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Bootstrap for estimating the mean squared error of the

Spatial EBLUP

Isabel Molina∗ Nicola Salvati† Monica Pratesi‡

Abstract

This work assumes that the small area quantities of interest follow a Fay-Herriot
model with spatially correlated random area effects. Under this model, parame-
tric and nonparametric bootstrap procedures are proposed for estimating the mean
squared error of the EBLUP (Empirical Best Linear Unbiased Predictor). A simula-
tion study compares the bootstrap estimates with an asymptotic analytical approx-
imation and studies the robustness to non-normality. Finally, two applications with
real data are described.

Keywords: Spatial correlation; Simultaneously autoregressive process; Small area estima-

tion; Parametric bootstrap; Nonparametric bootstrap.

1 Introduction

Due to monetary limitations, surveys conducted by national statistical offices usually cannot

provide direct estimates at small geographical areas, or for some domains or subgroups of the

population, especially when the variable of interest has low frequency. The term “direct”

refers to an estimate for an area/domain that is calculated using solely the data from

that area/domain. For instance, in Spain, the Survey on Income and Living Conditions

is planned to provide reliable direct estimates for Autonomous Communities, but not for

Provinces or regions inside Provinces. Small Area Estimation (SAE) deals with estimating

in such smaller regions or domains, called small areas, making use of the data from all areas

that share common features. A broadly established tool in SAE are the regression models
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with random area effects, since the random effects allow for between area variation apart

from that explained by the auxiliary variables. Among these, Fay-Herriot (FH) models

(Fay & Herriot, 1979) are used when the available auxiliary data are aggregated at the area

level.

Spatial correlation among data from neighboring small areas is observed in many prac-

tical applications. If there are not covariates explaining sufficiently this between-area co-

rrelation, then it should be somehow represented in the covariance structure of the model.

However, the introduction of a dependency structure among small areas entails a serious

conceptual difference with respect to the traditional framework of independent small areas,

where the overall covariance matrix is block-diagonal (Prasad & Rao, 1990).

A model with spatially correlated random effects in the context of SAE was firstly

introduced by Cressie (1991). Recently, an extension of the FH model through the Simul-

taneously Autoregressive (SAR) process has been considered by Salvati (2004), Pratesi &

Salvati (2005, 2006), Singh et al. (2005) and Petrucci & Salvati (2006). When all parame-

ters involved in the covariance matrix are known, Pratesi & Salvati (2005) introduced the

Spatial Best Linear Unbiased Predictor (SBLUP). In order to include the effect of the spa-

tial correlation on the confidence interval width, they obtained an estimator of the mean

squared error of the SBLUP. Recent results show that the coverage of the 95% confidence

interval is appreciable and that the mean squared error (MSE) of the SBLUP does not

exceed the MSE of the traditional BLUP (Pratesi & Salvati, 2006).

In practice there are unknown parameters in the model covariance matrix, called here

variance components, that must be estimated from the sample data. Replacing the de-

rived estimates for the parameters in the SBLUP leads to the so called Spatial Empirical

Best Linear Unbiased Predictor (SEBLUP). Singh et al. (2005) proposed a second order

approximation of the MSE of the SEBLUP. However, this approximation might produce

too optimistic or conservative confidence intervals depending on the strength of the spatial

correlation and on the values of the sampling variances (Pratesi & Salvati, 2006). More-

over, analytical approximations usually rely on strong model assumptions and require large

number of small areas to approximate well the true values.

Resampling techniques are nowadays accepted as a good alternative to asymptotic an-

alytical approximations. They are attractive for practitioners because of their conceptual

simplicity and their easy application to complex statistical models. Furthermore, they

usually require less assumptions and their performance relies less in the number or small

areas.

Some resampling procedures have been already proposed in the small area framework.

See for instance the jackknife method of Jiang & Lahiri (2002), the more recent parametric
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bootstrap approaches of González-Manteiga et al. (2005, 2007) and Hall & Maiti (2006a),

and the nonparametric bootstrap of Hall & Maiti (2006b).

To our knowledge, the bootstrap-based estimation of the MSE of the SEBLUP under the

extended FH model with spatial correlation has not been intended yet. This work extends

the parametric bootstrap of González-Manteiga et al. (2005) to the situation of this paper,

and introduces a nonparametric approach that resamples both the random effects and the

errors from the empirical distribution of their respective estimators.

A simulation study compares the efficiency of the analytical and the bootstrap MSE

estimators introduced in the paper for different values of the spatial correlation, and ana-

lyzes the robustness of the bootstrap procedures to the absence of normality in the random

effects and errors.

The paper is organized as follows. Section 2 presents the FH model with spatially

correlated random area effects, describes how the Spatial EBLUP is obtained from the

model and comments on the available model fitting methods. Section 3 discusses the

estimation of the MSE of the Spatial EBLUP and describes an analytical approximation

of this MSE. Section 4 introduces the mentioned parametric and nonparametric bootstrap

methods for estimating the MSE. Then Section 5 describes the simulation study carried

out for comparing the MSE estimators. Two real life applications are illustrated in Section

6, and finally, some conclusions are drawn in Section 7.

2 Model with Spatially Correlated Random Effects

The basic FH model relates linearly the small area quantities of inferential interest θi (for

example, totals yi or means ȳi) to some area level auxiliary covariates xi = (xi1, xi2, ..., xip),

and includes random effects vi associated to the areas; that is,

θi = xiβ + zivi, i = 1, . . . ,m. (1)

Here zi are known positive constants, β is the p × 1 vector of regression parameters, vi

are independent and identically distributed random variables with mean 0 and variance σ2
u.

Moreover, it assumes that design-unbiased direct estimators θ̂i of θi are available for the m

small areas and that they can be expressed as

θ̂i = θi + ei, i = 1, . . . ,m, (2)

where ei are independent sampling errors with mean 0 and known variances denoted by ψi,

and independent of the random effects vi (Ghosh & Rao, 1994). Combining (1) and (2),
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the obtained model is

θ̂i = xiβ + zivi + ei, i = 1, . . . ,m. (3)

Let us define the vectors θ̂ = (θ̂1, . . . , θ̂m)T , v = (v1, . . . , vm)T and e = (e1, . . . , em)T , and

the matrices X = (xT
1 , . . . ,x

T
m)T and Z = diag(z1, . . . , zm). In matrix notation, the model

is

θ̂ = Xβ + Zv + e, (4)

which is a special case of the general linear mixed model with diagonal covariance structure.

Model (4) can be extended to allow for spatially correlated area effects as follows. Let v

be the result of a SAR process with parameter ρ and proximity matrix W (Anselin, 1992;

Cressie, 1993), i.e.,

v = ρWv + u ⇒ v = (Im − ρW)−1u, (5)

where u = (u1, . . . , um)T has mean 0 and covariance matrix σ2
uIm, and Im denotes the

m×m identity matrix. From (5), it can be easily seen that v has mean 0 and covariance

matrix equal to

G = σ2
u[(Im − ρW)(Im − ρWT )]−1. (6)

Combining (4) and (5), since e is independent of v, the model is

θ̂ = Xβ + Z(Im − ρW)−1u + e. (7)

The covariance matrix of θ̂ is equal to

V = ψ + ZGZ,

where ψ = diag(ψ1, . . . , ψm) is the known m×m variance matrix of the vector of sampling

errors e. Under model (7), the Spatial BLUP of the quantity of interest θi = xiβ + zivi is

θ̃i(σ
2
u, ρ) = xiβ̃ + zib

T
i GZV−1(θ̂ −Xβ̃) (8)

where β̃ = (XTV−1X)−1XTV−1θ̂ is an asymptotically consistent estimator of the regression

parameter β and bT
i is the 1 ×m vector (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th position.

We consider that the proximity matrix W is defined in row standardized form; that is, W

is row stochastic. Then, ρ ∈ (−1, 1) is called spatial autocorrelation parameter (Banerjee

et al., 2004).

The estimator (8) depends on the unknown variance components σ2
u and ρ. The two

stage estimator θ̃i(σ̂
2
u, ρ̂) obtained by replacing these parameters by asymptotically consis-

tent estimators σ̂2
u and ρ̂ is called Spatial EBLUP (Salvati, 2004; Pratesi & Salvati, 2005;

Singh et al., 2005; Petrucci & Salvati, 2006). Assuming normality of the random effects,
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σ2
u and ρ can be estimated by ML or REML procedures. The ML or REML estimators can

be obtained iteratively using the Nelder-Mead algorithm (Nelder and Mead 1965) and the

scoring algorithm in sequence. The use of these procedures one after the other is necessary

because the log-likelihood function has a global maximum and some local maxima (Pratesi

& Salvati, 2005).

Avoiding distributional assumptions, Kelejian & Prucha (1999) proposed a generalized

moments (GM) method for estimating the variance components σ2
u and ρ of the model.

In Section 5 we compare the accuracy of the two methods, ML and GM, under several

probability distributions of the random effects and errors.

3 Analytical approximation of the MSE

Under normality of random effects and errors, the MSE of the Spatial EBLUP can be

decomposed as (Rao, 2003)

MSE
[
θ̃i(σ̂

2
u, ρ̂)

]
= MSE

[
θ̃i(σ

2
u, ρ)

]
+ E

{[
θ̃i(σ̂

2
u, ρ̂)− θ̃i(σ

2
u, ρ)

]2
}

= g1i(σ
2
u, ρ) + g2i(σ

2
u, ρ) + g3i(σ

2
u, ρ), (9)

where g1i(σ
2
u, ρ) represents the uncertainty due to the estimation of the random effects and

is of order O(1) for large m, g2i(σ
2
u, ρ) is due to the estimation of β and is of order O(m−1),

and the last term measures the uncertainty of the Spatial EBLUP that results from the

estimation of the variance components σ2
u and ρ. While the exact analytical expression of

the terms g1i(σ
2
u, ρ) and g2i(σ

2
u, ρ) can be expressed by a closed formula, the last quantity

can not be calculated analytically, and therefore approximation is necessary (Pratesi &

Salvati, 2005). Under normality, an approximation of g3i can be obtained following the

results of Kackar & Harville (1984), as

g̃3i(σ
2
u, ρ) = tr

{[
bT

i

(
C−1ZV−1 + σ2

uC
−1Z(−V−1ZC−1ZV−1)

)
bT

i (AZV−1 + σ2
uC

−1Z(−V−1ZAZV−1))

]
V×

×

[
bT

i

(
C−1ZV−1 + σ2

uC
−1Z(−V−1ZC−1ZV−1)

)
bT

i (AZV−1 + σ2
uC

−1Z(−V−1ZAZV−1))

]T

V̄(σ̂2
u, ρ̂)

 (10)

where C = (Im − ρW)(Im − ρWT ), A = σ2
u[−C−1(2ρWWT − 2W)C−1] and V̄(σ̂2

u, ρ̂) is

the asymptotic covariance matrix of σ̂2
u and ρ̂. This leads to the approximation

MSE[θ̃i(σ̂
2
u, ρ̂)] ≈ g1i(σ

2
u, ρ) + g2i(σ

2
u, ρ) + g̃3i(σ

2
u, ρ). (11)
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In practical applications, the estimator θ̃i(σ̂
2
u, ρ̂) should be accompanied with an estimate

of the MSE. For FH models with diagonal covariance matrix V, that is, with independent

small areas, an approximately unbiased estimator of (11) was obtained through Taylor

linearization by Prasad & Rao (1990).

In the case of correlated random area effects like the SAR process, the small areas are

not independent and then V is not diagonal. However, following the results of Harville

& Jeske (1992), Zimmerman & Cressie (1992) have extended the Prasad-Rao estimator of

the MSE to models with more general covariance structure. The authors refer to geosta-

tistical models, in which the correlation matrix is directly specified, and they assume that

the covariance function is linear in the parameters. This situation is likely to occur under

geostatistical models where the covariance function depends on the distance between loca-

tions. Under SAR models, the covariance is assumed to depend on a proximity matrix that

specifies the proximity between the areas. Even so, the SAR models lead to a covariance

function that is similar to the Bessel variogram model (Griffith & Csillag, 1993). Then fol-

lowing the results of Zimmerman & Cressie (1992), when σ̂2
u and ρ̂ are REML estimators,

an approximately unbiased estimator of the MSE is given by the expression

mse[θ̃i(σ̂
2
u, ρ̂)] ≈ g1i(σ̂

2
u, ρ̂) + g2i(σ̂

2
u, ρ̂) + 2g̃3i(σ̂

2
u, ρ̂). (12)

If σ̂2
u and ρ̂ are obtained by ML, then an approximately unbiased estimator of the MSE is

mse[θ̃i(σ̂
2
u, ρ̂)] ≈ g1i(σ̂

2
u, ρ̂)− bT

ML(σ̂2
u, ρ̂)5 g1i(σ̂

2
u, ρ̂) + g2i(σ̂

2
u, ρ̂) + 2g̃3i(σ̂

2
u, ρ̂). (13)

The extra term bT
ML(σ̂2

u, ρ̂)5g1i(σ̂
2
u, ρ̂) accounts for the bias of g1i(σ̂

2
u, ρ̂). Ignoring this term

could lead to underestimation of the MSE (see e.g. Pratesi & Salvati, 2005, 2006; Petrucci

& Salvati, 2006). Singh et al. (2005) derived a different estimator of the MSE for large m

neglecting all o(m−1) terms. Their estimator differs from (12) and (13) in the subtraction

of an extra term called here g4(σ̂
2
u, ρ̂). Up to terms of order o(m−1), this term is equal to

g4(σ̂
2
u, ρ̂) =

1

2
tr

{
[I2 ⊗ (ψV−1)]H[I−1(σ2

u, ρ)⊗ (V−1ψ)]
}

(14)

where ⊗ denotes the Kronecker product, I(σ2
u, ρ) is the Fisher information matrix and H

is a partitioned matrix of order 2m× 2m defined as

H =


∂2V

∂(σ2
u)

2

∂2V

∂σ2
u∂ρ

∂2V

∂ρ∂σ2
u

∂2V

∂ρ2


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4 Bootstrap approximation of the MSE

This section describes two alternative bootstrap procedures designed for estimating the

MSE of the Spatial EBLUP θ̃i(σ̂
2
u, ρ̂). Remind that in the expression of the MSE given

in (9), there are exact closed formulas for g1i(σ
2
u, ρ) and g2i(σ

2
u, ρ). However, the term

g3i(σ
2
u, ρ), that represents the additional uncertainty of the Spatial EBLUP due to estimat-

ing the variance components σ̂2
u and ρ̂, can not be calculated analytically and then requires

approximation. Thus, the bootstrap approaches, as they appear below, are written only

for obtaining an estimate of g3i. This term is then used in (15) to calculate the final esti-

mate of the MSE. The first procedure is a parametric bootstrap that extends the ideas of

González-Manteiga et al. (2005) to the FH model with spatial correlation. The final esti-

mate of the MSE obtained by this procedure is consistent if the model parameter estimates

are consistent. This can be proved by the method of imitation as in González-Manteiga

et al. (2005), using the asymptotic formula of the MSE obtained by Singh et al. (2005).

In the following, for a function B(σ2
u, ρ) of σ2

u and ρ, we will write simply B when B is

evaluated at the true values of σ2
u and ρ. The parametric bootstrap works as follows:

PARAMETRIC BOOTSTRAP

1) Fit model (7) to the initial data θ̂ = (θ̂1, . . . , θ̂m)T , obtaining estimates σ̂2
u, ρ̂ and

β̂ = β̃(σ̂2
u, ρ̂).

2) Generate a vector ω∗1 whose elements are m independent copies of a N(0, 1). Con-

struct the bootstrap vectors u∗ = σ̂uω
∗
1 and v∗ = (Im − ρ̂W)−1u∗, and calculate the

bootstrap quantity of interest θ∗ = Xβ̂ + Zv∗.

3) Generate a vector ω∗2 with m independent copies of a N(0, 1), independently of the

generation of ω∗1, and construct the random errors e∗ = ψ1/2ω∗2.

4) Construct the bootstrap data θ̂
∗

= θ∗ + e∗ = Xβ̂ + Zv∗ + e∗.

5) Regarding β̂, σ̂2
u and ρ̂ as the real values of the parameters, fit model (7) to the boot-

strap data θ̂
∗
, obtaining new bootstrap estimates β̃

∗
(σ̂2

u, ρ̂), σ̂
2∗
u , ρ̂∗ and β̃

∗
(σ̂2∗

u , ρ̂
∗).

6) Calculate the bootstrap Spatial BLUP from the bootstrap data θ̂
∗

and assuming that

the real values of the parameters σ2
u and ρ are respectively σ̂2

u and ρ̂, that is

θ̃S∗
i (σ̂2

u, ρ̂) = xiβ̃
∗
(σ̂2

u, ρ̂) + zib
T
i G(σ̂2

u, ρ̂)ZV(σ̂2
u, ρ̂)

−1[θ̂
∗
−Xβ̃

∗
(σ̂2

u, ρ̂)].

Calculate also the bootstrap Spatial EBLUP as

θ̃S∗
i (σ̂2∗

u , ρ̂
∗) = xiβ̃

∗
(σ̂2∗

u , ρ̂
∗) + zib

T
i G(σ̂2∗

u , ρ̂
∗)ZV(σ̂2∗

u , ρ̂
∗)−1[θ̂

∗
−Xβ̃

∗
(σ̂2∗

u , ρ̂
∗)].
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7) Repeat steps 2)–6) B times. Let σ̂
2∗(b)
u and ρ̂∗(b) be the bootstrap estimates obtained

in b-th bootstrap replication. Additionally, let θ̃
S∗(b)
i (σ̂2

u, ρ̂) be the bootstrap Spa-

tial BLUP and θ̃
S∗(b)
i (σ̂

2∗(b)
u , ρ̂∗(b)) the bootstrap Spatial EBLUP obtained in the b-th

bootstrap replication.

8) A bootstrap estimator of g3i is

g∗3i = B−1

B∑
b=1

[
θ̃

S∗(b)
i (σ̂2∗(b)

u , ρ̂∗(b))− θ̃
S∗(b)
i (σ̂2

u, ρ̂)
]2

.

The second procedure is a nonparametric bootstrap, where the bootstrap random effects

(u∗1, . . . , u
∗
D)T and the random errors (e∗1, . . . , e

∗
D)T are obtained by resampling respectively

from the empirical distribution of the predicted random effects (û1, . . . , ûD)T and the resid-

uals ê = θ̂−Xβ̂−Zv̂ = (ê1, . . . , êm)T , both previously standardized. This method should

be robust to non-normality of any of the random components of the model. It works by

replacing in the parametric bootstrap, steps 2) and 3) by the new steps 2’) and 3’) below:

NONPARAMETRIC BOOTSTRAP

2’) With the estimates σ̂2
u, ρ̂ and β̂ = β̃(σ̂2

u, ρ̂) obtained in step 1), calculate predictors

of v and u as

v̂ = G(σ̂2
u, ρ̂)ZV(σ̂2

u, ρ̂)
−1[θ̂ −Xβ̃(σ̂2

u, ρ̂)],

û = (I− ρ̂W)v̂ = (û1, . . . , ûm)T .

Consider the theoretical predictor ũ = (I − ρW)GZV−1(θ̂ − Xβ̃). The covariance

matrix of ũ is

Vu = (I− ρW)GZPZG(I− ρWT ),

where

P = V−1 −V−1X
(
XTV−1X

)−1
XTV−1.

Consider now the estimated matrix V̂u = Vu(σ̂2
u, ρ̂). Let V̂

1/2
u be a root square of a

generalized inverse of V̂u. A simple choice of root square can be obtained through

the spectral decomposition of V̂u, in the form

V̂−1/2
u = Mu∆

−1/2
u MT

u ,

where ∆u is a diagonal matrix with the m − p non-zero eigenvalues of V̂u, and Mu

is the matrix with the corresponding eigenvectors in the columns. With the obtained
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root square, standardize û as ûS = V̂
−1/2
u û = (ûS

1 , . . . , û
S
m)T . Then, by the consistency

of the estimators σ̂2
u and ρ̂, for large m the covariance matrix of ûS is approximately

equal to the identity matrix. It is convenient to re-standardize the elements ûS
i in the

form

ûSS
i =

σ̂u(û
S
i −m−1

∑m
i=1 û

S
i )√

m−1
∑m

d=1(û
S
d −m−1

∑m
i=1 û

S
i )2

, i = 1, . . . ,m.

Construct the vector u∗ = (u∗1, . . . , u
∗
m)T , whose elements are obtained by extracting

a simple random sample with replacement of size m, from the set {ûSS
1 , . . . , ûSS

m }.
Then obtain v∗ = (I − ρ̂W)−1u∗ and calculate the bootstrap quantity of interest

θ∗ = Xβ̂ + Zv∗ = (θ∗1, . . . , θ
∗
m)T

3’) Compute the vector of residuals ê = θ̂ − Xβ̂ − Zv̂ = (ê1, . . . , êm)T . Consider the

theoretical vector ẽ = θ̂ −Xβ̃ − Zṽ, where ṽ = GZV−1(θ̂ −Xβ̃). The covariance

matrix of ẽ is given by Ve = ψPψ. Standardize the residuals by eS = V̂
−1/2
e e =

(eS
1 , . . . , e

S
m)T , where V̂

−1/2
e is a root square of a generalized inverse of V̂e = Ve(σ̂

2
u, ρ̂).

Again, re-standardize this values

êSS
i =

(êS
i −m−1

∑m
i=1 ê

S
i )√

m−1
∑m

d=1(ê
S
d −m−1

∑m
i=1 ê

S
i )2

, i = 1, . . . ,m.

Construct r∗ = (r∗1, . . . , r
∗
m)T by extracting a simple random sample with replacement

of size m from the set {êSS
1 , . . . , êSS

m }. Then take e∗ = (e∗1, . . . , e
∗
m)T , where e∗i =

ψ
1/2
i r∗i , i = 1, . . . ,m.

With the obtained bootstrap estimate g∗3i of g3i, an estimate of the MSE of the Spatial

EBLUP can be obtained by adding the estimated values of g1i and g2i, and a bootstrap

correction of the bias induced by the estimation of these two quantities, as

mse[θ̃i(σ̂
2
u, ρ̂)] = 2

[
g1i(σ̂

2
u, ρ̂) + g2i(σ̂

2
u, ρ̂)

]
−B−1

B∑
b=1

[
g1i(σ̂

2∗(b)
u , ρ̂∗(b)) + g2i(σ̂

2∗(b)
u , ρ̂∗(b))

]
+g∗3i.

(15)

Remark 4.1. When there are doubts of the normality assumption either for the random

effects or for the errors, it is possible to combine step 2’) with 3), or step 2) with 3’) of the

two bootstrap procedures. The result is a semiparametric bootstrap that avoids the normality

assumption on the desired component of the model.
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5 Simulation study

In this section we describe the simulation experiments carried out with the following main

objectives in mind: (a) to find empirical evidence on the reasonable conjecture that taking

into account the spatial correlation among small areas improves the precision of small area

estimators; (b) to study the small-sample behavior of the proposed bootstrap procedures

for estimating the term g3i involved in the mean squared error, for different values of the

spatial correlation parameter ρ and for different patterns of sampling variances ψi; (c) to

analyze the robustness of the bootstrap procedures to non-normality of the random effects

and errors.

The experiments are based on a real population, the map of the m = 287 municipalities

(small areas) of Tuscany. We considered a model with p = 2, that is, one explanatory

variable and a constant, with m × 2 design matrix X = [1m x], where 1m is a column

vector of ones of size m and x = (x1, . . . , xm)T contains the values of the explanatory

variable. These values xi were generated from a uniform distribution in the interval (0, 1).

The true model coefficients were β = (1, 2)T , the random effects variance σ2
u = 1 and

the spatial correlation parameter ρ ∈ {−0.75,−0.5,−0.25, 0.25, 0.5, 0.75}. The matrix of

sampling variances ψ = diag(ψ1, . . . , ψm) was taken as ψi = 0.7 for 1 ≤ i ≤ 60; ψi = 0.6 for

61 ≤ i ≤ 120; ψi = 0.5 for 121 ≤ i ≤ 180; ψi = 0.4 for 181 ≤ i ≤ 240 and finally ψi = 0.3 for

241 ≤ i ≤ 287 (Datta et al., 2005). The m×m row-standardized proximity matrix W was

obtained from the neighborhood structure of the municipalities in Tuscany. This matrix

was kept constant for all simulations. We considered three possible probability distributions

for the random area effects and errors, namely Normal, Gumbel and Student t distribution

with 6 degrees of freedom, all standardized to have zero mean and unit variance. The

last two distributions represent two different sources of discrepancy to normality, since the

Gumbel distribution is asymmetric and the Student t has heavy tails.

A first experiment was carried out for comparing the performance of the ML and the

GM (Kelejian & Prucha, 1999) methods for estimating σ2
u and ρ. For this, L = 1000 Monte

Carlo data sets were generated as described above, and the model was fitted to each data

set by the two methods, ML and GM. The comparison is based on the empirical relative

bias and the empirical relative mean squared error of the estimators. For an estimator δ̂ of

a parameter δ, these quantities are defined respectively as

RB(δ̂) =
1

L

L∑
j=1

δ̂(j)

δ
− 1, RMSE(δ̂) =

1

L

L∑
j=1

(δ̂(j) − δ)2

δ
,

where δ̂(j) is the estimate obtained for the j-th data set.
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RB(σ̂2
u) RB(ρ̂) RMSE(σ̂2

u) RMSE(ρ̂)

ML GM ML GM ML GM ML GM

Normal 0,062 0,101 -0,059 -0,183 0,026 0,027 0,007 0,030

Student t6 0,054 0,100 -0,052 -0,180 0,036 0,036 0,007 0,030

Gumbel 0,149 0,163 -0,075 -0,190 0,058 0,056 0,009 0,032

Table 1: Relative bias and relative mean squared error of the estimators of σ2
u = 1 and

ρ = 0.75, by ML and GM methods, for Normal, Gumbel and Student t6 distributions.

Table 1 lists the previous indicators obtained by the two estimation methods, under

the three considered probability distributions, taking the same distribution for the random

effects ui and the errors ei, and for ρ = 0.75. This table shows that ML estimates have

smaller relative bias and not greater relative mean squared error than the GM estimates,

except for the estimator of σ2
u obtained under the Gumbel distribution. Moreover, for

that parameter the differences between the two estimation methods are smaller. Observe

that the ML method estimates ρ better than the GM method even under the two non-

normal distributions. Nevertheless, an advantage of the GM method, apart from being

distribution-free, is that it is rather faster than ML. Thus, the GM method is convenient

under nonparametric settings and when applying some computationally intensive procedure

like bootstrap.

Concerning target (a), L = 1000 Monte Carlo data sets were generated as described

before, taking Normal distribution for the random effects and errors. Then two models were

fitted to each data set: the spatial model (4)-(5), and the non-spatial model obtained by

assuming that in model (4), the vector of random effects v = (v1, . . . , vm)T has independent

and identically distributed elements vi, with zero mean and variance σ2
u. Figures 1 and 2

plot the empirical values of the mean squared errors of the Spatial EBLUP obtained from

the former model, and the NonSpatial EBLUP resulting from the latter model, for the

m = 287 small areas, for ρ = 0.75 and ρ = 0.25, respectively. The piecewise decreasing

shape that we observe in the level of these two figures is due to the decreasing patterns

of sampling variances ψi. Figure 1 shows that ignoring the spatial correlation structure

of small areas leads to an increase in the MSE. However, this increase is smaller for areas

with smaller sampling variances and in the case of weak spatial correlation, see Figure 2

for ρ = 0.25. This last figure also suggests that modelling the spatial correlation seems to

be convenient even when this correlation is weak, since there is no loss in efficiency.
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Figure 1: Empirical MSE of the Spatial EBLUP and the NonSpatial EBLUP for the m =

287 small areas, for ρ = 0.75.
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Figure 2: Empirical MSE of the Spatial EBLUP and the NonSpatial EBLUP for the m =

287 small areas, for ρ = 0.25.
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Target (b) deals with comparing the analytical estimate of g3i obtained by substituting

σ̂2
u and ρ̂ in expression (10), with the parametric bootstrap estimate. For this, L = 250

Monte Carlo data sets were generated, and for each data set, the estimated values of g̃3i,

i = 1, . . . ,m, were calculated, and the parametric bootstrap procedure was applied with

B = 250 bootstrap replicates, deriving bootstrap estimates g∗3i, i = 1, . . . ,m. The empirical

values of g3i, which are the reference values for comparison, were computed previously with

1000 Monte Carlo replicates to ensure better accuracy.

Figures 3–6 plot the ratios of the analytical estimates g̃3i(σ̂
2
u, ρ̂) and the parametric

bootstrap estimates g∗3i over the empirical values, under normality of random effects and

errors and with ML estimation of the parameters σ2
u and ρ, for ρ = 0.75, 0.5, 0.25,−0.5

respectively. The straight lines in each plot correspond to the empirical values. First of

all we want to point out that the term g3i has very small range of variation: our reference

empirical values range in the interval (0.0007, 0.004). The result is tenable for small, medium

and high correlation and it is confirmed for all considered patterns of sampling variances.

For ρ = 0.75 (Figure 3), the ratio of the analytical estimates to the empirical ones highlight

an underestimation of the true g3i value for almost every area. However, Figures 4–6

indicate that this bias disappears as long as the spatial correlation decreases. The bootstrap

estimates, although also slightly biased, are more stable, taking generally values closer to

the empirical values, for all considered values of the spatial correlation parameter and for

all patterns of error variances. The plots corresponding to ρ ∈ {−0.25,−0.75} are omitted

because of their similarity with Figure 6 for the average value ρ = −0.5.
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Figure 3: Ratios of the empirical g3i, estimated g̃3i and parametric bootstrap estimates g∗3i

over the empirical values, for the m = 287 small areas, with ρ = 0.75.
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Figure 4: Ratios of the empirical g3i, estimated g̃3i and parametric bootstrap estimates g∗3i

over the empirical values, for the m = 287 small areas, with ρ = 0.5.
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Figure 5: Ratios of the empirical g3i, estimated g̃3i and parametric bootstrap estimates g∗3i

over the empirical values, for the m = 287 small areas, with ρ = 0.25.
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Figure 6: Ratios of the empirical g3i, estimated g̃3i and parametric bootstrap estimates g∗3i

over the empirical values, for the m = 287 small areas, with ρ = −0.5.
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Finally, concerning target (c), both parametric and nonparametric bootstrap procedures

were applied to each of L = 250 data sets, firstly generated with Normal distribution, and

next with Gumbel and Student t6 distributions. In this case, the GM estimation method

was used. Figures 7–9 show the ratios of the empirical values g3i, the parametric bootstrap

estimates g∗3i, and the nonparametric bootstrap estimates g∗∗3i over the empirical values, for

i = 1, . . . ,m, and for ρ = 0.5. Figure 7 illustrates that under normality of random effects

and errors, the nonparametric bootstrap is not less efficient than the parametric bootstrap.

Both estimates take similar values, but the right side of the plot indicates a small positive

bias for areas with smaller sampling variances. This could be a consequence of the GM

estimation method, since this bias is not appreciable in the case of ML (Figure 4). Figure

8 shows that the parametric bootstrap is quite robust to skewness, when the true random

effects and the errors follow a Gumbel distribution. Finally, when the data come from a

distribution with heavy tails as the Student t6 (Figure 9), the nonparametric bootstrap

seems to perform better.
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Figure 7: Ratios of the parametric and the nonparametric bootstrap estimates g∗3i and g∗∗3i

over the empirical values of g3i for the m = 287 small areas, for Normal distribution and

with ρ = 0.5.
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Figure 8: Ratios of the parametric and the nonparametric bootstrap estimates g∗3i and g∗∗3i

over the empirical values of g3i for the m = 287 small areas, for Gumbel distribution and

with ρ = 0.5.
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Figure 9: Ratios of the parametric and the nonparametric bootstrap estimates g∗3i and g∗∗3i

over the empirical values of g3i for the m = 287 small areas, for Student t6 distribution and

with ρ = 0.5.
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6 Two real life applications

This section describes two applications with real data. In the first application, the goal is

to estimate the mean production of olives (in quintal units) over the farms in each Agrarian

Region (AR) from Tuscany. The data come from the Farm Structure Survey of 2003 (Source:

ISTAT). The sample is extracted by a one stage stratified design with self-representation

of the larger farms (agricultural holdings). The sample size over all Italy is 55,030 farms.

The stratification is carried out in three phases and the optimal allocation of sample size

to the strata is obtained by minimizing the sampling error at regional and national level

(Ballin & Salvi, 2004).

In the second application, the aim is to estimate the mean per acre erosion (in tons)

in each 11 digit Hydrologic Unit Code (HUC) from the Rathbun Lake Watershed in Iowa

(U.S.). The data were collected from a team of researchers from Iowa State University and

the Chariton Valley Resource Conservation and Development Office, who carried out an

environmental health study for the Rathbun Lake Watershed in 1999. Each HUC was di-

vided in plots; in total 2146, and from them 183 plots were selected by systematic sampling.

The fractional interval (Särdnal et al. (1992), p. 77) was fixed in order to select four units

from each HUC. Then, within each HUC, three 160-acre (64 ha) plots were selected. For

details about the sampling design, see Opsomer et al. (2003).

In both applications, the data can be considered as lattice data. The centroid of each

area is taken as the spatial reference for all the units (farms for ARs and plots for HUCs)

in the same area. Both ARs and HUCs are unplanned domains. They are defined on a

geographical basis and are very useful small areas in economic studies of agriculture and

land use respectively. The 53 ARs are determined following the administrative boundaries of

Municipalities (287 in Tuscany) and the average sample size per AR is n̄ = 45.2 (s.e.=37.3).

The number of HUCs in the Rathbun Lake Watershed is 61 with an average size of 5.800

acres (2.350 ha).

The proximity matrix W = (wij) is constructed as follows: wij is equal to 1 if the AR

(HUC) i shares an edge with AR (HUC) j, and is equal to 0 otherwise. Afterwards, the

rows of W are standardized so that the row elements sum up to one. Then W is not

symmetric, but it is row stochastic and ρ is called spatial autocorrelation parameter.

The results of both mean per farm production of olives at ARs in Tuscany and mean

per acre erosion at HUCs are described in detail in Pratesi & Salvati (2006) and Petrucci &

Salvati (2006). Here we are interested in the comparison between the different estimates of

g3i. Thus, for the two case studies, we have computed the analytical estimates g̃3i(σ̂
2
u, ρ̂) and

the two bootstrap estimates g∗3i and g∗∗3i . Additionally, for the first case study, we performed
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the semiparametric bootstrap obtained by combining step 2) from the parametric bootstrap

with step 3’) from the nonparametric procedure. This semiparametric bootstrap assumes

normality only for the random effects and not for the errors. The obtained results are

plotted in Figures 10 and 11.

In the first case study (mean per farm production of olives) the value of the estimated

spatial autoregressive coefficient ρ̂ is 0.382 (s.e.=0.271), which means a weak spatial re-

lationship. Observe in Figure 10 that the analytical estimates are much lower than the

bootstrap estimates. Thus, it seems that the analytical estimator does not capture the ad-

ditional variability due to the estimation of the spatial autocorrelation coefficient. Observe

also that the nonparametric and the semiparametric bootstrap estimates show a similar

behavior. This similarity supports the normality assumption of the random effects. On

the other hand, the parametric bootstrap estimates take larger values than the other two

bootstrap methods in the areas with larger sampling variance. We deduce from this plot

that the distribution of the direct estimators is probably far from normality and in this

case the nonparametric bootstrap is more reliable.

In the second case study (mean per acre erosion) the value of the estimated spatial

autocorrelation coefficient ρ̂ is 0.741 (s.e.= 0.138) using the ML procedure and 0.756 (s.e.=

0.154) with the REML method, which suggests a strong spatial relationship. Figure 11

shows that in this case the estimates are not very different, but the analytical estimates

are in general slightly smaller than the bootstrap analogues. This case study suggests that

when spatial correlation is stronger, the analytical estimator of g3i can be more reliable.

7 Conclusions

From the results of the simulation experiments and of the two applications with real data, we

conclude that in case of spatially correlated data with a spatial autocorrelation parameter

ρ > 0.25, the analytical estimator of the term g3i of the MSE should be substituted by a

bootstrap estimator. Take into account that the term g3i(σ̂
2
u, ρ̂) is used to approximate the

MSE. Since the analytical estimates g̃3i(σ
2
u, ρ) underestimate the true values, using them

would lead to too optimistic confidence intervals for predicted values. Alternatively, the

bootstrap estimators should result in more satisfactory point estimates of g3i and in more

appropriate confidence intervals.

Furthermore, between the bootstrap estimates, we have seen that the nonparametric

bootstrap performs well even under normality, and therefore is expected to be reliable

regardless of distributional assumptions. It seems reasonable to use the nonparametric

bootstrap with a nonparametric estimation method like the GM; however, the ML method
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performed better even under Gumbel and Student t6 distributions. Thus, when there is

some evidence of not great deviation from normality, a combination ML-nonparametric

bootstrap should work well.
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Figure 10: Analytical estimates, parametric and nonparametric bootstrap estimates of g3i.

Per farm production of olives at ARs in Tuscany.
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Figure 11: Analytical estimates, parametric bootstrap, and nonparametric bootstrap esti-

mates of g3i. Per acre erosion at HUCs for the Rathbun Lake Watershed in Iowa.
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