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Abstract 
 
In this work, we discuss Bayesian estimation of multinomial probabilities associated 
with a finite alphabet A under incomplete experimental information. Two types of prior 
information are considered: (i) number of letters needed to see a particular pattern for 
the first time, and (ii) the fact that for two fixed words one appeared before the other. 
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1 Introduction

In this work we take Bayesian point-of-view in the following context. We con-

sider a discrete random variable L that, with probabilities p = (p1, . . . , pd),

takes the values (l1, . . . , ld), that is, P (L = lj) = pj, j = 1, . . . , d. One can

think of the values lj as letters or symbols in an alphabet A. Let An be the

set of all words of length n inA. To generate a particular word ω = ω1ω2 . . . ωn,

one selects letters from A sequentially, starting with ω1, and ending with ωn.

Several problems arise from this setting. For instance, Example 7.2.(a) in Ross

(1983), shows how to compute the expected number of symbols N needed to

be observed until some given sequence appears. In addition, the author calcu-

lates the probability that for two given patterns one occurs before the other.

This is done by use of martingales and reformulating the problem in the terms

of fair casino gambling. It can be proven that in this context, N represents a

stopping time related to a certain martingale. Bizley (1972) also considers the

problem of determining the expected number of trials (or symbols) required to

obtain a specific pattern and gives expressions in terms of probability gener-

ating functions. DasGupta (1993) is also an example in which stopping times

in the Bayesian context are used.

In this note, we estimate the probabilities (p1, . . . , pd) in Bayesian fashion,

given the stopping time Nω which is defined as the number of observed symbols

until the sequence ω appears for the first time.

The organization is as follows. Section 2 provides necessary definitions and an

important theorem due to Bizley (1972). In Section 3, we develop Bayesian

inference for the Bernoulli model (case for d = 2) and generalize it to the
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multinomial case, providing some examples. Section 4 considers the update of

probabilities with a different limited experimental information. A brief con-

clusion is given in Section 5.

2 Theoretical background

We defined A = {l1, l2, . . . , ld} as the alphabet consisting of d different letters

and An as the set of all words of length n in A. We assumed that letter lj is

selected with probability pj, independently of the previously selected letters.

Let Ω = A∞ be the sample space, and F = σ(∪k∈Nσ(Ak)) a σ-algebra on Ω,

where σ(Ak) is the σ-algebra generated by all subsets of Ak. Then, (Ω,F)

is a measurable space. Let Fk = σ(∪i≤kσ(Ai)), k = 1, 2, . . . be a sequence

of nested σ-algebras. In a sequential generation of word ω = ω1ω2 . . ., the

statement ρ ∈ Fk means that information wether the pattern ρ appeared up

to index k is available. The set of σ-algebras {Fk}k>1 forms a filtration on

(Ω,F), that is

Fk ⊆ F and k1 6 k2 ⇒ Fk1 ⊆ Fk2 .

Definition 1 Let (Ω,F) be a measurable space and {Fk}k>1 a filtration on it.

A random variable N is said to be a stopping time if, for every n, the event

{N ≤ n} is Fn-measurable.

Let µ be a measure defined of the measurable space (Ω,F). For a word ω =

ω1ω2 . . . ωn ∈ An assume that P (ωi = lj) = pj, for i = 1, . . . , n with
∑d

j=1 pj =

1. A simple measure on Ω can be defined by means of cylindric sets.

Definition 2 The cylindric set corresponding to the word x = x1x2 . . . xn is
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given by Γx = {ω ∈ Ω|ω1 = x1, . . . , ωn = xn}.

The probability of word x is in fact formally defined as the probability of

Γx ⊆ Ω and then µ(Γx) =
∏n

i=1 P (xi), where P (xi) is the probability of symbol

xi. The measure µ on Ω introduced as above is known as ‘Bernoulli’ measure.

Various other measures are possible. The following definition can be found in

Bizley (1972).

Definition 3 The symbol xi in the word x = x1x2 . . . xn is said to be critical

if x1x2 . . . xi = xn−i+1 . . . xn.

Notice that the symbol xn is always critical as x1 . . . xn = x1 . . . xn For in-

stance, in the word 1010, second and fourth symbols are critical. In the word

1001, first, and fourth symbols are critical while in the word 100000, only the

last symbol is critical. Critical symbols in the word ABRACADABRA are

the first, fourth and eleventh.

Assume that the word ω contains m critical symbols. Denote by aij the number

of letters li up to and including the jth critical symbol. For example, in the

word 1010, l1 = 0, l2 = 1, a11 = 1, a21 = 1, a12 = 2, and a22 = 2.

Theorem 4 (Bizley, 1972) The number Nω of consecutive symbols needed

to complete a given pattern ω is a stopping time with probability generating

function

Gω(s) =

1 + (1− s)
m∑

j=1

s−
∑

aij

d∏
i=1

p
−aij

i

−1

, (1)

and expectation

E(Nω) =
m∑

j=1

d∏
i=1

p
−aij

i . (2)

4



For example, for ω = 010, a11 = 1, a21 = 0, a12 = 2, and a22 = 1. The

probability generating function is

G010(s) =

[
1 + (1− s)

(
1

(1− p)s
+

1

(1− p)2ps3

)]−1

,

and

E(N010) =
1

1− p
+

1

p(1− p)2
. (3)

3 Bayesian inference

Our goal is to estimate the vector of unknown probabilities p = (p1, . . . , pd),

pj = P (ωi = lj), in a Bayesian way. The only information we have about the

experiment is the stopping time Nω, the number of symbols observed to obtain

the pattern ω for the first time. If the prior distribution for p is π(p), then

using the Bayes formula we can compute the posterior distribution as

π(p|Nω) =
P (Nω|p)π(p)

P (Nω)
. (4)

The estimator of p is the posterior mean. We will illustrate the proposed

Bayesian inference on Binomial and Multinomial cases, i.e, when the alphabet

contains two and more than two symbols.

3.1 Binomial case

Suppose that our alphabet consists only of two letters, say 0, 1 correspond-

ing to failure and success. Let p be the probability of success. To be non-

informative, assume that the prior distribution for p is Beta(α, β) with pa-
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rameters α = β = 1, which represents a uniform distribution on (0, 1). Notice

that a priori, E(p) = 1/2. Given that we know the stopping time N , we can

estimate p and assess how the available information changes our prior belief.

Several simple examples are provided.

Example 1. Pattern 010 was observed for first time after N010 = 10 trials.

Expression (3) is 10 for p = 1/2. The probability P (N010 = 10|p) is com-

puted as

G
(10)
010 (0)/10! = (1− p)2p(1− 6p + 21p2 − 41p3 + 52p4 − 39p5 + 16p6 − 3p7)

which is plotted in Fig 1. The Bayes estimate of probability of success is

equal to

E(p|N010) =

∫ 1
0 pP (N010|p)π(p)dp∫ 1
0 P (N010|p)π(p)dp

= 0.418838.

In order to check sensitivity with respect to the prior we computed the

Bayes estimator for a range of values of α = β. As expected, Fig 2 demon-

strates that the posterior expectation for p tends to 0.5 as α increases.

Example 2. Pattern 011 was observed first time after N=10 trials. In this

case, the probability generating function and expected value of N are

G011(s) =

(
1 + (1− s)

1

(1− p)p2s3

)−1

and E(N011) =
1

(1− p)p2
.

P (N011 = 10|p) = p2 − p3 − 5p4 + 10p5 − 2p6 − 9p7 + 9p8 − 3p9,

thus, E(p|N011) = 0.573.

FIGURES 1 AND 2 ABOUT HERE
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3.2 Multinomial case

If we consider the general case where the alphabet consists of d letters, l1, . . . , ld

with vector of probabilities p = (p1, . . . , pd), the previous calculations can be

generalized in a straightforward way. The natural prior distribution for p is

the Dirichlet distribution with a density

π(p) = π(p|α1, . . . , αd) =
Γ(
∑d

i=1 αi)∏d
i=1 Γ(αi)

d∏
i=1

pαi−1
i , αi > 0,

d∑
i=1

pi = 1.

Suppose that Nω, the number of consecutive symbols to complete a given

pattern ω is known to be n. Then, from (1), P (Nω = n|p) = G(n)
ω (0)/n!. By

Bayes formula (4), we obtain the posterior distribution:

π(p|Nω = n) =
P (Nω = n|p)π(p)∫
P (Nω = n|p)π(p)dp

. (5)

To find the expected posterior probability for symbol li we compute

E(pi|Nω = n) =

1∫
0

piπ(pi|Nω = n)dpi, (6)

where the marginal posterior π(pi|Nω = n) is obtained from (5).

Example 3. As an illustration, we take the case where d = 3, and assume

that the letters are 0, 1 and 2. We are interested in Bayesian estimation of

p1, p2, p3 = 1− p1 − p2, given that the word ω = 012 appeared for the first

time after N012 = 10 trials. This word has only one critical symbol (the last

one), so a11 = a12 = a13 = 1 and thus, the probability generating function

and expected value are

G012(s) =
s3p1p2p3

1 + s3p1p2p3 − s
, E(N012) =

1

p1p2p3

.
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The likelihood P (N012 = 10|p1, p2, p3) = p1p2p3(1 − 5p1p2p3 + 3p2
1p

2
2p

2
3), for

some values of p is depicted in Fig 3.

FIGURE 3 ABOUT HERE

If prior paramaters are, for instance α1 = α3 = 3 and α2 = 5, then the

prior is π(p) ∝ p2
1p

4
2p

2
3 and the expected a priori probabilities are E(p1) =

E(p3) = .2727 and E(p3) = .4545, that is, we favored symbol 1 against

0 and 2, before observing Nω = 10. Applying expression (6) we find that

a posteriori, the expected values change to E(p1|Nω = 10) = E(p3|Nω =

10) = .2843 and E(p2|Nω = 10) = .4312. Thus, having observed the pattern

012 for the first time after 10 trials, our beliefs about p1, p2 and p3 are

modified: the expected values of p1 and p3 increase and that of p2 decreases.

4 Updating p if the word ω appeared before the word ρ

In this Section we consider a different type of limited experimental infor-

mation. The only information available is the fact that a particular word ω

appeared before another fixed word ρ (we will denote this as ω ≺ ρ). Let Nω

and Nρ be as before and Nρ|ω be the number of additional observations neces-

sary to obtain the word ρ when the word ω is just observed. The definition of

Nω|ρ is analogous. To apply Bayes formula and update p, the following result

can be utilized.

Theorem 5 P (ω ≺ ρ|p) =
E(Nρ) + E(Nω|ρ)− E(Nω)

E(Nω|ρ) + E(Nρ|ω)
. (7)

Proof: The proof is straightforward. Denote by a∧b the minimum of a and b.

If Nρ is represented as Nρ = (Nρ ∧Nω)+Nρ− (Nρ ∧Nω), and Nρ− (Nρ ∧Nω)
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is conditioned on the event {ω ≺ ρ}, it follows

E(Nρ) = E(Nρ ∧Nω) + E(Nρ − (Nρ ∧Nω)|ω ≺ ρ)P (ω ≺ ρ|p)

= E(Nρ ∧Nω) + E(Nρ|ω)P (ω ≺ ρ|p). (8)

Equivalently, E(Nω) = E(Nρ ∧Nω) + E(Nω|ρ)P (ρ ≺ ω|p).

Since P (ρ ≺ ω|p) = 1− P (ω ≺ ρ|p), by solving (8) and the counterpart for

E(Nω), we get (7). 2

4.1 Calculating Nρ|ω

In order to calculate Expression (7) in Theorem 5 we need a efficient way of cal-

culating E(Nω|ρ) and E(Nρ|ω). Suppose that ω = ω1ω2 . . . ωn1 is observed and

assume that the expected number of trials to obtain the word ρ = ρ1ρ2 . . . ρn2

is of interest. Let j be such that ωn1−j+1 . . . ωn1 = ρ1 . . . ρj. We assume j > 0,

since if j = 0, ρ does not overlap ω, and E(Nρ|ω) = E(Nρ). In addition, we also

assume that j < min{n1, n2}. If n2 ≤ n1 and j = n2, then we already observed

ρ in ω and Nρ|ω = 0. If n1 ≤ n2 and j = n1, then E(Nρ|ω) = E(Nρj+1...ρn2
).

Theorem 6

E(Nρ|ω) = (n2 − j) + (1− P (ρj+1 . . . ρn2))(E(Nρ)− (n2 − j)) + (9)

+
n2−j∑
i=1

iP (ρj+1ρj+2 . . . ρj+i−1)Q(ρj+i).

Proof: Denote by P (ωiωi+1 . . . ωk) the probability of the pattern ωiωi+1 . . . ωk,

and Q(·) = 1− P (·). Then,

E(Nρ|ω) = Q(ρj+1)(1 + E(Nρ)) + P (ρj+1)Q(ρj+2)(2 + E(Nρ)) + . . .

+ P (ρj+1ρj+2 . . . ρn2−1)Q(ρn2)(n2 − j + E(Nρ)) (10)

+ P (ρj+1ρj+2 . . . ρn2−1ρn2). 2
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Example 4. As an illustration, consider the case where ω = 1001, and ρ =

010. The information we have about the experiment is that ω appeared

before ρ. If the probability of the symbol ‘1’ is p, then

E(N1001) =
1

p
+

1

p2q2
, and E(N010) =

1

q
+

1

pq2
.

Also, E(N010|1001) = 1+pE(N010) and E(N1001|010) = p(1+E(N1001))+q2(2+

E(N1001))+2pq. Thus, P (1001 ≺ 010|p) = p2(3−3p+p2)/(1+2p2−2p3+p4)

(see Fig.4). Under the uniform prior on p, E(p|ω ≺ ρ) = .666884.

FIGURE 4 ABOUT HERE

5 Summary and future directions

In this work we took Bayesian point of view to infer the probabilities of let-

ters in an alphabet A. First, we considered the case where the information

about the experiment is the value of a stopping time variable, representing

the number of trials necessary to obtain a fixed pattern. Several examples for

the Bernouilli and multinomial models are provided. Second, we update the

probabilities of letters if we know that a particular pattern appeared before the

other fixed pattern. Our results help in inference of binomial and multinomial

probabilities when the information from the experiment is limited.
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