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Abstract 
 
 
This paper addresses the multi-armed bandit problem with switching costs.  Asawa and Teneketzis 
(1996) introduced an index that partly characterizes optimal policies, attaching to each bandit state 
a ``continuation index'' (its Gittins index) and a ``switching index.'' They proposed to jointly 
compute both as the Gittins index of a bandit having  states — when the original bandit has 

states — which results in an eight-fold increase in  arithmetic operations relative to 
those to compute the continuation index alone. This paper presents a more efficient, decoupled 
computation method, which in a first stage computes the continuation index and then, in a second 
stage, computes the switching index an order of magnitude faster in at most  arithmetic 
operations. The paper exploits the fact that the Asawa and Teneketzis index is the Whittle, or 
marginal productivity, index of a classic bandit with switching costs in its restless reformulation, 
by deploying work-reward analysis and PCL-indexability methods introduced by the author. A 
computational study demonstrates the dramatic runtime savings achieved by the new algorithm, 
the near-optimality of the index policy, and its substantial gains against the benchmark Gittins 
index policy across a wide range of instances. 
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This paper addresses the multi-armed bandit problem with switching costs. Asawa and Teneketzis

(1996) introduced an index that partly characterizes optimal policies, attaching to each bandit state

a “continuation index” (its Gittins index) and a “switchingindex.” They proposed to jointly com-

pute both as the Gittins index of a bandit having 2n states — when the original bandit hasn states

— which results in an 8-fold increase inO(n3) arithmetic operations relative to those to compute

the continuation index alone. This paper presents a more efficient, decoupled computation method,

which in a first stage computes the continuation index and then, in a second stage, computes the

switching index an order of magnitude faster in at mostn2 +O(n) arithmetic operations. The pa-

per exploits the fact that the Asawa and Teneketzis index is the Whittle, or marginal productivity,

index of a classic bandit with switching costs in its restless reformulation, by deploying work-

reward analysis and PCL-indexability methods introduced by the author. A computational study

demonstrates the dramatic runtime savings achieved by the new algorithm, the near-optimality of

the index policy, and its substantial gains against the benchmark Gittins index policy across a wide

range of instances.
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1. Introduction

Imagine a firm owning a portfolio of dynamic and stochastic projects, of which it can engage one

at a time. To (re)start a project, the firm incurs an upfront lump-sumstartup cost, after which it

accrues rewards and operating expenses. The firm can decide at any time to abandon the project

currently in operation, incurring a lump-sumshutdown cost, to switch to another project. Such a

firm faces the problem of designing a dynamic project selection policy that maximizes the expected

total discounted value of its net earnings.
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The problem is cast as aMarkov decision process(MDP) by modeling projects as discrete-time

and -statebandits: binary-action (active/passive) MDPs that can only changestate while active. In

the no switching costs case, one thus obtains the classicmulti-armed bandit problem(MABP).

In a celebrated result, Gittins and Jones (1974) furnished an elegant and efficient solution to

the MABP: there exists anindexattached to each bandit, which is a function of its state, such that

the resultingpriority-index policy, which engages at each time a bandit of largest index, is optimal.

Yet, as pointed out in Banks and Sundaram (1994), “it is difficult to imagine a relevant eco-

nomic decision problem in which the decision-maker may costlessly move between alternatives.”

Incorporation of bandit startup/shutdown costs into the MABP yields a form of themulti-armed

bandit problem with switching costs(MABPSC), which is extensively surveyed in Jun (2004).

The MABP’s optimal index solution motivates the investigation of good index policies for the

MABPSC. As discussed in Banks and Sundaram (1994), such policies attach an indexνm(a−m, im)

to each banditm, which is a function of its previous actiona−m and current stateim, thus decoupling

into a “continuation index”νm(1, im) and a “switching index”νm(0, im). They further observed

that “it is obvious that in comparing two otherwise identical arms, one of which was used in the

previous period, the one which was in use must necessarily bemore attractive than the one which

was idle.” Thus, to be consistent which such ahystereticproperty, the indices must satisfy

νm(1, im) ≥ νm(0, im). (1)

While Banks and Sundaram proved that such policies are not generally optimal, Asawa and

Teneketzis (1996) introduced an intuitive index, which we will refer to henceforth as theAT index,

and showed that it partly characterizes optimal policies. Their continuation index is the Gittins

index, while their switching index is the maximum rate, achievable by stopping rules that engage

an initially passive bandit, of expected discounted rewardearned minus initial startup cost incurred

per unit of expected discounted time. Though they focused onthe case where each bandit has

a constant startup cost and no shutdown cost, their results extend to bandits having a constant

shutdown cost, using the transformation given in Banks and Sundaram (1994, Sec. 3).

Asawa and Teneketzis proposed to jointly compute both indices by: (i) formulating an aug-

mented banditwithout switching costs, yet havingtwice the number of states — the(a−m, im)’s

—; and (ii) computing the Gittins index of the latter bandit.Since computing the Gittins index

requiresO(n3) arithmetic operations for ann-state bandit, such a scheme yields an 8-fold increase

relative to the effort to compute the continuation index alone. Hence, computing the switching AT
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index in such a fashion involves steep computational costs for large-scale models, which hinders

applicability of such an index.

Motivated by such considerations, this paper sets out to establish the practical viability and

usefulness of the AT index for the MABSC, by seeking to develop a significantly more efficient

computation method. While that is the prime goal of this paper, the second goal is to investigate

empirically the relative performance of the resulting AT index policy.

We will pursue such goals in the setting of an extended model with state-dependent switching

costs, via a seemingly indirect route: by exploiting the reformulation of a classic bandit with

switching costs as arestless bandit— one that can change state while passive —withoutswitching

costs, under which the MABSC becomes amulti-armed restless bandit problem(MARBP).

Such a reformulation allows us to deploy the powerful indexation theory for restless bandits.

This was introduced by Whittle (1988), who first realized that the Gittins-index definition via

calibration also yields an index for restless bandits, albeit only for the limited range of so-called

indexableinstances. He proposed to use the resulting index policy as aheuristic for the MARBP,

which is generally suboptimal. The theory has been developed in Niño-Mora (2001, 2002, 2006a,

2007a). Such work has identified two tractable classes of indexable bandits, termedPCL-indexable

— after their satisfaction ofpartial conservation laws(PCLs) — andLP-indexable, for which the

Whittle indexand extensions are efficiently computed by anadaptive-greedy algorithm. The index

measures trade-off (reward vs. work) rates, whence our terming it marginal productivity index

(MPI).

This paper deploys such a theory, by proving and exploiting the fact that the AT index of a ban-

dit with switching costs is precisely the bandit’s Whittle index/MPI in its restless formulation. We

will show that such restless bandits are PCL-indexable, relative to the family of hysteretic policies

consistent with (1), which will allow us to compute the indexusing the adaptive-greedy algorithm

referred to above. A work-reward analysis will then reveal that such an algorithm naturally decou-

ples into two stages: a first stage that computes the Gittins index and required extra quantities; and

a second stage, which is fed the first-stage’s output, that computes the switching index.

To implement such a scheme, one can use for the first stage any of severalO(n3) algorithms in

Niño-Mora (2006b). For the second stage, we introduce herea fast switching-index algorithm that

performsat most n2 +O(n) arithmetic operations, thus achieving an order of magnitude improve-

ment in complexity that renders negligible the marginal effort to compute the switching index.

Such an algorithm is the main contribution of this paper.

The paper further reports on a computational study demonstrating that such an improved com-
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plexity translates into dramatic runtime savings. The study is complemented by a set of experi-

ments that demonstrate the near-optimality of the index policy and its substantial gains against the

benchmark Gittins index policy across an extensive range oftwo- and three-bandit instances.

Section 2 describes the model, shows how to reduce it to the normalized no shutdown costs

case, defines the AT index, and gives the MARBP reformulation. Section 3 reviews the indexation

theory to be deployed. Section 4 carries out a work-reward analysis of the bandits of concern,

reformulated as restless bandits, and establishes their PCL-indexability. Section 5 draws on such

an analysis to develop the new decoupled index algorithm. Section 6 discusses dependence of the

index on switching costs. Section 7 reports the computational study’s results. Section 8 concludes.

In the companion paper Niño-Mora (2007b), the results herein are extended to the case where

bandits incorporate both switching costs and delays.

2. Model, AT Index and Restless-Bandit Reformulation

2.1. The MABPSC

Consider a collection ofM finite-state bandits, one of which must be engaged (active) at each

discrete time periodt ≥ 0 over an infinite horizon, while the others are rested (passive). When

banditm occupies stateim — belonging in its state spaceNm — and is engaged, it yields anactive

reward R1
m(im) = Rm(im) and its state moves tojm with probability pm(im, jm). If the bandit is

rested, it yields a zeropassive reward R0m(im) ≡ 0 and its state does not change.

Switching bandits is costly. When banditm occupies stateim and is freshly engaged (resp.

rested), astartup cost cm(im) (resp.shutdown cost dm(im)) is incurred, which satisfycm(im) +

dm(im) ≥ 0. Rewards and costs are time-discounted with factor 0< β < 1.

Actions are chosen by adopting ascheduling policyπ , drawn from the classΠ of admissible

policies, which are nonanticipative relative to the history of states and actions, and engage one

bandit at a time. Our focus on such a problem version, insteadof on that whereat mostone

bandit can be engaged, is without loss of generality. The MABPSC is to find an admissible policy

maximizing the expected total discounted value of rewards earned minus switching costs incurred.

We will denote byXm(t) ∈ Nm andam(t) ∈ {0,1} the state and action for banditm at periodt,

respectively, and use the notation

a−m(t) , am(t −1), ām(t) , 1−am(t), and ā−m(t) , ām(t−1). (2)

Since it must be specified whether each banditm is initially set up, we denote such status by
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a−m(0). We define the bandit’saugmented stateto beX̂m(t) , (a−m(t),Xm(t)), which moves over the

augmented state spacêNm , {0,1}×Nm. The joint augmented stateis thusX̂(t) ,
(
X̂m(t)

)M
m=1,

and thejoint action processis a(t) ,
(
am(t)

)M
m=1. We can thus formulate the MABPSC as

max
π∈Π

E
π
ı̂

[
M

∑
m=1

∞

∑
t=0

{
Ram(t)

m
(
Xm(t)

)
−cm

(
Xm(t)

)
ā−m(t)am(t)−dm

(
Xm(t)

)
a−m(t)ām(t)

}
β t

]
, (3)

whereE
π
ı̂ [·] denotes conditional expectation relative to initial jointstateX̂(0) = ı̂ underπ.

2.2. Reduction to the Normalized No Shutdown Costs Case

This section shows that it suffices to restrict attention to the no shutdown costs case. Suppose that,

at a certain time, which we take to bet = 0, a bandit is freshly engaged for a random duration

given by a stopping time/ruleτ. Dropping the bandit labelm, and denoting byR = (Rj), c = (c j)

andd = (d j) its state-dependent active reward, startup and shutdown cost vectors, we can write the

expected discounted net earnings during such a time span, starting atX(0) = i, as

f τ
i (R,c,d) , E

τ
i

[
−ci +

τ−1

∑
t=0

RX(t)β t −dX(τ)β τ

]
. (4)

We have the following result, whereI is the identity matrix indexed by the state spaceN,

P = (pi j )i, j∈N is the transition probability matrix, and0 is a vector of zeros.

Lemma 2.1 f τ
i (R,c,d) = f τ

i

(
R+(I −βP)d,c+d,0

)
.

Proof. Use the elementary identity

dX(τ)β τ = di −
τ−1

∑
t=0

{dX(t)−βdX(t+1)}β t

to obtain

f τ
i (R,c,d) , −ci +E

τ
i

[
τ−1

∑
t=0

RX(t)β t −dX(τ)β τ

]

= −ci −di +E
τ
i

[
τ−1

∑
t=0

{
RX(t) +dX(t)−βdX(t+1)

}
β t

]
= f τ

i

(
R+(I −βP)d,c+d,0

)
.

�
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Lemma 2.1 shows how to eliminate shutdown costs: one need simply incorporate them into

modified startup costs and active rewards given by the transformations

c̃ , c+d and R̃ , R+(I −βP)d. (5)

Note that, in the casec j ≡ c andd j ≡ d discussed in Banks and Sundaram (1994), such transfor-

mations reduce tõc j ≡ c+d andR̃j = Rj +(1−β )d, in agreement with their results.

We will hence focus our discussion henceforth in thenormalizedno shutdown costs case.

2.3. The AT Index

The continuation AT index for a bandit, whose labelm we drop from the notation, is

νAT
(1,i) , max

τ>0

E
τ
i

[
τ−1

∑
t=0

RX(t)β t

]

E
τ
i

[
τ−1

∑
t=0

β t

] , (6)

whereτ is a stopping time/rule that engages a bandit needing no setup starting at statei; hence,

νAT
(1,i) is precisely the bandit’s Gittins index. The switching AT index is

νAT
(0,i) , max

τ>0

E
τ
i

[
τ−1

∑
t=0

RX(t)β t

]
−ci

E
τ
i

[
τ−1

∑
t=0

β t

] , (7)

where nowτ is a stopping time/rule engaging a bandit starting ati that needs to be set up. Notice

thatνAT
(1,i) ≥ νAT

(0,i) if ci ≥ 0, consistently with (1).

2.4. Restless-Bandit Reformulation

TakingX̂m(t) as the state of banditmyields a reformulation of (3) as an MARBPwithoutswitching

costs. The bandit’s rewards and transition probabilities in such a reformulation are as follows. If

it occupies state(a−m, im) and is engaged, the active rewardR̂1
m(a−m, im) , R1

m(im)−cm(im)(1−a−m)

accrues and the state moves to(1, jm) with active transition probabilitŷp1
m

(
(a−m, im),(1, jm)

)
,

pm(im, jm); if rested, the one-period passive rewardR̂0
m(a−m, im)≡ 0 accrues, and the state moves to

(0, im) with a unity passive transition probability, i.e.,p̂0
m

(
(a−m, im),(0, im)

)
≡ 1.

We can thus reformulate (3) as the MARBP

max
π∈Π

E
π
ı̂

[
M

∑
m=1

∞

∑
t=0

R̂am(t)
m

(
X̂m(t)

)
β t

]
. (8)
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3. Restless Bandit Indexation: Theory and Computation

We discuss in this section the restless bandit indexation theory referred to in Section 1, as it applies

to a single bandit as above — in its restless reformulation. We hence drop again the bandit label

henceforth. so that, e.g.,N andN̂ , {0,1}×N denote the bandit’s original and augmented state

spaces. We will denote byΠ the space of admissible bandit operating policiesπ . Notice that such

a notation distinguishes the latter from their boldface counterparts used in the multi-bandit setting

above. We assume that (normalized) startup costs are nonnegative.

Assumption 3.1 ci ≥ 0, for i ∈ N.

3.1. Indexability and the MPI

We use two criteria to evaluate a policyπ , relative to an initial state(a−0 , i0): thereward measure

f π
(a−0 ,i0)

, E
π
(a−0 ,i0)

[
∞

∑
t=0

R̂
(
X̂(t)

)
β t

]
,

giving the expected total discounted value ofnet rewards— net of switching costs — that accrue

on the bandit; and thework measure

gπ
(a−0 ,i0)

, E
π
(a−0 ,i0)

[
∞

∑
t=0

a(t)β t

]
,

giving the corresponding expected total discounted amountof work expended. We will actually

consider the average measuresf π and gπ obtained by drawing the initial state from a positive

probability mass functionp(a−,i) > 0 for (a−, i) ∈ N̂.

Imagining that work is paid for atwagerateν leads us to consider theν-wage problem

max
π∈Π

f π −νgπ , (9)

which is to find an admissible bandit operating policy achieving the maximum value of net rewards

earned minus labor costs incurred. We will use (9) tocalibratethemarginal value of workat each

state, by analyzing the structure of optimal policies asν varies.

MDP theory ensures that for every wageν ∈ R there exists an optimal policy that is stationary

deterministic and independent of the initial state. Any such a policy is characterized by itsactive

set, or subset of states where it prescribes to engage the bandit. We will write active sets as

S0⊕S1 , {0}×S0∪{1}×S1, S0,S1 ⊆ N.
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Thus, the policy that we denote byS0⊕S1 engages the bandit when it was previously rested (resp.

engaged) if the original stateX(t) lies inS0 (resp. inS1).

Hence, to any wageν there corresponds a uniquemaximal optimal active set S∗0(ν)⊕S∗1(ν) ⊆

N̂, which is the union of all optimal active sets. Now, we say that the bandit isindexableif there

exists anindexν∗
(a−,i) for (a−, i) ∈ N̂ such that

S∗0(ν) =
{
(0, i) : ν∗

(0,i) ≥ ν
}

and S∗1(ν) =
{
(1, i) : ν∗

(1,i) ≥ ν
}
, ν ∈ R.

We then say thatν∗
(a−,i) is the bandit’smarginal productivity index(MPI), orWhittle index, terming

ν∗
(1,i) thecontinuation MPI, andν∗

(0,i) theswitching MPI.

Thus, the bandit is indexable with MPIν∗
(a−,i) if it is optimal in (9), to engage (resp. rest) the

bandit when it occupies state(a−, i) iff ν∗
(a−,i) ≥ ν (resp.ν∗

(a−,i) ≤ ν).

To establish indexability and compute the MPI, we developedin Niño-Mora (2001, 2002,

2006a, 2007a) an approach based on positing and then establishing the structure of optimal ac-

tive sets, as anactive-set familyF̂ ⊆ 2N̂ thatcontainsall setsS∗0(ν)⊕S∗1(ν) asν varies, under a

possibly restricted range of reward/cost parameters. The intuition that, if startup costs satisfy As-

sumption 3.1, optimal policies should have the hysteretic property that, if it is optimal to engage a

bandit when it was previously rested, then, other things being equal, it should be optimal to engage

it when it was previously active, leads us to guess that the right choice ofF̂ should be

F̂ ,
{

S0⊕S1 : S0 ⊆ S1 ⊆ N
}
. (10)

Notice thatF̂ represents a family of policies consistent with (1), which we posit to contain

the optimal policies for (9). WhenS0 6= S1, such policies present thehysteresis region S1 \S0, on

which bandit dynamics depend on the previous action. We willthus aim to establish indexability

relative to such a family, meaning that the bandit is indexable andS∗0(ν)⊕S∗1(ν) ∈ F̂ for ν ∈ R.

3.2. PCL-Indexability and Adaptive-Greedy Index Algorithm

We next discuss the approach we will deploy to establish indexability and compute the MPI of the

restless bandits of concern herein, based on showing that they are PCL-indexable relative tôF ,

and using the adaptive-greedy index algorithm that is validfor such bandits.

Given an actiona ∈ {0,1} and an active setS0⊕S1 ∈ F̂ , denote by〈a,S0⊕S1〉 the policy

that takes actiona in the initial period and adopts theS0⊕S1-active policythereafter. Now, for an

augmented state(a−, i) and an active setS0⊕S1 ∈ F̂ , define themarginal work measure

wS0⊕S1
(a−,i) , g〈1,S0⊕S1〉

(a−,i) −g〈0,S0⊕S1〉
(a−,i) , (11)
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along with themarginal reward measure

rS0⊕S1
(a−,i) , f 〈1,S0⊕S1〉

(a−,i) − f 〈0,S0⊕S1〉
(a−,i) (12)

and themarginal productivity measure

νS0⊕S1
(a−,i) ,

rS0⊕S1
(a−,i)

wS0⊕S1
(a−,i)

. (13)

As will see (cf. Proposition 4.4), the latter measure is welldefined, as its denominator is positive.

We will deploy the PCL-indexability approach to indexationin Niño-Mora (2007a), which

revises that introduced and developed in Niño-Mora (2001,2002, 2006a). For an active setŜ=

S0⊕S1 ∈ F̂ , let

∂ out
F̂

Ŝ,
{
(a−, i) ∈ Ŝc : Ŝ∪{(a−, i)} ∈ F̂

}
=

{
(0, i) : i ∈ S1\S0}∪{(1, i) : i ∈ Sc

1

}
, (14)

whereŜc , N̂\ ŜandSc
1 , N \S1, be theouter boundary of̂S relative toF̂ ; and let

∂ in
F̂

Ŝ,
{
(a−, i) ∈ Ŝ: Ŝ\{(a−, i)} ∈ F̂

}
=

{
(1, i) : i ∈ S1\S0}∪{(0, i) : i ∈ S0

}
(15)

be the correspondinginner boundary. Note that the right-most identities in (14)–(15) follow from

(10). Now, we require thatset system(N̂,F̂ ) be monotonically connected, which in the present

setting means that:

(i) /0, N̂ ∈ F̂ ;

(ii) for every Ŝ, Ŝ′ ∈ F with Ŝ⊂ Ŝ′ there exist(a, j) ∈ ∂ out
F̂

Ŝ and(a′, j ′) ∈ ∂ in
F̂

Ŝ′ such that̂S⊂

Ŝ∪{(a, j)} ⊆ Ŝ′ andŜ⊆ Ŝ′ \{(a′, j ′)} ⊂ Ŝ′;

(iii) for any Ŝ, Ŝ′ ∈ F̂ with Ŝ 6= Ŝ′, it holds thatŜ∪ Ŝ′ ∈ F̂ ,

As the reader can immediately verify, thêF defined in (10) satisfies indeed such conditions.

Now, we will say that the bandit isPCL-indexablerelative toF̂ , or PCL(F̂ )-indexable, if:

(i) for each active set̂S∈ F̂ , wŜ
(a−,i) > 0 for (a−, i) ∈ N̂; and

(ii) for every wageν ∈ R there exists an optimal policy for (9) with active setŜ∈ F̂ .

We will further refer to theadaptive-greedy algorithmic schemeAG
F̂

shown in Table 1, where

n, |N| denotes the number of bandit states in the original (nonrestless) formulation. The algorithm

9



Table 1: Version 1 of Adaptive-Greedy Algorithmic Scheme AG
F̂

.

ALGORITHM AG
F̂

:

Output:
{
(a−k , ik),ν∗

(a−k ,ik)

}2n
k=1

Ŝ0 := /0⊕ /0
for k := 1 to 2n do

pick (a−k , ik) ∈ argmax
{

ν Ŝk−1

(a−,i) : (a−, i) ∈ ∂ out
F̂

Ŝk−1
}

ν∗
(a−k ,ik)

:= ν Ŝk−1

(a−k ,ik)
; Ŝk := Ŝk−1∪{(a−k , ik)}

end{ for }

produces an output consisting of a string{(a−k , ik)}2n
k=1 of distinct augmented states spanningN̂,

with Ŝk , {(a−1 , i1), . . . ,(a
−
k , ik)} ∈ F̂ , for 1 ≤ k ≤ 2n, along with corresponding index values

{ν∗
(a−k ,ik)

}2n
k=1. Ties for picking the(a−k , ik)’s are broken arbitrarily. We use the termalgorithmic

schemeas it is not yet specified how to compute the required marginalproductivity rates.

We will later invoke the following key result, introduced and developed in Niño-Mora (2001,

2002, 2006a, 2007a), which refers to a generic restless bandit and active-set familyF.

Theorem 3.2 A PCL(F )-indexable bandit is indexable and algorithmAGF computes its MPI.

Using the definition ofF̂ in (10) yields the more explicitVersion 2of the algorithm shown in

Table 2, where the output is decoupled. We use in this and later versions a more algorithm-like

notation, writing, e.g.,νS
k0−1
0 ⊕S

k1−1
1

(0, j) asν(k0−1,k1−1)
(0, j) . Notice that the active sets constructed in both

versions are related bŷSk−1 , Sk0−1
0 ⊕Sk1−1

1 , with k = k0+k1−1 andk0 ≤ k1. Version 2 draws on

the fact that, at each step, the algorithm augments the current active set by a state that can be of the

form (1, i) or (0, i). SetsSk0
0 andSk1

1 in the algorithm areSk0
0 = {i10, . . . , i

k0
0 } andSk1

1 = {i11, . . . , i
k1
1 },

and satisfy thatSk0
0 ⊂ Sk1

1 , for 1≤ k0 < k1 ≤ n, consistently with (10).

3.3. Optimality of Hysteretic F̂ -Policies

We proceed to show that PCL(F̂ )-indexability condition (ii) above holds for the model of concern,

namely thatF̂ -policies, i.e., those with active setŝS∈ F̂ , solve (9). For such a purpose we will

use theBellman equationscharacterizing the value functionϑ∗
(a−,i)(ν) for (9) starting at(a−, i):

ϑ∗
(a−,i)(ν) = max

{
βϑ∗

(0,i)(ν),Ri − (1−a−)ci −ν +β ∑
j∈N

pi j ϑ∗
(1, j)(ν)

}
, (a−, i) ∈ N̂. (16)
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Table 2: Version 2 of Algorithmic Scheme AĜ
F

.

ALGORITHM AG
F̂

:

Output:
{
(0, ik0

0 ),ν∗

(0,i
k0
0 )

}n
k0=1,

{
(1, ik1

1 ),ν∗

(1,i
k1
1 )

}n
k1=1

S0
0 := /0; S0

1 := /0; k0 := 1; k1 := 1
while k0 +k1 ≤ 2n+1 do

if k1 ≤ n pick jmax
1 ∈ argmax

{
ν(k0−1,k1−1)

(1, j) : j ∈ N\Sk1−1
1

}

if k0 < k1 pick jmax
0 ∈ argmax

{
ν(k0−1,k1−1)

(0, j) : j ∈ Sk1−1
1 \Sk0−1

0

}

if k1 = n+1 or
{

k0 < k1 ≤ n and ν(k0−1,k1−1)
(1, jmax

1 )
< ν(k0−1,k1−1)

(0, jmax
0 )

}

ik0
0 := jmax

0 ; ν∗

(0,i
k0
1 )

:= ν(k0−1,k1−1)

(0,i
k0
1 )

; Sk0
0 := Sk0−1

0 ∪{ik0
0 }; k0 := k0 +1

else

ik1
1 := jmax

1 ; ν∗

(1,i
k1
1 )

:= ν(k0−1,k1−1)

(1,i
k1
1 )

; Sk1
1 := Sk1−1

1 ∪{ik1
1 }; k1 := k1 +1

end { if }
end { while }

Proposition 3.3 For every wageν ∈R there exists an optimal policy for (9) with active setŜ∈ F̂ ,

i.e., if it is optimal to rest the bandit in state(1, i) then it is optimal to rest it in(0, i).

Proof. Fix ν. Formulate the assumption that it is optimal to rest the bandit in (1, i) as

βϑ∗
(0,i)(ν) ≥ Ri −ν +β ∑

j∈N
pi j ϑ∗

(1, j)(ν). (17)

We want to show that this implies the optimality of resting itin state(0, i), i.e.,

βϑ∗
(0,i)(ν) ≥ Ri −ci −ν +β ∑

j∈N
pi j ϑ∗

(1, j)(ν).

But this follows immediately, by writing

βϑ∗
(0,i)(ν) ≥ Ri −ν +β ∑

j∈N
pi j ϑ∗

(1, j)(ν) ≥ Ri −ci −ν +β ∑
j∈N

pi j ϑ∗
(1, j)(ν),

where we have used (17) and Assumption 3.1.
�

Note that Proposition 3.3 establishes PCL(F̂T)-indexability condition (ii) above. In order to

further establish the remaining condition (i) and to simplify the index algorithm we will have to

draw on the work-reward analysis carried out in the next section.
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4. Work-Reward Analysis and PCL(F̂ )-Indexability Proof

We set out in this section to carry out a work-reward analysisof a single bandit with startup costs

as above, in its restless reformulation, and to establish its PCL(F̂ )-indexability.

4.1. Work and Marginal Work Measures

We start by addressing calculation of work and marginal workmeasuresgS0⊕S1
(a−,i) andwS0⊕S1

(a−,i) . We

will show that they are closely related to their counterpartsgS
i andwS

i for the underlying nonrestless

bandit, where stationary deterministic policies are represented by their active setsS⊆ N.

For eachS⊆ N, work measuresgS
i are characterized by the evaluation equations

gS
i =






1+β ∑
j∈S

pi j g
S
j if i ∈ S

0 otherwise.

(18)

Notice that the solution to (18) is unique, since matrixIS− βPSS is invertible, asPSS is a sub-

stochastic matrix and 0< β < 1, whereIS is the identity matrix indexed bySandPSS, (pi j )i, j∈S.

Further, the marginal work measurewS
i is evaluated by

wS
i , g〈1,S〉

i −g〈0,S〉
i = 1+β ∑

j∈N
pi j g

S
j −βgS

i =






(1−β )gS
i if i ∈ S

1+β ∑
j∈S

pi j g
S
j otherwise.

(19)

Notice that (18) and (19) imply that

wS
i > 0, i ∈ N. (20)

We now return to the bandit’s restless reformulation. The following result gives the evaluation

equations for work measuregS0⊕S1
(a−,i) , for a given active setS0⊕S1 ∈ F̂ .

Lemma 4.1

gS0⊕S1
(a−,i) =





1+β ∑
j∈N

pi j g
S0⊕S1
(1, j) if i ∈ Sa−

βgS0⊕S1
(0,i) otherwise.

The next result represents work measuregS0⊕S1
(a−,i) in terms of thegS

i ’s.

Lemma 4.2 For S0⊕S1 ∈ F̂ :

12



(a) gS0⊕S1
(a−,i) = gS1

i = 0, for a− ∈ {0,1}, i ∈ Sc
1.

(b) gS0⊕S1
(1,i) = gS1

i , for i ∈ S1.

(c) gS0⊕S1
(0,i) = gS1

i , for i ∈ S0.

(d) gS0⊕S1
(0,i) = 0, for i ∈ S1\S0.

Proof. (a) This part follows immediately from the definition of policy S0⊕S1.

(b) For i ∈ S1, we can write

gS0⊕S1
(1,i) = 1+β ∑

j∈S1

pi j g
S0⊕S1
(1, j) +β ∑

j∈Sc
1

pi j g
S0⊕S1
(1, j) = 1+β ∑

j∈S1

pi j g
S0⊕S1
(1, j) ,

where we have used Lemma 4.1 and part (a). Hence, thegS0⊕S1
(1,i) ’s satisfy the evaluation equations

in (18) characterizing thegS1
i ’s, for i ∈ S1, which yields the result.

(c) We have, fori ∈ S0, that

gS0⊕S1
(0,i) = 1+β ∑

j∈S1

pi, jg
S0⊕S1
(1, j) +β ∑

j∈Sc
1

pi j g
S0⊕S1
(1, j) = gS0⊕S1

(1,i) = gS1
i ,

where we have used Lemma 4.1, the relationS0 ⊆ S1 and parts (a, b).

(d) This part follows immediately from the definition of policy S0⊕S1.
�

RegardingwS0⊕S1
(a−,i) , we readily obtain from (11) and Lemma 4.1 that

wS0⊕S1
(0,i) = wS0⊕S1

(1,i) = 1+β ∑
j∈N

pi j g
S0⊕S1
(1, j) −βgS0⊕S1

(0,i) . (21)

The following result represents marginal workloadswS0⊕S1
(a−,i) in terms of thewS

i ’s.

Lemma 4.3 For a− ∈ {0,1},S0⊕S1 ∈ F̂ :

(a) wS0⊕S1
(a−,i) = wS1

i , for i ∈ S0∪Sc
1.

(b) wS0⊕S1
(a−,i) = wS1

i /(1−β ), for i ∈ S1\S0.

Proof. (a) We can write, fori ∈ S0∪Sc
1,

wS0⊕S1
(a−,i) = 1+β ∑

j∈N
pi j g

S0⊕S1
(1, j) −βgS0⊕S1

(0,i) = 1+β ∑
j∈S1

pi j g
S1
j −βgS1

i = wS1
i ,

where we have used (21), Lemma 4.2(a, b, c) and (19).
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(b) We have, fori ∈ S1\S0,

wS0⊕S1
(a−,i) = 1+β ∑

j∈N
pi j g

S0⊕S1
(1, j) −βgS0⊕S1

(0,i) = 1+β ∑
j∈S1

pi j g
S1
j = wS1

i +βgS1
i =

wS1
i

1−β
,

where we have used (21), Lemma 4.2(a, b, d) and (19).
�

From the above, we obtain the required positivity or marginal workloads.

Proposition 4.4 wS0⊕S1
(a−,i) > 0, for (a−, i) ∈ N̂,S0⊕S1 ∈ F̂ .

Proof. The result follows immediately from (20) via Lemma 4.3.
�

4.2. Reward and Marginal Reward Measures

We continue by addressing calculation of required reward and marginal reward measuresf S0⊕S1
(a−,i)

andrS0⊕S1
(a−,i) . Again, we will show that they are closely related to their counterpartsf S

i andrS
i for the

underlying nonrestless bandit wit no startup costs.

For each active setS⊆ N, the reward measuref S
i is characterized by the evaluation equations

f S
i =





Ri +β ∑
j∈S

pi j f S
j if i ∈ S

0 otherwise,

(22)

while the marginal reward measurerS
i is given by

rS
i , f 〈1,S〉

i − f 〈0,S〉
i = Ri +β ∑

j∈S

pi j f S
j −β f S

i =






(1−β ) f S
i if i ∈ S

Ri +β ∑
j∈S

pi j f S
j otherwise.

(23)

Returning to the restless formulation, the next result gives the evaluation equations for reward

measuresf S0⊕S1
(a−,i) , for a given active setS0⊕S1 ∈ F̂ . Recall the notation in (2).

Lemma 4.5

f S0⊕S1
(a−,i) =






Ri − (1−a−)ci +β ∑
j∈N

pi j f S0⊕S1
(1, j) if i ∈ Sa−

β f S0⊕S1
(0,i) otherwise.

The next result represents reward measuref S0⊕S1
(a−,i) in terms of thef S

i ’s.
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Lemma 4.6 For S0⊕S1 ∈ F̂ :

(a) f S0⊕S1
(a−,i) = 0 = f S1

i , for a− ∈ {0,1}, i ∈ Sc
1.

(b) f S0⊕S1
(1,i) = f S1

i , for i ∈ S1.

(c) f S0⊕S1
(0,i) = f S1

i −ci , for i ∈ S0.

(d) f S0⊕S1
(0,i) = 0 = f S0

i , for i ∈ S1\S0.

Proof. (a) This part is straightforward.

(b) We can write, fori ∈ S1,

f S0⊕S1
(1,i) = Ri +β ∑

j∈S1

pi j f S0⊕S1
(1, j) +β ∑

j∈Sc
1

pi j f S0⊕S1
(1, j) = Ri +β ∑

j∈S1

pi j f S0⊕S1
(1, j) ,

where we have used Lemma 4.5 and part (a). Hence, thef S0⊕S1
(1,i) ’s, for i ∈ S1, satisfy the evaluation

equations in (22) for corresponding termsf S1
i , which yields the result.

(c) We can write, fori ∈ S0,

f S0⊕S1
(0,i) = Ri −ci +β ∑

j∈S1

pi j f S0⊕S1
(1, j) +β ∑

j∈Sc
1

pi j f S0⊕S1(1, j) = f S0⊕S1
(1,i) −ci = f S1

i −ci ,

where we have used thatS0 ⊆ S1 along with parts (a, b).

(d) This part is straightforward.
�

Regarding marginal reward measurerS0⊕S1
(a−,i) , we obtain from (12) and Lemma 4.5 that

rS0⊕S1
(a−,i) = Ri − (1−a−)ci +β ∑

j∈N
pi j f S0⊕S1

(1, j) −β f S0⊕S1
(0,i) . (24)

The following result representsrS0⊕S1
(a−,i) in terms of therS

i ’s.

Lemma 4.7 For S0⊕S1 ∈ F̂ :

(a) rS0⊕S1
(0,i) = rS0⊕S1

(1,i) −ci , for i ∈ N.

(b) rS0⊕S1
(1,i) = rS1

i , for i ∈ Sc
1.

(c) rS0⊕S1
(1,i) = rS1

i +βci , for i ∈ S0.

(d) rS0⊕S1
(1,i) = rS1

i /(1−β ), for i ∈ S1\S0.
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Proof. (a) This part follows immediately from (24).

(b) We can write, fori ∈ Sc
1,

rS0⊕S1
(1,i) = Ri +β ∑

j∈N
pi j f S0⊕S1

(1, j) − f S0⊕S1
(1,i) = Ri +β ∑

j∈S1

pi j f S1
j − f S1

i = rS1
i ,

where we have used (24), Lemma 4.6(a, b), and (23).

(c) We can write, fori ∈ S0,

rS0⊕S1
(1,i) = Ri +β ∑

j∈N
pi j f S0⊕S1

(1, j) −β f S0⊕S1
(0,i) = Ri +β ∑

j∈S1

pi j f S1
j −β ( f S1

i −ci) = rS1
i +βci ,

where we have usedS0 ⊆ S1, (24), Lemma 4.6(a, b, c) and (23).

(d) We can write, fori ∈ S1\S0,

rS0⊕S1
(1,i) = Ri +β ∑

j∈N
pi j f S0⊕S1

(1, j) −β f S0⊕S1
(0,i) = f S1

i =
rS1
i

1−β
,

where we have used (24), Lemma 4.6(a, b, d), (22) and (23). This completes the proof.
�

4.3. Marginal Productivity Measures

We continue by addressing calculation of required marginalproductivity measuresνS0⊕S1
(a−,i) in (13).

Again, we will show that they are closely related to their counterpartsνS
i for the underlying non-

restless bandit without startup costs, given by

νS
i ,

rS
i

wS
i

, i ∈ N,S⊆ N. (25)

The next result represents the requiredνS0⊕S1
(a−,i) ’s in terms of theνS

i ’s.

Lemma 4.8 For S0⊕S1 ∈ F̂ :

(a) νS0⊕S1
(0,i) = νS0⊕S1

(1,i) −ci/wS0⊕S1
(1,i) , for i ∈ N.

(b) νS0⊕S1
(1,i) = νS1

i = ν /0⊕S1
(1,i) , for i ∈ Sc

0.

(c) νS0⊕S1
(1,i) = νS1

i +βci/wS1
i , for i ∈ S0.

(d) νS0⊕S1
(0,i) = νS1

i − (1−β )ci/wS1
i = ν /0⊕S1

(0,i) , i ∈ S1\S0.

Proof. All parts follow immediately from (13), (25), Lemma 4.3 andLemma 4.7.
�
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4.4. Proof of PCL(F̂ )-Indexability

We next draw on the above results to establish that the restless bandits of concern are PCL(F̂ )-

indexable, which ensures the validity of index algorithm AG
F̂

via Theorem 3.2. See Section 3.2.

Theorem 4.9 Under Assumption3.1, the restless reformulation of a bandit with switching costs is

PCL(F̂ )-indexable. Hence, it is indexable, and algorithmAG
F̂

computes its MPI.

Proof. The defining PCL(F̂ )-indexability conditions (i) and (ii) in Section 3.2 were established in

Propositions 4.4 and 3.3, respectively. The proof is completed by invoking Theorem 3.2.
�

4.5. Further Simplification of the Index Algorithm

The above results allow us to further simplify Version 2 of index algorithm AĜ
F

into theVersion

3 shown in Table 3. In the latter, we use Lemma 4.8(b, d) to represent required marginal produc-

tivity ratesνS0⊕S1
(a−,i) in terms of theνS

i ’s. Notice that in Version 3 we useν(0,k1−1)
(0, j) (which denotes

ν
S0⊕Sk1−1

(0, j) ) in place ofν(k0−1,k1−1)
(0, j) , drawing on Lemma 4.8(d). We do so for computational reasons,

as storage of quantitiesν(0,k1−1)
(0, j) requires one less dimension than storage of theν(k0−1,k1−1)

(0, j) ’s.

Table 3: Version 3 of Algorithmic Scheme AĜ
F

.

ALGORITHM AG
F̂

:

Output:
{
(0, ik0

0 ),ν∗

(0,i
k0
0 )

}n
k0=1,

{
(1, ik1

1 ),ν∗

(1,i
k1
1 )

}n
k1=1

S0
0 := /0; S0

1 := /0; k0 := 1; k1 := 1
while k0 +k1 ≤ 2n+2 do

if k1 ≤ n pick jmax
1 ∈ argmax

{
ν(k1−1)

j : j ∈ N\Sk1−1
1

}

ν(0,k1−1)
(0, j) := ν(k1−1)

j − (1−β )c j/w(k1−1)
j , j ∈ Sk1−1

1 \Sk0−1
0

if k0 < k1 pick jmax
0 ∈ argmax

{
ν(0,k1−1)

(0, j) : j ∈ Sk1−1
1 \Sk0−1

0

}

if k1 = n+1 or
{

k0 < k1 ≤ n and ν(k1−1)
jmax
1

< ν(0,k1−1)
(0, jmax

0 )

}

ik0
0 := jmax

0 ; ν∗

(0,i
k0
0 )

:= ν(0,k1−1)

(0,i
k0
0 )

; Sk0
0 := Sk0−1

0 ∪{ik0
0 }; k0 := k0+1

else

ik1
1 := jmax

1 ; ν∗

i
k1
1

:= ν(k1−1)

i
k1
1

; Sk1
1 := Sk1−1

1 ∪{ik1
1 }; k1 := k1+1

end { if }
end { while }
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4.6. The MPI is the AT Index

We next establish the identity between the MPI and the AT index for the bandits of concern in

this paper. We will find it convenient to reformulate the expressions for the AT index, given in

(6)–(7) in terms of stopping times, using instead active sets S⊆ N to represent the latter — as it

suffices to consider stationary deterministic policies. Inthe above notation, we can thus formulate

the continuation and switching AT indices as

νAT
(1,i) , max

i∈S⊆N

f S
i

gS
i

, (26)

and

νAT
(0,i) , max

i∈S⊆N

f S
i −ci

gS
i

. (27)

Recall that we denote the MPI byν∗
(a−,i).

Proposition 4.10 Under Assumption3.1, ν∗
(1,i) = νAT

(1,i) andν∗
(0,i) = νAT

(0,i), for i ∈ N.

Proof. We first show thatν∗
(1,i) = νAT

(1,i), through the equivalences

ν ≥ ν∗
(1,i) ⇐⇒ it is optimal in (9) to rest the bandit at(1, i)

⇐⇒ 0≥ max
S0⊆S1⊆N : i∈S1

f S0⊕S1
(1,i) −νgS0⊕S1

(1,i)

⇐⇒ ν ≥ max
S0⊆S1⊆N : i∈S1

f S0⊕S1
(1,i)

gS0⊕S1
(1,i)

⇐⇒ ν ≥ max
i∈S1⊆N

f S1
i

gS1
i

= νAT
(1,i),

where we have used Proposition 3.3 along with Lemmas 4.2(b) and 4.6(b).

Now, we show thatν∗
(0,i) = νAT

(0,i), through the equivalences

ν ≥ ν∗
(0,i) ⇐⇒ it is optimal in (9) to rest the bandit at(0, i)

⇐⇒ 0≥ max
S0⊆S1⊆N : i∈S0

f S0⊕S1
(0,i) −νgS0⊕S1

(0,i)

⇐⇒ ν ≥ max
S0⊆S1⊆N : i∈S0

f S0⊕S1
(0,i)

gS0⊕S1
(0,i)

⇐⇒ ν ≥ max
S1⊆N : i∈S1

f S1
i −ci

gS1
i

= νAT
(0,i),

where we have used Proposition 3.3, and Lemmas 4.2(c) and 4.6(c). This completes the proof.
�
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5. Two-Stage Index Computation

In this section we further simplify Version 3 of the index algorithm, bydecouplingcomputation of

the continuation and the switching index into a two-stage scheme.

5.1. First Stage: Computing the Continuation Index

We start with continuation indexν∗
(1,i), which is the Gittins indexν∗

i of the bandit. We will need

further quantities as input for the second-stage algorithmto be discussed later.

Table 4: Gittins-Index Algorithmic Scheme AG1.

ALGORITHM AG1:
Output: {ik1

1 }n
k1=1, {ν∗

j : j ∈ N}, {(w(k1)
j ,ν(k1)

j ) : j ∈ Sk1
1 }n

k1=1

set S0
1 := /0; compute{(w(0)

i ,ν(0)
i ) : i ∈ N}

for k1 := 1 to n do

pick ik1
1 ∈ argmax

{
ν(k1−1)

i : i ∈ N\Sk1−1
1

}

ν∗

i
k1
1

:= ν(k1−1)

i
k1
1

; Sk1
1 := Sk1−1

1 ∪{ik1
1 }

compute{(w(k1)
i ,ν(k1)

i ) : i ∈ N}
end

To compute such an index and extra quantities, we refer to thealgorithmic scheme AG1 in

Table 4. This is a variant of the algorithm of Varaiya et al. (1985), reformulated as in Niño-Mora

(2006b). For actual implementations, one can use several algorithms in the latter paper, such as

the Fast-Pivotingalgorithm with extended output FP(1), performing(4/3)n3 + O(n2) arithmetic

operations; or theComplete-Pivoting(CP) algorithm, performing 2n3+O(n2) operations.

5.2. Second Stage: Computing the Switching Index

We next address computation of the switching index,after having computed the Gittins index and

required extra quantities. Consider the algorithm AG0
TD in Table 5, which is fed as input the output

of AG1, and produces a sequence of statesik0
0 spanningN, along with corresponding index values

ν∗

(0,i
k0
0 )

, computed in atop downfashion, i.e., from highest to lowest.

The following is the main result of this paper.

Theorem 5.1 AlgorithmAG0
TD computes the switching indexν∗

(0,i).
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Proof. The result follows by noticing that algorithm AG0 is obtained from Version 3 of index

algorithm AG
F̂

in Table 3 by decoupling the computation of theν∗
(0,i)’s and theν∗

i ’s.
�

Table 5: Switching-Index Algorithm AG0.

ALGORITHM AG0:

Input: {ik1
1 }n

k1=1, {ν∗
j : j ∈ N}, {(w(k1)

j ,ν(k1)
j ) : j ∈ Sk1

1 }n
k1=1

Output: {ik0
0 }n

k0=1,{ν∗
(0, j) : j ∈ N}

ĉ j := (1−β )c j , j ∈ N; S0
0 := /0; S0

1 := /0; k0 := 0
for k1 := 1 to n do

Sk1
1 := Sk1−1

1 ∪{ik1
1 }; AUGMENT1 := false

ν(0,k1)
(0, j) := ν(k1)

j − ĉ j/w(k1)
j , j ∈ Sk1

1 \Sk0
0

while k0 < k1 and not(AUGMENT1) do

pick jmax
0 ∈ argmax

{
ν(0,k1)

(0, j) : j ∈ Sk1
1 \Sk0

0

}

if k1 = n or ν∗

i
k1
1

< ν(0,k1)
(0, jmax

0 )

ik0+1
0 := jmax

0 ; ν∗

(0,i
k0+1
0 )

:= ν(0,k1)

(0,i
k0+1
0 )

Sk0+1
0 := Sk0

0 ∪{ik0+1
0 }; k0 := k0 +1

else
AUGMENT1 := true

end{ if }
end { while }

end { for }

We next assess the arithmetic operation count of the switching index algorithm.

Proposition 5.2 AlgorithmAG0 performs at most n2+O(n) operations.

Proof. The operation count is dominated by the statements

ν(0,k1)
(0, j) := ν(k1)

j − ĉ j/w(k1)
j , j ∈ Sk1

1 \Sk0
0 ,

where at most 2k1 arithmetic operations are performed. Adding up overk1 yields the stated maxi-

mum total count.
�

20



6. Dependence of the Index on Switching Costs

We discuss next some insightful properties on the index’s dependence on switching cost, focusing

on the caseci ≡ c anddi ≡ d. We will make explicit such costs in the notation, writing the con-

tinuation index asν∗
(1,i)(d) — as it does not depend onc — and the switching index asν∗

(1,i)(c,d).

We further denote byν∗
i the Gittins index of the underlying bandit with no switchingcosts.

Proposition 6.1

(a) ν∗
(1,i)(d) = ν∗

i +(1−β )d.

(b) For large enough c+d, ν∗
(0,i) = νN

i − (1−β )c.

(c) ν∗
(0,i)(c,d) is piecewise linear convex in(c,d), decreasing in c and nonincreasing in d.

Proof. (a) This part follows from the fact thatν∗
(1,i)(d) is the Gittins index of a bandit with modified

rewardsR̃j = Rj +(1−β )d (cf. Section 2.2). The effect of such an addition of a constant term to

rewards is to increment the Gittins index by the same constant, which yields the result.

(b) The second identity in (28) implies that, forc+d large enough, term(c+d)/gS
i becomes

dominant, and hence the maximum value of the given expression is attained by maximizing the

denominator:gS
i . Given the latter’s interpretation, its maximum value is achieved byS= N, for

whichgN
i = 1/(1−β ). SinceνN

i = rN
i /wN

i = f N
i /gN

i , this yields the result.

(c) Using the transformation in Section 2.2 along with the index representation in (27) it is

readily verified that the latter yields the expression

ν∗
(0,i)(c,d) = max

i∈S⊆N

f S
i −c−

{
1− (1−β )gS

i

}
d

gS
i

= (1−β )d+ max
i∈S⊆N

f S
i − (c+d)

gS
i

, (28)

where f S
i is the reward measure of the underlying nonrestless bandit with rewardsRj — note that

the corresponding reward measure with modified rewardsR̃j as above isf S
i (d) = f S

i +(1−β )dgS
i .

Now, the first identity in (28) representsν∗
(0,i)(c,d) as the maximum of linear functions in(c,d)

that are decreasing inc and nonincreasing ind, which implies the result.
�

Note that Proposition 6.1(a) shows that the incentive to stay on an active bandit increases

linearly with its shutdown cost, but decreases as the discount factor approaches unity.

We next give two examples to illustrate the above results. The first concerns the 3-state bandit

instance with startup costc, no shutdown cost,β = 0.95,

R =




0.7221
0.9685
0.1557


 and P =




0.8061 0.1574 0.0365
0.1957 0.0067 0.7976
0.1378 0.5959 0.2663


 .
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Figure 1 plots the bandit’s switching index for each state vs. the startup cost. Notice that the plot

is consistent with Proposition 6.1(b, c). It further illustrates that the relative state ordering induced

by the switching index can change as the startup cost varies.

c

ν∗ (0
,i
)

0 2
0.4

1

Figure 1: Dependence of Switching Index on Startup Cost.

The next example concerns the same base instance but now withshutdown costd and no startup

cost. Figure 2 plots the continuation and switching index for each state vs. the shutdown cost. The

plots are consistent with Proposition 6.1. Further, the plot for the switching index shows that the

relative state ordering induced by it can change as the shutdown cost varies.

d

ν∗ (1
,i
)

d

ν∗ (0
,i
)

0 20 2
0.5

1.1

0.5

1.1

Figure 2: Dependence of Continuation and Switching Indiceson Shutdown Cost.

7. Computational Experiments

This section reports the results of a computational study, based on the author’s MATLAB imple-

mentations of the algorithms described herein.

The first experiment investigated the runtime performance of the decoupled index computation

method. We made MATLAB generate a random bandit instance with startup costs for each of the
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state-space sizesn = 500,1000, . . . ,5000. For eachn, MATLAB recorded the time to compute

the continuation index and required extra quantities with algorithm FP(1) in Niño-Mora (2006b),

the time to compute the switching index by algorithms AG0 and AG0
BU, and the time to jointly

compute both indices as in Asawa and Teneketzis (1996), using the Gittins-index algorithm FP(0)

in Niño-Mora (2006b). This experiment was run on MATLAB R2006b under Windows XP x64,

in an HP xw9300 254 (2.8 GHz) Opteron workstation with 4GB of memory.

The results are displayed in Figure 3. The left pane shows total runtimes, in hours, for com-

puting both indices vs.n, along with curves obtained by cubic least-squares (LS) fit,which are

consistent with the theoreticalO(n3) complexity. The dotted line corresponds to the Asawa and

Teneketzis (AT) scheme, while the solid line corresponds tothe two-stage method herein. The

results show that the two-stage method consistently achieved about a 4-fold speedup over the AT

method.

The right pane shows runtimes, inseconds, for the switching-index algorithm vs.n, along

with a curve obtained by quadratic least-squares fit, which is consistent with the theoreticalO(n2)

complexity. The change of timescale from hours to seconds demonstrates the order-of-magnitude

runtime improvement achieved.
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Figure 3: Exp. 1(a):Runtimes of Index Algorithms.

The following experiments were designed to assess the average relative performance of the

MPI policy in random samples of two- and three-bandit instances, both against the optimal policy,
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and against the benchmark Gittins index policy. For each instance, the optimal performance was

computed by solving the LP formulation of the Bellman equations using the CPLEX LP solver,

interfaced with MATLAB via TOMLAB. The MPI and benchmark policies were evaluated by

solving with MATLAB the corresponding linear evaluation equations.

The second experiment assessed how the relative performance of the MPI policy on two-bandit

instances depends on a common constant startup cost and discount factor — shutdown costs are

zero. A sample of 100 instances (with 10-state bandits) was randomly generated with MATLAB. In

each instance, parameter values for each bandit were independently generated: transition probabil-

ities (obtained by scaling a matrix with Uniform[0,1] entries, dividing each row by its sum) and ac-

tive rewards (Uniform[0,1]). Passive rewards were set to zero. For each instancek= 1, . . . ,100 and

startup cost-discount factor combination in the range(c,β ) ∈ [0,1]× [0.2,0.9] — using a 0.1 grid

— the optimal objective valueϑ (k),opt and the objective values of the MPI (ϑ (k),MPI) and the bench-

mark (ϑ (k),bench) policies were computed, along with the corresponding relative suboptimality gap

of the MPI policy∆(k),MPI , 100(ϑ (k),opt−ϑ (k),MPI)/|ϑ (k),opt|, and the suboptimality-gap ratio of

the MPI over the benchmark policyρ(k),MPI,bench, 100(ϑ (k),MPI−ϑ (k),opt)/(ϑ (k),bench−ϑ (k),opt)

— scaled as percentages. The latter were then averaged over the 100 instances for each(c,β ) pair,

to obtain the average values∆MPI andρMPI,bench.

Ojective valuesϑ (k),opt, ϑ (k),MPI and ϑ (k),bench were evaluated as follows. First, the corre-

spondingvalue functionsϑ (k),opt
((a−1 ,i1),(a

−
2 ,i2))

, ϑ (k),MPI
((a−1 ,i1),(a

−
2 ,i2))

and ϑ (k),bench
((a−1 ,i1),(a

−
2 ,i2))

were computed as

mentioned above. Then, the objective values were evaluatedas

ϑ (k),π ,
1
n2 ∑

i1,i2∈N
ϑ (k),π

((0,i1),(0,i2))
, π ∈ {opt,MPI,bench}, (29)

where each bandit has state spaceN = {1, . . . ,n}, with n = 10. Notice that (29) corresponds to

assuming that both bandits are initially passive.

Figure 4 plots∆MPI vs. the startup costc for multiple discount factorsβ , using cubic interpo-

lation for smoothing. Such a gap starts at 0 forc = 0 (as the optimal policy is then recovered),

then increases up to a maximum value, which is less than 0.25%, at aboutc≈ 0.3, and then de-

creases, hitting again a value of 0 at aboutc≈ 0.9 and staying there for larger values ofc. Such a

pattern is consistent with intuition: for large enoughc, both the optimal and the MPI policies will

initially pick a bandit and stay on it thereafter. Since the best bandit can be determined through

single-bandit evaluations, the MPI policy will identify it. Notice also that∆MPI increases withβ .

Figure 5 shows corresponding plots for the suboptimality-gap ratioρMPI,benchof the MPI over

the benchmark policy. They show that the average suboptimality gap for the MPI policy is in each

24



case less than 40% of that for the benchmark policy. Such a ratio takes the value 0 forc = 0 and

for c large enough, as the MPI policy is then optimal. Finally, theratio increases withβ .
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Figure 4: Exp. 2: Average Relative Suboptimality Gap of MPI Policy.
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Figure 5: Exp. 2: Average Suboptimality-Gap Ratio of MPI over Benchmark Policy.

We also carried out the counterpart of experiment 2 for a common shutdown costd. Since the

patterns obtained are very close to those above, we do not present them here.

The third experiment investigated the effect of asymmetricconstant startup costs, as these vary

over the range(c1,c2) ∈ [0,1]2, in two-bandit instances with no shutdown costs andβ = 0.9. The

left contour plot in Figure 6 shows that the average relativesuboptimality gap of the MPI policy,

∆MPI, reaches a maximum value of about 0.2% for (c1,c2) ≈ (0.3,0.3). It further vanishes as

both startup costs approach zero, and as either grows large enough. The right contour plot in the

Figure shows that the average suboptimality-gap ratioρMPI reaches maximum values of about

35%, and vanishes as either startup cost grows large. Figure7 zooms the latter plot over the range

(c1,c2) ∈ [0,0.3]2, showing thatρMPI also vanishes as both startup costs approach zero.

The fourth experiment evaluated the effect of state-dependent startup costs in two-bandit in-

stances with no shutdown costs, as the discount factor varies. Uniform[0, 1] i.i.d. state-dependent
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Figure 6: Exp. 3: Average Relative Performance of MPI Policyvs.(c1,c2), for β = 0.9.
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Figure 7: Exp. 3: Zoom of the Right Plot in Figure 6.

startup costs were randomly generated for each instance. Figure 8 plots the average relative subop-

timality gap vs. the discount factor, which shows that such agap tends to increase, leveling off at

values near one, while remaining well below 0.5%. The figure shows that both∆MPI andρMPI,bench

increase withβ , with the former remaining below 0.14%, and the latter below 4%.

The fifth and last experiment evaluated the relative performance of the MPI policy on three-

bandit instances as a function of a common startup cost and discount factor, based on a random

sample of 100 instances of three 8-state bandits each. For each instance, the startup cost-discount

factor combination was varied over the range(c,β ) ∈ [0,1]× [0.2,0.9]. The results are shown in

Figures 9 and 10, which are the counterparts of experiment 2’s Figure 4 and 5. Comparison of

Figures 4 and 9 reveals a slight performance degradation of the MPI policy’s performance in the

latter, though the average gap∆MPI remains quite small, below 0.3%. Comparison of Figures 5

and 10 reveals similar values for the ratioρMPI,bench.
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Figure 9: Exp. 5: Counterpart of Figure 4 for Three-Bandit Instances.

8. Concluding Remarks

We have addressed the important extension of the classic multi-armed bandit problem that incorpo-

rates costs for switching bandits. The paper has demonstrated the tractability and usefulness of the

index policy based on the index introduced by Asawa and Teneketzis (1996). The mode of analy-

sis has been based on deploying the powerful indexation theory for restless bandits introduced by

Whittle (1988) and developed by the author in recent work. Inthe companion paper Niño-Mora

(2007b) the approach and results herein are extended to the case where bandit switching penalties

involve both costs and delays. The analyses herein extend only in part to such a case, as the restless

reformulation then yields semi-Markov bandits that need not be PCL-indexable.
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