestimating the model six more

times updating the data, which means that for each day in this week the forecasting horizon

is 1 day. The daily prediction errors are shown in Table 8. See Conejo et al. (2005) or

Garćıa-Martos, Rodŕıguez and Sánchez (2007) to check that the forecasting errors obtained

by SeaDFA are of the same magnitude or even lower in comparison with those provided there.

0 20 40 60 80 100 120 140 160
10

15

20

25

30

35

40
16th − 22nd February 2004

Hours in the week

pr
ic

e 
(e

ur
o/

M
W

h)

Real prices
Forecasts, SeaDFA

Figure 11: Forecasts and real prices, 16th-22nd February 2004. Last data used to estimate the model:

31st December 2003.

Once numerical results for long and short run point forecasts have been provided, it is of

interest to report the results obtained when forecasting intervals were computed by means

of the bootstrap scheme proposed. In Figure 13 the percentile based confidence intervals for

the point prediction, which include uncertainty due to parameter estimation, are provided for

34



0 20 40 60 80 100 120 140 160
10

15

20

25

30

35

Hours in the week

pr
ic

e 
(e

ur
o/

M
W

h)

Mixed model
Real prices
SeaDFA

16th − 22nd February 2004

Figure 12: Forecasts and real prices, 16th-22nd February 2004. One-step-ahead forecasts.

Table 9: Prediction errors, one-day-ahead forecasting, 16-22 February 2004.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 MWE

SeaDFA 12.44% 3.53% 4.35% 8.60% 6.54% 11.02% 20.3% 9.54%

Mixed model 19.78% 6.34% 5.17% 5.39% 10.70% 8.07% 11.0% 9.49%
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the last complete week in May 2004, which is usually selected for performance checking in

electricity price forecasting (Contreras et al. (2003) and Conejo et al. (2005)). The intervals

have been computed with the SeaDFA estimated for the data in 1998-2003, so the forecasting

horizon varies from 21 up to 22 weeks, which means medium or long term forecasting.
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Figure 13: Percentile based confidence intervals including uncertainty due to parameter estimation.

(24th-30th May 2004).

In Figure 14 the percentile based confidence intervals for the point prediction, which include

uncertainty due to parameter estimation, are provided for the last complete of the year 2004

(20th-26th December 2004), which contains 24th and 25th, which usually corresopond to unusual

days in demand and prices. The forecasting horizon is almost one year, which means long-

term forecasting. This results illustrates the great coverage of the confidence intervals obtained

using bootstrap techniques.

6 Conclusions

In this work we have provided the seasonal extension to Non-Stationary Dynamic Factor

Analysis. Till now the only possible way to deal with dimensionality reduction in vectors of
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Figure 14: Percentile based confidence intervals including uncertainty due to parameter estimation.

(20th-26th December 2004).

time series with a seasonal pattern was to deseasonalize and then apply one of the existing

techniques, Peña and Box (1987), Lee and Carter (1992) or Peña and Poncela (2004, 2006),

among others. However, deseasonalizing can only remove the seasonality in the mean and

variance, but the seasonality in serial dependence structure remains. In order to deal with

this problem we propose the Seasonal Dynamic Factor Analysis (SeaDFA), which is able to

estimate common factors that follow a multiplicative seasonal VARIMA model with constant.

A modification in the estimation procedure due to seasonality and to including the constant

has been presented. The constant has been included by means of an exogenous variable, which

let us improve long-run forecasts in the case of non-stationary processes.

Besides, we have proposed a bootstrap procedure for making inference on all the parameters

involved in the model. Furthermore, the bootstrap scheme introduced in this work can be

applied to all models that can be expressed under state-space formulation.

In the application to electricity price modeling we have obtained percentile based confidence

intervals for each element in the loading matrix Ω, studying the long term significance of each

37



of the 24 hourly time series, as well as for the parameters of the VARMA model for the

common factors. The numerical results provided for an interesting, difficult to forecast data

set (electricity prices in the Spanish market) are accurate, with a prediction error around

20% for a horizon between one day and and one year and can be compared with short-term

predictions (forecasting horizon between 24 and 72 hours).

A Appendix

The specific factors, εt, can be expressed as follows:

εt = (εt − bεt) + bεt and εtε0t = (εt − bεt)(εt − bεt)0 + bεtbε0t since cross-product is zero because
the estimate from the Kalman filter is fixed and known at time t.

And substituting bεt = yt − bΩbft,
gives

(εt − bεt) = bΩbft − Ωf t, soE[εtε
0
t] = E[bεtbε0t] +E[(bΩbft − Ωft)(bΩbft − Ωft)

0].

Besides, bΩbft−Ωf t = bΩbft+Ωbft−Ωbft−Ωf t = (bΩ−Ω)bft+Ω(bft− ft).And taking into account
projection theorem gives:

(bΩbft − Ωf t)(bΩbft − Ωf t)
0 = (bΩ− Ω)bftbf 0t(bΩ− Ω)0 + Ω(bft − ft)(bft − ft)Ω0.

Finally, the expression for var(εt − bεt) :
E[(bΩbft − Ωf t)(bΩbft − Ωf t)

0] = E[(bΩ− Ω)bftbf 0t(bΩ− Ω)0] +E[Ω(bft − ft)(bft − ft)Ω0] = Scorrection.
When T →∞, Scorrection = ΩE[(bft − ft)(bft − ft)]Ω0, given the consistency of bΩ. For details

on (bft − ft) expectancy and covariance, see Spall and Wall (1984).
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