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1 Introduction

In Neuts (1979), the versatile Markovian point process (VMPP) is introduced. This is a rich class of

point processes which contains many familiar arrival processes as very special cases. In each case, arrivals

are allowed to occur in batches where different types of arrivals can have different batch size distribution.

In Lucantoni et al (1990) the terms MAP (Markovian Arrival Process) and BMAP (Batch Markovian

Arrival process) are introduced to describe the VMPP by simpler notation. Later, it was realized that the

VMPP and BMAP are equivalent process (Lucantoni 1990, and Lucantoni 1991). The BMAP includes as

special cases both phase type renewal processes (which include the Erlang and hyperexponential renewal

process) and non-renewal processes such as the Markov modulated Poisson process (MMPP) and many

other processes in the applied probability literature. In particular, the MAP is a BMAP with all batch sizes

equal to one. The different processes obtained from the BMAP are reviewed in Neuts (1979).

The BMAP may be defined as a two-dimensional Markov process {J(t), N(t)}, where J(t) is an un-

derlying continuous time Markov process and N(t) is a count process. When J(t) jumps from one state

to another, N(t) may vary or not: at some transitions that we will call effective transitions, an arrival of

batch size k is produced and N(t) increases by k, for some value of k larger than 1. There exist another

transitions, called transient transitions in which although the chain varies, the count process remains the

same. The holding times at every state are exponentially distributed but the time between arrivals are not;

they are sum of r exponentials, where r is the number of transient transitions until the arrival occurs.

The idea of a BMAP is to keep the tractability of the Poisson arrival process but significantly gener-

alizes it in ways to allow the inclusion of dependent interarrival times, non-exponential interarrival-time

distributions, and correlated batch sizes. This makes the BMAP a more effective and powerful traffic model

than the simple or batch Poisson process: it is able to capture dependence and correlation, one of the main

features in Internet-related data. Several works where the BMAP is used in the modeling of teletraffic data

can be found: Heffes (1980), Heffes and Lucantoni (1986), Nielsen (2000), Heyman and Lucantoni (2003),

Klemm et al (2003), and Scott and Smyth (2003). When fitting a BMAP model to real data, only arrival

times and batch sizes of arrivals (arrival times of packets and their lengths, in the teletraffic context), are

observable. All state changes in the underlying Markov chain are not observable and thus, cannot be derived

from measured trace data (Klemm et al, 2003).

The BMAP can be understood as a generalization of Hidden Markov process (HMP). The Hidden
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Markov processes are discrete-time bivariate parametric processes, characterized by an underlying finite-state

homogeneous Markov chain (not observable) which determines the values of a second process (observable).

This second process is formed by a sequence of conditionally independent random variables, given the values

of the Markov chain. At any given time, the distribution of each random variable depends on the Markov

chain only through its value at that time. For a detail study of Hidden Markov models we refer the reader

to Ephraim and Merhav (2002). In BMAPs there exists an underlying Markov process controlling both

the time between transitions and the number of arrivals (or batch sizes) at each transition. The observable

sequence would be in this case, a bivariate process: time between transitions and batch sizes.

When dealing with inference for HMPs it is very common to encounter identifiability problems. These

occur when different set of parameters give rise to the same probability distribution. Identifiability conditions

for HMPs are studied in Leroux (1992) and Rydén (1994). The particular case of MMPP was undertaken

by Rydén (1996). The result was that a MMPP is identifiable, up to state permutations, if and only if all

Poisson rates are distinct.

In this work, we study identifiability conditions for the MAP with two and three states, denoted by

MAP2 and MAP3, and delineate conditions for the general MAPm. We define identifiability in terms of

the observable process, which will be called Effective Markovian Arrival process and E-MAP.

The paper is organized as follows. In Section 2 a theoretical background of the Markovian Arrival

process, definitions and key properties are briefly reviewed. In Section 3, the Effective Markovian Arrival

process or E-MAP is defined and some of its properties are illustrated. Section 4 deals with the concept of

identifiability for MAPs, in terms of equivalence between E-MAPs. We define when a MAP is identifiable

and derive some results from the definition. In Section 5 study in depth the case for the MAP2 and give

conditions under which the process is identifiable. We also extend the results to the MAP3. In Section 6

we provide conclusions and delineate some possible directions for future research.

2 The Markovian Arrival process

Let us consider an irreducible continuous Markov chain J(t) with state space S = {1, . . . ,m} and generator

matrix D. The process N(t) represents the cumulate number of arrivals in (0, t]. A MAP process behaves

as follows: the initial state i0 ∈ S is given by an initial probability vector α and at the end of a sojourn time

in a transient state i, exponentially distributed with parameter λi > 0, there are two possible cases for state
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transitions. With probability pij1 the MAP enters state j ∈ S and a single arrival occurs. The selection of

state j, which may be the same j = i, is uniquely determined by pij1. On the other hand, with probability

pij0 the MAP enters state j without arrivals, this time j 6= i. If we define the matrices P0, and P1 as those

containing elements pij0 (pii0 = 0) and pij1, respectively, then the MAP process is characterized by the set

{α,λ, P0, P1}, where λ = (λ1, . . . , λm) and P = P0 + P1 is the stochastic matrix that determines the state

changes either an arrival has been occurred or has not. We therefore have, for 1 ≤ i ≤ m,

m∑

j=1,j 6=i

pij0 +

m∑

j=1

pij1 = 1. (2.1)

It may be convenient to represent the evolution of the system in terms of a sequence of matrices {D0,D1},

by letting (D0)ii = −λi, (D0)ij = λipij0, 1 ≤ i, j ≤ m, j 6= i and (D1)i,j = λipij1, 1 ≤ i, j ≤ m. This

definition implies that D0+D1 = D is the infinitesimal generator of the underlying Markov chain. Intuitively,

we think of D0 as governing transitions that do not generate arrivals, and D1 as the rate of single arrivals.

The matrix D0 has strictly negative diagonal elements, nonnegative offdiagonal elements, row sums less

that or equal to zero and it is assumed to be nonsingular. In other words, D0 is a stable matrix (all of its

eigenvalues have negative real parts). This implies that the interarrival times are finite with probability one

(see Lemma 2.2.1 of Neuts, 1981) and that the arrival process does not terminate.

Let π be the stationary probability vector of the Markov process with generator D, i.e, π satisfies

πD = 0, |π| = 1, (2.2)

where |x| denotes the sum of values of vector x. Thus, the component πj for j = 1, . . . ,m, represents the

stationary probability that the arrival process is in state j. The stationary arrival rate of the process is

defined as

λ⋆ = πD1e,

where e is a column vector of 1’s. The reciprocal 1/λ⋆ is the mean interarrival time in the stationary MAP.

Let T1 denote the time to the first arrival in a MAP with parameter matrices {α,D0,D1}. Then the

probability distribution of T1 is given by

FT1(t) = α(I − eD0t)(−D0)
−1D1e, for t ≥ 0, (2.3)

or

FT1(t) = α(I − eD0t)(−D0)
−1L, for t ≥ 0, (2.4)
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where

L =




λ1

(
1 −

∑
j 6=1 p1j0

)

λ2

(
1 −

∑
j 6=2 p2j0

)

...

λm

(
1 −

∑
j 6=m pmj0

)




.

By taking α = π, F (·) becomes the distribution function for the stationary version. If instead, α =

(πD1e)−1πD1, F (·) becomes the distribution function of the time between two successive arrivals in the

stationary version, denoted by T .

3 The Effective MAP process or E-MAP

In practice, the MAP can be used to fit data where only arrivals times are observed. Thus, the state

changes and holding exponentially times are not observable. This fact leads us to define a new process, the

observable process in a MAP, which we will call Effective Markovian Arrival Process or E-MAP.

The E-MAP process behaves at the following way: at the end of a sojourn time in a transient state i,

(which is distributed as a sum of exponential distributions, the first one with rate λi) there are m possible

cases for state transitions: with probability p⋆
ij, for j = 1, . . . ,m, an arrival occurs and the process is

instantaneously restarted in state j. The selection of state j ∈ {1, . . . ,m} is uniquely determined by p⋆
ij.

The probabilities p⋆
ij depend on the MAPs probabilities pij0, pij1 in the sense

p⋆
ij =

︷︸︸︷
pij1 +

︷ ︸︸ ︷
m∑

j1 6=i

pij10pj1j1 +

︷ ︸︸ ︷
m∑

j1 6=i

m∑

j2 6=j1

pij10pj1j20pj2j1 + . . . =

∞∑

r=0

m∑

j1 6=i

m∑

j2 6=j1

. . .
m∑

jr 6=jr−1

pij10pj1j20 . . . pjr−1jr0pjrj1 (3.1)

And
m∑

j=1

p⋆
ij1 = 1, for all 1 ≤ i ≤ m.

The existing relationship (3.1) between transition probabilities of MAPs and E-MAPs can be also stated
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in a matricial way,

P ⋆ =

∞∑

r=0

P r
0 P1, (3.2)

where r represents the possible number of transient transitions in the MAP. Thus, P ⋆ represents the tran-

sition probabilities in a E-MAP, where at each transition, an arrival occurs. The stationary distribution

associated to matrix P ⋆ will be denote by φ,

φP ⋆ = φ, |φ| = 1. (3.3)

In a MAP we will assume that an effective arrival is always produced with probability 1. So, given an

initial state i,

lim
r→∞

p
(r)
ij1 = 1, for some j ∈ {1, . . . ,m},

where p
(r)
ij1 is the probability of an effective transition (with a single arrival) from state i to state j, after r

non-effective or transient transitions.

Because of that,

lim
n→∞

p
(n)
ij0 = 0, for all j ∈ {1, . . . ,m}

or

lim
n→∞

Pn
0 = 0, for all j ∈ {1, . . . ,m} ,

which is a necessary and sufficient condition to

∞∑

r=0

P r
0 = (I − P0)

−1 (3.4)

Because of (3.4), (3.2) can be stated as,

P ⋆ = (I − P0)
−1P1. (3.5)

Let us consider a transition in the E-MAP, starting in state i. Let us define, for every i = 1, . . . ,m, the

random variable Hi = holding time in state i. This can be written as a sum of exponential variables,

Hi = E1 + . . . + ENi
, where E1 ∼ Exp(λi), (3.6)

and Ni is the random variable expressing number of non-effective transitions from i to the next arrival.

Moreover,

En|Jn−1 = j ∼ Exp(λj), for n > 1.
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The probability function for Ni is

P(Ni = r) = ξiP
r
0 P1e for n > 0

and

P(Ni = 0) = ξiP1e,

where ξi is a zeros row vector with a single 1 in the ith position and e is a column vector of 1’s. Then, the

expected value for Ni is given by

E(Ni) =

∞∑

n=1

nξiP
n
0 P1e = ξiP0

(
∞∑

n=1

nPn−1
0

)
P1e = ξiP0

[
(I − P0)

2
]−1

P1e.

We found that variable Hi can be expressed in terms of the rest of (Hj)j 6=i. This yields to the definition

of Hi as a mixture:

Hi =





Ei

∑m
j=1 pij1

Ei + H1 pi10

...

Ei + Hi−1 pi,i−1,0

Ei + Hi+1 pi,i+1,0

...

Ei + Hm pim0

(3.7)

Let us denote by ϕHi
(s) the moment generating function of Hi, for i = 1, . . . ,m. Then from (3.7),

ϕHi
(s) =

m∑

j=1

pij1ϕEi
(s) +

m∑

j=1,j 6=i

pij0ϕEi
(s)ϕHj

(s) (3.8)

In order to express (3.8) in a matricial way, let the column vector E be defined as

E = (E1, . . . , Em)′,

such that every Ej ∼ Exp(λj).

Let H be defined as

H = (H1, . . . ,Hm)′,

thus the matricial expression of (3.8) is
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ϕH(s) = [I − ∆ε(s)P0]
−1 ∆ε(s)SP1

where

ϕH(s) =




ϕH1(s)
...

ϕHm
(s)


 , ∆ε(s) =




ϕε1(s) 0 0 · · ·

0 ϕε2(s) 0 0

. . .
. . .

. . .
. . .

0 0 0 ϕεm
(s)




,

and

SP1 =




∑m
j=1 p1j1

...
∑m

j=1 pmj1


 =




1 −
∑

j 6=i p1j0

...

1 −
∑

j 6=i pmj0


 .

We would like to point out that given a MAP defined by {α,λ, P0, P1}, then there exist a single E-MAP

associated to it, say {α,λ, P ⋆}, where P ⋆ = (I − P0)
−1P1. However, given a E-MAP {α,λ, P ⋆}, there are

multiple MAPs which have this E-MAP associated to them: it is possible to find many combinations of

matrices {P0, P1} such that P ⋆ = (I − P0)
−1P1.

4 Identifiability of MAP

Given a set of parameters {α,λ, P0, P1} characterizing a MAP process, we assume that only observe an

effective MAP process, that is, times at which effective arrivals occur. If inference is done given the real

data, one would try to recover the original MAP parameters. But, sometimes different estimates from the

original can be obtained, say {α̃, λ̃, P̃0, P̃1}. Our purpose is to know if both give rise to the same probability

distribution in the MAP. Let us define the random variable

Tn= holding time in the (n − 1)th transition in a E-MAP.

Equivalently, the variable Tn also represents the time between the (n − 1)th and nth arrival in a MAP.

Definition 4.1. Two E-MAPs {α,λ, P ⋆} and {α, λ̃, P̃ ⋆} are equivalent if

Tn
d
= T̃n, ∀n ≥ 1, (4.1)

where
d
= mean equality in distribution.
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Definition 4.2. Two MAPs {α,λ, P0, P1} and {α̃, λ̃, P̃0, P̃1} are equivalent if and only if the corresponding

E-MAP processes {α,λ, P ⋆} and {α̃, λ̃, P̃ ⋆} are equivalent.

Definition 4.3. We will say that a MAP {α,λ, P0, P1} with corresponding E-MAP process {α,λ, P ⋆} is

identifiable if there does not exist a different E-MAP {α̃, λ̃, P̃ ⋆} equivalent to {α,λ, P ⋆}.

Next we study conditions under which (4.1) holds. First, let us compute the moment generating function

of T1,

ϕT1(s) =
m∑

i=1

αiϕHi
(s)

m∑

j=1

p⋆
ij

=

m∑

i=1

αiϕHi
(s)

= αϕH(s)

As a result, condition (4.1) with n = 1 is, MAP processes to be equivalent is:

αϕH(s)=α̃ϕeH
(s), ∀s.

In general, for any n, the moment generating function of Tn+1 is

ϕTn+1(s) =
m∑

i=1

α
(n)
i ϕHi

(s)
m∑

j=1

p⋆
ij

= α(n)ϕH(s),

where

α(n) = (α
(n)
1 , . . . , α(m)

m ) = α(P ⋆)(n), (4.2)

represents the initial probability vector after n transitions.

In order to prove that two MAPs are equivalent it is necessary to verify ’infinite’ equalities:

αϕH(s) = α̃ϕeH
(s), ∀s (4.3)

αP ⋆ϕH(s) = α̃P̃ ⋆ϕeH
(s), ∀s (4.4)

α(P ⋆)2ϕH(s) = α̃(P̃ ⋆)2ϕeH
(s), ∀s

... (4.5)

α(P ⋆)nϕH(s) = α̃(P̃ ⋆)nϕeH
(s), ∀s

...

In next section we will derive necessary and sufficient conditions under which (4.3), (4.4), etc, hold.
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4.1 Necessary and Sufficient conditions for identifiability

In this section we give equivalent conditions to

α(P ⋆)nϕH(s)=α̃(P̃ ⋆)nϕeH
(s), ∀s, ∀n ≥ 0, (4.6)

Let us define the matrix Φ = (φ; . . . ;φ) that is, where each row is the stationary distribution φ defined

in (3.3).

Result 1: If α = φ, α̃ = φ̃ and αϕH(s)=α̃ϕeH
,∀s, then the identifiability condition (4.6) holds.

Proof:

Condition (4.6) when n = 0 holds by assumption. When, n ≥ 1, (4.6) also is verified because φ = φ(P ⋆)n,

and φ̃ = φ̃P̃ ⋆, for all n �.

Result 2: If two MAPs are equivalent, then

φϕH(s)=φ̃ϕeH
(s), ∀s.

Proof:

We assume α(P ⋆)nϕH(s)=α̃(P̃ ⋆)nϕeH
, ∀s,and ∀n ≥ 0. Then, limn→∞(P ⋆)n = (P ⋆)∞ = Φ. In the limit,

α(P ⋆)∞ϕH(s)=α̃(P̃ ⋆)∞ϕeH
(s)

or

φϕH(s)=φ̃ϕeH
(s). �

Result 3: If α̃ = φ̃ and condition (4.6) holds, then α = φ.

Proof:

From (4.6) when n = 0, αϕH(s)=φ̃ϕH(s), ∀s. From (4.6) when n → ∞, φϕH(s)=φ̃ϕH(s), ∀s. Thus,

αϕH(s)=φϕH(s).
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Equivalently,

α1ϕH1(s) + . . . αmϕHm
(s)=φ1ϕH1(s) + . . . + φmϕHm

(s),

equivalent to

(α1 − φ1)ϕH1(s) + . . . + (αm − φm)ϕHm
(s) = 0,

for all s. This implies that α = φ. �

Result 4: If two MAPs are equivalent, then

α (I − Φ) (I − P ⋆)−1 ϕH(s)=α̃
(
I − Φ̃

)(
I − P̃ ⋆

)−1
ϕeH

(s), ∀s.

Proof:

Summing up all equivalence conditions (4.6) for all n ≥ 0,

α[I + P ⋆ + . . . + (P ⋆)n + . . . + Φ]ϕH(s)=α̃[I + P̃ ⋆ + . . . + (P̃ ⋆)n + . . . + Φ̃]ϕeH
(s), ∀s.

But

I + P ⋆ + . . . + (P ⋆)n + . . . = (I − Φ) (I − P ⋆)−1 ,

which proves the result. �

Result 5: If conditions (4.3) and (4.4) hold, and P ⋆ = (P ⋆)2 and P̃ ⋆ = (P̃ ⋆)2, then condition (4.6) holds.

Proof:

Condition (4.6) will also hold for n ≥ 2 because if P ⋆ = (P ⋆)2, then P ⋆ = (P ⋆)n, ∀n ≥ 2. �

Result 6: If conditions (4.3) and (4.4) hold, and αP ⋆(P ⋆ − I) = α̃P̃ ⋆(P̃ ⋆ − I) = 0, then the two MAPs

are equivalent.

Proof: The proof is straightforward using that if αP ⋆ = α(P ⋆)2, then αP ⋆ = α(P ⋆)n, ∀n ≥ 2. �

5 Identifiability for the two-states MAP or MAP2

In this section we consider the MAP with two states, which will be denoted MAP2 and study identifiability

conditions for equivalence between two MAP2s. The process will be determined by the initial probability
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vector, α = (α, 1 − α), the exponential holding times rates λ = (λ1, λ2), and matrices P0 and P1 given by

P0 =


 0 p120

p210 0


 P1 =


 p111 p121

p211 p221


 ,

where pij0 and pij1 denote the probability of visiting j from i without arrivals and with a single arrival,

respectively.

The corresponding E-MAP2 process will be determined by {α,λ, P ⋆}, where in this case,

P ⋆ =


 p⋆

11 p⋆
12

p⋆
21 p⋆

22




and thus, the stationary probability vector is given by

φ =
p⋆
21

1 − p⋆
11 + p⋆

21

. (5.1)

The existing relationship between the stationary probability φ, and π, the stationary probability in a

MAP defined in (2.2) is shown in next result. This implies Corolary (5.2), which will be used to illustrate

graphical examples in the following sections.

Proposition 5.1. Let φ be the stationary probability associated to the transition matrix P ⋆ in a E-MAP2

and let π be the stationary probability defined in (2.2) in a MAP2. Then,

φ = (πD1e)−1πD1.

Proof: Because P ⋆ = (I − P0)
−1P1, the stationary probability φ = (φ, 1 − φ), can be also expressed as

φ =
p211 + p111p210

(1 − p120p210) − p111 − p211p120 + p211 + p111p210
.

In addition, π = (π, 1 − π) verifies,

π =
λ2(p211 + p210)

λ2(p211 + p210) + λ1(1 − p111)
.

From (2.1), and expressing D1 in terms of P1, it is easy to calculate (πD1e)−1πD1 and see that this is

effectively, equal to φ. �

Corollary 5.2. Given a MAP2 characterized by {α,λ, P0, P1} where α = φ, then the distribution function

of T1, time to the first arrival, coincides with the distribution function of T , time between two arrivals in

the stationary version.
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Proof: Because of the definition (2.3) and if α = (πD1e)−1πD1, F (·) becomes the distribution function

of the time between two successive arrivals in the stationary version, denoted by T . �

Next results, concerning the stationary probability φ, will also be used later.

Lemma 5.3. Let x = (x1, x2) denote a probability vector, x 6= φ. Then, xP ⋆ = φ if and only if P ⋆ = Φ,

the matrix with every row is equal to φ.

Proof:

Let us first assume that P ⋆ = Φ,

P ⋆ =


 φ1 φ2

φ1 φ2


 .

Then, since |x| = 1, xP ⋆ = φ, ∀x.

Let us suppose that x 6= φ, verifies xP ⋆ = φ. Then,

x1p
⋆
11 + (1 − x1)p

⋆
21 = φ,

φp⋆
11 + (1 − φ)p⋆

21 = φ

where the second equation comes from the fact that φ is the stationary probability associated to P ⋆. The

system can be solved to find

p⋆
11 = p⋆

21 = φ. �

Lemma 5.4. Let P ⋆ be the transition probability matrix with vector of stationary probabilities φ. If all the

rows of P ⋆ are equal, then P ⋆ = Φ.

Proof:

The proof is straightforward once the equation φP ⋆ = φ is solved, where

P ⋆ =


 p⋆

11 1 − p⋆
11

p⋆
11 1 − p⋆

11


 . �

The elements of (P ⋆)n, which appear in (4.6), will be noted by p⋆(n)

ij , and thus

α(n) = α(p⋆(n)

11 − p⋆(n)

21 ) + p⋆(n)

21 ,
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where

α(P ⋆)n ≡ (α(n), 1 − α(n)).

5.1 First condition for equivalence

In Section 4 we defined when two MAP2 are equivalent, in terms of the distribution of Tn and T̃n, the

interarrival times of the associated E-MAP2s processes. In this section we study conditions under which

T1
d
= T̃1, for a given set of parameters {x,λ, P0, P1} determining the distribution of T1. In other words, we

find values {x̃, λ̃, P̃0, P̃1} such that

xϕH(s)=x̃ϕeH
(s), ∀s (5.2)

for fixed values {x,λ, P0, P1}. In the case of two-states, condition (5.2) can be alternatively expressed as

x1ϕH1(s) + x2ϕH2(s)=x̃1ϕ eH1
(s) + x̃2ϕ eH2

(s), ∀s (5.3)

where x = (x1, 1 − x1) and from (3.8),

ϕH1(s) = (1 − p120)ϕE1(s) + p120ϕE1(s)ϕH2(s), (5.4)

ϕH2(s) = (1 − p210)ϕE2(s) + p210ϕE2(s)ϕH1(s),

where it is known that for the exponential distribution ϕEi
(s) = λi/(λi − s). It can be easily seen that the

solution to (5.4) is

ϕH1(s)=(1 − p120)ϕE1(s) + p120ϕE1(s)ϕH2(s),

where

ϕH2(s)=
(1 − p210)ϕE2(s) + (1 − p120)p210ϕE1(s)ϕE2(s)

1 − p120p210ϕE1(s)ϕE2(s)
.

An easy computation shows

xϕH(s) = x1(1 − p120)ϕE1(s) +
(1 − p210)ϕE2(s) + (1 − p120)p210ϕE1(s)ϕE2(s)

1 − p120p210ϕE1(s)ϕE2(s)
[x1p120ϕE1(s) + (1 − x1)]

=
x1(1 − p120)ϕE1(s) + (1 − x1)(1 − p210)ϕE2(s) + [x1(p120 − p210) + p210(1 − p120)] ϕE1(s)ϕE2(s)

1 − p120p210ϕE1(s)ϕE2(s)

=
[x1λ1(p120 − 1) + λ2(x1 + p210 − 1 − x1p210)]s + λ1λ2(1 − p120p210)

(λ1 − s)(λ2 − s) − p120p210λ1λ2
.

Thus, xϕH(s) can be expressed as

xϕH(s) =
a1s + d0

s2 + d1s + d0
,
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where

a1 = x1λ1(p120 − 1) + λ2(x1 + p210 − 1 − x1p210),

d1 = −(λ1 + λ2),

d0 = λ1λ2(1 − p120p210).

It can be seen that d1 is a function of λ, d0 depends on λ and P0, and finally a1 depends on all parameters

x, λ and P0. For clarity, we will sometimes express a1 as (a1)x, to indicate which the initial probability is.

Since the elements of P1 are not involved in the parameters a1, d1 and d0, then solving (5.2) will imply

just finding the values of {x̃, λ̃, P̃0}, assuming {x,λ, P0} are fixed.

Next, we show some results concerning the form of function xϕH(s).

Lemma 5.5. The values a1, d1 and d0 verify the constraints,

d1 < 0, 0 ≤ d0 ≤ λ1λ2, a1 ≤ 0.

Proof:

The first and second constraints are straightforward given the definitions of d1 and d0. To prove the last

one, a1 ≤ 0, we express a1 as

a1 = x1[λ1(p120 − 1)] + (1 − x1)[λ2(p210 − 1)]. (5.5)

Since x1, p120, and p210 are probabilities and λ1, λ2 > 0, both terms are negative, so the sum is. �

Proposition 5.6. An arrival in a MAP2 is produced with probability 1 if and only if a1 < 0.

Proof:

By Lemma (5.5) a1 ≤ 0. Let us study the case a1 = 0, or from (5.5),

x1λ1(p120 − 1) = −(1 − x1)λ2(p210 − 1).

As the first expression is negative, and the second is positive, this is equivalent to

x1λ1(p120 − 1) = (1 − x1)λ2(p210 − 1) = 0,
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if and only if

x1 = 0 and p210 = 1, or

p120 = 1 and p120 = 1, or

p120 = 1 and x1 = 1.

In all cases, either p120 = 1 or p210 = 1. If p120 = 1, then p111 = p121 = 0 (similarly, if p210 = 1) and thus if

the initial state is i = 1, limr→∞ p
(r)
ij 6= 1 which is in contradiction with the fact that an effective arrival is

always produced with probability 1. �

From now on, we will assume that a1 is a strictly negative value.

Proposition 5.7. The variable T1, time to the first arrival in a MAP2, or time until the first transition

in a E-MAP2, can be expressed as a mixture of two exponential variables with rates given by the roots of

s2 + d1s + d0.

Proof:

The moment generating function of T1, time to the first arrival can be expressed as,

ϕT1(s) ≡ xϕH(s) =
a1s + d0

s2 + d1s + d0

=
d0 + a1r1

r1(r2 − r1)

r1

r1 − s
+

d0 + a1r2

r2(r1 − r2)

r2

r2 − s

= p1
r1

r1 − s
+ p2

r2

r2 − s
,

where r1, r2 are the roots of s2 + d1s + d0 and it can be easily shown that p1 + p2 = 1. It follows that, T1 is

a mixture of exponentials with rates r1, r2,

T1 =





E(r1), p1 = d0+a1r1
r1(r2−r1)

E(r2), p2 = d0+a1r2
r2(r1−r2)

�

We would like to point out that there exist cases, where p1 < 0 or p2 < 0, for instance if λ = [20, 100],

p120 = 0.9, p210 = 0.1, and x1 = 0.99, then p120 = −0.177.
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Let us continue deriving conditions under which (5.2) holds,

xϕH(s) = x̃ϕeH
(s), ∀s if and only if,

a1s + d0

s2 + d1s + d0
=

ã1s + d̃0

s2 + d̃1s + d̃0

, ∀s if and only if,

a1s
3 + (d0 + a1d̃1)s

2 + (a1d̃0 + d0d̃1)s + d0d̃0 = ã1s
3 + (d̃0 + ã1d1)s

2 + (ã1d0 + d̃0d1)s + d̃0d0, ∀s.

Therefore, condition (5.2) holds if and only if

a1 = ã1 (5.6)

d0 + a1d̃1 = d̃0 + ã1d1 (5.7)

a1d̃0 + d0d̃1 = ã1d0 + d̃0d1. (5.8)

Equation (5.6) can be expressed as the equation of a line, in terms of the initial probability vectors, x

and x̃:

β1x1 + β̃1x̃1 + β = 0, (5.9)

where,

β1 = λ1(p120 − 1) + λ2(1 − p210), (5.10)

β̃1 = λ̃1(1 − p̃120) + λ̃2(p̃210 − 1),

β = λ2(p210 − 1) − λ̃2(p̃210 − 1).

The system (5.6)-(5.8) is a three-equations linear system with unknowns, ã1, d̃0, d̃1, where the augmented

matrix is

C2 =




1 0 0 | a1

d1 1 −a1 | d0

d0 d1 − a1 −d0 | 0


 .

The first equation is isolated, and thus ã1 = a1. For the last two rows, we use the Gaussian elimination

method:

 1 −a1 | d0 − d1a1

d1 − a1 −d0 | −d0a1


 ∼


 1 −a1 | d0 − d1a1

0 −d0 + a1(d1 − a1) | d1[−d0 + a1(d1 − a1)]


 .
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If

−d0 + a1(d1 − a1) 6= 0 (5.11)

the solutions is unique:

ã1 = a1 (5.12)

d̃0 = d0 (5.13)

d̃1 = d1. (5.14)

However, if −d0 + a1(d1 − a1) = 0, there are infinite solutions:

ã1 = a1 (5.15)

d̃0 = a1d̃1 + d0 − ã1d1, d̃1 ∈ R
− (5.16)

Next results establishes the relationship between the uniqueness of solution in the system (5.6)-(5.8) and

the roots of polynomials P (s) and Q(s), where xϕH(s) = P (s)/Q(s).

Proposition 5.8. The system of equations (5.6)-(5.8) has got infinite solutions if and only if the polynomials

P (s) = a1s + d0 and Q(s) = s2 + d1s + d0 share the root r = −d0/a1.

Proof:

Let us first prove the right to left implication. Let us suppose that r is a root of Q(s). Then Q(s) =

(s − r)(s − r2), where (because of the relation between the roots of a second-order polynomial and its

coefficients)

d1 = −(r + r2),

d0 = rr2

This implies, given the known value of r that r2 = −a1 which implies d1 = −(r + r2) = a1 + d0/a1 and thus,

d1 =
a2

1 + d0

a1
if and only if

−d0 + a1(d1 − a1) = 0,

the condition under which the system (5.6)-(5.8) has got infinite solutions.
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Let us now prove the left to right implication. Assume both P (s) and Q(s) do not share any root. Then,

Q(s) = (s− r1)(s− r2), where r1 6= r and r2 6= r. This implies that a1 6= −r1 and a1 6= −r2. To see this, let

us consider the situation where a1 = −r1. Then, r = d0/r1, or equivalently, d0 = rr1. But since, d0 = r1r2,

we would obtain r = r2 which yields a contradiction with the initial assumption r 6= r2. To see a1 6= −r2 we

would proceed similarly. As a1 6= −r1 and a1 6= −r2, then, (a1+r1)(a1+r2) 6= 0 or a2
1+(r1+r2)a1+r1r2 6= 0,

which is equivalent to expression (5.11), which implies a unique solution for (5.6)-(5.8). �

Corollary 5.9. If P (s) and Q(s) share the root r = −d0/a1, then the other root of Q(s) is r2 = −a1, and

thus,

Q(s) = (s + d0/a1)(s + a1).

Proof:

The condition so that the rank is 2 is

a2
1 − d1a1 + d0 = 0,

equivalent to

−Q(−a1) = 0. �

5.1.1 Examples

Next, we present numerical examples of MAP2s verifying (5.2).

1. Consider a MAP2 with parameters {x1, λ1, λ2, p120, p210} = {0.504, 0.5, 20, 0.3, 0.3}. In this case,

a1 = −7.1204, d1 = −20.5 and d0 = 9.1 Polynomials P (s) and Q(s) do not share any root, and thus,

system (5.6)-(5.8) has got a single solution ã1 = a1, d̃1 = d1, d̃0 = d0. Next MAP2s are examples such

that (5.2) holds:

(a) {x̃1, λ̃1, λ̃2, p̃120, p̃210} = {0.366, 0.5, 20, 0.2, 0.45}.

(b) {x̃1, λ̃1, λ̃2, p̃120, p̃210} = {0.0884, 1, 19.5, 0.888, 0.6}.

(c) {x̃1, λ̃1, λ̃2, p̃120, p̃210} = {0.0029, 1.2, 19.3, 0.9636, 0.63}.

(d) {x̃1, λ̃1, λ̃2, p̃120, p̃210} = {0.201, .8, 19.7, 0.7683, 0.55}.
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Figure 1: CDF of T1 in the examples 1 and 2.

Notice that although the solution is unique in terms of ã1, d̃1, d̃0, there exist more than one MAP (only

three equations for five unknowns forming a non-linear system equation) verifying the first condition

of equivalence.

2. Consider a MAP2 with parameters {x1, λ1, λ2, p120, p210} = {0.9924, 0.5, 20, 0.3, 0.3}. In this case,

a1 = −0.454, d1 = −20.5 and d0 = 9.1. Polynomials P (s) and Q(s) share the root r = 20.04, and

thus, system (5.6)-(5.8) has got infinite solutions ã1, d̃1, d̃0. Next MAP2s are examples such that (5.2)

holds:

(a) {x̃1, λ̃1, λ̃2, p̃120, p̃210} = {0.9945, 0.5, 12, 0.1266, 0.7}.

(b) {x̃1, λ̃1, λ̃2, p̃120, p̃210} = {0.963, 0.5, 12, 0.8861, 0.1}.

(c) {x̃1, λ̃1, λ̃2, p̃120, p̃210} = {0.6644, 5, 10, 0.9644, 0.9}.

(d) {x̃1, λ̃1, λ̃2, p̃120, p̃210} = {0.905, 1, 8, 0.7924, 0.65}.

(e) {x̃1, λ̃1, λ̃2, p̃120, p̃210} = {0.5702, 30, 40, 0.9936, 0.98}.

It can be easily seen that each pair of values, characterizing the random variable, T1, time to the first arrival,

give rise to the same distribution function, FT1(t) defined in (2.3). Figure 1 depicts the distribution function

of T1 for the previous examples. ♦
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5.2 Stationary case

We have shown in Result 2 that

φϕH(s)=φ̃ϕeH
(s), ∀s (5.17)

is a necessary condition for equivalence of two given MAPs, where φ and φ̃ are the stationary distributions

associated to matrices P ⋆ and P̃ ⋆, respectively. According to the definition of P ⋆, P ⋆ = (I − P0)
−1P1, the

value of φ will be determined by P0 and P1. On the other hand, we have seen that ϕH(s) just depends on

λ and P0 (respectively, φ̃ and ϕeH
(s)).

In the future sections we will consider next problem:

Given two MAP2s characterized by values {λ, P0, P1} and {λ̃, P̃0, P̃1}, such that the stationary

equivalence condition (5.17) holds, find initial probabilities α and α̃, so that the MAP2s are

equivalent, according to (4.6):

α(P ⋆)nϕH(s)=α̃(P̃ ⋆)nϕeH
(s), ∀s, ∀n ≥ 0

Since we assume (5.17) holds, then {φ̃, λ̃, P̃0} is a solution of the equations system (5.6)-(5.8), given the

values {φ,λ, P0}. Thus, one of next two events happens:

(a) The values {φ,λ, P0} make the system (5.6)-(5.8) to have only one solution (if and only if the numerator

and denominator of φϕH(s) do not share any root).

(b) The values {φ,λ, P0} make the system (5.6)-(5.8) to have infinite solutions (or the numerator and

denominator of φϕH(s) share the root).

However, in both cases, the equation (a1)φ = (ã1)eφ
must hold. From (5.9), this is equivalent to

β1φ + β̃1φ̃ + β = 0,

where β1, β̃1, β were defined in (5.10).

In next section we will solve the previously stated problem, in terms of the division (a) and (b). Our

results will also depend on the facts that P ⋆ = Φ and P̃ ⋆ = Φ̃ or not, and if β1 = 0 or β̃1 = 0 or not.
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5.3 Main results

In this section we show identifiability results for the MAP2. Given two MAP2s characterized by different

sets of parameters, we find initial probabilities, such that if the stationary equivalence condition (5.17) holds,

then they are equivalent according to our equivalence definition, from Section 3.

Our proofs will be based mainly on the fact that xϕH(s) = x̃ϕeH
(s), for all s, is equivalent to solve the

system of linear equations (5.6)-(5.8), where (a1)x = (ã1)ex (a line equation) needs to be solved whatever the

system has a single or infinite equations.

According to our empirical experience, in most MAP2s it is found that β1 6= 0, the system (5.6)-(5.8)

has got a unique result (because usually −d0 + a1(d1 − a1) 6= 0) and P ⋆ is different from Φ. This leads us

to state the first result, a Theorem that provides a general criterion, in terms of initial probabilities, under

which two MAP2s are equivalent. The following Lemmas and Propositions are valid only for special forms

of β1 and P ⋆.

For every obtained result, we present an illustrative example.

Theorem 5.10 (General Result for m = 2.). Let {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} define two MAP2s, with

corresponding E-MAP2s {α,λ, P ⋆} and {α̃, λ̃, P̃ ⋆}, where φ and φ̃ are the stationary probabilities associated

to P ⋆ and P̃ ⋆. Assume,

(i) β1 6= 0, and β̃1 6= 0,

(ii) P ⋆ 6= Φ or P̃ ⋆ 6= Φ̃.

Then, the MAP2s {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} are equivalent if and only if

1. φϕH(s)=φ̃ϕeH
(s), ∀s and

2. (α, α̃) = (φ, φ̃).

Proof:

1. 1 and 2→ Equivalence.

Let us first assume that both 1 and 2 hold. We want to prove equivalence given by (4.6). As
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(α, α̃) = (φ, φ̃) and given that φϕH(s)=φ̃ϕeH
(s), ∀s, then all equivalence conditions (4.6) hold because

αP ⋆ = φP ⋆ = φ and α̃P̃ ⋆ = φ̃P̃ ⋆ = φ̃.

2. Equivalence → 1 and 2 .

Given equivalence of two given MAP2s, Result 2 implies 1. Let us deduce 2 from equivalence; as

φϕH(s)=φ̃ϕeH
(s), ∀s, then the pair (φ, φ̃) verifies equation (5.9) (or (a1)φ = (ã1)eφ

),

β1φ + β̃1φ̃ + β = 0.

Because of equivalence, αϕH(s)=α̃ϕeH
(s), ∀s, and thus the pair (α, α̃) also satisfies (5.9),

β1α + β̃1α̃ + β = 0.

Both equations imply,

β1φ + β̃1φ̃ = β1α + β̃1α̃,

or equivalently, using (5.1),

β1
p⋆
21

1 − p⋆
11 + p⋆

21

+ β̃1
p̃⋆
21

1 − p̃⋆
11 + p̃⋆

21

= β1α + β̃1α̃. (5.18)

Because of equivalence, condition (4.6) holds for all n ≥ 0. Taking n = 1 yields to

β1
p⋆
21

1 − p⋆
11 + p⋆

21

+ β̃1
p̃⋆
21

1 − p̃⋆
11 + p̃⋆

21

= β1α
(1) + β̃1α̃

(1), (5.19)

where we know that

α(1) = α(p⋆
11 − p⋆

21) + p⋆
21, α̃(1) = α̃(p̃⋆

11 − p̃⋆
21) + p̃⋆

21,

and thus we need to solve for (α, α̃) in the next systems of linear equations

β1α + β̃1α̃ = β1
p⋆
21

1 − p⋆
11 + p⋆

21

+ β̃1
p̃⋆
21

1 − p̃⋆
11 + p̃⋆

21

(5.20)

β1(p
⋆
11 − p⋆

21)α + β̃1(p̃
⋆
11 − p̃⋆

21)α̃ = β1

(
p⋆
21

1 − p⋆
11 + p⋆

21

− p⋆
21

)
+ β̃1

(
p̃⋆
21

1 − p̃⋆
11 + p̃⋆

21

− p̃⋆
21

)
,

whose coefficient matrix is

D2 =


 β1 β̃1

β1(p
⋆
11 − p⋆

21) β̃1(p̃
⋆
11 − p̃⋆

21)


 .

It can be easily seen that α = φ and α̃ = φ̃ solves the system. We need to determine the uniqueness

of this solution. But this comes from the fact that β1, β̃1 6= 0 and Lemma (5.4): as P ⋆ 6= Φ or P̃ ⋆ 6= Φ̃,

then p⋆
11 − p⋆

21 6= 0 or p̃⋆
11 − p̃⋆

21 6= 0. In consequence the rank of C2 is 2.�
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The theorem shows that under general conditions, two MAP2s equivalent in the limit, will be equivalent, if

and only if the initial probabilities are, in fact, the stationary ones.

Example 5.1.

Consider the MAP2 defined by

{λ1, λ2, p120, p210, p111, p121, p211, p221} = {0.5, 20, 0.3, 0.3, 0.6148, 0.0852, 0.0886, 0.6114}

and initial probability α=φ = 0.504. In this case,

P ⋆ =


 0.7048 0.2952

0.3 0.7


 6= Φ.

Consider another MAP2 with parameters

{λ̃1, λ̃2, p̃120, p̃210, p̃111, p̃121, p̃211, p̃221} = {0.8, 19.7, 0.7683, 0.55, 0.0513, 0.1804, 0.0873, 0.3627}

and initial probability α=φ = 0.201. In this case,

P̃ ⋆ =


 0.21 0.79

0.2 0.8


 6= Φ̃.

It can be seen that β1 = 13.65 6= 0 and β̃1 = −8.6796 6= 0 and φϕH(s) = φ̃ϕ eH
(s), for all s, that is φ̃,

λ̃ and P̃0 solves the system (5.6)-(5.8) given the values of φ, λ and P0. We are thus in the assumptions of

Theorem (5.10). This assures us the processes are equivalent, as Figure 2, which depicts the CDF of the

time between two arrivals in the stationary version for both MAP2s, shows. ♦

Next proposition is similar to Theorem (5.10), but for the case where P ⋆ = Φ and P̃ ⋆ = Φ̃. In addition,

it assumes that {φ,λ, P0} determines a single-solution-system (5.6)-(5.8).

Proposition 5.11. Let {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} define two MAP2s, with corresponding E-MAP2s {α,λ, P ⋆}

and {α̃, λ̃, P̃ ⋆}, where φ and φ̃ are the stationary probabilities associated to P ⋆ and P̃ ⋆. Assume,

(i) the set {φ,λ, P0} makes the system (5.6)-(5.8) to have only one solution,

(ii) β1 6= 0, and β̃1 6= 0,

(iii) P ⋆ = Φ and P̃ ⋆ = Φ̃.
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Figure 2: CDF of T , time until next arrival in the stationary version, in the example 5.1. As α = φ, then

T
d
= T1 (similarly, T̃

d
= T̃1), and thus T

d
= T1

d
= T̃

d
= T̃1.

Then, the MAP2s {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} are equivalent if and only if

1. φϕH(s)=φ̃ϕeH
(s), ∀s and

2. (α, α̃) verifies equation (5.2):

β1α + β̃1α̃ + β = 0.

Proof: We assume the system (5.6)-(5.8) has only one solution when the initial probability is φ. This

implies that the values {φ̃, λ̃, P̃0} solve (a1)φ = (ã1)eφ
, and the values {λ̃, P̃0} solve d1 = d̃1 and d0 = d̃0.

1. 1 and 2→ Equivalence.

Let us first assume that both 1 and 2 hold. We want to prove equivalence given by (4.6).

We use the fact that (5.6)-(5.8) has only one solution when the initial probability is φ. By 1, the

values {λ̃, P̃0} make d1 = d̃1 and d0 = d̃0, which do not depend on initial probabilities. So, if α and

α̃ are such that they satisfy β1α + β̃1α̃ + β = 0 or (equivalently, (a1)α = (ã1)eα), then {α̃, λ̃, P̃0} will

solve the (new) system (5.6)-(5.8) (now depending on α’s and not on φ’s), and thus,

αϕH(s)=α̃ϕeH
(s), ∀s.

From Lemma (5.3), since P ⋆ = Φ and P̃ ⋆ = Φ̃ then, αP ⋆ = φ and α̃P̃ ⋆ = φ̃, and then all equivalence

conditions (4.6) hold from 1.
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2. Equivalence → 1 and 2 .

Given equivalence of two given MAP2s, Result 2 implies 1. Because of equivalence, (a1)α = (ã1)eα,

and thus,

β1α + β̃1α̃ + β = 0. �

Example 5.2.

Consider the MAP2 be defined by

{λ1, λ2, p120, p210, p111, p121, p211, p221} = {0.5, 20, 0.3, 0.3, 0.3528, 0.3472, 0.3528, 0.3472}

and stationarity probability φ = 0.504. In this case,

P ⋆ =


 0.504 0.496

0.504 0.496


 = Φ.

Consider another MAP2 with parameters

{λ̃1, λ̃2, p̃120, p̃210, p̃111, p̃121, p̃211, p̃221} = {0.8, 19.7, 0.7683, 0.55, 0.0466, 0.1851, 0.0905, 0.3595}

and stationarity probability φ = 0.201. Then,

P̃ ⋆ =


 0.201 0.799

0.201 0.799


 = Φ̃.

In this case, β1 = 13.65 6= 0 and β̃1 = −8.6796 6= 0, β = −5.135 and φϕH(s) = φ̃ϕ eH
(s), for all s, that is

φ̃, λ̃ and P̃0 solves the system (5.6)-(5.8) given the values of φ, λ and P0. We are thus, in the assumptions

of Proposition (5.11) which assures that given α and α̃ such that (5.2):

β1α + β̃1α̃ + β = 0,

then, the MAP2s with these initial probabilities are equivalent. Several pairs of values (α, α̃) were found to

verify the former equation, shown in Table 1.

Figure 3 depicts the distribution function of T1, time to the first arrival, when (α, α̃) = (0.4398, 0.1)

(solid line) and (α, α̃) = (0.8849, 0.8) (dotted line). The distribution of T1 is not the same that of T , time

between two consecutive arrivals in the stationary version. That is because, the initial probabilities are
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α 0.4398 0.5034 0.5670 0.6305 0.6941 0.7577 0.8213 0.8849 0.9485

α̃ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table 1: Different initial MAP2 probabilities verifying (5.2)
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Figure 3: CDF of T1 in the example 5.2. The solid line is for (α, α̃) = (0.4398, 0.1) and the dotted line is

for (α, α̃) = (0.8849, 0.8). Here, as α 6= φ, then FT1(t) 6= FT (t) (similarly, FeT1
(t) 6= FeT

(t)) .

different from the stationary ones. However, all the MAP2s with the initial probabilities given by Table 1,

possess the same distribution for T , which was actually the same that was depicted in Figure 2.♦

Next result applies in the case where the system (5.6)-(5.8) has got infinite solutions when the initial

probability is φ. In addition, we also need to impose that the system (5.6)-(5.8) has got infinite solutions

when the initial probability is α. However, it is valid whatever the form of P ⋆ and P̃ ⋆.

We would like to remark that the fact that initial probabilities are involved in equation (5.16) will prevent

α and α̃ from taking values different from the stationary probabilities, as will be seen in the proof.

Proposition 5.12. Let {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} define two MAP2s, with corresponding E-MAP2s {α,λ, P ⋆}

and {α̃, λ̃, P̃ ⋆}, where φ and φ̃ are the stationary probabilities associated to P ⋆ and P̃ ⋆. Assume,

(i) the set {φ,λ, P0} makes the system (5.6)-(5.8) to have infinite solutions,

(ii) the set {α,λ, P0} makes the system (5.6)-(5.8) to have infinite solutions,

(iii) β1 6= 0, and β̃1 6= 0.
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Then, the MAP2s {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} are equivalent if and only if

1. φϕH(s) = φ̃ϕeH
(s), ∀s and

2. (α, α̃) = (φ, φ̃).

Proof:

We assume the system (5.6)-(5.8) has infinite solutions when the initial probability is φ. This implies

{φ̃, λ̃, P̃0} solves (a1)φ = (ã1)eφ
and d̃0 = a1d̃1 + d0 − ã1d1, for d̃1 ∈ R

−.

1. 1 and 2→ Equivalence.

The proof is the same that it was for Theorem (5.10).

2. Equivalence → 1 and 2 .

Given equivalence of two given MAP2s, Result 2 implies 1.

The values {φ,λ, P0} and {φ̃, λ̃, P̃0} verify equations (5.15) and (5.16),

(a1)φ = (ã1)eφ
⇔ β1φ + β̃1φ̃ + β = 0, (5.21)

d̃0 = (a1)φ(d̃1 − d1) + d0. (5.22)

By assumption, the values {α,λ, P0} and {α̃, λ̃, P̃0} also verify equations (5.15) and (5.16), that is,

(a1)α = (ã1)eα, ⇔ β1α + β̃1α̃ + β = 0, (5.23)

d̃0 = (a1)α(d̃1 − d1) + d0, (5.24)

where, d0, d1, d̃0 and d̃0 are the same in both equations (5.22) and (5.24), because they just depend

on λ, λ̃, P0 and P̃0. Since (5.22) and (5.24) are linear in φ (and α), we solve for α in (5.24) and get

α = φ. Then, in (5.23) we solve for α̃ and because of (5.21) we obtain α̃ = φ̃.

�

Example 5.3.

Consider all the MAP2s where

{λ1, λ2, p120, p210} = {0.5, 20, 0.3, 0.3}
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and initial probability equal to the stationary one α=φ = 0.9924. It can be seen that these values makes

the system (5.6)-(5.8) to have infinite solutions.

Consider now all the MAP2s with parameters

{λ̃1, λ̃2, p̃120, p̃210} = {5, 10, 0.9644, 0.9}

and initial probability α̃=φ̃ = 0.201. It can be also seen that these values solve the equations (5.6)-(5.8) given

the previous {λ1, λ2, p120, p210}. Thus, we can apply Proposition (5.12) to deduce that they are equivalent.

Figure 4 shows the distribution function of T , which is the same for both sets of MAP2s. ♦
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Figure 4: CDF of T , time until next arrival in the stationary version, in the example 5.3. As α = φ, then

T
d
= T1 (similarly, T̃

d
= T̃1), and thus T

d
= T1

d
= T̃

d
= T̃1.

Next results apply in the specific cases where any of or both parameters β1 and β̃1 defined in (5.10) are

zero.

Lemma 5.13. Let us assume that a MAP2, defined by {α,λ, P0, P1} verifies β1 = 0 or equivalently,

λ1(p120 − 1) + λ2(1 − p210) = 0.

Then,

1. The system (5.6)-(5.8) defined by {α,λ, P0, P1} has got infinite solutions, and

2. xϕH(s) = x̃ϕH(s), for all s, and for all probability vectors x and x̃.
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Proof:

Let us first prove implication 1. Under the assumption β1 = 0 it can be seen that

a1 = λ2(p210 − 1).

We need to prove d0 − a1(d1 − a1) = 0, or substituting d0, a1 and d1 by their values,

λ1λ2(1 − p120p210) + λ2(p210 − 1)[λ2(p210 − 1) + λ1 + λ2] = 0, ⇐⇒

λ1λ2p210(1 − p120) + λ2
2p210(p210 − 1) = 0.

As λ1(p120 − 1) = λ2(p210 − 1), we get

λ1λ2p210(1 − p120) + λ2p210(p120 − 1) = 0,

which proves part 1.

Part 2 is deduced from the fact that if β1 = 0, then a1 does not depend on the initial probability, x. �

Proposition 5.14. Let {α,λ, P0, P1} and {α̃, λ̃, P̃0, P̃1} determine two MAP2s, where β1 = β̃1 = 0, that

is

λ1(1 − p120) = λ2(1 − p210), and λ̃1(1 − p̃120) = λ̃2(1 − p̃210).

Then, they are equivalent if and only if

xϕH(s)=x̃ϕeH
(s), ∀s,

for any initial probability vectors x, x̃.

Proof:

The basic argument in this proof will be that if β1 = 0, then a1 = λ2(p210 − 1) will not depend on initial

probabilities (similarly for ã1).

If the given MAPs are equivalent, then αϕH(s)=α̃ϕeH
(s), ∀s. As β1 = β̃1 = 0, by part 2 in Lemma

(5.13), αϕH(s) = xϕH(s), and α̃ϕeH
(s) = x̃ϕeH

(s), whatever the initial probabilities x, and x̃ are. Thus,

xϕH(s)=x̃ϕeH
(s),

for any initial probability vectors x, x̃.
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Figure 5: CDF of T in the example 5.4. By Lemma (5.13), T
d
= T1 (similarly, T̃

d
= T̃1), and thus T

d
= T1

d
=

T̃
d
= T̃1.

On the other hand, if xϕH(s)=x̃ϕeH
(s),∀s, then the equation system (5.6)-(5.8) is satisfied. Since in this

case, it does not depend on initial probabilities, the system will also be solved if any other initial probability

vectors α and α̃ (and α(n), α̃(n), ∀n) are used. Thus, equivalence conditions (4.6) hold �.

Example 5.4.

Let two MAP2s have parameters {λ1, λ2, p120, p210} = {2, 10, 0.25, 0.85}, and {λ̃1, λ̃2, p̃120, p̃210}={2.5, 6, 0.4, 0.75}.

These values imply β1 = β̃1 = 0 and solve the equations (5.6)-(5.8), for all initial probabilities. Then, the

two MAP2s are equivalents. Figure 5 depicts the distribution function of the time between two arrivals in

the former MAP2s. Because of Lemma (5.13), it also represents the distribution function of the time until

the first arrival, whatever the initial probability is. ♦

Proposition 5.15. Let {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} define two MAP2s, with corresponding E-MAP2s {α,λ, P ⋆}

and {α̃, λ̃, P̃ ⋆}, where φ and φ̃ are the stationary probabilities associated to P ⋆ and P̃ ⋆. Assume that β̃1 = 0.

Then, the MAP2s {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} are equivalent if and only if

1. φϕH(s)=x̃ϕeH
(s), ∀s, whatever the initial probability vector x̃ is, and

2. α = φ.

Proof:
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Firstly, given equivalence of two given MAP2s, Result 2 implies φϕH(s)=φ̃ϕeH
(s), ∀s. Since β̃1 = 0, we

know from Lemma (5.13) that the value φ̃ϕeH
(s) does not depend on φ̃, and thus φ̃ϕeH

(s) = x̃ϕeH
(s), for

any initial probability vector x̃. This proves part 1.

In addition, because φϕH(s)=φ̃ϕeH
(s), and β̃1 = 0, equation (5.2) implies

β1φ = −β.

We will prove now that α = φ. The processes are assumed to be equivalent and thus αϕH(s)=α̃ϕeH
(s), ∀s,

or equivalently, (α, α̃) also satisfy (5.2),

β1α = −β.

Last two equations imply α = φ and part 2 is proven.

On the other hand, let us prove that φϕH(s)=x̃ϕeH
(s), ∀s, ∀x̃, and α = φ implies equivalence. Condition

(4.6) holds for n = 0 because α = φ and by Lemma (5.13), x̃ϕeH
(s) = α̃ϕeH

(s), for all x̃ and α̃. The following

conditions for n > 0 also hold applying the same reasoning and α = φ = α(n), ∀n. Thus, the processes are

equivalent.

�

Equivalent to Proposition (5.15) we find,

Proposition 5.16. Let {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} define two MAP2s, with corresponding E-MAP2s {α,λ, P ⋆}

and {α̃, λ̃, P̃ ⋆}, where φ and φ̃ are the stationary probabilities associated to P ⋆ and P̃ ⋆. Assume that β1 = 0.

Then, the MAP2s {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} are equivalent if and only if

1. xϕH(s)=φ̃ϕeH
(s), ∀s, whatever the initial probability vector x is, and

2. α̃ = φ̃.

Example 5.5.

Let a set of MAP2s have parameters {λ1, λ2, p120, p210} = {2, 4, 0.3125, 0.5} and initial probability equal to

the stationary one, α = φ = 0.8.

On the other hand, let another set of MAP2s has {λ̃1, λ̃2, p̃120, p̃210}={2.5, 6, 0.4, 0.75}, which implies

β̃1 = 0. Then, all MAP2s with parameters {λ1, λ2, p120, p210} = {2, 4, 0.3125, 0.5} and α = φ = 0.8 will be

equivalent to all MAP2s with parameters {λ̃1, λ̃2, p̃120, p̃210}={2.5, 6, 0.4, 0.75}.
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Figure 6: In solid line, CDF of T in the example 5.5; as α = φ, then T
d
= T1. In dotted line, the CDF of T1

when α = 0.1. Since α 6= φ, T1

d

6= T .

Figure 6 depicts in solid line the distribution function of the time between two arrivals (or again, the

time until the first arrival) in the previous MAP2s. The dotted line represents the distribution function of

the time until the first arrival in the first MAP2 when α 6= 0.8, in this case α = 0.1. ♦

As a summary, we illustrate in Table 2, the possible situations that can be found when comparing two

MAP2s, and the value of the initial probabilities (α, α̃) such that, if αϕH(s)=α̃ϕeH
(s), ∀s then, both MAP2s

are equivalent.

5.4 Extension to MAP3

In this section, following the undertaken methodology for the MAP2 we will derive results equivalent to

Theorem (5.10) and Proposition (5.11) for the MAP3 case. The parameters that define a MAP3 are the

vector of initial probabilities, given by α = (α1, α2, 1−α1 −α2), the exponential rates, λ = (λ1, λ2, λ3) and

matrices P0 and P1,

P0 =




0 p12 p13

p21 0 p23

p31 p32 0


 , P1




p111 p121 p131

p211 p221 p231

p311 p321 p331


 .
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P ⋆ P̃ ⋆ β1 β̃1 Solution to (5.6)φ,(5.7),(5.8) Result (α, α̃)

6= Φ - 6= 0 6= 0 - Theorem (5.10) (φ, φ̃)

- 6= Φ̃ 6= 0 6= 0 - Theorem (5.10) (φ, φ̃)

Φ Φ̃ 6= 0 6= 0 unique Prop. (5.11) β1α + β̃1α̃ + β = 0 (∗)

- - 6= 0 6= 0 infinite Prop. (5.12) (φ, φ̃)

- - 0 0 - Prop. (5.14) (·, ·)

- - 6= 0 0 - Prop. (5.15) (φ, ·)

- - 0 6= 0 - Prop. (5.16) (·, φ̃)

Table 2: Possible situations when comparing two MAP2s in terms of the probability matrices P ⋆, P̃ ⋆,

parameters β1, β̃1 and type of system (5.6)-(5.8) characterized by {φ,λ, P0}. The corresponding Result and

the values of initial probabilities, such that if αϕH(s)=α̃ϕeH
(s), ∀s, then equivalence is obtained, are also

given. In the case (∗), the condition (5.17) is also necessary for equivalence.

The corresponding E-MAP3 process will be characterized by {α,λ, P ⋆} where,

P ⋆ =




p⋆
11 p⋆

12 p⋆
13

p⋆
21 p⋆

22 p⋆
23

p⋆
31 p⋆

32 p⋆
33


 ,

with associated stationary probability vector φ.

5.4.1 First condition for equivalence

In this section we will find values for {x̃, λ̃, P̃0} such that

xϕH(s)=x̃ϕeH
(s), ∀s (5.25)

for fixed values {x,λ, P0}.

In the case of 3-states, condition (5.25) can be alternatively expressed as

x1ϕH1(s) + x2ϕH2(s) + (1 − x1 − x2)ϕH3(s)=x̃1ϕ eH1
(s) + x̃2ϕ eH2

(s) + (1 − x̃1 − x̃2)ϕ eH3
(s), ∀s
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where

ϕH1(s) = (1 − p12 − p13)ϕE1(s) + p12ϕE1(s)ϕH2(s) + p13ϕE1(s)ϕH3(s), (5.26)

ϕH2(s) = (1 − p21 − p23)ϕE2(s) + p21ϕE2(s)ϕH1(s) + p23ϕE2(s)ϕH3(s),

ϕH3(s) = (1 − p31 − p32)ϕE3(s) + p31ϕE3(s)ϕH1(s) + p32ϕE3(s)ϕH2(s)

Solving the equations system (5.26) it can be seen that

xϕH(s) =
a2s

2 + a1s + d0

d(s)
, (5.27)

where

d(s) = −s3 + d2s
2 + d1s + d0,

and

d2 = λ1 + λ2 + λ3,

d1 = p21λ2p12λ1 − λ3λ1 − λ2λ3 + p31λ3p13λ1 + p23p32λ2λ3 − λ1λ2,

d0 = λ1λ2λ3(1 − p31p12p23 − p31p13 − p21p12 − p21p13p32 − p23p32).

In addition,

a2 = λ1x1(1 − p12 − p13) + λ2x2(1 − p21 − p23) + λ3(1 + x1p31 + x1p32 + x2p31 + x2p32 − x1 + x2 − p31 − p32),

a1 = λ3λ1 − λ3x2λ1 − λ3x1λ2 − λ3λ1p32 +

+ λ3x1λ2p31 + λ3x1λ1p32 + λ3x1λ1p31p12 − λ3λ2p32p21 − λ3λ1p31p12 +

+ λ3x2λ1p31p13 + x1λ1λ2 + λ3xλ1p31p12 +

+ λ3x2λ2p32p21 + x2λ2λ1 + λ3x1λ2p32p23 − p31λ3p13λ1 +

+ λ3x1λ2p32p21 − λ3λ2p31 + λ3x2λ2p31 +

+ λ3x2λ1p32 − x2λ2λ3p23p31 − x1λ1λ2p12p21 −

− x2λ2λ1p21p13 − x2λ2λ1p21p12 − x2λ2λ1p23 −

− x2λ2λ3p21 − x1λ1λ2p13 − x1λ1λ3p12 − x1λ1λ3p13p32 −

− x1λ1λ2p12p23 − p23p32λ2λ3 + λ2λ3.
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According to (5.27),

xϕH(s) = x̃ϕeH
(s), ∀s if and only if,

a2s
2 + a1s + d0

−s3 + d2s2 + d1s + d0
=

ã2s
2 + ã1s + d̃0

−s3 + d̃2s2 + d̃1s + d̃0

, ∀s if and only if,

c4s
4 + c3s

3 + c2s
2 + c1s + c0 = 0, ∀s (5.28)

where

c4 = a2 − ã2

c3 = a1 − a2d̃2 − ã1 + ã2d2,

c2 = d0 − a1d̃2 − a2d̃1 − d̃0 + ã1d2 + ã2d1

c1 = d̃0d2 + ã1d1 + ã2d0 − d0d̃2 − a1d̃1 − a2d̃0

c0 = d̃0d1 + ã1d0 − d0d̃1 − a1d̃0

Equation (5.28) holds for all s if and only if c4 = c3 = c2 = c1 = c0 ≡ 0, or,

a2 = ã2

a1 − a2d̃2 = ã1 − ã2d2

d0 − a1d̃2 − a2d̃1 = d̃0 − ã1d2 − ã2d1

d̃0d2 + ã1d1 + ã2d0 = d0d̃2 + a1d̃1 + a2d̃0

d̃0d1 + ã1d0 = d0d̃1 + a1d̃0

As it happened in the case where m = 2, we obtain a linear equations system with the same number of

equations and unknowns (ã1, ã2, d̃0, d̃1, d̃2), where the coefficient matrix is

C3 =




a1 − d1 d0 0 −d0 0

a2 − d2 a1 d0 −d1 −d0

1 a2 a1 −d2 −d1

0 0 a2 1 −d2

0 0 0 0 1




. (5.29)

35



If the rank of C3 is 5, then the solution is unique:

ã2 = a2 (5.30)

ã1 = a1 (5.31)

d̃0 = d0 (5.32)

d̃1 = d1 (5.33)

d̃2 = d2 (5.34)

Notice that only equations (5.30) and (5.31) involve the initial probabilities, x, x̃. They can be equivalently

expressed as,

β + β1x1 + β2x2 − β̃ − β̃1x̃1 − β̃2x̃2 = 0, (5.35)

γ + γ1x1 + γ2x2 − γ − γ̃1x̃1 − γ̃1x̃1 = 0, (5.36)

where

a2 = β + β1φ1 + β2φ2,

a1 = γ + γ1φ1 + γ2φ2

(respectively, ã2, ã1) and

β = λ3(1 − p31 − p32),

β1 = λ1(1 − p13 − p12) + λ3(p31 + p32 − 1),

β2 = λ2(1 − p21 − p23) + λ3(p31 + p32 − 1),

γ = λ1λ3(p32 + p12p31 + p31p13 − 1) + λ2λ3(p31 + p21p32 + p23p32 − 1),

γ1 = λ1λ2(p12p23 + p13 + p12p21 − 1) +

λ2λ3(1 − p23p32 − p21p32 − p31) +

λ1λ3(p12 + p13p32 − p31p12 − p32),

γ2 = λ1λ2(p12p21 + p23 + p13p21 − 1) +

λ2λ3(p21 − p32p21 + p23p31 − p31) +

λ1λ3(1 − p32 − p31p12 − p31p13),

(respectively β̃, β̃1,β̃2, γ̃, γ̃1, γ̃2).
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5.4.2 Main results

In order to introduce the general results for the three states case, m = 3, we need to define matrix D3,

which plays the role of matrix D2, in the proof of Theorem (5.10),

D3 =




β1 β2 β̃1 β̃2

β′
1 β′

2 β̃′
1 β̃′

2

γ1 γ2 γ̃1 γ̃2

γ′
1 γ′

2 γ̃′
1 γ̃′

2




(5.37)

where

β′
1 = β1(p

⋆
11 − p⋆

31) + β2(p
⋆
12 − p⋆

32), (5.38)

β′
2 = β1(p

⋆
21 − p⋆

31) + β2(p
⋆
22 − p⋆

32),

γ′
1 = γ1(p

⋆
11 − p⋆

31) + γ2(p
⋆
12 − p⋆

32),

γ′
2 = γ1(p

⋆
21 − p⋆

31) + γ2(p
⋆
22 − p⋆

32),

respectively, β̃′
1, β̃′

2, γ̃′
1 and γ̃′

2.

Theorem 5.17 (General Result for m = 3). Let {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} define two MAP3s, with

corresponding E-MAP3s {α,λ, P ⋆} and {α̃, λ̃, P̃ ⋆}, where φ and φ̃ are the stationary probabilities associated

to P ⋆ and P̃ ⋆. Assume,

(i) β1 6= 0, β2 6= 0, γ1 6= 0, γ2 6= 0, β̃1 6= 0, β̃2 6= 0, γ̃1 6= 0, γ̃1 6= 0,

(ii) the rank of D3 is 4,

Then, the MAP2s {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} are equivalent if and only if

1. φϕH(s)=φ̃ϕeH
(s), ∀s and

2. (α, α̃) = (φ, φ̃).

Condition (i) implies that the initial probabilities appear in equations (5.30) and (5.31)) and is equivalent

to β1 6= 0 and β̃1 6= 0 for the 2-states case. We have to point out that conditions (i) and (ii) in Theorem
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(5.10) implied rank(D2) = 2. However, it not so straightforward to prove the same for the 3-states case,

and thus we have substituted condition P ⋆ 6= Φ or P̃ ⋆ 6= Φ̃ by rank(D3) = 4.

Proof:

1. 1 and 2→ Equivalence.

The proof is the same that it was for Theorem (5.10).

2. Equivalence → 1 and 2 .

Because of equivalence, αϕH(s) = α̃ϕ eH
(s), for all s, needs to hold, which implies, that both α and α̃

satisfy (5.35) and (5.36)

β + β1α1 + β2α2 − β̃ − β̃1α̃1 − β̃2α̃2 = 0, (5.39)

γ + γ1α1 + γ2α2 − γ − γ̃1α̃1 − γ̃1α̃1 = 0.

Moreover because of 1, φ and φ̃ also satisfy (5.35) and (5.36), and thus,

β1φ1 + β2φ2 + β̃1φ̃1 + β̃2φ̃2 = β1α1 + β2α2 + β̃1α̃1 + β̃2α̃2

γ1φ1 + γ2φ2 + γ̃1φ̃1 + γ̃2φ̃2 = γ1α1 + γ2α2 + γ̃1α̃1 + γ̃2α̃2

Since α(1), α̃
(1) given by

α(1) = αP ⋆, α̃(1) = α̃P̃ ⋆,

must also verify α(1)ϕH(s) = α̃(1)ϕeH
(s), for all s, then we get a 4 linear equations system where the

unknowns are α1, α2, α̃1 and α̃2,

β1α1 + β2α2 + β̃1α̃1 + β̃2α̃2 = β1φ1 + β2φ2 + β̃1φ̃1 + β̃2φ̃2 (5.40)

β1α
(1)
1 + β2α

(1)
2 + β̃1α̃

(1)
1 + β̃2α̃

(1)
2 = β1φ1 + β2φ2 + β̃1φ̃1 + β̃2φ̃2

γ1α1 + γ2α2 + γ̃1α̃1 + γ̃2α̃2 = γ1φ1 + γ2φ2 + γ̃1φ̃1 + γ̃2φ̃2

γ1α
(1)
1 + γ2α

(1)
2 + γ̃1α̃

(1)
1 + γ̃2α̃

(1)
2 = γ1φ1 + γ2φ2 + γ̃1φ̃1 + γ̃2φ̃2

The unknowns are actually α1, α2, α̃1 and α̃2 because, α
(1)
1 , and α

(1)
2 can be expressed in terms of α1

and α2, (respectively α̃
(1)
1 , and α̃

(1)
2 ),

α
(1)
1 = α1(p

⋆
11 − p⋆

31) + α2(p
⋆
21 − p⋆

31) + p⋆
31,

α
(1)
2 = α1(p

⋆
12 − p⋆

32) + α2(p
⋆
22 − p⋆

32) + p⋆
32
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It is clear that α = φ and α̃ = φ̃ solves system (5.40), which can be alternatively written as,

β1α1 + β2α2 + β̃1α̃1 + β̃2α̃2 = β1φ1 + β2φ2 + β̃1φ̃1 + β̃2φ̃2 (5.41)

β′
1α11 + β′

2α2 + β̃′
1α̃1 + β̃′

2α̃2 = β1(φ1 − p⋆
31) + β2(φ2 − p⋆

32) + β̃1(φ̃1 − p̃⋆
31) + β̃2(φ̃2 − p̃⋆

32)

γ1α1 + γ2α2 + γ̃1α̃1 + γ̃2α̃2 = γ1φ1 + γ2φ2 + γ̃1φ̃1 + γ̃2φ̃2

γ′
1α1 + γ′

2α2 + γ̃′
1α̃1 + γ̃′

2α̃2 = γ1(φ1 − p⋆
31) + γ2(φ2 − p⋆

32) + γ̃1(φ̃1 − p̃⋆
31) + γ̃2(φ̃2 − p̃⋆

32),

where β′
1, β′

2, γ′
1 and γ′

2 were defined in (5.38). The coefficient matrix associated to system (5.41) is

D3. By assumption, the rank is complete, thus the solution to (5.40) is unique, and α = φ and α̃ = φ̃.

�

Finally, we present the result equivalent to Proposition (5.11), whose proof follows the same lines that

that of Proposition (5.11).

Proposition 5.18. Let {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} define two MAP3s, with corresponding E-MAP3s {α,λ, P ⋆}

and {α̃, λ̃, P̃ ⋆}, where φ and φ̃ are the stationary probabilities associated to P ⋆ and P̃ ⋆. Assume,

(i) the set {φ,λ, P0} makes that rank(C3) = 5,

(ii) β1 6= 0, β2 6= 0, γ1 6= 0, γ2 6= 0, β̃1 6= 0, β̃2 6= 0, γ̃1 6= 0, γ̃1 6= 0,

(iii) P ⋆ = Φ and P̃ ⋆ = Φ̃.

Then, the MAP3s {α,λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} are equivalent if and only if

1. φϕH(s)=φ̃ϕeH
(s), ∀s and

2. (α, α̃) verifies equation (5.39):

β + β1α1 + β2α2 − β̃ − β̃1α̃1 − β̃2α̃2 = 0,

γ + γ1α1 + γ2α2 − γ − γ̃1α̃1 − γ̃1α̃1 = 0.
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5.4.3 General MAPm

Here, we delineate some remarks concerning the general case the MAP with m states or MAPm. For the

general case with m states, the system to be solved for the first condition of equivalence, xϕH(s) = x̃ϕeH
(s),

is
am−1s

m−1 + . . . + a1s + d0

(−1)msm + dm−1sm−1 + . . . + d1s + d0
=

ãm−1s
m−1 + . . . + ã1s + d̃0

(−1)msm + d̃m−1sm−1 + . . . + d̃1s + d̃0

which becomes a linear system of 2m − 1 (because of the product of sm−1 × sm) equations and 2m − 1

unknowns ãm−1, . . . , ã1, d̃m−1, . . . , d̃1, d̃0. This will define a coefficient matrix Cm similar to (5.29) that, if

has maximum rank, then the solution to the system is unique:

ai = ãi, for i = 1, . . . ,m − 1, and dj = d̃j, for j = 0, . . . ,m − 1,

where only the values of ai and ãi will depend on initial probabilities. The (m − 1) equations ai = ãi wi

ll be expressed as (m − 1) hyperplanes equations, like (5.9) and (5.39), whose coefficients (β1, . . . , βm−1),

(γ1, . . . , γm−1), (δ1, . . . , δm−1), etc... will be likely different from 0. Actually, Theorem (5.17) can be gener-

alized assuming as hypothesis that the set of these coefficients are different from zero, and the rank of Dm

is maximum, where Dm is the matrix equivalent to (5.37) of order (2m − 2) × (2m − 2).

If P ⋆ = Φ and P̃ ⋆ = Φ̃, then in order to generalize Proposition (5.18), it will be necessary to assume

that Cm has maximum rank and the set of coefficients (β1, . . . , βm−1), (γ1, . . . , γm−1), (δ1, . . . , δm−1), etc...

are different from zero.

6 Conclusions

In this work we have discussed when two Markovian Arrival processes or MAPs are equivalent, in the sense

that they share the same probability function, for the variable time between one arrival and the next one.

The MAP can be understood as a Hidden Markov process which very commonly present identifiability

problems.

Since in most of applications, the MAP is not entirely observed, a new process, the observable MAP can

be defined. It is named Effective Arrival Process and noted E-MAP. We have derived some probabilistic

results concerning the E-MAP, such us, the transition probability matrix P ⋆ and the moment generating

function of the holding times, which is not exponentially distributed but distributed like a sum of exponential

variables.
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We have defined when a MAP process is identifiable in terms of the associated E-MAP, and present

some results derived from this definition.

The main contribution of this paper is the undertaken depth study for the case of MAP2s, the two-states

MAP. We have derived expressions for the moment generating function of T1, MAP2s must solve in order

to be equivalent. The MAP2 is not identifiable, and depending on its parameters we show how to find other

MAP2s equivalent. We have shown the important role that the matrix P0, concerning transitions with no

arrivals, and the stationary probability φ associated to the E-MAP2, play in the identifiability problem,

whereas matrix P1 turns out to be less important. We have illustrated our results with numerical examples.

The general result for MAP2s presented in the work, stating which conditions must be hold by two

MAP2 to be equivalent, has been extended for the 3-states MAP or MAP3 and briefly commented for the

general case MAP3.

In our future work we plan to develop in detail the results for the general case MAPm We also hope

to address the identifiability problem for the general case of MAP, the Batch Markovian Arrival process or

BMAP, where arrivals are allow to occur in batches.
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