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based on mixtures of beta distributions

J.A. Carnicero and M.P. Wiper
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Abstract
This paper introduces a new, semi-parametric model for circular

data, based on mixtures of shifted, scaled, beta (SSB) densities. This
model is more general than the Bernstein polynomial density model
which is well known to provide good approximations to any density
with finite support and it is shown that, as for the Bernstein poly-
nomial model, the trigonometric moments of the SSB mixture model
can all be derived.

Two methods of fitting the SSB mixture model are considered.
Firstly, a classical, maximum likelihood approach for fitting mixtures
of a given number of SSB components is introduced. The Bayesian
information criterion is then used for model selection. Secondly, a
Bayesian approach using Gibbs sampling is considered. In this case,
the number of mixture components is selected via an appropriate de-
viance information criterion.

Both approaches are illustrated with real data sets and the results
are compared with those obtained using Bernstein polynomials and
mixtures of von Mises distributions.

Keywords: circular data; shifted, scaled, beta distribution; mixture
models; Bernstein polynomials.

AMS classification: 62H11.

1 Introduction

Problems where the data are angular directions occur in many different sci-
entific fields such as biology (direction of movement of migrating animals),
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meteorology (wind directions) and geology (directions of joints and faults).
Also, phenomena that are periodic in time such as times of hospital ad-
mittance for births or the times when crimes are committed may also be
converted to angular data via a simple transformation modulo some period.
Data of this type are commonly known as circular data and are usually rep-
resented as points on the circumference of an unit circle or as angles, θ, where
0 ≤ θ < 2π radians, which represent the positive angle of rotation from some
conveniently chosen origin.

It is clear that standard statistics are not always appropriate for circular
data. For example, the pair of twenty four hour clock times 23:30 and 00:30
are closer to each other than are the pair 01:00 and 11:00 even though the
numerical difference between the times is smaller in the second case. Also,
the linear mean of the first pair of times is 12:00 which is clearly not a good
measure of the average of the first pair of data. Instead, the “mean direction”
is 24:00. A full review of circular moments and alternative statistics for
circular data is contained in e.g. Mardia and Jupp (1999).

A number of parametric models for circular data have been developed
using a variety of techniques. One approach is to “wrap” standard distribu-
tions on the line onto the circle, that is to define the circular density at some
angle, θ, to be the sum of the linear densities at θ, θ± 2π, θ± 4π, . . ., see e.g.
Mardia and Jupp (1999), Jammalamadaka and Kozubowski(2003). Other
models have been developed specifically for circular data. In particular, the
von Mises distribution is an appropriate model for symmetric, unimodal, cir-
cular data and has many similar properties to the normal distribution on the
line, see e.g. Evans et al (2000).

Most models developed thus far for circular data are unimodal and sym-
metric. However, in many cases, both multimodal and asymmetric data
may be encountered. In such cases, non-parametric or semi-parametric mod-
els might be considered. Fully non-parametric, kernel based approaches are
considered by Fisher (1989). However, semi-parametric models will usually
have more predictive power. Fernández-Durán (2004) has developed a semi-
parametric model based on trigonometric sums and Mooney et al (2003) have
considered mixtures of von Mises distributions. Both these approaches have
certain disadvantages. In the first case, as noted by Ferreira et al (2005),
the trigonometric sums approach can often fit wiggly densities which are un-
realistic in practice and in the second case, as the von Mises distribution
is symmetric, large numbers of terms may be needed to well approximate
asymmetric data samples. In this paper, we introduce an alternative semi-
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parametric, mixture model based on the use of shifted, scaled, beta (SSB)
distributions.

The article is organized as follows. In Section 2 we define the SSB dis-
tribution and and show how its circular moments may be calculated. We
then introduce mixtures of SSB distributions and relate this mixture model
to Bernstein polynomials which have been developed as an approach to esti-
mating densities with support [0, 1] by e.g. Vitale (1975), Petrone (1999a,b),
Petrone and Wassermann (2002), Babu et al (2002) and Kakizawa (2004). In
Section 3 we consider maximum likelihood estimation for the SSB mixture
model and we fit our model to two, well known, real data sets, comparing the
results obtained with mixtures of von Mises distributions and with Bernstein
polynomials. In Section 4 we describe a Bayesian algorithm for estimating
the predictive density and fit the model to a third group of real data. Finally,
some concluding remarks and possible extensions are given in Section 5.

2 The SSB distribution and mixtures of SSB

distributions

2.1 The SSB distribution

Let θ be a random variable with support [0, 2π). Then we shall say that θ
has a SSB distribution with parameters 0 ≤ ν < 2π and α, β ∈ IN, denoted
by θ ∼ SSB(ν, α, β) if

f(θ) =

{ 1
(2π)α+β−1B(α,β)

(2π + θ − ν)α−1(ν − θ)β−1 if 0 ≤ θ < ν
1

(2π)α+β−1B(α,β)
(θ − ν)α−1(2π + ν − θ)β−1 if ν ≤ θ < 2π

(1)

where B(α, β) = (α − 1)!(β − 1)!/(α + β − 1)! is the beta function.
Clearly, we can represent the distribution of θ as the distribution of a

shifted, scaled, beta distributed random variable, so that

θ = mod(2πX + ν, 2π)

where mod(a, b) means a modulo b and X is a beta distributed random
variable, X ∼ B(α, β), such that

f(x) =
1

B(α, β)
xα−1 (1 − x)β−1 for 0 ≤ x < 1. (2)
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The restriction in the definition of the SSB distribution that α and β are
natural numbers is not strictly necessary. However, when fitting mixtures of
SSB distributions to data, it is useful to include this restriction in order to
avoid the possibility of fitting asymptotes which are unrealistic and would
occur if α or β are below 1. Secondly, given that α and β are natural
numbers, exact values for the circular or trigonometric moments of the SSB
distribution can be derived as is shown in the following subsection.

2.2 Trigonometric moments of the SSB distribution

As noted in the introduction, the standard mean and other moments are not
appropriate for circular random variables. Instead, for any circular random
variable, θ, the p’th trigonometric moment is defined to be

μ′
p = E

[
eipθ

]
= E[cos pθ] + iE[sin pθ] where i =

√
−1

def
= ρp

(
cos μ′

p + i sin μ′
p

)
where

ρp =
√

E[cos pθ]2 + E[sin pθ]2 and (3)

μ′
p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tan−1 E[sin pθ]
E[cos pθ]

if E[sin pθ] > 0 and E[cos pθ] > 0

tan−1 E[sin pθ]
E[cos pθ]

+ π if E[cos pθ] < 0

tan−1 E[sin pθ]
E[cos pθ]

+ 2π if E[sin pθ] < 0 and E[cos pθ] > 0

(4)

for p = 1, 2, . . .. In particular, when p = 1, we write μ for μ′
1 and ρ for ρ1.

Then, μ is the mean direction and ρ is the mean resultant length, see e.g.
Mardia and Jupp (1999) for more details.

Similar sample equivalents can also be defined. Thus, given a sample of
circular data, θ1, . . . , θn, then the circular mean, θ̄, is defined as

θ̄ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tan−1
∑n

i=1
sin θi∑n

i=1
cos θi

if
∑n

i=1 sin θi > 0 and
∑n

i=1 cos θi > 0

tan−1
∑n

i=1
sin θi∑n

i=1
cos θi

+ π if
∑n

i=1 cos θi < 0

tan−1
∑n

i=1
sin θi∑n

i=1
cos θi

+ 2π if
∑n

i=1 sin θi < 0 and
∑n

i=1 cos θi > 0

(5)

and the sample mean resultant length, r, is

r =

√√√√√ 1

n

⎛
⎝(

n∑
i=1

sin θi

)2

+

(
n∑

i=1

cos θi

)2
⎞
⎠. (6)
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The circular moments of an SSB random variable with origin zero can be
calculated using Theorem 1.

Theorem 1. Let θ ∼ SSB(0, α, β). Then, for p ∈ IN,

E[cos(pθ)] =
1

B(α, β)

β−1∑
j=0

(−1)j

(
β − 1

j

)
Ip(α + j − 1)

=
1

B(α, β)

α−1∑
j=0

(−1)j

(
α − 1

j

)
Ip(β + j − 1)

E[sin(pθ)] =
1

B(α, β)

β−1∑
j=0

(−1)j

(
β − 1

j

)
Jp(α + j − 1)

=
1

B(α, β)

α−1∑
j=0

(−1)j+1

(
α − 1

j

)
Jp(β + j − 1)

where Ip(0) = Jp(0) = Ip(1) = 0, Jp(1) = − 1
2πp

and for C > 1,

Ip(C) =

�C
2
�∑

c=1

(−1)c−1 C!

(C − 2c + 1)!

1

(2πp)2c

Jp(C) =

�C+1
2

�∑
c=1

(−1)c C!

(C − 2c + 2)!

1

(2πp)2c−1
.

‡
The circular moments of a general SSB distribution can be derived as a

simple corollary of Theorem 1.

Corollary 1. Let θ ∼ SSB(ν, α, β). Then, for p ∈ IN,

E[cos(pθ)] =
1

B(α, β)

⎧⎨
⎩

β−1∑
j=0

(−1)j

(
β − 1

j

)
(cos(pν)Ip(α + j − 1) − sin(pν)Jp(α + j − 1))

⎫⎬
⎭

=
1

B(α, β)

⎧⎨
⎩

α−1∑
j=0

(−1)j

(
α − 1

j

)
(cos(pν)Ip(β + j − 1) + sin(pν)Jp(β + j − 1))

⎫⎬
⎭

E[sin(pθ)] =
1

B(α, β)

⎧⎨
⎩

β−1∑
j=0

(−1)j

(
β − 1

j

)
(sin(pν)Ip(α + j − 1) + cos(pν)Jp(α + j − 1))

⎫⎬
⎭

=
1

B(α, β)

⎧⎨
⎩

α−1∑
j=0

(−1)j

(
α − 1

j

)
(sin(pν)Ip(β + j − 1) − cos(pν)Jp(β + j − 1))

⎫⎬
⎭
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‡
Proofs of both results are given in the Appendix.
Exact results for the circular mean can be derived in the case where the

SSB distribution is symmetric. In particular, when α = β = 1, then it is clear
that the SSB distribution reduces to the circular uniform distribution whose
trigonometric moments are all zero. When α = β > 1, then by symmetry,
the mean circular direction is clearly μ = mod(ν + π, 2π) and, the mean
resultant length is

ρ =
1

B(α, α)

∣∣∣∣∣∣
α−1∑
j=0

(−1)j

(
α − 1

j

)
Ip(α + j − 1)

∣∣∣∣∣∣ .

2.3 Mixtures of SSB distributions and Bernstein poly-
nomials

The simple SSB model is not sufficiently flexible to model most types of circu-
lar data. Thus, from now on, we will consider mixtures of SSB distributions
of form

f(θ) =
k∑

j=1

wjf(θ|νj, αj , βj)

where f(·|ν, α, β) is the SSB(ν, α, β) density function as in (1) and wj > 0
for j = 1, . . . , k and

∑k
j=1 wj = 1. We shall represent this distribution by

writing θ ∼ SSBk(w, ν, α, β) where w = (w1, . . . , wk), ν = (ν1, . . . , νk),
α = (α1, . . . , αk) and β = (β1, . . . , βk).

The circular moments of the SSB mixture distribution can be derived
directly from Corollary 1.

Corollary 2. Let θ ∼ SSBk(w, ν, α, β). Then, for p ∈ IN,

μ′
p =

k∑
j=1

wj (E[cos pθj ] + iE[sin pθj ])

where E[cos pθj ] and E[sin pθj ] can be derived from Corollary 1.
‡

A particular case of SSB mixture density is the scaled, shifted, Bernstein
polynomial density. For any variable, X, with support [0, 1] and continu-
ous distribution function FX(·), then the Bernstein polynomial of order k is
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defined to be

Bk(x) =
k∑

j=1

FX

(
j

k

)(
k
j

)
xj(1 − x)k−j

and it is well known that the Bernstein polynomial converges uniformly to
FX as k → ∞. The associated Bernstein density function is

bk(x) =
k∑

j=1

(
FX

(
j

k

)
− FX

(
j − 1

k

))
f(x|j, k − j + 1)

where f(·|α, β) is a beta density function as in (2).
This has motivated the use of the Bernstein polynomial density

fBP (x) =
k∑

j=1

wjf(x|j, k − j + 1)

as a semi-parametric model for samples of data with support [0, 1]. The
good convergence properties of this model have been illustrated by e.g. Vitale
(1975) and Kakizawa (2004) from a classical viewpoint and Petrone (1999a,b)
and Petrone and Wassermann (2002) using a Bayesian approach. Clearly,
rescaling onto [0, 2π) and shifting the origin to ν, the Bernstein polynomial
density of order k corresponds to SSB(w, ν1, (1 : k), (k : 1)) where 1 is a
unit vector, (1 : k) = (1, 2, . . . , k) and (k : 1) = (k, k − 1, . . . , 1).

3 Classical inference for the SSB mixture model

Assume now that we observe a sample of data, θ = {θ1, ..., θn} to which we
wish to fit a mixture of SSB distributions. Firstly, it is important to note
that it is straightforward to calculate the maximum likelihood parameter
estimates when the data are fitted by a single SSB distribution. For a given
origin, ν, the maximum likelihood estimates of the beta parameters, α and β,
may be calculated by first rescaling the data onto the data to the [0, 1) interval
and then calculating the unconstrained maximum likelihood estimates using,
for example the MATLAB routine, betafit. Then the constrained maxima may
be found by simply checking the likelihoods at the pairs of integer valued α
and β around the unconstrained maxima. Finally, the global maxima may
be estimated by using the same procedure over a grid of values of ν.

For fitting a k dimensional mixture distribution, then various approaches
are possible. One possibility is to use the EM algorithm, see e.g. Dempster et
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al (1977), McLachlan and Peel (2000) but we have found that this procedure
is very sensitive to the choice of initial values and thus, we prefer to use an
alternative procedure based on direct likelihood maximization.

Firstly, when k = 2, or k = 3, it is possible to directly maximize the
likelihood function in terms of the component weights, w, by searching over
a grid of values of ν, α, β although for higher dimensional mixtures, this
procedure is too computationally intensive. In these cases, we use an itera-
tive algorithm which automatically finds a (local) maximum. Given that we
wish to fit a mixture of k > 3 terms, we assume that we have calculated the
maximum likelihood estimates for the k − 1 dimensional mixture and pro-
ceed by setting the initial values, (νi, αi, βi) for i = 1, . . . , k − 1 equal to the
maximum likelihood estimates for this model and then estimating all compo-
nent weights and the parameters, (νk, αk, βk) of the k’th mixture component
by direct likelihood maximization using a grid search procedure. Then, the
parameters of components 2, . . . , k are fixed and the weights and (ν1, α1, β1)
are re-estimated by direct likelihood maximization, the parameters of com-
ponents, 1, 3, . . . , k are fixed and the weights and (ν2, α2, β2) are re-estimated
and so on until convergence. We find in practice that this algorithm usually
converges to the global maximum likelihood, due to the fact that the dif-
ferent beta components are well distinguished from each other due to the
discreteness of the beta parameters. Thus, the main mixture terms are usu-
ally well identified in low dimensional mixtures and the effect of adding an
extra component is essentially that of fitting a new component which well
fits a small amount of the observed data.

Finally, in order to select the number of terms to include in the SSB
mixture model, we use the Bayesian information criterion (BIC), see Schwarz
(1978).

3.1 Examples

In this section, we consider two data sets that have been well analyzed in the
circular data literature. Figure 1 shows a circular dot plot of the directions,
in radians taken by 76 turtles after laying their eggs, taken from Stephens
(1969). One can see that there is a clear bi-modality in these data due to
the fact that most turtles return to the sea whereas a few turtles go in the
approximately opposite direction towards the land.

Figure 2 gives the arrival times on the 24 hour clock of 254 patients at
an intensive care unit taken from Cox and Lewis (1966). In this case, there
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Figure 1: Directions taken by turtles after laying eggs

is no obvious grouping of the data apparent from the dot plot.
For each data set we fitted the (shifted) Bernstein polynomial density,

using direct likelihood maximization to optimize the weights over a grid of
possible origins and a mixture of von Mises distributions using the EM algo-
rithm. Finally, the SSB mixture model was also fitted firstly with a common
origin equal to zero, secondly with a common unknown origin, ν and finally
with different origins for each mixture element.

Table 1 shows the log-likelihood and BIC for each of the models fitted
to the turtles data. It can be seen that the optimal model according to the
BIC is the full SSB mixture model although there is little difference between
fitting this model, the common origin SSB mixture model and the von Mises
mixture model.

Figure 3 shows a histogram of the turtles data with the predictive densities
assuming the von Mises mixture model (dotted line), the common origin
SSB mixture model (dashed line) and the full SSB mixture model (solid line)
respectively. The fitted density for the Bernstein polynomial model was very
similar to that of the common origin SSB mixture model, so this density is
not shown.

For the turtles data, the estimated mean direction using the full SSB
model is 1.12 radians which is very close to the sample mean direction of
1.11 radians.
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Figure 2: Arrival times of patients at an emergency ward

Table 1: Log likelihoods and BICs for the turtles data

Model Origin Mixture size Log-likelihood BIC
Bernstein poly. 1.96π 3 −116.65 246.29

von Mises −− 2 −108.62 238.89
SSB common origin 0.4π 2 −108.64 238.94

SSB full model −− 2 −106.13 238.24
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Figure 3: Histogram of the turtles data with fitted densities

Table 2 shows the log-likelihood and BIC for each of the models fitted to
the emergencies data. As earlier, the optimal model according to the BIC
criterion is the full SSB mixture model.

Table 2: Results for the emergencies data set

Model Origin Mixture size Log-likelihood BIC
Bernstein poly. 1.62π 5 −431.48 907.50

von Mises −− 2 −439.62 906.93
SSB common origin 1.56π 1 −434.95 887.01

SSB full model −− 2 −426.32 885.86

Finally, Figure 4 shows the fitted von Mises mixture (dotted line), com-
mon origin SSB (dashed line) and full SSB models (solid line). In this case,
we can observe a jump in the density for the full model and for the common
origin SSB model. Jumps can be observed whenever an SSB component,
SSB(ν, α, β) has α = 1 and β > 1 or α > 1 and β = 1.

The estimated mean direction using the full SSB model is 4.49 radians
(17.29 hours) whereas the sample mean is 4.612 radians (17.36 hours).
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Figure 4: Histogram of the emergency times data with fitted SSB densities

4 Bayesian inference

In most real data examples we have analyzed, with the exception of the
emergencies data, the fitted SSB mixture distributions from the classical
algorithm include a uniform component. Thus, in this section, we shall
consider an extended SSB mixture model including a uniform term, as well
as k SSB elements. Bayesian inference for this model can be undertaken by
extending ideas developed in Robert et al (2003) who consider a mixture
of standard beta variables and a uniform term in the context of hypothesis
testing.

Thus, the model we consider in this section is

f(θ|w, ν, α, β) = w0
1

2π
+

k∑
j=1

wjf(θ|νj, αj, βj)

where w = (w0, . . . , wk), f(θ|ν, α, β) is a standard SSB density and wj > 0,
for j = 0, . . . , k and

∑k
j=0 wj = 1.

In order to carry out Bayesian inference for this model, it is first necessary
to define prior distributions for the model parameters. Here, we assume
relatively uninformative priors:

νj ∼ U(0, 2π) a uniform distribution on [0, 2π), for j = 1, . . . , k

αj ∼ T G(0.01), a geometric distribution truncated onto {1, 2, . . . , 50} for j = 1, . . . , k,
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βj ∼ T G(0.01), a truncated geometric distribution as above

w ∼ D(1, . . . , 1︸ ︷︷ ︸
k+1

), a Dirichlet distribution.

In order to ensure identifiability of the model, we assume that ν1 < ν2 <
· · · < νk.

Given a sample of data, θ = (θ, . . . , θn), then Bayesian inference can
be carried out by introducing the latent variables Z = (Z1, . . . , Zn) so that
P (Zi = z|w) = wz for z = 0, . . . , k. Then Bayesian inference can be carried
out using a standard, Metropolis within Gibbs sampler as in e.g. Robert et
al (2003) as follows:

1. t = 0. Set initial values w(0), ν(0), α(0), β(0).

2. For i = 1, . . . , n generate z
(t+1)
i from P (Zi|θi,w

(t), ν(t), α(t), β(t)).

3. Generate w(t+1) from f(w|z(t+1)).

4. For j = 1, . . . , k:

(a) Generate ν
(t+1)
j from f(νj |θ, z(t+1), α

(t)
j , β

(t)
j ).

(b) Generate α
(t+1)
j , β

(t+1)
j from f(αj, βj|θ, z(t+1), ν(t+1)).

5. Reorder the SSB parameters if necessary so that ν
(t+1)
1 < · · · <

ν
(t+1)
k .

6. t = t + 1. Go to 2.

In this case, steps 2 and 3 are standard, as for any Gibbs sampling al-
gorithm for mixtures. In step 4a, we use a Metropolis step, generating can-
didate values, ν̃j from a uniform distribution on mod(ν

(t)
j ± 0.05, 2π). In

step 4b, we use a Metropolis Hastings proposal generating candidate values,
α̃j, β̃j from independent, triangular distributions with modes α

(t)
j and β

(t)
j

respectively. The reordering in step 5 is included so that the identifiability
restriction is complied with. A similar algorithm can be developed for fitting
models where all SSB terms have a common origin.

In order to consider models containing an unknown number, k, of SSB
mixture terms, then various approaches are possible. On method is to use
reversible jump (Richardson and Green 1997) or birth-death (Stephens 2000)
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MCMC approaches in order to mix over models of different dimensions. An
alternative approach, which we follow here is to use a Bayesian model choice
criterion to select a model of appropriate dimension.

A standard tool for Bayesian model choice is the deviance information
criterion or DIC, see Spiegelhalter et al (2002). However, it is well known
that the basic DIC is inappropriate in the context of mixture models, see e.g.
Celeux et al (2006). Celeux et al (2006) recommend a number of variants of
the DIC and, in particular, here, we use their DIC3 criterion which is defined
as follows.

Assume that a circular variable, θ follows a parametric model M with
parameters φ such that θ|M, φ ∼ f(·|M, φ). Then given a sample of data,
θ = θ1, . . . , θn, the DIC3 criterion for model selection is

DIC3 = −4Eφ[log f(θ|φ)|θ] + 2 log
n∏

i=1

Eφ[f(θi|φ, θ)].

As with the BIC, small values of DIC3 indicate a better model. As noted by
Celeux et al (2006), this criterion has the advantage of being very straightfor-
ward to calculate given the output from a Gibbs sampler. The full properties
of this criterion are also examined in more detail by Celeux et al (2006).

4.1 Example

In this section we consider a data set of crimes perpetrated in Chicago on
May 11th 2007, obtained from www.chicagocrime.org. Figure 5 gives the
24 hour clock times of the 1240 crimes committed on this day.

For this data set we fitted the most general algorithm with the circular
uniform distribution plus up to 5 SSB distribution components and also
considered models with a uniform component and SSB terms with a common
origin. The optimal model according to the DIC3 criterion was the fixed
origin model with 4 SSB components (DIC3 = 4575) whereas the optimal
full model contains five SSB components with DIC3 = 4582. Figure 4.1
shows the fits of the optimal full model (solid line) and the optimal, common
origin model (dashed line).

The fits of both predictive densities to the data appear are quite similar.
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Figure 6: Histogram of the crime data with the predictive densities
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5 Conclusions and extensions

In this article, we have developed a new, semi-parametric model for circular
data which appears to compare favourably with the well known, von Mises
mixture model. A number of extensions are possible.

Firstly, we have here used the BIC as a classical model choice criterion.
It would also be possible to consider other criteria such as the Akaike (1974)
information criterion (AIC). Our practical experience shows that the use of
the AIC generally leads to overfitting for the Bernstein polynomial models
and that the SSB mixture models still perform better than both the von
Mises mixture and Bernstein polynomial models under this criterion. Al-
ternative criteria such as the corrected AIC could also be considered. Also
from a Bayesian viewpoint, alternative model selection criteria such as those
proposed by Celeux et al (2006) could be considered. In practice, we have
found that the models selected using these criteria are usually the same as
for DIC3 used here.

Secondly, we have considered Bayesian inference for a mixture of a uni-
form density and various SSB distributions of fixed size. It is also possible
to consider the simple SSB mixture model without the assumption that a
uniform component is always present. In practice, this seems to introduce
little advantage as in the great majority of data sets we have examined, a
uniform component is virtually always fitted. Furthermore, this introduces
some extra technical restrictions in the setting up of the MCMC algorithm
due to the necessity of maintaining the identifiability of the fitted model.

Thirdly, it is straightforward to implement Bayesian inference for SSB
mixtures of random dimension via reversible jump (Green 1995, Richardson
and Green 1997) or birth-death (Stephens 2000) MCMC techniques. One
advantage of this approach is that this avoids jumps in the predictive density
due to the fact that this is mixed over the parameter distribution.

Fourthly, it would be interesting to examine the possible increase in ef-
ficiency from using a mixture of SSB distributions with continuous beta pa-
rameters instead of restricting the parameters to be integers. Finally, from
a Bayesian standpoint, instead of using a finite mixture of SSB distribu-
tions, we might consider using continuous, Dirichlet process mixtures of SSB
distributions, along the lines of Kottas (2006).
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Appendix: Proofs of theorems

Proof of Theorem 1
First note that if θ ∼ SSB(0, α, β) then

E[cos(pθ)] = E[cos(2πpX)] where X ∼ B(α, β)

=
∫ 1

0
cos(2πpx)

1

B(α, β)
xα−1(1 − x)β−1 dx

=
1

B(α, β)

∫ 1

0
cos(2πpx)

β−1∑
j=0

(
β − 1

j

)
xα−1+j dx assuming β ∈ IN

=
1

B(α, β)

β+j−1∑
j=0

(−1)j

(
β − 1

j

)
Ip(α + j − 1) where

Ip(C) =
∫ 1

0
cos(2πpx)xC dx and similarly,

E[sin(pθ)] = E[sin(2πpX)]

=
1

B(α, β)

β+j−1∑
j=0

(−1)j

(
β − 1

j

)
Jp(α + j − 1) where

Jp(C) =
∫ 1

0
sin(2πpx)xC dx Also

E[cos(pθ)] = E[cos(2πp(1 − Y ))] where Y ∼ B(β, α)

= E[cos(2πpY )]

=
1

B(α, β)

α+j−1∑
j=0

(−1)j

(
α − 1

j

)
Ip(β + j − 1)

E[sin(pθ)] = E[sin(2πp(1 − Y ))]
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= −E[sin(2πpY )]

=
1

B(α, β)

α+j−1∑
j=0

(−1)j+1

(
α − 1

j

)
Jp(β + j − 1).

Now observe that

Ip(0) =
∫ 1

0
cos(2πpx) dx = 0

Jp(0) =
∫ 1

0
sin(2πpx) dx = 0

Ip(1) =
∫ 1

0
x cos(2πpx) dx =

1

2πp
[x sin(2πpx)]10 −

1

2πp

∫ 1

0
sin(2πpx) dx = 0

Jp(1) =
∫ 1

0
x sin(2πpx) dx = − 1

2πp
[x cos(2πpx)]10 +

1

2πp

∫ 1

0
cos(2πpx) dx = − 1

2πp

Now consider Ip(C). For C ≥ 2,

Ip(C) =
∫ 1

0
xC cos(2πpx) dx

=
1

2πp

[
xC sin(2πpx)

]1

0
− C

2πp

∫ 1

0
xC−1 sin(2πpx) dx

= − C

2πp

∫ 1

0
xC−1 sin(2πpx) dx

=
C

(2πp)2

[
xC−1 cos(2πpx)

]1

0
− C(C − 1)

(2πp)2

∫ 1

0
xC−2 cos(2πpx) dx

=
C

(2πp)2
− C(C − 1)

(2πp)2
Ip(C − 2) (7)

and therefore Ip(2) = 2
(2πp)2

and Ip(3) = 3
(2πp)2

which satisfy the formula given
in Theorem 1. Assume now that the formula is valid for c = 2, . . . , C. Then

Ip(C + 2) =
C + 2

(2πp)2
− (C + 2)(C + 1)

(2πp)2
Ip(C) from (7)

=
C + 2

(2πp)2
−

�C
2
�∑

c=1

(−1)c−1 C!

(C − 2c + 1)!

1

(2πp)2c
from the induction assumption

=
C + 2

(2πp)2
+

�C
2
�∑

c=1

(−1)c+1−1 (C + 2)!

(C + 2 − 2(c + 1) + 1)!

1

(2πp)2(c+1)
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=
C + 2

(2πp)2
+

�C+2
2

�∑
c=2

(−1)c−1 (C + 2)!

(C + 2 − 2c + 1)!

1

(2πp)2c

=

�C+2
2

�∑
c=1

(−1)c−1 (C + 2)!

(C + 2 − 2c + 1)!

1

(2πp)2c

which demonstrates the formula for Ip(C).
Equally, we have the recurrence relation

Jp(C) = − 1

2πp
− C(C − 1)

(2πp)2
Jp(C − 2) (8)

which implies that Jp(2) = − 1
2πp

and Jp(3) = − 1
2πp

+ 3!
(2πp)3

which satisfy the
formula of Theorem 1. Assuming the formula is valid for c = 2, . . . , C then

Jp(C + 2) = − 1

2πp
− (C + 2)(C + 1)

(2πp)2
Jp(C) from (8)

= − 1

2πp
− (C + 2)(C + 1)

(2πp)2

�C+1
2

�∑
c=1

(−1)c C!

(C − 2c + 2)!

1

(2πp)2c−1

from the induction assumption

= − 1

2πp
−

�C+1
2

�∑
c=1

(C + 2)!

(C − 2c + 2)!

1

(2πp)2c+1

=

�C+2+1
2

�∑
c=1

(−1)c (C + 2)!

(C + 2 − 2c + 2)!

1

(2πp)2c−1

which demonstrates the formula for Jp(C) and proves the theorem. ‡

Proof of Corollary 1
Let θ ∼ SSB(ν, α, β). Then:

E[cos(pθ)] = E[cos(mod(pν + pθ0, 2π))] where θ0 ∼ SSB(0, α, β)

= E[cos(pν + pθ0)]

= cos pνE[cos pθ0] − sin pνE[sin pθ0]

=
1

B(α, β)

⎧⎨
⎩

β−1∑
j=0

(−1)j

(
β − 1

j

)
(cos(pν)Ip(α + j − 1) − sin(pν)Jp(α + j − 1))

⎫⎬
⎭ .

The other expressions can be derived similarly by using the expansions of
sin(A + B) and cos(A + B) and the fact that if X ∼ B(α, β), then Y =
1 − X ∼ B(β, α). ‡

21


