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Abstract

The Youden index is a widely used measure in the framework of medical diagnostic,

where the effectiveness of a biomarker (screening marker or predictor) for classifying a

disease status is studied. When the biomarker is continuous, it is important to determine

the threshold or cut-off point to be used in practice for the discrimination between dis-

eased and healthy populations. We introduce a new method based on adjusted empirical

likelihood for quantiles aimed to estimate the Youden index and its associated threshold.

We also include bootstrap based confidence intervals for both of them. In the simulation

study, we compare this method with a recent approach based on the delta method under

the bigamma scenario. Finally, a real example of prostatic cancer, well known in the liter-

ature, is analyzed to provide the reader with a better understanding of the new method.
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1 Introduction

Diagnostic tests are often used for classifying diseased and healthy populations. They are

based on biomarkers, and can be dicothomous, ordinal or continuous. From here on, we will

focus on continuous biomarkers which are the most used in practice.

As Le (2006) points out, sometimes larger values of the biomarker, denoted by X, are

associated with the diseased population (fasting blood glucose for diabetes, prostatic specific

antigen (PSA) for prostate cancer, antibodies for infections, etc.), but other times is the

opposite, with smaller values of X associated with the disease population (static admittance

for ear infection, thyroid-specific hormone (TSH) for hyperthyroidism, etc.). We will asume

along the paper, without loss of generality, the former case.

In this context, a person is classified as ‘diseased’ if the corresponding biomarker value is

greater than a given threshold value, and is classified as ‘healthy’ otherwise. Denoting by c

that threshold value, there are two important probabilities associated with it: the sensitivity,

q(c), and the specificity, p(c). The sensitivity is defined as ‘true positive subjects’, i.e. cor-

rectly classified diseased individuals and the specificity as ‘true negative subjects’, i.e correctly

classified healthy individuals. The pairs (1−p(c), q(c)), for all possible threshold values c, are

usually drawn in a plot called the ROC curve. The name ROC stands for ‘Receiver operating

characteristic’ because was originally created in the context of radar technology, in order to

distinguish the signal and the noise (Erdreich and Lee, 1981). The first application of the

ROC curves was for detecting arrivals of missiles.

The ROC curve describes graphically the performance of the biomarker under several

cut-off points (see, for example, Pepe, 2003). The area under the ROC curve is denoted by

AUC, and it is a summary measure of the accuracy of the diagnostic test. While a value of

AUC = 1 represents a perfect test, a value of AUC = 0.5 represents a test that performs

exactly the same as if we had used a fair coin (50-50 chance) as a diagnostic test.

A key point in this methodology is to find an optimal threshold, in order to maximize

the effectiveness of the biomarker. In most instances, there is an inverse relationship between

sensitivity and specificity, in the sense that moving the threshold increases one while decreasing

the other. So a kind of balance between sensitivity and specificity is necessary.

There exist two main methods for identifying the optimal threshold: the northwest corner

and the Youden index. These two methods can give different cut-off points as Perkins and

Schisterman (2006) point out. From here on, we will concentrate on the latter defined by
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Youden (1950) and recently studied by Fluss et al. (2005), Schisterman et al. (2005), Le

(2006), and Schisterman and Perkins (2007), among others.

In order to maximize the effectiveness of the biomarker, the Youden index, J , is defined

as follows,

J = max{J(c); c ∈ ℜ} , where J(c) = q(c) + p(c) − 1.

The notation X0 and X1 will be used to refer to the values of the biomarker on the healthy

and diseased populations, respectively. Denoting by F0 and F1 their corresponding cumulative

distribution functions (cdf’s), and by F̄0 and F̄1 their complementary ones, it follows that

J(c) = Pr(X1 > c) + Pr(X0 < c) − 1 (1)

= F̄1(c) + F0(c) − 1

= F̄1(c) − F̄0(c) = F0(c) − F1(c).

It is easy to see that J is the maximal vertical distance from the ROC curve to the diagonal

or chance line. Another way of visualizing J is that J(c) in (1) can also be determined

computing the difference of the area under f1 and f0 to the right of the cut-off point c (see,

for instance, Schisterman et al., 2005), with f0 and f1 the density functions associated to F0

and F1, respectively. Using the latter reasoning, the maximum difference, J , is achieved at

the corresponding c value where f0 and f1 intersect. Additionally, the Youden index can be

seen as the Kolmogorov-Smirnov distance between X0 and X1 (Pepe, 2003).

The paper is organized as follows. In Section 2, we revise the delta method for computing

the optimal J and c, and their confidence intervals applied to the bigamma model. In Section

3, we propose a new method, not requiring parametric assumptions. Through a simulation

study we check its performance in Section 4, where it is shown to be competitive with the

delta method. Finally, in Section 5, the new approach is illustrated through a well known real

example.

2 Delta method

The delta method, based on Taylor’s theorem, is useful to approximate the moments of

transformed random variables, using the moments of the original non-transformed ones. The

main application of the delta method is for computing the variance of transformed random
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variables, from which approximate confidence intervals can be obtained (see, for instance,

Miller (1981) and Collett (2003)).

In the univariate case, let X be a random variable with mean µX and variance Var[X]

and consider the transformation h(X). Applying the delta method, it follows that

Var[h(X)] ≃ Var
[
h(µx) + h′(µx)(X − µx)

]
= [h′(µx)]2Var[X].

On the other hand, in the bivariate case, let X and Y be two random variables, with mean

vector (µx, µy) and covariance matrix given by the expression below,

(
Var[X] Cov(X, Y )

Cov(X, Y ) Var[X]

)

and consider the transformation h(X, Y ). Once again, based on the delta method, the variance

of h(X, Y ) can be approximated by

Var[h(X, Y )] ≃ Var

[
h(µx, µy) +

∂h

∂x
(µx, µy)(X − µx) +

∂h

∂y
(µx, µy)(Y − µy)

]

=

[
∂h

∂x
(µx, µy)

]2

Var[X] +

[
∂h

∂y
(µx, µy)

]2

Var[Y ]

+ 2

[
∂h

∂x
(µx, µy)

] [
∂h

∂x
(µx, µy)

]
Cov(X, Y ).

In the context of ROC curves, a 4-dimensional version of the delta method can be applied

to the bigamma model (Schisterman and Perkins, 2007) for approximating the variance of

the Youden index and the associated threshold. With these approximated variances and the

corresponding point estimates, Ĵ and ĉ, the following asymptotic (1 − α)100% confidence

intervals for J and c are obtained:

CI(1−α)100%(J) = Ĵ ∓ z1−α/2

√
V̂ar[Ĵ ], and CI(1−α)100%(c) = ĉ ∓ z1−α/2

√
V̂ar[ĉ],

with z1−α/2 referring to the (1 − α/2)-quantile of the standard gaussian distribution.

Since the focus of our paper is on the bigamma model, we introduce it in the following.

The bigamma model is given by two gamma distributed random variables, X0 ∼ γ(α0, β0)

and X1 ∼ γ(α1, β1), with density functions defined by

fi(αi, βi, x) =
e−x/βixαi−1

βαi

i Γ(αi)
, with x > 0,
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where αi > 0 and βi > 0 are the shape and scale parameters, for i = 0, 1, and Γ denotes the

gamma function

Γ(p) =

∫ ∞

0
e−xxp−1dx, with p > 0.

Now, for the bigamma model, J(c) in (1) can be rewritten as follows

J(c) =

∫ ∞

c(α0,α1,β0,β1)

e−x/β1xα1−1

βα1

1 Γ(α1)
dx −

∫ ∞

c(α0,α1,β0,β1)

e−x/β0xα0−1

βα0

0 Γ(α0)
dx.

For the sake of easy reading, we will denote from here on c(α0, α1, β0, β1) by c.

Based on the delta method and assuming independence between X0 and X1, the variance

of Ĵ can be approximated as follows

Var[Ĵ ] ≃
(

∂J

∂α1

)2

Var[α̂1] +

(
∂J

∂β1

)2

Var[β̂1] (2)

+

(
∂J

∂α0

)2

Var[α̂0] +

(
∂J

∂β0

)2

Var[β̂0]

+ 2

(
∂J

∂α1

)(
∂J

∂β1

)
Cov(α̂1, β̂1)

+ 2

(
∂J

∂α0

)(
∂J

∂β0

)
Cov(α̂0, β̂0).

Analogously, an expression for Var[ĉ] can be obtained using the delta method. The only

difference is that the partial derivatives of J appearing in (2) are now replaced by the partial

derivatives of c.

The variances and covariances appearing in the right-hand side of (2) can be found in

Schisterman and Perkins (2007). Below, the expressions for the rest of terms in the right-

hand side of (2) have been rewritten in a more compact way than in Schisterman and Perkins

(2007), correcting some minor missprints. Moreover, closed forms for the computation of the

partial derivatives of c, appearing in those expressions, have been obtained, inspired in the

envelope of curves (see, for instance, Hairer and Wanner, 1996). This approach for computing

the partial derivatives of c differs from that used in Schisterman and Perkins (2007), who

approximate them numerically. We detail below the four partial derivatives of J :

∂J

∂α1
(c) = F̄1(c)

[
− δ1

Γ(α1)
− log(β1)

]
+

∫ ∞

c
f1(x) log(x)dx +

∂c

∂α1
(f0(c) − f1(c)),
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∂J

∂β1
(c) =

α1

β1

[
F̄1(α1 + 1, β1, c) − F̄1(c)

]
+

∂c

∂β1
(f0(c) − f1(c)),

∂J

∂α0
(c) = F̄0(c)

[
log(β0) +

δ0

Γ(α0)

]
−
∫ ∞

c
f0(x) log(x)dx +

∂c

∂α0
(f0(c) − f1(c)),

∂J

∂β0
(c) =

α0

β0
[F̄0(c) − F̄0(α0 + 1, β0, c)] +

∂c

∂β0
(f0(c) − f1(c)),

where, for i = 0, 1, δi = ∂
∂αi

Γ(αi),
δi

Γ(αi)
= ∂

∂αi
log(Γ(αi)) is known as the digamma function,

F̄i(αi +1, βi, c) denotes the complementary cdf of a gamma distributed random variable, with

parameters αi + 1 and βi, and the four partial derivatives of c are given by the closed forms

below

∂c

∂α0
=

−∂2J
∂α0∂c

∂2J
∂c2

=
− ∂

∂α0
f0(x)

∂
∂c(f0(c) − f1(c))

,
∂c

∂β0
=

−∂2J
∂β0∂c

∂2J
∂c2

=
− ∂

∂β0
f0(x)

∂
∂c(f0(c) − f1(c))

,

∂c

∂α1
=

−∂2J
∂α1∂c

∂2J
∂c2

=
∂

∂α1
f1(x)

∂
∂c(f0(c) − f1(c))

,
∂c

∂β1
=

−∂2J
∂β1∂c

∂2J
∂c2

=

∂
∂β1

f1(x)

∂
∂c(f0(c) − f1(c))

.

Note that, based on the fact that ∂J
∂c = 0 when evaluated at the optimal threshold, it is

satisfied that

∂2J

∂α0∂c
+

∂2J

∂2c

∂c

∂α0
= 0,

from where the closed form of ∂c
∂α0

, previously detailed, is straightforwardly obtained. Simi-

larly, the other partial derivatives of c are obtained.

3 New method

Likelihood-based methods can deal with incomplete data, pool information from different

sources and, when there exists extra information from the outside, they can include it as con-

straints, restricting the domain of the likelihood function, or as prior distributions multiplying

the likelihood function. On the other hand, parametric assumptions can yield wrong estimates

when the model is misspecified. Nonparametric estimates, however, avoid this misspecification

inherent to parametric model-based estimates. The combination of these two methodologies

has the advantage of using likelihood methods without the restriction of having to assume that

the data follow a known parametric model of distributions. The combination of likelihood

and nonparametric methods has been termed in the literature as empirical likelihood. It was

first proposed by Thomas and Grunkemeier (1975) to obtain better confidence intervals for
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the Kaplan-Meier estimator (see Kaplan and Meier, 1958). Later on, Owen (1990, 2001) and

other authors have shown the potential of this approach, which nowadays is still an active

area of research (see, for instance, Cao and Van Keilegom, 2006, Chen et al., 2009, Hjort et

al., 2009, and Molanes-López et al., 2009). One of the main advantages of empirical likelihood

based confidence intervals is that they respect the range of the parameter space, are invariant

under transformations and their shape is data-driven.

We present a new approach, based on EL and bootstrapping, for estimating the optimal

threshold and the associated Youden index, and their corresponding confidence intervals.

However, since in the medical field is more relevant to know which is the cut-off of the

biomarker to classify the individuals, our main focus is on correctly estimate the optimal

threshold. As a byproduct of our method, we get as well an estimate of J . Besides, the

new method has the additional advantages of easy implementation and not requiring any

particular parametric assumption.

Before going on more details, we first require to introduce the concept of relative distribu-

tion (see Handcock and Morris, 1999, for more details), which is very related to the concept of

ROC curve. Specifically, the relative distribution of X1 with respect to (w.r.t.) X0 is defined

as the cdf of the random variable Z = F0(X1), i.e.

R01(t) = Pr(Z ≤ t) = Pr(F0(X1) ≤ t) = F1

(
F−1

0 (t)
)
.

To provide the reader with some insight on the interpretation of R01(t) for a fixed t ∈ (0, 1),

let denote by s = R01(t), with s ∈ (0, 1). Then, F1(c) = s for some c in ℜ such as F0(c) = t,

i.e. c is the s-th quantile of X1 and the t-th quantile of X0. On the other hand, it is easy to

see that R01(t) is a reparametrization of the ROC curve,

R01(t) = 1 − ROC(1 − t),

where ROC(t) = F̄1

(
F̄−1

0 (t)
)
, for t ∈ (0, 1), denotes the ROC curve, i.e. the cdf of the

random variable 1 − Z, known in the literature as ‘the placement value’ (see Cai, 2004 and

Pepe and Cai, 2004). It is interesting to note here that when a fair coin is used as a diagnostic

test to classify the individuals, Z and 1 − Z both follow a uniform distribution in (0, 1)

and consequently J=0 and there is not optimal c to distinguish between both populations.

Moreover, since E[Z] = Pr(X0 ≤ X1) = AUC (Bamber, 1975), when a fair coin is used as a

diagnostic test, it follows that AUC = 0.5, the minimum attainable value for AUC.

Consider {X0k}n0

k=1 and {X1k}n1

k=1, two independent samples taken from both populations,
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X0 and X1, with sample sizes n0 and n1, respectively. Based on these observations, we detail

below the 4 steps of our method to obtain estimates of J and c.

Step 1. We obtain R̂01(t), a kernel-type estimate of the relative distribution of X1 w.r.t. X0,

R̂01(t) =
1

n1

n1∑

k=1

G

(
t − F0n0

(X1k)

h1

)
, (3)

and then we find the value t, let say t0, that maximizes the distance between R̂01(t) and

t. In equation (3) above, G(x) =
∫ x
−∞ K(y)dy, K denotes a kernel function, h1 is the

smoothing parameter, also known as bandwidth, and F0n0
refers to the empirical cdf of

X0.

Note that, since F0 is assumed unknown, it is required to estimate it through F0n0
.

Consequently, R̂01(t) in (3) can be seen as a traditional kernel-type cdf estimate of

Z, based on the pseudosample {F0n0
(X1k)}n1

k=1 rather than on the unobserved sample

{F0(X1k)}n1

k=1, straightforwardly drawn from Z. Note that F0n0
(X1k) above gives the

rank of X1k in the healthy sample {X01, . . . , X0n0
}.

Analogously, interchanging the roles of X0 and X1, we obtain R̂10(t), a kernel-type

estimate of the relative distribution of X0 w.r.t. X1, and find the value t, let say t1,

that maximizes the distance between R̂10 and t.

Step 2. With the two values previously computed, t0 and t1, we then apply the adjusted EL

method for quantiles proposed by Zhou and Jing (2003), and estimate the t0-th quan-

tile of the healthy population, c0 = F−1
0 (t0), and the t1-th quantile of the diseased

population, c1 = F−1
1 (t1).

Specifically, for i = 0, 1, we find the value ĉi, that minimizes the adjusted log-empirical

likelihood ratio given by the expression below,

ℓ̂(ci) = 2ni

(
F̂i(ci) log

F̂i(ci)

ti
+ (1 − F̂i(ci)) log

1 − F̂i(ci)

1 − ti

)
,

where F̂i denotes a kernel-type estimate of Fi,

F̂i(x) =
1

ni

ni∑

k=1

G

(
x − Xik

gi

)
, (4)

with gi the smoothing parameter.
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It is interesting to note here that, although most of the empirical likelihood approaches

lead to log-likelihood functions implicitly defined by a nonlinear equation, this is not

the case for the approach of Zhou and Jing (2003), where a closed form is available for

the log-likelihood function.

Step 3. With the two estimates previously computed in Step 2, ĉ1 and ĉ2, we then propose

ĉ = n0

n ĉ0 + n1

n ĉ1 as an estimate of the optimal threshold c, where n = n0 + n1. Finally,

as a byproduct, an estimate of the Youden index is given by Ĵ = F̂0(ĉ) − F̂1(ĉ), where

F̂i has been previously introduced in equation (4).

Step 4. In order to obtain confidence intervals for c and J , we resample independently from both

populations and repeat the three steps given above a large number of times, let say B,

using the bootstrap resamples. These bootstrap resamples are drawn from smoothed

versions of the corresponding empirical cdf’s.

Finally, the confidence intervals for the Youden index J and the optimal threshold c are

given by the percentile method.

4 Simulation study

A study of interval width and coverage probability is done through a simulation study based

on the bigamma model with several parameters, similar to those considered by other authors.

Within the parametric assumptions in Schisterman and Perkins (2007), the bigamma model

can deal with asymmetric situations what make it more realistic and flexible than the binormal

model in real applications. The specific values, under the bigamma assumption, for the shape

and scale parameters of the healthy population were fixed to α0 = 1.5 and β0 = 1. However,

the parameters of the diseased population were accordingly selected to yield different values

of J , as collected in Table 1.

Youden index J

Shape parameter α1 of X1 J = 0.4 J = 0.6 J = 0.8 J = 0.9

α1 = 1.5 2.4828 4.3565 9.7847 19.8020

α1 = 2.0 1.6622 2.7650 5.6517 10.3842

Table 1: Bigamma model: scale parameter of diseased population, β1, with α0 = 1.5 and β0 = 1.
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The simulations were carried out in MATLAB. For every scenario specified in Table 1, 300

trials were considered. For each trial, a sample of n0 = 50 i.i.d. observations, {X01, . . . , X0n0
},

and a sample of n1 = 50 i.i.d. observations, {X11, . . . , X1n1
}, were independently drawn from

X0 and X1, respectively. The uniform kernel, K, was considered to estimate the relative

distributions involved in the first step of our algorithm, R01 and R10, and the cdf’s, Fi, for

i = 0, 1, required to estimate J in Step 3. For these kernel type estimates we considered the

following bandwidths, hi = n
−1/3
i and gi = 2n

−1/3
i , for i = 0, 1, that are of optimal order

to estimate cdf’s in two-sample and one-sample problems. However, given the regularity

conditions required by the adjusted empirical likelihood method for quantiles of Zhou and

Jing (2003), we used in (4) bandwidths given by n
−1/2
i , for i = 0, 1, and a kernel different

from the commonly used in nonparametric density estimation,

K(x) =

{
21 − 9

√
21

8
x2 +

−3 + 3
√

21

8

}
1{|x|≤1}.

From each pair of samples, we generated B = 299 bootstrap resamples to obtain 95%-

confidence intervals for the optimal cut-off point c and the Youden index J . Although in

classical resampling methodology the resamples are drawn from the empirical cdf’s, we have

used instead kernel type cdf estimates of Fi with gaussian kernel and bandwidths given by

0.2 max {iqr({Xik}ni

i=1), std({Xik}ni

i=1)}n
−1/5
i , for i = 0, 1, with iqr and std referring to, respec-

tively, the sample interquartile range and sample standard deviation.

We would like to remark here that sometimes, in Step 2 of our algorithm, it may be

required to deal with upper and lower quantiles, more extreme than those considered by Zhou

and Jing (2003). For instance, for the bigamma model with parameters α0 = 1.5 β0 = 1

α1 = 2 and β1 = 10.38, which corresponds to a setting of J = 0.90, it is necessary to estimate

the 0.97-quantile of the healthy population, which can be very challenging, specially if the

sample size is small.

We collected in Tables 2 and 3 the results from this simualion study. To get a more visual

understanding of them we also included Figure 1. For the sake of simplicity, we will refer to

the new method by ELM (Empirical Likelihood Method). From the results collected in Tables

2 and 3, we observe that in general the ELM for CI’s of both parameters of interest tend to

present overcoverage, while those based on the delta method present undercoverage. In terms

of width average, the ELM for the CI of c behaves better than the other when the biomarker

X separates both populations reasonably well (see, for instance, the results in Table 2 for

J = 0.8, 0.9).
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Bigamma model: CI95%(c) with (n0, n1) = (50, 50)

ELM Delta method

α1 J coverage(%) width coverage(%) width

1.5 0.4 96.33 1.3734 90.33 1.0598

1.5 0.6 96.00 1.4164 93.00 0.9643

1.5 0.8 99.00 1.3263 93.33 1.3414

1.5 0.9 95.33 1.9039 94.33 1.9033

2.0 0.4 96.33 1.2632 96.33 4.1990

2.0 0.6 98.33 1.2676 96.33 1.1748

2.0 0.8 94.67 1.3755 94.67 1.4047

2.0 0.9 93.33 1.5828 93.33 1.9389

Table 2: Coverage probabilities and width averages of CI95%(c).

It is also interesting to point out the results collected in the third row of Table 2. While

the ELM for estimating c presents the higher observed overcoverage, 99%, it shows a width

average shorter than the delta method (a width average of 1.3263 versus 1.3414). On the

other hand, an isolated case has been observed for the delta method in the fifth row of Table

2, where an atypical trial had a negative effect on the width average.

However, when estimating J , the width of the ELM for the CI is larger than the width

of the delta method. This can be explained due to the fact that our approach is focused

on correctly estimating c, and once ĉ is computed, Ĵ is obtained as a byproduct. As it was

already observed in the literature, even though J and c are strongly related, a good method

for estimating one of them is not necessarily good for the other (see Fluss et al., 2005).

From the previous discussion on the results, we conclude that the new confidence intervals

have good performance in terms of nominal coverage and width, being competitive with the

delta method, recently used by Schisterman and Perkins (2007) under parametric assumptions.

The delta method is dependent on distributional assumptions, and violations of them can

yield substantial bias in estimation. Therefore, we suggest using the new method when the

underlying distributions, F0 and F1, are unknown, although it is more time-consuming than

the delta method.

In view of the promissing results of the new methodology we plan to extend this simulation

study to other models, different sample sizes, including balanced and non-balanced designs,
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Bigamma model: CI95%(J) with (n0, n1) = (50, 50)

ELM Delta method

α1 J coverage(%) width coverage(%) width

1.5 0.4 95.67 0.3301 95.67 0.2757

1.5 0.6 97.67 0.2860 94.67 0.2432

1.5 0.8 96.67 0.2123 94.33 0.1790

1.5 0.9 96.33 0.1746 93.67 0.1220

2.0 0.4 97.00 0.3286 92.33 0.2829

2.0 0.6 96.67 0.2892 93.00 0.2485

2.0 0.8 94.67 0.2106 93.00 0.1810

2.0 0.9 92.67 0.1675 92.00 0.1219

Table 3: Coverage probabilities and width averages of CI95%(J).

and a larger number of trials to get more reliable estimates of coverage probabilities and width

averages. We also plan to incorporate more sophisticated data-driven bandwidth selectors and

scenarios where different costs are assumed for the two types of errors involved (false positives

and false negatives).

5 Example

A real example analyzed in Le (2006) is used to illustrate the application of the new approach.

There are 53 patients with prostate cancer: 20 out of them with nodal involvement and 33

without. The biomarker used in this example is the level of acid phosphatase in blood serum

(×100).

It is easy to check that these data do not follow any of the parametric models (binormal

or bigamma) studied in Schisterman and Perkins (2007) via the delta method. Consequently,

a straightforward application of the delta method would not be possible. First, the appro-

priate parametric model should be find, which not always may be possible, and then all the

formulation required by the delta method should be rewritten.

After analyzing this example using our method, which does not require any parametric

assumption, we obtain a point estimate of ĉ = 60.67 for the optimal threshold and the follow-

ing confidence interval CI95%(c) = (51.40, 67.50). The point estimate of c differs from that

12
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Figure 1: Coverages and width averages of CI95%(c) and CI95%(J) using ELM (solid line) and the

delta method (dotted line) with α1 = 1.5 (black) and α1 = 2 (red).

obtained in Le (2006), ĉ = 75.00, who proposed to model the ROC function by proportional

hazards model, also called the Lehmann’s alternatives. Notice that this Lehmann-based es-

timate is outside our confidence interval. This suggests that the assumption of Lehmann’s

alternatives may be not tenable for this data set.
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