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1 Introduction

Recently, in the context of financial markets, there has been an increasing avail-
ability of intra-daily and ultimately transaction data called by Engle (2000)
ultra-high-frequency (UHF) data. Modelling this kind of data may have impor-
tant implications for market microstructure theory. Consequently, the develop-
ment of new methods to describe the dynamics of UHF data is receiving a great
amount of attention; see, for example, Engle (2001) and Bollerslev (2001) who
include these methods among the hot topics in the analysis of financial time
series. Potentially, these models should yield valuable information for market
designers and risk management. One particular characteristic of UHF that
has attracted a great deal of attention in the literature is intra-daily volatility.
There are several procedures proposed with this goal. First, several authors
extend the GARCH-type models, which has been very popular to model daily
volatility, to the analysis of UHF second order dynamic dependencies; see, for
example, Baillie and Bollerslev (1990), Andersen and Bollerslev (1997, 1998),
Engle (2000), Gramming and Wellner (2002) and Manganelli (2005) who assume
GARCH(1,1) models and, more recently, Baillie et al. (2007) and Bordignon
et al. (2007, 2009) who model intra-daily volatilities by assuming long memory
GARCH processes. However, because UHF data can be irregularly spaced, tra-
ditional GARCH and Stochastic Volatility (SV) models are ill suited to represent
its dynamics. Consequently, several authors have suggested the use of market
point processes or continuous time methods. For example, Eraker et al. (2003)
proposed using Monte Carlo Markov Chain (MCMC) methods to estimate con-
tinuos time stochastic volatility models with jumps. They fit their model to
estimate the underlying volatility of daily returns but their procedure can also
be implemented to other intraday frequencies. An alternative methodology in
the related literature is based on fitting function wavelets to approximate the
underlying intra-daily volatilities as in Nielsen and Frederiksen (2007).

Another problem faced when modelling UHF data is that financial markets
usually exhibit strong periodic dependencies across the trading day. Typically,
the volatility is highest at the open and toward the close of the day; see, for ex-
ample, Andersen and Bollerslev (1997) and Andersen et al. (2001) among many
others. To represent this seasonal dependence, Baillie and Bollerslev (1990) in-
clude a daily lag in the GARCH model for hourly data. Later, Bollerslev and
Ghysel (1996) proposed a GARCH model with periodically varying parameters
which allows for a greater degree of flexibility when modelling the periodicity
in volatilities. Bisaglia et al. (2003) have used k-factor Gegenbauer ARMA
(GARMA) models to describe intra-daily volatilities. However, this approach
may be ineffective when the goal is the prediction of future returns. Arteche
(2004) proposes to treat long and periodic persistence in the context of SV
models. Recently, Bordignon et al. (2009) introduces a new class of models
called Periodic Long-Memory GARCH which introduced a fractional seasonal
difference in the GARCH specification.

However, the procedures just described are not able to cope simultaneously
with irregular data and seasonallity. The prevailing estimation methods for



continuous time models, which are able to cope with irregularly spaced obser-
vations, remain relatively complicated and, in general, have not been extended
to deal with the seasonal pattern of intra-daily volatilities.

In this paper, we propose to use Functional Data Analysis (FDA) to model
the dependence of the volatility along a given day with respect to the volatility
during the previous day. FDA procedures are easy to implement and allow to
cope simultaneously with irregularly spaced data and periodic dependencies.
With this purpose, the stock prices observed along a given day, say day i, are
considered as a unique observation which is denoted by p;(¢;) where i = 1, ..., n,
with n the sample size, i.e., the number of days in the sample, and t; are
the moments within the day at which we observe the prices with j = 1,...,J
and J the total number of data points within the day. Although FDA can
be easily implemented for nonregular observations, in this paper, we will focus
on regularly observed data and, consequently, t; = t; + Aj, where t; is the
moment when the first observation in the day is obtained and A is the time
span between observations. Our objective is to predict the volatility along day
1 using information of the volatility up to, and including, day i — 1.

FDA has been previously implemented by other authors for the analysis
of financial data with different objectives. As far as we know, the first pa-
per proposing to use FDA in the context of financial returns was Anderson and
Newbold (2002) who model the time-varying unconditional distribution of intra-
daily returns of the Swiss-Franc-Dollar exchange rates. More recently, Miiller,
Stadmiiller and Yao (2006) and Miiller, Sen and Stadmiiller (2006) propose FDA
to estimate and predict the volatility during the second part of the day using
information contained in the first part of the day, respectively. Many of the pro-
cedures implemented in this paper are based on these two last works. However,
we introduce a functional AR(1) model in order to represent the dependence of
the volatility during one particular day on the volatility functions of previous
days.

The rest of the paper is organized as follows. Section 2 describes the FDA
techniques implemented in order to extract the volatility and to predict future
volatilities. In particular, the volatility extraction is based on functional princi-
pal components and the volatility prediction on functional AR(1) models. The
estimation of the corresponding parameters is carried out using the functional
equivalent to OLS. Section 3 contains the empirical analysis of the IBEX35
returns observed each 5 minutes. Finally, Section 4 concludes the paper.

2 Funtional data analysis for volatility extrac-
tion and prediction
In this section, we describe the idea of functional principal components imple-

mented to extract the volatility, as well as the functional AR(1) model consid-
ered to predict future volatilities.



2.1 Functional principal components

The volatility of returns is a latent variable that cannot be directly observed.
Functional principal components can be used to extract the underlying volatil-
ities; see Miiller, Stadmiiller and Yao (2006). Functional principal components,
proposed by Ramsay and Silverman (2005), is based on the Karhumen-Loéve
theorem which stablishes that any centered process of order two can be expressed
as a combination of orthonormal functions. Given that the price functions are
not stationary, first we transform the prices plotted in Figure 1 into returns as
follows:

ri(t;) = log <W) ,i=1,..., n. (1)

pi(tj-1)
Then, we consider the absolute values y;(¢;) = |r;(¢;)|. These absolute re-

turns functions can be seen in Figure 2. Now, volatility V;(t) is defined as
smooth functional of absolute logarithmic returns and can be decomposed as

Vit) = pv (t) + > Edu(t), (2)
k=1

where py(t) is the mean function of the volatility and ¢(t) are orthogonal
eigenfunctions associated to the corresponding principal components, i. e.,

and & are the principal components scores defined by

o = /T (Vi(t) — v () (). (4)

These principal components have zero mean, variance A\ and

/T cou(Vi(s), Vi(t))n(s)ds = M (1), (5)

Volatility is estimated through the estimation of py (¢), ¢r(t), and &. We
first estimate the mean volatility function py (¢) by local linear smoothing, find-
ing &g and & that minimize

Sk (B0) i) - e - anle - 1)), (6)

where k1 (z) = 0.75(1 — z)x is a Epanechnikov kernel function (||z]| < 1) and by
is the smoothing bandwidth of volatility. Finally, we take fiy (t) = do(t). See
Miiller, Sen and Stadmiiller (2006).

Before estimating the eigenfunctions ¢ (), it is necessary to estimate the
covariances cov(V (s), V(t)) which are obtained from the empirical covariances



Figure 1: Prices for 110 days of METROVACESA stock (top left), FCC (top right),
CINTRA (middle left), INDRA (middle right) and GAS NATURAL (bottom center)
from 9:05 to 17:40.



Ko

Figure 2: Absolute logarithmic returns for 110 days of METROVACESA stock (top

left), FCC (top right), CINTRA (middle left), INDRA (middle right) and GAS NAT-
URAL (bottom center) from 9:10 to 17:40.



Gi(tj,, t5,) = (yi(tj,)—fv(tj,))(yi(tj,)—fv(t),)) as follows. Fit a two-dimensional
smoother to obtain the nonparametric regression of G;(t;,,t;,) versus (t;,,t;,)
by finding the functions &g, &1, &o that minimize

P S e (GRS CR R RS

1=11<j1#j2<J
(7)

where ka(.,.) is a bivariate kernel function. The estimated covariances are given
by cov(V(s),V(t)) = &o(s,t).

The next step is the estimation of the eigenfunctions ¢(t) and the eigenvalues
A, replacing the covariance surface cov(V (), V(s)) by cov(V(t),V(s)). We ob-
tain (A, ¢ (t)) by numerical eigenanalysis (Yao et al., 2005). The estimations
of the functional principal components (FPC) scores are given by numerical
integration,

J
éik = Z(yl(tj) — ﬂv(tj))(ﬁk(tj), 7 = 1, ceey T, k‘ = 1,2, ceey (8)

=2

and the estimate of the volatility is
K
= v Z ik (t). (9)
2.2 Prediction of Volatility

Once the volatility has been extracted, our goal is to predict the volatility
along a given day using the information contained in the volatility functions of
previous days. With this goal, we fit the following functional AR(1) model

Vi(t) = pv (t) + /Tﬁ(sv ) (Vie1(s) = pv (s))ds + mi(t) (10)

where n; are i.i.d second order random variables assuming values in the Hilbert
space H; see Bosq (1991). The regression parameter function § can be repre-
sented by

Bls.0) =3 3 K 0()om (1), (1)
k=1m=1
where Yim = E(&k&n) and Ay, = E(£2). Note that the functional AR(1) model
in (11) resembles the Stochastic Volatility model for daily observations proposed
by Harvey et al. (1994), where the log-volatility was assumed to follow an AR(1)
process.
The estimation of 3(s, ) is according to (12). We construct estimates A, for
A; and estimates



S = / / 1 (3)E0 (Vi1 (3), Vi(t)) b (t) dis di, (12)

for the Ygm, where cov(V;_1(s), V;i(t)) is a local linear smoother for the cross-
covariance function cov(V;_1(s), Vi(t)); see Yao et al. (2005). Then, the estimate
for the regression parameter function is

K K

B, t) =305 s () (8), (13)

k=1m=1

where K is the number of components that represent functional data V;_1(s)
and V;(t).

On the other hand, the coefficient of determination R? plays an important
role in applications of regression analysis. Yao et al. (2005) propose a extension
to functional linear regression. In our case to measure the global association
between the functional predictor V;_1(¢) and the functional response V;(t), we
obtain

” Jrvar(EVi@OIViea ODdt 37021 3 ey Vem/Am
S var(Vi(t))dt e Ak ’

where R? always satisfies 0 < RZ < 1. A estimate R? for the functional coeffi-
cient determination R? is
K K 3
]:22 . Zk:1 Zmzl ’Ykm//\m
= =l
Zk=1 >\k

(14)

: (15)

where i, are as in (13).

The confidence interval 3(s, t) for a confidence level 100(1-a)% and hypothe-
sis testing of parameter function Hy : R? = 0 is based on bootstraped sampling,
returns decision binary and p-value (see PACE package!) by means the following
steps:

a) Generate N random sample of élk, ...,éNk from ém, ~-~,§an calculated of
9) .
b) Caleulate V;_1(s), Vi() from (10) and 4y, from (13) with each one of the

random sample generated in a).

c) Calculate B (s,t), ..., BN(S, t), accumulate frequency estimated F, lower
F~!(a/2) and upper confidence F'~'(1—a/2) by means of quantiles. Then
calculate R?, ..., R%;.

IPrincipal Analysis by conditional Expectation package in this web page
http://anson.ucdavis.edu/ btliu/PACE/download.html



d) For the hypothesis test, we have
—value = ZI 2 > R?)/ (16)

where I(.) is equal to 1 when the condition within the parenthesis (.) is
true and zero otherwise. We reject the null hypothesis when p — value <
a and R? is according to (16).

Finally, the estimated prediction of a new trajectory V;11(t) given V;(¢) with
FPC scores &, is obtained as

Vi (HVi) = B(Via (8)|Vi) = / Bls, ) iv(s)ds  (17)

or alternatively

Via (81V) = v () + Z Z g™ Yo (18)

k=1m=1

where &, is according to (9).

2.3 Clustering K-means

We can form clusters for the intradaily volatility of the stocks listed in the
IBEX35 index of the Madrid Stock Market, using the regression parameter
function. MacQueen (1967) proposes the K-means as one of the simplest un-
supervised learning algorithms that solve the well known clustering problem.
The main idea is to define G centroids, one for each cluster. These centroids
should be placed in a cunning way since location greatly affects the results. The
algorithm is composed of the following steps:

a) Place G points into the space represented by the objects that are being
clustered. These points represent initial group centroids.

b) Assign each object to the group that has the closest centroid.

¢) When all objects have been assigned, recalculate the positions of the G
centroids.

d) Repeat Steps b) and c¢) until the centroids no longer move. This pro-
duces a separation of the objects into groups from which the metric to be
minimized can be calculated.

Minimizing the objective function, in this case the sum of squared error for the
regression parameter function (SSERP), we have

G ng
min SSERP(G mmZZdlg, (19)

g=11=1



where

J J _
deQ = Z Z |Blg(t]'17tj2) - ﬁg(tjmtjé)lg» (20)

J2=2j1=2

is the squared Euclidean distance, Blg (tj,,tj,) is the estimated regression pa-
rameter function of the I-th stock listed in the IBEX35 index for the cluster g,
where

g
By(tjists,) = nlg > Byt ts,) (21)
1=1
is the average of estimated regression parameter function and ng, is the numbers
of stocks for the g-th cluster.

In the usual application for the algorithm k-means, we must determine the
number of groups GG. This number can not be determined with a criterion of ho-
mogeneity. The way to get very homogeneous groups and minimize the SSERP
is to make as many groups as observations, so you always have SSERP = 0.

Have been proposed various methods to select the number of groups. A
procedure that is used is to do the F-test for variability reduction, for G and
G + 1 groups, and calculating the relative reduction of the variability with
increasing an additional group. The test is:

_ SSERP(G) — SSERP(G + 1)
~ SSERP(G+1)/(n—G-1)

(22)

and compares the decrease of the variability to increasing a group with average
variance. The value obtained is compared to F' with p and p(n — G — 1) degrees
of freedom where p are the total times that have been taken at (s,t). If the p-
value< « then we need to increase a cluster, otherwise we keep the clusters. But
in this rule the data do not have to verify the assumptions required to implement
the distribution F'. A rule suggested by Hartigan(1975) is introducing a group
if this ratio is greater than 10.

3 Empirical application to IBEX35 stocks

In this section, we extract and predict the pattern of intradaily volatilities of
the stocks listed in the IBEX35 index of the Madrid Stock Exchange. Our data,
described in the previous section, has been divided in two subperiods, one for
the extraction of volatilities from July 2nd until October 19th 2007 (80 days)
and the rest from October 22th until November 30th 2007 (30 days) for out-of
sample prediction.

Figure 1 and 2 show the prices evolution and absolute logarithmic returns of
METROVACESA stock, FCC, CINTRA, INDRA and GAS NATURAL. These
graphs are represented from stock listed in the IBEX35 index that are closed to
centroid for each cluster. The evolution of prices for the companies is not the
same. However METROVACESA and GAS NATURAL have a similar behavior
due to lower prices until the mid-term and increase until the end of period.

10
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Figure 3: Eigenfunctions for METROVACESA stock (top left), FCC (top right),
CINTRA (middle left), INDRA (middle right) and GAS NATURAL (bottom center)
from 9:10 to 17:40.
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from 9:10 to 17:40.
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Figure 3 shows the eigefunctions to calculate the functional principal component
scores and volatility intradaily given in (9) and (10), where we select 6, 5, 4,
5 and 7 eigenfunctions. So with this information, we estimate ((s,t) and in
Figure 4 shows the graphic of regression parameter function for these stock
volatility intradaily with significant areas. For METROVACESA, there are few
significant areas to predict the volatility. GAS NATURAL has significant areas
throughout the day to predict the second part of the next day.

Using the coefficient of determination and significant level « = 0.05, we reject
the null hypothesis of R? = 0 for 27 of the 33 stocks listed in the IBEX35 index
of the Madrid Stock Market, where we reject the null hypothesis of no regression
relation. The intradaily volatilities V;_1(t) and V;(¢) are significantly related in
these 27 stock listed. We will use significatively stocks to build clusters. Using
the K-means algorithm and squared Euclidean distance, we have the Table
1, where we don’t reject the null (p-value>0.05) for increase 5 clusters and
it doesn’t need to increase one more cluster (see Table 2), being the number
of clusters 4. The rule of Hartigan is not applicable because the value of F'
doesn’t exceed 10 to reject the null hypothesis and the degrees of freedom of
p =103 x 103 and p(n — G — 1) = 103 x 103 x 22, giving values of F|_g o5 close
to 1.

Table 1: Clusters for many groups

Clusters G | SSERP F p-value
2 945,61 0 0
3 844,38 | 2,8773 0
4 769,42 | 2,2409 0
5 737,77 | 0,94381 | 0,9629

In figure 5, we show the absolute returns functions and predictions of GAS
NATURAL with the purpose of comparing the 30 last days, 9 randomly select.
We can see that the intradaily volatility predicted are within the empirical
volatility. We can predict the intradaily volatility from 9:10 to 10:00 and 12:30
to 17:40 using intradaily volatility taken from previous day.

13



Table 2: Clustering for the Stock listed of IBEX 35 index

g-th cluster | N. Stock
Not sig. 01 ANTENA 3 TV.
20 INDITEX
21 MAPFRE
22 METROVACESA
25 R.E.E.
29 SOGECABLE
1 02 ABERTIS
04 ACERINOX
05 ALTADIS
07 BBVA
08 BANKINTER
10 ENDESA
11 ENAGAS
13 FCC
14 FERROVIAL
15 GAMESA
18 IBERIA

23 BA.POPULAR
24 NH. HOTELES
27 BA.SABADELL
32 | AGS. BARCELONA
35 UNION FENOSA

2 09 CINTRA

3 06 ACCIONA
17 IBERDROLA
19 INDRA A
26 REPSOL YPF
28 BSCH
31 TELEFONICA
33 TELECINCO

4 03 ACS

16 GAS NATURAL
30 SACYR VALLE.
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Figure 5: Absolute returns y;(t) (black line) versus predicted volatility V;(t) (red line)
for GAS NATURAL

4 Conclusions

A problem faced when dealing with ultra-high frequency data is that they are
not regularly spaced. In this paper, we have transformed the data into regularly
spaced data. However, FDA can be easily extended to deal with non-equally
spaced observations.

A topic or further research is how to extend these methods to analyse the
relationship between volatility, volume and durations which is of central interest
for market microstructure; see, for example, Engle (2000).

In other extensions, we can use the proposed method to extract the volatility
with daily log returns (log{X;(t)/X;—1(t)}) and predict this volatility. We also
consider alternatives models to estimate the regression parameter function to
make prediction.
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