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Abstract

Partial least squares regression (PLS) is a linear regression technique
developed to relate many regressors to one or several response variables.
Robust methods are introduced to reduce or remove the effect of outlying
data points. In this paper we show that if the sample covariance ma-
trix is properly robustified further robustification of the linear regression
steps of the PLS algorithm becomes unnecessary. The robust estimate of
the covariance matrix is computed by searching for outliers in univariate
projections of the data on a combination of random directions (Stahel-
Donoho) and specific directions obtained by maximizing and minimizing
the kurtosis coefficient of the projected data, as proposed by Peña and
Prieto (2006). It is shown that this procedure is fast to apply and pro-
vides better results than other procedures proposed in the literature. Its
performance is illustrated by Monte Carlo and by an example, where the
algorithm is able to show features of the data which were undetected by
previous methods.

Key words: Kurtosis, projections, robust covariance matrix, Stahel-
Donoho estimator.

1 Introduction
Partial least squares (PLS) is a useful procedure for relating a set of responses
to many explanatory variables. It can be seen as a general dimension reduction
technique which takes into account the linear relationship between the responses
and the regressors. When the responses are dummy variables, as in linear dis-
criminant problems, PLS has been found to work very well for classification
(see Ngueyen and Rocke, 2002 and Barker ad Rayens, 2003). However, it is well
known that the popular algorithms for PLS regression (NIPALS and SIMPLS)
are very sensitive to outliers in the data set. For univariate or multivariate re-
sponse several robustified versions have already been proposed. Wakeling and
Macfie (1992) worked with the PLS with multivariate response (which will be
called PLS2) and their idea was to replace the set of regressions involved in the
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standard PLS2 algorithm by M estimates based on weighted regressions. Griep
et al. (1995) compared least median of squares (LMS), Siegel’s repeated median
(RM) and iterative reweighted least squares (IRLS) for PLS with univariate re-
sponse (PLS1 algorithm), but these methods are not resistant to high leverage
outliers. Procedures combining robust covariance matrices and robust regres-
sion methods have been proposed by Gil and Romera (1998) and Hubert and
Branden (2003). For an extensive review of the commonly used multivariate
regression methods that have appeared since 1996 in the field of Chemometrics
see Moller at al. (2005). There is a special emphasis on the robust versions of
PCA and PLS.
In this paper we show that if the sample covariance matrix is properly ro-

bustified the PLS algorithm will be robust and therefore, further robustification
of the linear regression steps of the PLS algorithm is unnecessary. We present
a procedure which applies the standard PLS algorithm to a robust covariance
matrix. The covariance matrix is estimated by projecting the data in some di-
rections, finding outliers on this directions, deleting them from the sample and
using the clean data to compute the covariance matrix. The key ingredient in
this approach is selecting the projecting directions. A popular way to generate
directions is at random, as in the Stahel-Donoho robust multivariate estimator
(SDE), and this was the procedure used in the robust PLS algorithm by Gil
and Romera (1998). See Maronna and Yohai (1995) for the theoretical behavior
of the SDE and practical recommendations for its implementation. However,
as shown in Peña and Prieto (2001) the SDE fails with concentrated contam-
ination if p is large, as it is usually the case in PLS. Peña and Prieto (2006)
proposed to search for outliers in multivariate data by using a combination of
random directions, obtained in a much more efficient way than in the usual
SDE method, and specific directions, obtained by maximizing and minimizing
the kurtosis coefficient of the projected data. The combination of both types
of directions leads to a procedure with useful theoretical properties and good
performance: it is affine equivariant, inherits the good theoretical properties
of the SDE, inherits the good properties for finding high leverage concentrated
outliers of the kurtosis procedure and it is fast to compute, so that it can be
applied for large data sets. In this paper we adapt this algorithm for robust
PLS estimations.
As Moller et al. (2005) pointed out a theoretical high breakdown point

might be helpful for initially assessing the data quality and detecting outliers.
Nevertheless, usually there is a price to pay for such high robustness: high com-
putational complexity or low statistical efficiency and rate convergence. How-
ever, the proposed robust PLS method is fast and, as shown in the Monte Carlo
results, is able to deal with a highly contaminated data.
The rest of the paper is organized as follows. Section 2 reviews briefly

the PLS algorithm for a one-dimensional response variable and analyses the
implication of the robustification of the covariance matrix for the regression
steps. Section 3 presents the new procedure. Section 4 reports a Monte Carlo
experiment where the performance of the new method is compared to other
robust procedures. Section 5 illustrates the performance of the proposed method
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in a well known set of data where we show that the present algorithm is able to
find outliers that were undetected by previous methods.

2 Robust PLS Methods

2.1 The PLS algorithm

Suppose that we have a sample of size n of a 1+p dimensional vector z = (y, x)T ,
which can be decomposed as a set of p regressors, x, and a response variable y.
Let Sz be the sample covariance matrix of z, consisting of the elements

Sz =

⎛⎝ s2y STy,x

Sy,x Sx

⎞⎠ , (1)

where Sy,x is the p× 1 vector of covariances between y and the x variables.

We are interested in estimating the linear regression by = bβTx, and we assume
that the response can be linearly explained by a set of a factors t = (t1, ..., ta),
with a¿ p, which are linear functions of the x variables. More precisely, calling
X to the n×p data matrix of the regressors, and xTi to its ith row, the following
model holds

xi = Pt(i) + �i (2)

yi = qT t(i) + ηi, (3)

where P is the p×a matrix of the loadings of the vector t(i) = (t1(i), ..., ta(i))T

and q is the a-dimensional vector of the y-loadings. The vectors �i and ηi
have normal distribution and are uncorrelated. Then it can be shown (Helland,
1992) that the maximum likelihood estimation of the matrix of components,
t = (t1, ..., ta) is given by

t = XWa (4)

where Wa = [w1, w2, ..., wa] is the p × a matrix of coefficients and the vectors
wi verify wT

i wi = 1 and wT
i Sxwj = 0 for i 6= j, so that the n× 1 variables ti are

orthogonal. It can be shown that these vectors are the solution of

wj+1 = argmax(cov2(Xw, y))
wTw=1 and wTSxwi=0 for i=1,...,j

and are found as the eigenvectors linked to the largest eigenvalues of the matrix

(I − Px(j))Sy,xS
T
y,x

where Px(j) is the projection matrix on the space spanned by SxWj , given by
Px(j) = (SxWj)

£
(SxWj)

T (SxWj)
¤−1

(SxWj)
T . From these results it is easy to

see that the vectors wi can be computed recursively as

w1 ∝ Sy,x (5)

wj+1 ∝ Sy,x − SxWj(W
T
j SxWj)

−1WT
j Sy,x. (6)
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The selected number of PLS components,a, is usually estimated by leave-one-
out cross-validation methods. Note that by using the expressions given by (5)
and (6), it is not necessary to calculate the PLS components tj. In each step
of the algorithm, wj+1 only depends on the value of the j previous vectors
w1, w2, ..., wj , on Sx and on Sy,x. Moreover, as w1 only depends on Sy,x, the
calculation of W is completely fixed by the values of Sx and Sy,x. Finally, as
the regression coefficients in (3) are uncorrelated, due to the uncorrelation of

the t variables, it is easy to see that the regression coefficients bβPLSa are given
by bβPLSa =Wa(W

T
a SxWa)

−1WT
a Sy,x (7)

The application of this algorithm can be seen as a two step procedure: (1) the
weights wj , that define the new orthogonal regressor tj , are computed with (5)
and (6) by using the covariance matrix of the observations; (2) the regression
coefficients qj are computed from a simple regression between the response, y,
and the regressor, tj . Thus, several authors (see Gil and Romera (1998) and
Hubert and Branden (2003)) have proposed a two steps robustification. First
a robust covariance matrix is computed in order to obtain robust weights and,
second, a robust regression estimate, usually an M-estimate, is computed to
obtain the robust q weights. However, as is shown in (7), these two steps depend
only on the covariance matrix of the observations and we may think that if this
matrix is properly robustified the procedure will be robust. In the next section
we discuss this intuition.

2.2 Multivariate versus regression outliers in PLS

Given the sample zi = (yi, xi)T for i = 1, ..., n of a 1+p dimensional multinormal
vector with covariance matrix (1), let us analyze the result of detecting outliers
with respect to the joint distribution, which we will call multivariate outliers,
versus the detection of outliers with respect to the conditional distribution of y|t,
which we will call regression outliers. Let us assume without loss of generality
that all the variables have zero mean. Then, observation zi will be considered
as a multivariate outlier if it verifies

zTi S
−1
z zi > c1 (8)

where c1 is some percentile of the Chi-square distribution with 1 + p degrees
of freedom. In this expression we are assuming that n > 1 + p, so that the
covariance matrix is not singular. The case 1 + p > n will be considered later.
On the other hand, the regression outliers will be found as extreme obser-

vations in the estimated distributions of y|tj , as the tj are orthogonal. That
is, an observation will be an outlier in the regression by(tj) = bqjtj if it has high
leverage and relatively large residual. We show that by deleting observations
which are outliers with respect to the multivariate distribution: (1) we cannot
have high leverage outliers in the PLS regressions, and (2) the squared stan-
dardized residuals (yi − byi(tj))2/s2j from the regression of y on the variable tj
with residual variance s2j are bounded.
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It is easy to see from (1) that

S−1z =

⎛⎜⎝ s−2e −s−2e bβT
−bβs−2e S−1x + bβs−2e bβT

⎞⎟⎠
where bβ = S−1x Sy,x, by = Xbβ estimates E(y|X), and s2e = (y − by)T (y − by)/n
estimates var(y|X). Then we can write (8) as

(yi − byi)
s2e

2

+ vi > c1 (9)

where vi = xTi S
−1
x xi.We will show that this equation indicates that by dropping

multivariate outliers with (8) the data in the regression have the property that
both the size of the least squares (LS) residuals |yi − byi| and the leverage of
the x variables are bounded. Note that points with large values of vi will be
deleted as multivariate outliers, and thus the leverage of the regressor tj = Xwj

is bounded. The leverage of tj(i) = w0jxi will be given by

li =
w0jxix

0
iwj

w0j(X 0X)wj

and it is straightforward to show that the maximum value of this leverage is
achieved for wj = k(X 0X)−1xi, which leads to a leverage li = 1

nvi. As observa-
tions with vi large are deleted by (8) the maximum leverage of the regressor is
bounded.
Next, as the tj regressor is included in the space generated by the columns

of X X
(yi − byi(tj))2 =X(yi − byi)2 +X(byi − byi(tj))2

and calling s2j to the residual variance in the regression by(tj) we have that
s2e ≤ s2j . Also, we have that the standardized residuals of the regression of the
response on tj can be expressed as

(yi − byi(tj))2
s2j

=
(yi − byi)2

s2j
+
(x0i(bβ − bqjwj))

2

s2j
+ 2

(yi − byi)
sj

x0i(bβ − bqjwj)

sj

and it is easy to see that they are bounded. The first term is bounded by (9)
and the result s2e ≤ s2j , and the second by the bound on the leverage of the x
points coming from (9). Thus the standardized residuals of the regression of the
response on tj are bounded and cannot be very large. Note that this applies to
the regression of the response on one or several tj variables, because when we
include all the relevant ones to explain the response the predictive value will be
close to the LS fit and the residuals are obviously bounded by (9).
Finally, suppose the case 1 + p > n. Then Sz =

Pr
i=1 λiuiu

T
i , where r =

min(n, 1+p), and instead of S−1z , which does not exits, we can use the generalized
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inverse S−z =
Pr

i=1 λ
−1
i uiu

T
i . The Mahalanobis distances are given by

rX
i=1

λ−1i (zTi ui)
2

and the main argument of the analysis is the same, but now applied to the
principal components of the data.

3 The proposed algorithm
We have shown in the previous section that if we delete multivariate outliers
we will not have influential points or outliers in the regression between the
response and the factors. The algorithm we propose is designed to obtain a
robust covariance matrix free from multivariate outliers and works as follows.
Without loss of generality we assume that the original data have zero mean and
covariance matrix Sz. The points are transformed by usingezi = S−1/2z zi, i = 1, . . . , n. (10)

and when the covariance matrix is singular we will use the generalized inverse,
as defined in the previous section. The algorithm has three steps. In the first,
two specific directions are generated by maximizing and minimizing the kurtosis
coefficient of the projections and a univariate search for outliers is done in these
directions. In the second, random directions are generated by following the
procedure presented in Peña and Prieto (2006) of stratified sampling and again
outliers are identified. In the third, all the suspicious observations are tentatively
deleted from the sample and the mean and covariance matrix of the remaining
data is computed. Then by using the Mahalanobis distance all the suspicious
observations are checked. The points considered as outliers are deleted from the
sample and the three steps of the procedure are now again applied to the new
cleaned sample until no more outliers are found. We explain next the details of
these steps
Step I: Compute the directions which maximizes and minimizes the kurtosis

coefficient of the projection and also the normalized univariate distances of the
data in these two directions. The first direction is obtained as the solution of
the problem

d1 = argmaxd
1

n

nX
i=1

(d0ezi)4
s.t. d0d = 1.

(11)

The same process is applied to the computation of the direction minimizing
the kurtosis coefficient. Let d2 be this second direction and let p

(j)
i = d0jezi be the

projected values on these two directions, j = 1, 2. The normalized univariate
distances r(j)i for these projected values are computed as

r
(j)
i =

1

βp

|p(j)i −mediani(p(j)i )|
MADi(p

(j)
i )

, j = 1, 2, (12)
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βp is a predefined reference value which depends on the dimension p and is
obtained by Monte Carlo to ensure a type I error equal to 0.05. Note that if n <
1 + p we consider S−z instead of Sz and them dim(S−z ) = min(n, 1+ p) replaces
dimension p. This step will identify outliers forming clusters as observations
with large r(j)i , as shown by Peña and Prieto (2001). If the size of the group of
outliers is small (roughly smaller than 20%) the useful direction for identifying
the outliers will be d1, whereas if the size is large will be d2.
Step II: Compute random directions from a stratified sampling procedure.

Then, search for outliers in these directions. These random directions are gener-
ated by the procedure proposed by Peña and Prieto (2006) which is much more
efficient to detect outliers than the standard one. Each direction is generated
in two stages. In the first one two observations are chosen randomly from the
sample, the direction defined by these two observations is computed, and the ob-
servations are then projected onto this direction. This is repeated for l = 1, .., L.
For each l, the second stage builds a set of K stratified samples as follows. The
projections are ordered and partitioned into K intervals of size n/K, where K is
a prespecified number. From each of these k intervals, 1 ≤ k ≤ K, a subsample
of p observations is chosen without replacement, and the direction, edj , orthog-
onal to the hyperplane generated by these p observations is computed. This
direction edj is now used to search for outliers, as in Step I. The corresponding
projections ep(j)i = edjezi provide the normalized univariate distances er(j)i ,

er(j)i =
1

βp

|ep(j)i −mediani(ep(j)i )|
MADi(ep(j)i ) , j = 1, ..., LK. (13)

Step III: For each observation i its corresponding normalized outlyingness
measure ri is obtained as:

ri = max
n
r
(1)
i , r

(2)
i , er(1)i , ..., er(LK)i

o
.

Those observations having values ri > 1 are labeled as outliers and, if their
number is smaller than n−b(n+1+p)/2c, removed from the sample. Otherwise,
only those n− b(n+ 1 + p)/2c observations having the largest values of ri are
labeled as outliers.
Finally, let U denote the set of all observations not labeled as outliers. The

algorithm computes the Mahalanobis distance of the original observations la-
beled as outliers with respect to the good observations as follows:

m̃ =
1

|U |
X
i∈U

zi,

S̃z =
1

|U |− 1
X
i∈U
(zi − m̃)(zi − m̃)0,

evi = (zi − m̃)T S̃−1z (zi − m̃), ∀i 6∈ U.

Those observations i 6∈ U such that evi < χ2p−1,0.99 are considered not to be
outliers, and are included in U . When S̃−1z does not exit the Mahalanobis
distances are computed by using the generalized inverse.
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The three steps are repeated until no more outliers are found (or U becomes
the set of all observations). Note that the final covariance matrix does not need
to be scaled for consistency, as in Peña and Prieto (2006), because the PLS
coefficients and the directions obtained are invariant to scale changes.
The preceding algorithm includes a certain number of parameters. The val-

ues assigned to them in the implementation have been chosen as recommended
by Peña and Prieto (2006) to ensure adequate theoretical and efficiency proper-
ties. The parameter βp is chosen to ensure a reasonable level of Type I errors,
and depends on the sample space dimension p. Table 1, taken from Peña and
Prieto (2006) shows the values used for several sample space dimensions. The
values for other dimensions could be obtained by interpolating log βp linearly
in log p.

Table 1: Cutoff values for univariate projections for steps I and II

Sample space dimension p 5 10 20
Cutoff value βp 3.46 3.86 4.67

In step II, the number of intervals, K, is chosen as K = 3 or 5, depending
on p and L is equal to 10p.
The proposed robust PLS algorithm is based on the robust covariance matrix

S̃z. We take w1 as the normalization of the vector eSy,x, the first column of S̃z
dropping the first element, as defined in (1), and the succeeding values of wj

are also calculated in a robust form by using

wj+1 ∝ eSy,x − S̃xWj(W
T
j S̃xWj)

−1WT
j
eSy,x, 1 < j ≤ a.

Note that the proposed algorithm includes some modifications of previous
algorithms: (1) when p > n and the covariance does not exist we use the gen-
eralized inverse to compute the robust Mahalanobis distance and to clean from
outliers; (2) we do not require computing scale factors to make consistent the
estimated robust covariance matrix as the proposed PLS procedure is invariant
to scale changes.

4 Numerical Results

4.1 Monte Carlo experiments study

We have performed several Monte Carlo simulations to compare the performance
of the proposed method to other robust algorithm. The initial model used to
generate the data is:

t ∼ Na(0a,Σt)

x = Ip,at+Np(0p, 0.1Ip), p > a

y = qT t+N(0, 1)
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Table 2: Simulation study

n p a Σt �
100 5 2 diag(4,2) 0.1 and 0.3

where (Ip,a)i,j = 1 for i = j and (Ip,a)i,j = 0 otherwise, q is a p-dimensional
vector of ones, Ip is the p × p-dimensional identity matrix. We assume a as
known, two contamination levels, �, equal to 0.10 and 0.30, and four types of
contamination:

1. Bad leverage contamination:

x� = Ip,at� +Np(0p, 0.1Ip)

t� ∼ Na(10a,Σt)

2. Vertical outliers :
y� = q0t+N(10, 0.1)

3. Orthogonal outliers:

x� = Ia,pt� +Np((0a, 10p−a), 0.1Ip)

4. Concentrated contamination:

x� = Ia,pt� +Np(10p, 0.001Ip)

t� ∼ Na(10a,Σt)

For each contamination level � we have generated sets of 100(1 − �) ob-
servations from the previous model, and we have added 100� additional ob-
servations generated from one of these contamination models. Three robust
procedures are compared in this study to the standard PLS algorithm. The
first, PLS-KurSD, is the one proposed in this paper. The second, PLS-SD,
is the one proposed by Gil and Romera (1998). The third, RSIMPLS, is
the algorithm proposed by Hubert and Branden (2003). The comparison is
made by using three classical regression measures. The first two are based
on the angle between the true parameter vector β and the estimated vector
β̂[y�,X�],a. After m = 1000 replications we evaluate the Mean(angle) and the

MSEa(β̂) =
1
m

Pm
l=1 kβ̂

(l)

a −βk2 = Norm(β), where kk denotes Euclidean norm
and β̂

(l)

a is the estimated regression vector in the replication l. In addition, we

compute a third measure MSEa =
q

1
nt

Pnt
i=1(yi − ŷi,a)2 with nt = 50 obser-

vations generated from the initial model and where ŷi,a is the predicted value
for the observation i.
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Table 3: Estimation results in 1000 replications. The sample size is n=100, p=5
and the proportion of outliers is 10% .

Algorithm PLS PLS-SD PLS-KurSD RSIMPLS
No Contamination
Mean(Angle) 0.06( 0.03) 0.07( 0.03) 0.07( 0.03) 0.08( 0.03)
Norm(β) 0.01( 0.01) 0.01( 0.01) 0.01( 0.01) 0.01( 0.01)
MSEa 0.16( 0.08) 0.17( 0.09) 0.17( 0.09) 0.17( 0.09)

10% Bad leverage points
Mean(Angle) 1.13( 0.22) 0.11( 0.06) 0.07( 0.03) 0.08( 0.03)
Norm(β) 1.23( 0.15) 0.07( 0.04) 0.01( 0.01) 0.02( 0.01)
MSEa 2.07( 0.23) 0.48( 0.16) 0.18( 0.10) 0.18( 0.09)

10% Vertical outliers
Mean(Angle) 1.14( 0.21) 0.11( 0.06) 0.07( 0.03) 0.08( 0.03)
Norm(β) 1.23( 0.14) 0.07( 0.05) 0.02( 0.01) 0.02( 0.01)
MSEa 2.08( 0.24) 0.47( 0.17) 0.18( 0.10) 0.18( 0.10)

10% Orthogonal outliers
Mean(Angle) 1.13( 0.21) 0.11( 0.06) 0.07( 0.04) 0.08( 0.03)
Norm(β) 1.22( 0.15) 0.07( 0.04) 0.02( 0.01) 0.02( 0.01)
MSE(σe) 2.06( 0.22) 0.48( 0.16) 0.18( 0.10) 0.18( 0.10)

10% Concentrated outliers
Mean(Angle) 1.14( 0.21) 0.11( 0.06) 0.08( 0.04) 0.08( 0.04)
Norm(β) 1.23( 0.14) 0.08( 0.04) 0.02( 0.06) 0.02( 0.02)
MSEa 2.08( 0.23) 0.48( 0.16) 0.19( 0.10) 0.19( 0.09)
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Table 4: Estimation results in 1000 replications. The sample size is n=100, p=5
and the proportion of outliers is 30%.

Algorithm PLS PLS-SD PLS-KurSD RSIMPLS
No Contamination
Mean(Angle) 0.06( 0.03) 0.07( 0.03) 0.07( 0.03) 0.08( 0.03)
Norm(β) 0.01( 0.01) 0.01( 0.01) 0.01( 0.01) 0.02( 0.01)
MSEa 0.16( 0.08) 0.18( 0.09) 0.18( 0.09) 0.18( 0.09)

30% Bad leverage points
Mean(Angle) 1.36( 0.18) 0.61( 0.21) 0.10( 0.10) 1.29( 0.26)
Norm(β) 1.39( 0.13) 0.75( 0.20) 0.04( 0.11) 1.37( 0.22)
MSEa 2.23( 0.24) 1.58( 0.22) 0.24( 0.22) 2.19( 0.25)

30% Vertical outliers
Mean(Angle) 1.36( 0.19) 0.62( 0.21) 0.11( 0.12) 1.30( 0.27)
Norm(β) 1.40( 0.14) 0.75( 0.19) 0.04( 0.13) 1.37( 0.19)
MSEa 2.25( 0.24) 1.58( 0.22) 0.26( 0.27) 2.20( 0.26)

30% Orthogonal outliers
Mean(Angle) 1.36( 0.17) 0.61( 0.21) 0.10( 0.11) 1.31( 0.25)
Norm(β) 1.40( 0.16) 0.75( 0.19) 0.04( 0.13) 1.37( 0.17)
MSE(σe) 2.26( 0.24) 1.59( 0.22) 0.25( 0.23) 2.22( 0.26)

30% Concentrated outliers
Mean(Angle) 1.36( 0.18) 0.61( 0.20) 0.10( 0.10) 1.29( 0.26)
Norm(β) 1.39( 0.21) 0.74( 0.20) 0.04( 0.11) 1.37( 0.20)
MSEa 2.26( 0.23) 1.59( 0.21) 0.24( 0.23) 2.21( 0.24)
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Table 5: Some descriptive statistics for Fish data

Regressors Mean Median Std Corr Coef (Wi, y)
W1 1.55 1.49 0.16 0.63
W2 1.43 1.37 0.16 0.62
W3 1.24 1.18 0.20 0.62
W4 1.20 1.15 0.19 0.63
W5 1.00 0.95 0.16 0.65
W6 0.85 0.82 0.15 0.71
W7 0.91 0.87 0.16 0.71
W8 0.94 0.90 0.16 0.70
W9 0.55 0.53 0.09 0.73

The values for the parameters chosen in our experiment are given in Table
2. Tables 3 and 4 report averages and standard deviations of the three per-
formance measures for the four algorithms compared. Both tables show in the
first four rows, corresponding to the no contamination case, that the three ro-
bust algorithms are slightly worse than PLS when the data is not contaminated.
The loss of efficiency is very small, and similar in the three robust algorithms.
However, in the case of contamination the improvement over PLS is high. Ta-
ble 3 shows that with small percentage of contamination the RSIMPLS and
PLSKurSD methods improve the one proposed by Gil and Romera (1998) and
Table 4 shows that when the amount of contamination increases (30%) both
PLS-SD and RSIMPLS breakdown. Note that the proposed method provides
robust estimates even for concentrated contamination, which is a very difficult
case in outlier detection. From the computational point of view PLSKurSD is
much faster than RSIMPLS, as shown in Table 9 where computational times
for a real data example are presented. All codes compared were implemented
in Matlab. The algorithm RSIMPLS was taken from library for robust analysis
LIBRA(see http://wis.kuleuven.be/stat/robust/LIBRA.html).

5 Real Data Study
In this section we present an application in which PLS can be useful in analyzing
a set of data. This data was primarily introduced by Naes (1985) and it has been
analyzed by Gil and Romera (1985) and Hubert and Vanden Branden (2003). It
contains observations on 45 samples of Fish (rainbow trout). For each sample,
fat concentration is determined. The spectra are obtained on a NIR instrument
and consist of nine wavelengths. The objective of the analysis is to search for
the relation between fat concentration and these spectra. Table 5 presents some
descriptive statistics for this data set.
In order to select the number of PLS components we use a leave-one-out

cross-validation method. Let ŷ(i),a be the estimate of yi which comes from a
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Figure 1: PRESS values for the PLS algorithm, a = 1, ..., 10

PLS regression with a components when we have eliminated the ith observation.
The value of the predictive residual error sum of squares (PRESS) is

PRESS(a) =
nX
i=1

(yi − (ŷ(i),a)i)2
n

(14)

The PRESS values decrease very slowly from a = 3 onwards, as it is shown in
Figure 1. The same result has been shown by Gil and Romera (1998) and Hardy
et al (1996).
It was reported by Naes (1985) that observations 39-45 are outlying. We

have verified that in fact these observations are multivariate outliers using the
Mahalanobis distance with respect to the 1-38 observations. We have applied
the proposed PLSKurSD procedure to the Fish data and we have found 17
suspicious outlying observations: 1, 3, 10, 12, 16, 17, 18, 27, 30, 35, 37, 39,
40, 41, 43, 44 and 45. The corresponding 17 squared standardized Mahalanobis
distances (in the log-scale) with respect to the good observations, according
to the PLSKurSD procedure, are plotted in Figure 2. In this figure we have
also plotted the two standard χ2-percentiles (in logarithms) which are usually
selected as cutoff values. We observe that all the scores exceed by far the cut-off
values log(χ210;0.95) = 2.907 and log(χ

2
10;0.99) = 3.144.

Table 6 compares different regression estimates for this data set. The first
column is the ordinary least squares regression estimate, (OLS), the second
one is the standard PLS algorithm, the third is the RSIMPLS robust algorithm
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Figure 2: Squared Standardized Mahalanobis distances of the 17 outliers found
by PLSKurSD in the log-scale. The cut-off values log(χ210;0.95) = 2.907 and
log(χ210;0.99) = 3.144 are represented by the horizontal lines.
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Table 6: Regression coefficients with four procedures for FISH data. The * in
the OLS regression indicates a t statistic larger than 2.

OLS PLS RSIMPLS PLSKurSD
W1 -186.37 149.23 64.7557 55.1565
W2 425.81 60.491 -18.5719 -17.4461
W3 -61.52 -107.91 -88.0727 -82.0153
W4 -376.54 -114.25 -67.9800 -63.1873
W5 -33.46 -97.353 -47.6929 -63.2612
W6 -1188.83(*) -25.934 52.5208 57.8444
W7 -20.08 -29.735 65.3958 71.0942
W8 1223.78(*) -0.5704 55.7535 62.9704
W9 303.24(*) 258.93 9.9509 3.7658

proposed by Hubert and Vanden Branden (2003) and the last one is the proposed
algorithm, which is called PLSKurSD. The (*) in the OLS regression indicates
a t statistic larger than 2. Both robust regression methods give similar weights
to the same wavelengths. The differences between the OLS and the robust
estimates are remarkable as can be expected by the large number of outliers
found by the robust methods.
Our procedure found a larger set of outliers, 17, than the RSIMPLS algo-

rithm, which finds 13. As we have shown in Figure 2 these 17 observations are
clearly outliers with respect to the rest of the data. It is interesting to show that
our procedure leads to a better fit to the data. Table 7 reports the standard
deviation and the MAD (median of the absolute deviations to the median) of
the regression residuals in the set of clean data and in the set of outliers found
by the two robust procedures. It can be seen that the PLSKurSD leads to a
better fit. We have also compared the correlation structure of the regressors
in the two groups and Table 8 gives the correlations between the response and
the spectra in the group of clean data and in the group of outliers for the two
robust procedures. It can be seen that the differences between the correlation
in the group of clean data and the group of outliers are larger with the proposed
procedure PLSKurSD. For instance, the euclidean distance between columns 2
and 3 in Table 8 is 0.1025 whereas the euclidean distance between the columns
4 and 5 is 0.2764. This result suggests that PLSKurSD finds a group of out-
liers with a correlation structure different from the one in the group of good
observations. This effect is less clear with the RSIMPLS procedure.
Table 9 presents the computational times for the three PLS methodologies

used in our Fish data analysis. The proposed PLSKurSD algorithm is remark-
ably much faster than the RSIMPLS.
Figure 3 plots the two groups of observations in the plane generated by

the two first PLS components. Most of the data correponding to the group of
outliers appear as extremes in this plot. Figure 4 shows the projection of the
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Table 7: Dispersion measures (Standard deviation and MAD) in four cases: the
clean group according to RSIMPLSg ; the group of outliers found by RSIMPLSo;
the clean group according to PLSKurSDg ; and the group of outliers found by
PLSKurSDo

RSIMPLSg RSIMPLSo PLSKURSDg PLSKURSDo

STD 0.8175 2.0965 0.6231 2.5152
MAD 0.6518 1.5318 0.5782 1.6286

Table 8: Correlation coefficients between the response and the spectra in five
cases: All the data (Total); the clean group according RSIMPLSg ; the group of
outliers found by RSIMPLSo; the clean group according to PLSKurSDg ; and
the group of outliers found by PLSKurSDo

TOTAL RSIMPLSg RSIMPLSo PLSKURSDg PLSKURSDo

W1 0.6357 0.7304 0.6022 0.7499 0.5200
W2 0.6246 0.7077 0.5951 0.7188 0.5127
W3 0.6198 0.6918 0.5937 0.6865 0.5134
W4 0.6311 0.7078 0.6047 0.7028 0.5256
W5 0.6579 0.7340 0.6277 0.7117 0.5544
W6 0.7168 0.8002 0.6927 0.7922 0.6290
W7 0.7151 0.8021 0.6901 0.7962 0.6251
W8 0.7088 0.7951 0.6842 0.7897 0.6175
W9 0.7381 0.7899 0.7162 0.7591 0.6621

Table 9: Computational times

Algorithm SIMPLS RSIMPLS PLS-KurSD
Time(seg.) 0.000 3.120 0.062
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Figure 3: Projection of the Fish data on the plane of the two first PLS compo-
nents according to PLSKurSD procedure

data on the second and the third PLS components. Again, most of the points
identified as outliers are extreme data in this plot.
Finally, we found surprising the large group of outliers found by our proce-

dure. One possibility is that this set of points is indicating a wrong specification
of a linear model, as outliers are extreme points but with respect to the given
model. We have found that there is a large evidence of a nonlinear relationship
between the response and the predictors. For instance, Figure 5 shows a plot
of the response with respect to Wavelength 9. We have chosen this predictor
because this variables has a significative weight in the OLS regression model,
according to Table 6, and high correlation with the response, both in the overall
sample and in the subsets of clean data, as is shown in Tables 5 and 8. It can
be seen in this Figure that the relationship seems to be non linear, in the whole
sample and also when points 39-45 are deleted. This may explain why so many
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Figure 4: Projection of the Fish data on the plane of the second and the third
PLS components according to PLSKurSD procedure
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Figure 5: Plot of the Fat variable versus the nineth wavelength. Upper panel
whole sample, lower panel observations 1-38.

point are found as outlying in the multivariate regression. For instance, the
two extreme points in the bottom panel in Figure 5, which deviate strongly
from the linear relationship between both variables, are found as outliers by our
procedure.
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