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Abstract 
 
Central to a firm's growth is the profit potential of its customer base. However, customer lifetime 
value research is silent about customer profitability in networked setting wherein two populations 
of buyers and sellers interact (e.g., auction sites, job agencies). Often buyers pay no fees to the 
firm making them difficult to value. Yet buyers generate value by attracting fee-paying sellers. 
We present a model to value these "free" customers wherein buyer and seller growth arise from 
marketing actions and direct and indirect network effects. The firm chooses pricing and 
advertising to maximize its long run profits subject to growth constraints. By relaxing these 
constraints by one customer, we impute the resulting lifetime customer value implications for the 
firm. We apply our model to auction data. Our results show strong direct and indirect network 
effects in our data. We find that in the most recent period the marginal buyer is worth more than 
the marginal seller. We also find our approach substantially better estimates of firm value than 
models that fail to consider network effects. 
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1 Introduction

Metrics of customer value are becoming more important as firms are increasingly compelled to
justify the role of marketing investments on firm profitability. A central metric for assessing the
profitability of customers is customer lifetime value (CLV); the present value of all future profits
generated by a customer (Kamakura et al. 2005). Using CLV a firm can rank order its customers
or classify them into tiers based on their expected profitability. This allows firms to appropriately
allocate resources across high versus low value customers (Reinartz and Kumar 2003, Rust, Lemon
and Zeithaml 2004, Venkatesan and Kumar 2004). CLV can also be used for making customer
acquisition decisions such that a firm does not spend more on acquiring a customer than the CLV
of that customer (Gupta and Lehmann 2003, Gupta and Zeithaml 2006). It allows firms to balance
their resources between customer acquisition and customer retention (Reinartz, Thomas and Kumar
2005). Recent studies also show that CLV can provide a link between customer value and firm value
(Gupta, Lehmann and Stuart 2004, Gupta and Lehmann 2005, Kim, Lim and Lusch 2008, Kumar
and Shah 2009).

Current models of CLV, however, omit an important element. Consider the case of Monster.com,
an employment market place where job-seekers post their resumes and firms sign up to find potential
employees. Monster provides this service free to job-seekers and obtains revenue by charging fees
to the employers. A natural question arising from this business model is how much Monster should
spend to acquire a job-seeker. Traditional models of CLV can not answer this question since job-
seekers do not provide any direct revenue. In fact, if one includes the cost of maintaining resumes,
the standard CLV for a job-seeker is negative. However, without job-seekers employers will not sign
up, and without the employers Monster will have no revenues or profits. In other words, the value
of job-seekers is through their indirect network effect on job listers. This indirect network effect is
not limited to employment services only (e.g., Monster, Hotjobs, Craiglist) but also extends to any
exchange with multiple buyers and sellers (e.g., eBay, real estate).

The purpose of this study is to assess customer value when two parallel populations (e.g., buyers
and sellers) interact and have strong direct (within population) and indirect (across populations)
network effects. In these situations typically one set of customers (e.g., sellers) provide direct
financial returns to the company. For example, sellers provide commissions to real estate agencies.
However, firms must acquire and maintain the other set of customers (e.g., buyers). These customers
are "free" as they do not provide any direct revenue. Our objective is to develop a model to assess
the value of both types of customers.1 This enables us to answer the following questions:

• How large are direct and indirect network effects? Large network effects suggest the potential
for firms with strong network effects to dominate markets as the network grows. We find
sizable indirect network effects in our data, especially for the buyer on the seller.

• How much should a company spend to acquire new customers in the presence of these network
effects? For example, how much should Monster spend on acquiring an additional job-seeker,
how much should PayPal spend on acquiring a new account, how much should a dating service
spend for a new client, how much should an auction house spend to acquire a new buyer? In
our context, we find the value of a buyer to be quite substantial even though they provide no
direct revenue to the firm.

1Throughout the paper we will use the terms buyers and sellers for the two parallel populations of customers.
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• How does the value of a customer change over time? Because the magnitude of network effects
is likely to be time-dependent, customer value should also change over time. This suggests
that the maximum amount of money that a firm should spend on a “free” customer changes
over the life of a company. Our results suggest that customer value increases with the network
size.

• How do we apportion value between buyers and sellers? In other words, how much of the value
arising from the exchange between buyers and sellers accrues from each set of customers?
Currently, firms have no metrics to apportion these revenues or profits. Our discussions
with firms indicate that some apportion all value to sellers since they generate the revenues.
However, this clearly understates the value of buyers. Others use an arbitrary rule of thumb
(e.g., 50-50) to split the profits between buyers and sellers. However, this implicitly assumes
that both parties are equally important, which may not be necessarily correct. We find the
value of buyers to exceed that of sellers.

• How should firms’ marketing efforts change over time in the presence of network effects?
Marketing actions may be more critical in the early stages and network effects may dominate
in later stages of a firm’s life cycle. Hence, there is an indirect link between customer
acquisition and marketing spend, and this should logically affect customer valuation. We find
customers to be most sensitive to marketing early in the life of the firm.

• Does the omission of network effects understate the value of the customer base and hence
the value of a firm? Our estimate of firm valuation is almost one-third of the observed
market capitalization of the firm in the final year of our data, and three-fourth of the market
value observed in March 2009. In contrast, analogous approaches that ignore network and
marketing effects yield an estimate of 2.5% of market capitalization.

Our research makes contributions to two research streams — customer valuation and diffusion
modeling. With regard to the former, we are not aware of any study that examines customer value
in the presence of indirect network effects. When ignored, the implied customer lifetime value of
free customers (e.g., buyers) is zero. Such an implication runs counter to investments frequently
made by firms to attract these free users. Some research has explicitly considered the role of direct
network effects within populations on customer lifetime value. Hogan, Lemon and Libai (2004)
estimate the value of a lost customer by accounting for the word-of-mouth or direct network effects
and find these effects to be very large. Kumar, Petersen and Leone (2007) asses customers’ referral
value and find that while 68-81% of the customers intended to refer the service to their friends,
only 30-33% actually did, and less than 15% of these referrals generated customers. Indirect effects
between populations have also been shown to be substantial (e.g., Aregentisi and Filistrucci (2006),
Gupta, Jain and Sawhney (1999), Katz and Shapiro (1985, 1986), Neil, Kende and Rob (2000),
Rochet and Tirole (2006), Ryan and Tucker (2007), Wilbur (2008), Yao and Mela (2008)). Given
these effects can be sizable, and that the implication of ignoring them is that free customers are
worthless it seems sensible to address this limitation to the customer lifetime value literature.

With regard to the diffusion modeling literature, to the best of our knowledge this is the first
empirical paper that endogenizes marketing spend by explicitly considering the firm resource al-
location problem. In contrast, most empirical diffusion literature has addressed endogeneity via
instrumental variables (Desiraju, Nair and Chintagunta 2004; Kim, Lee and Kim 2005). Yet an
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explicit accounting of the firm problem yields at least two tangible benefits. First, it is problematic
to estimate diffusion models with a limited number of periods (Van den Bulte and Lilien 1997). By
integrating the supply side information with a flexible Generalized Method of Moments (GMM)
estimator, we exploit additional information thereby obtaining more reliable model estimates. Sec-
ond, as we shall show, a proper accounting of the firm’s decisions is necessary to impute customer
value. Stronger network effects, for example, can enable firms to raise prices thereby having positive
consequences for customer value. Of course, the cost of solving the supply side model is increased
complexity of analysis and estimation.

The paper proceeds as follows. We begin by developing a model that captures the growth of
buyers and sellers from three sources — marketing actions (price and advertising), direct network
effects or word-of-mouth, and indirect network effects. Next we define the firm’s problem as an
optimal control problem wherein the firm chooses its marketing actions to maximize its long run
profits subject to the growth of these populations. These growth constraints imply costates or
Lagrangian multipliers for the optimization problem yielding the incremental profits to a firm arising
from an additional buyer or seller; that is, the lifetime value of that incremental seller or buyer to
the firm. We apply our model to data obtained from an auction house, and estimate the model
using GMM based on both the growth and the Euler equations. This estimation approach explicitly
exploits the endogeneity of marketing actions to increase the efficiency of the model estimates. We
use the resulting parameter estimates to address the managerial questions highlighted above. We
then conclude with limitations and next steps.

2 A Model of Customer Value in the Presence of Network Effects

Our model description follows in three stages. We begin by outlining the consumer demand system.
Next, we discuss the supply side model. We conclude by outlining our estimation approach. Our
application pertains to an anonymous auction house that operates largely as a monopoly market
though the model can be generalized to other contexts.

2.1 Customer Growth and Network Effects

Consider two parallel populations of buyers and sellers interacting via a common platform in a
monopoly context.2 The acquisition of customers in each group can be captured by a "diffusion-

2 It is possible to extend this demand model to a duopoly context by adding additional growth equations and
cross-firm network effects. In our context we refrain from doing so because the firm in our application is largely a
monopoly. We leave the inclusion of competition in our model as an avenue for future research.
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type" model as follows:3
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market size of buyers and sellers, a and α are functions of the platform marketing strategy and
(et, εt) are errors that capture omitted factors.

Some of the key characteristics of this system of equations are as follows:

1. The function a(At) recognizes that a firm can accelerate the growth of its buyers through
buyer-targeted marketing. In our application of the e-auction house this takes the form
of television and Internet advertising. Consistent with prior literature (e.g., Horsky and
Simon 1983), we further assume that a(At) = a0 + φ lnAt where At denotes advertising.
In other words, there are diminishing marginal returns from advertising and the coefficient
φ determines buyers’ responsiveness to firm’s advertising. The term a0 captures "organic"
growth. If the term is negative, there is a tendency for persons to attrite from the system.
In our application, advertising is the main vehicle for acquiring customers, but in other
applications other marketing variables could be included.

2. Similarly, the term α(pt, At) highlights the fact that the growth of sellers depends on the mar-
keting strategy used by the platform to attract sellers. In our context, price (defined as average
commission percentage) is the key decision variable and it can change over time. Advertising
can also influence the growth of sellers. We assume that α(pt, At) = α0 − θ ln pt +∆ lnAt.
Here the parameters θ and ∆ indicate sellers’ sensitivity to firm’s pricing and advertising
respectively and α0 indicates “organic” seller growth. As in the buyer model, additional
marketing covariates could be incorporated.4

3. The direct network effect for buyers and sellers is captured by the second term in equations
(1) and (2). Hogan, Lemon and Libai (2003) used a similar term to capture the direct network
effect of losing a customer. The parameters b and β effectively capture three effects. First,
they account for word-of-mouth effect. As more people join the auction site, it may have
a positive impact on other people. Second, as indicated earlier, they implicitly account for

3Similar models have also been used in the context of international diffusion of products (Kumar and Krishnan
2002). There are two alternative views to see how customer defection is implictly captured in this model. First,
this model is similar to the repeat purchase model of Lilien, Rao and Kalish (1981), but augmented with marketing
and indirect network effects. Second, one can explicitly model defection by adding a term for it in each equation.
However, if the number of customers who defect a firm is proportional to the number of current customers, it is
generally not possible to identify the defection parameters separately from the direct network effect (which is also
proportional to the number of current customers). Some studies get around this problem by specifying the defection
rate exogenously (Gupta et al. 2004, Libai, Muller and Peres 2008). However, this is rather ad-hoc and we prefer to
model it implictly as per the above equations.

4The firm in our application also uses personal selling to attract sellers. However, this accounts for less than 10%
of its marketing budget. Further, we could not get data on this variable, so we ignore it for our application.
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defection. If defection is proportional to the number of current customers, then it will have a
negative impact of parameters b and β. Finally, these parameters also capture the crowding
effects where, all else equal, a buyer (or seller) prefers less competition (Roson 2005). This
would imply a negative direct effect of an additional buyer or seller. The net result across
these various behaviors may be a positive or negative parameter of direct effects.

4. As a firm acquires more buyers it becomes more attractive for sellers to join the firm as well.
The reverse is also true — the more sellers a firm has, the more buyers it is likely to attract.
This indirect network effect is captured by the third term in equations (1 and 2). The value
of the parameters g and γ indicate the strength of indirect network effects.

5. The (et, εt) are errors that are assumed to follow a Markov process.5 These errors can reflect
omitted factors.

2.2 Optimal Marketing Policies and Customer Value

Equations (1) and (2) characterize the growth of buyers and sellers as a result of firm’s actions
(advertising and pricing), as well as direct and indirect network effects. The objective of the
monopolistic firm is to choose its advertising and pricing policies in such a fashion that it maximizes
its long run profits.6 Specifically, the firm solves the following discrete time problem:7
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5The Markovian assumption can be relaxed (e.g., we can consider a VAR(p) process expressed in the space of
states). In our estimation, the residuals follow a seasonal VAR(1) model, i.e. errors from the same month of last year
are correlated.

6 In the case of a duopoly, an analogous profit function for a competing firm leads to a Nash game in prices and
advertising. Moreover, the constraints expand to include cross-firm indirect and direct effects.

7These are "as if" models. In other words, we do not expect managers at this firm to be actually solving complex
dynamic models. Instead, via trial and error managers discover the decision rule that yields the highest profits (Little
1996). We tested our model with the a model which does not impose any optimality constraints. The assumption of
optimality were not rejected by the data in our empirical application.
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subject to initial values NS
0 = 0, N

B
0 = 0 where p is the average percent commission and S is the

average revenue per seller.8 In compact notation, the firm problem can be expressed as
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We would like to highlight a few characteristics of equations (3)-(5). First, the profits for the firm
depend directly on the number of sellers and the price the firm charges them. If there is no indirect
network effect of buyers on sellers, the number of buyers is irrelevant for profit maximization. In
such a situation a firm has no reason to spend any money on buyer-oriented advertising and it
has no way of assessing the long-term value of a buyer. This highlights the importance of indirect
network effects in our context.

Second, CLV and customer equity assess customer profitability over the long-run. In a sim-
ilar fashion, our formulation explicitly accounts for long run profitability of current and future
customers.

Third, the lagrangian multipliers λBt and λSt in equation (5) provide a natural metric for the
CLV of buyers and sellers at time t. These parameters represent the constraints on profits arising
from not being able to add one customer at time t. As such, in the optimal solution, λBt provides
the customer value of an incremental buyer acquired at time t over an infinite horizon, i.e. the
effect of an additional buyer on the long-term discounted profit of the company. Thus, estimates of
the buyer and seller CLV are outputs of our model. Analogously, λSt provides the customer value
of an additional seller acquired at time t.

Fourth, the value of an additional buyer or seller varies over time. This intuitively makes sense
as the network effects vary over the lifecycle of the company. For example, in the early stages of

8Average revenue per seller S increases over time (slightly above inflation), as do the number of buyers and sellers.
To test for potential endogeneity we regress S on buyer and seller growth and find no significant correlation (p < 0.60
for sellers and p < 0.12 for buyers). The marginal costs in our application are close to zero and therefore we exclude
them from our analysis.
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a company, marketing actions may be more important to attract customers, while in the growth
phase direct and indirect network effects may dominate. In other words, our model allows us to
find out the maximum amount of money a firm should spend to acquire a "free" buyer at different
points in time.

Finally, unlike traditional CLV models, our model suggests that a firm’s actions (price and
advertising) can influence customer growth and hence the overall value of the firm. In other words,
price and advertising decisions are dynamic and endogenous. As a result, they are affected by
customer acquisitions and should therefore be considered when computing CLV. An incremental
customer, by strengthening network effects, can lead to a reduced need for marketing spend and
hence higher CLV. As we discuss next, endogenous marketing spend has additional implications for
model estimation.

2.3 Model Estimation

2.3.1 Historical Approaches

In many cases the purpose of diffusion model estimation was simply to assess the impact of a
marketing variable on the diffusion process (Kamakura and Balasubramanian 1988, Jain and Rao
1990). For example, Simon and Sebastian (1987) investigate the impact of advertising on the
diffusion of new telephones in West Germany. These studies are descriptive in nature and do not
attempt to provide optimal advertising or pricing policies to maximize firm’s profits.

In other cases, researchers have combined these models with analytical models of profit maxi-
mization and optimal marketing policies of the firm in two distinct stages. In the first stage these
studies ignore the optimal control problem of the firm and use the actual prices and advertising
of the firm as exogenous variables when estimating the growth model of demand. In the second
stage, they “plug-in” the parameter estimates of price and advertising in the optimal solutions of
advertising and price to arrive at the optimal path for these decision variables and compare the
optimal and actual values (e.g., Horsky and Simon 1983, Kalish 1985, Chintagunta and Vilcassim
1992, Chintagunta and Rao 1996). This stream of empirical research has two key limitations in
our application. First, deterministic dynamic models are not necessarily close to the conditional
mean of the true data generation process, and typical recursive forecast cannot be applied due to
the nonlinearity of diffusion models and Jensen’s inequality. Second, standard time-discretization
of continuous time models can generate biases in the parameter estimates of a stochastic continu-
ous time model. Stochastic discrete time processes are a convenient approach, but in this context
ignoring the supply dynamic optimization conditions in estimation can lead to inefficient estimates.

A parallel group of studies explore the dynamic policies in a purely theoretical fashion using the
solutions of the optimal control problem and examining the comparative statics or using numerical
illustrations (e.g., Feichtinger, Hartl and Sethi 1994, Thompson and Teng 1984, Horsky and Mate
1988, Dockner and Jorgensen 1988). These theoretical approaches provide directional results but
are not very useful if the objective is to provide empirical estimates in a particular application.

2.3.2 Our Estimation Approach

We consider a GMM based procedure that treats firm’s actions (price and advertising) as endoge-
nous and at the same time considers firm’s objective function of maximizing long run profits. This
implies two points of departure from prior literature. The first point of difference is that we use
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GMM for parameter estimation, obviating the need to specify conditional probability distributions
for the model errors (as required by maximum likelihood), making the approach quite general and
rendering asymptotically optimal estimates across a broad range of potential distributions. The
second point of difference is that we consider the firm problem, increasing the efficiency of our
estimates via exploiting additional information (as the supply side generates additional moment
conditions).

To obtain our estimation equations, we define the optimal value function of the firm for an
arbitrary initial point
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From the Jacobi-Bellman dynamic programing condition we obtain the following Euler equations
(for details on the derivation see Appendix A1) ,
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where D and H are defined in Appendix A1. The system of conditional moments in equation (8),
one for price and the other for advertising, can be denoted by
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where Ω0 denotes the true parameter vector. The Law of Iterated Expectations (see, e.g., Shirvaev
1991) implies that, for any instrument Zt predetermined at time t, the unconditional expectations
are zero, i.e.,
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In addition we have the two moment conditions associated with the dynamics of the state variables
(the growth of buyers and sellers), yielding:
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where Zt are the instruments described in Section (2.3.3). It is these four equations (price and
advertising paths, buyer and seller growth models) crossed with each instrument that form the
basis of our estimation equations.

Note, if we ignore the firm’s optimization problem and simply estimate the diffusion models, we
get equations (1) and (2) corresponding to the buyers and sellers. This is the typical approach of
empirical studies in the past as indicted in section 2.3.1. However, by explicitly incorporating the
optimal control problem of the firm we have additional equations as given by (10). These additional
equations provide structure to the problem, leading to more efficient estimates and helping to
identify the model parameters in the empirical estimation. Details on the GMM estimation are
provided in Appendix A2).

2.3.3 Discount Rate and Instruments

We assume firm’s monthly discount rate i = 0.015. This monthly discount rate of 1.5% translates
into an approximate annual discount rate of 20%. Given the limited number of variables, we use
two lags for the instruments. The use of lags for instruments is common and as we shall show, these
appear to be good instruments (e.g., Kadiyali, Chintagunta, and Vilcassim 2000).9 Specifically, Zt

is a 9× 1 vector

Zt =
¡
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t−1,N
S
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B
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and since we have 4 equations, we use 36 moment equations and 10 parameters (with 26 degrees
of freedom). These instruments are tested via Hansen’s (1982) test of overidentifying restrictions,
or J-statistic (see Appendix A2).

3 Application

The application of our model requires information on the number of sellers and buyers over time as
well as the marketing expenditures invested in the acquisition of these customers. An anonymous
auction house provided monthly data on these quantities for its largest market between February
2001 and December 2006. The firm obtains revenues from sellers who list items on its web site for
auction. These revenues are obtained from a listing fee, some promotional fees and a commission
on the sales proceeds. These are combined into an overall margin value by the firm and this is the
measure used in our application. If S is the average annual gross merchandise sold per seller, and
pt is the percentage commission charged by the auction house at time t, then firm’s annual margin
from each seller is Spt. The marginal cost in this business are close to zero and therefore we exclude
them from our analysis. The buyers provide no direct revenue to the firm. Not surprisingly the
firm has a greater interest in acquiring and maintaining its sellers even though it recognizes that it
needs to have buyers for its auctions. While sellers push the firm to acquire more buyers, the firm
is not sure of how to value these buyers — which is the central question of our research.

The auction house spends money on TV and Internet advertising to attract buyers. The TV
advertising data were compiled quarterly which we converted to monthly data by dividing by three

9As indicated earlier, the residuals in our application follow a seasonal VAR(1) model, i.e. errors from the same
month of last year are correlated. Further, we find almost no correlation between errors at other times.
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to create a monthly series.10 In addition, the firm provided information on margins and total
transacted volume. To protect the confidentiality of the firm, we are unable to report the specific
data means, but in Figure 1 we present information regarding the number of customers and the
marketing expenditures over time, normalized so that the maximum value of each series is one.
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Figure 1: Changes in Marketing and Demand Over Time

The upper left and right panels of Figure 1 indicate rapid growth in the number of buyers and
sellers. There are approximately 4.6 buyers for each seller. The pricing data depicted in the lower
left panel indicates that percent commission is increasing slightly over time, a sign of increasing
pricing power which may arise from the growth of the buyer-seller network. This trend suggests it
is desirable to account for pricing power and the endogeneity of pricing when computing the value
of a customer. Advertising also shows an increase over time which may be due to firm’s increasing
concern of attracting new buyers over time or it may be due to reduced advertising sensitivity in
the market prompting the firm to spend more to achieve the same results as before.

We have 71 monthly observations in our data. We break these observations into two components
for the empirical analysis; a calibration dataset (comprised of the first 65 months) and a validation

10Because we have monthly advertising spend for 18 of the months and all Internet advertising spend is monthly,
the correlation between the smoothed and non-smoothed series is 0.96. Hence there is little practical consequence
of this transformation.
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data set (comprised of the last 6 months).11 It is worth noting that the forecasts of future sales and
marketing require solving the Bellman recursions in equations (6) and (7) — a non-trivial challenge
in as much as the procedure is analytically and computationally demanding. We discuss this
forecasting procedure in Section 4.5.

4 Results

4.1 Model Fit

The overall model fit is given by the statistic J = T · QcW
³bΩ´, where QcW

³bΩ´ is defined in
Appendix A2. The J statistics is distributed χ2r−k where r is the number of equations and k the
number of parameters. For our empirical application J = 9.89, r = 36 and k = 10. Therefore with
Prob[χ2(26) > J ] = 0.9982 we accept the overidentifying moment conditions. In other words, the
moment conditions are close to zero and the instruments are orthogonal to the error. In Figure 2
we present the model fit and the estimation residuals.

For diagnosis purposes, we considered three alternatives or models. The first approach ignores
the supply side equations and therefore treats marketing actions as exogenous. This is similar
to the traditional diffusion modeling. GMM estimation of this model reveals two things. First,
a Likelihood Ratio type test show that we can not reject the hypothesis that our supply side
constraints are binding (χ2(11) = 3.48, p > 0.1). Second, all parameters of this null model (except
the market size estimates) are insignificant. This illustrates that the supply side constraints put
structure on the model that help identify parameters (Chintagunta et al. 2006). We also performed
a simulation showing that the estimation errors are reduced when the conditions (10) are included.

The second alternative model assumes that firms are myopic in pricing and advertising decisions.
We estimate this model by assuming a very high discount rate. Estimating this model without the
supply side constraints provides similar results to the ones for the first model described above. This
is not surprising since the discount rate is used only for computing CLV, and does not enter the
parameter estimates without the supply constraints. When supply constraints are added to this
model, it did not converge. This suggests that the observed price and advertising data that enter
the supply side are inconsistent with the myopic view.

The third model tests the sensitivity of market size estimates by forcing them to double the
values estimated by our model and re-estimating other parameters. We find that this null model
performs significantly worse than our model. Compared to our model, the standard error of the
residuals from this model are 5.5 times larger for the buyers and 8.7 times larger for the sellers.

4.2 Parameter Estimates

Table 1 presents the parameter estimates of our model along with the t-statistics.

11Prior research shows that it is generally difficult to estimate market size of diffusion models unless the data series
show an inflection point. Figure 1 shows that the firm in our application is still in growth phase. Two factors help us
identify market size paramaters. First, we have a large number of data points compared to typical diffusion study. As
Van den Bulte and Lilien (1997) show this helps estimate market size parameters better. Second, we use the supply
side equations to put structure on our model which also help identify these parameters (Chintagunta et al. 2006).
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Figure 2: Model Fit and Residuals

Parameter Estimate t-stat
Buyers Equation
Intercept a0 0.002 5.56
Advertising ($) φ 0.0001 50.71
Direct Network Effect of Buyers b −0.016 −5.82
Indirect Network Effect of Sellers g 0.003 3.93
Potential Market Size of Buyers (million) MB 47.07 51.65
Sellers Equation
Intercept α0 −0.003 −1.41
Price (%) θ 0.005 4.78
Advertising ($) ∆ 0.0014 2.99
Direct Network Effect of Sellers β −0.177 −7.00
Indirect Network Effect of Buyers γ 0.299 3.79
Potential Market Size of Sellers (million) MS 4.64 2.99

Table 1: Parameter Estimates
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All parameters are statistically significant except the intercept in the seller growth equation.
Advertising has a significantly positive impact on the acquisition of buyers and sellers. Price has
a significant negative impact on sellers growth (recall α(pt, At) = α0 − θ ln pt + ∆ lnAt, so price
parameter θ is expected to be positive). The parameters b and β are negative.12 As discussed earlier,
these parameters capture the net effect of word-of-mouth, customer defection and crowding. The
negative sign suggests that customer defection is outpacing the growth from word-of-mouth effect.
This may also be a result of "crowding" where customers prefer to list/buy when fewer competitors
are in the system.

The indirect network effects for both buyers and sellers are positive and very strong. This
suggests that the more buyers we have in the system the more sellers are attracted to the firm
and vice versa. Further, the indirect effect of buyers on sellers (0.299) is significantly larger than
the indirect effect of sellers on buyers (0.003). In other words, even though buyers do not provide
any direct revenue to the firm, they may be more critical for its growth. We will return to this
issue when we translate these into the value of buyers and sellers. In sum, in response to the first
question we raised in the introduction of this paper, we find that there are significant network
effects present in our empirical application.

The market potential for buyers is estimated to be about 47 million and the number of sellers
is estimated to be about 4 million. Though we can not reveal the specifics regarding the current
market size in order to protect the confidentiality of the firm, based on our market potential
estimates the market penetration of both populations is on the order of 2/5 for sellers and 1/5 for
buyers. This indicates that there are significant growth opportunities for this firm that should be
reflected in its overall customer and firm value.

4.3 The Value of a Customer

In this section, we address the three pertinent managerial questions we asked in the beginning of
this paper.

1. What is the value of a buyer or a seller? In other words, what is the maximum the firm
should spend on acquiring a buyer or a seller. This estimate is especially difficult for buyers
who do not provide any direct revenue or profit to the firm.

2. How can the firm apportion the value of transactions between buyers and sellers?

3. How do these values change over time?

As indicated earlier, the value of a buyer is given by the Lagrangian multiplier of the optimal
control problem. The shadow prices for buyers and sellers are given by (see Appendix (A3) for
details):

µ
λBt
λSt

¶
= δt

⎛⎜⎝µ 0

Spt

¶
−
µ

D11
t D12

t

D21
t D22

t

¶µ NS
t S

−θ(MS−NS
t )/pt

−1
φ(MB−NB

t )/At
−Ht

¶⎞⎟⎠ . (14)

Using this equation and the model parameters we estimate the current value of a buyer as
approximately $80 (at the request of the sponsoring firm, we have rescaled the data such that the
12These are parameters for N/M, not simply the number of buyers or sellers (N).

13



maximum buyer/seller value over the data period is $100). Note that the entire value of buyers is
derived from their indirect network effect on the growth of sellers. Traditional models of CLV that
do not account for these network effects are unable to estimate the value of these "free" customers.

The estimated value of a seller at the current time is about $50. Surprisingly, on average, the
value of a seller over time is significantly lower than that of a buyer; even though buyers outnumber
sellers by 4.6 to 1. This is counter-intuitive for at least two reasons. Although the firm believes
that buyers are important for its growth, its revenues are derived directly from sellers. Therefore,
intuitively it makes sense to assume that the paying customers or sellers are more important for
firm’s profits. The second reason that supports the firm’s intuition is the fact that there are
approximately 4.6 buyers for each seller. Since each transaction requires a buyer and a seller, it is
reasonable to argue that the value of a seller should be at least 4.6 times the value of a buyer. Our
model results go against this intuition and suggest that the value of a seller is less than half the
value of a buyer.

What explains this counter-intuitive result? First, Table 1 indicates that the parameter value
for the indirect network effect of buyers on sellers growth (0.299) is substantially larger than the
parameter value for the indirect network effect of sellers on buyers growth (0.003). Second, the net
effect of crowding and attrition on sellers is −0.177, suggesting a natural tendency to attrite. Third,
prices have a negative impact on sellers’ growth. Fourth, the negative intercept for seller’s equation
(α0 = −0.003) suggests that there is no "organic" or "natural" growth of the seller population. In
other words, except for the indirect network effect of buyers, all other factors are working against the
growth of sellers. This makes the buyers even more critical for the overall growth and profitability
of the firm. In the end, even though the firm has 4.6 buyers for each seller, the indirect network
effect of a buyer is significantly greater than the indirect network effect of a seller. The net result
of all these factors is such that the value of a buyer rivals that of the seller.

Does the buyer and seller value change over time? Figure 3 shows these values rescaled to 100
over the time frame of our data. As expected these values change significantly over time since the
network effects vary over the lifecycle of the firm. Several important insights emerge from these
results. First, the value of sellers is still growing while the value of buyers increased from time 0 to
40, but has been steady since. In the beginning, when the firm has limited number or no customers,
marketing actions are the primary source of driving traffic. As the number of customers grow, the
network effects become more important. Because the growth of the firm in our application has
not substantially slowed, it is not surprising to find that the network effects amplify over time.
Eventually, the impact of network effects will diminish. As the firm reaches the market potential
for its customers, the value of an additional buyer or seller will approach zero. In other words, the
value of a buyer and a seller is likely to follow an inverted U-shaped curve.

4.4 Price and Advertising Effectiveness

Given the presence of strong network effects, how do the effectiveness of marketing actions change
over time? To address this question, we find the price and advertising elasticities, which are given
by the following expressions.
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Figure 3: Value of a Buyer and a Seller Over Time

⎛⎝ ∂gS(pt,At,NB
t ,NS

t ,εt)
∂pt

pt
NS
t

∂gB(pt,At,NB
t ,NS

t ,εt)
∂pt

pt
NB
t

∂gS(pt,At,NB
t ,NS

t ,εt)
∂At

At

NS
t

∂gB(At,NB
t ,NS

t ,et)
∂At

At

NB
t

⎞⎠ =

µ −θNS
t

¡
MS −NS

t

¢
0

∆NS
t

¡
MS −NS

t

¢
φNB

t

¡
MB −NB

t

¢ ¶ .

Figure (4) shows the trajectory of the advertising and price elasticity over time, for buyers and
sellers respectively. Several interesting results emerge from this figure. First, both advertising and
price elasticities are decreasing over time. In other words, as firms acquire more customers over
time, network effects become increasingly important. This diminishes the impact of advertising
and price on customer growth. Note that the decrease in advertising elasticities imply increased
advertising spend is required to achieve the same level of advertising impact. Coupled with the
increase in seller value over time, this implies firms would increase advertising over time, consistent
with the observed data.

Second, both price and advertising elasticities are significantly smaller than the comparable
numbers reported for consumer packaged goods. Specifically, we find price elasticities in the range
of −0.01 to −0.03, in contrast to the average price elasticity of −1.6 found by Tellis (1988) or −1.4
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Figure 4: Advertising and Price Elasticity Over Time

found by Bijmolt et al. (2004). Similarly, our advertising elasticity estimates of a maximum of about
0.002 are significantly lower than the average ad elasticities of 0.05 for established products and
0.26 for new products (Lodish et al. 1995). These differences are due to the nature of the business
in our application, which is very different from the traditionally examined consumer packaged
goods industry. In our application for an Internet auction, prices are commission rates which are
relatively small component of the overall profits accruing to a seller (as these include the prices
buyers pay). Further, the network externalities render price effects to be somewhat smaller. Using
different data, Yao and Mela (2008) find auction house revenue-fee elasticities to be as low as -0.08.
Advertising in our context is primarily through keywords on search engines. Recent studies show
that click-through rates of these keywords are generally less than 1%. For example, Rutz and
Bucklin (2007) find click-through rates in their study to be about 0.6%, which better reflect our
ad elasticity estimates. With the changing landscape of advertising, the growth of new media and
the explosion of viral marketing, the elasticities in our study may be more reflective of the current
demand status in online businesses, especially in the presence of network effects.
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4.5 Firm Value

4.5.1 Traditional Approaches

How do network effects influence the value of the customer base and hence the value of the firm?
Hogan, Lemon and Libai (2003) incorporate direct network effects through a diffusion model to
examine the value of a lost customer in online banking. They find that the CLV of a customer
without direct network effects is about $208. However, direct network effects can be as large as
$650 in the early stages of the diffusion process. Our work augments this research by considering
the indirect network effects that are critical in a buyer-seller situation. In one setting wherein
these effects might be considerable, Gupta et al. (2004) estimated the CLV at eBay. Using an
annual discount rate of 20% and retention rate of 80%, Gupta et al. (2004) estimated the value
of eBay to be 2.5% of its market capitalization in the period of their analysis. Commenting on
the inability of their model to estimate the market value of eBay, they suggested, "...eBay is an
auction exchange, and thus there may be significant network externalities that are not captured by
the traditional diffusion model. Furthermore, eBay’s business includes both buyers and sellers ... it
may be important to model buyers and sellers separately and then construct a model of interaction
between them," (page 14). This is precisely what we have done in this paper.

4.5.2 A Dynamic Network Approach

We estimated firm value by considering the firm’s dynamic problem as outlined in equation (3).
To achieve this objective we first need to forecast not only the growth in number of buyers and
sellers as a result of direct and indirect network effects, but also the potential changes in optimal
price and advertising levels that may influence the revenues and marketing expenses, and hence
customer and firm value. As a result, the computational demands of this task are exacerbated by
the need to solve the stochastic dynamic programing problem in order to forecast future pricing and
advertising levels. To address this problem, we develop a numerical method predicated upon the
Euler equation, the available data and the implementation of Bootstrap techniques (see Appendix
A4 for details). The result of this procedure is a set of J draws for the price, advertising and growth
paths with a forecasting horizon L, that allow us to compute the probability distribution based on
J realizations. Moreover, we use these simulates to compute the forecasted customer values (λt)
for each simulated path and for each period of time T + 1, ..., T + L.

Model Forecasts As future prices, advertising and sales are inputs into our calculation of firm
value, we begin by assessing the forecasting accuracy of our model. As mentioned earlier, we
retained six observations from the holdout period for this purpose. We use mean absolute percentage
error (MAPE) as our measure of forecasting accuracy. Our results show that the MAPE for the
number of buyers and sellers is 0.094 (or 9.4%) and 0.067 (or 6.7%) respectively. These are good
forecasts for any growth model. However, recall that we are not simply forecasting the number
of buyers and sellers, which can be easily done using a standard diffusion model with direct and
indirect network effects. Instead we need to forecast the optimal price and advertising expenditures
of the firm in the future. Network effects have a direct impact on these marketing instruments. We
are not aware of any prior research that has done this type of forecasting.

Our forecast results show that theMAPE for price is 0.047 (or 4.7%) andMAPE for advertising
is 0.426 (or 42.6%). In other words, while the forecasting accuracy for price is quite good, we are not
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as accurate in predicting advertising expenditure. Note that this error is computed by comparing
forecasted and actual advertising levels. Our sponsoring firm may be setting its actual advertising
levels using information (e.g., changes in advertising rates, migration of advertising spend into
new channels, etc.) that are not explicitly included in our model and this may be reflected in the
forecasts. Overall these are reasonable estimates given the complexity of forecasting the endogenous
marketing variables as well as customer growth.

Firm Value Equipped with forecasts of demand, prices and advertising, one can forecast firm
value by summing discounted profits over an infinite horizon. In particular, we note that the firm
value at time T is given by:

V ( T , NT ) = max
{pt,At}

E0

" ∞X
t=T

δt
¡
NS
t Spt −At

¢#
. (15)

To estimate this value, for each Bootstrap sample we consider the firm’s present value at T using

ρjT =
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´
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For a large forecasting horizon, L, the average for all the simulated realizations provides an esti-
mation of the firm value:

bV ( T , NT ) =
1

J

JX
j=1

ρjT . (17)

We use a forecasting horizon of fifteen years (L = 12× 15) and J = 3, 000 samples to estimate
firm market value bV ( T , NT ) and compare it to the firm’s actual market cap at the end of our data
period. The firm in our application conducts significant business in international markets as well as
in non-auction related businesses. Since our data in this paper only pertains to domestic auctions,
we consider firm’s domestic auction revenues and profits while comparing our estimates of firm
value to actual market value. Based on public sources we find domestic auctions to be about 37%
of the firm’s total global revenues at the end of 2006. Therefore, we use 37% of the firm’s market
cap as the benchmark against which we compare our estimates.

We find that our model accounts for about 1/3rd of the observed market cap. While this is
significantly lower than the actual market cap, it compares favorably with Gupta et al. (2004) who
could account for only 2.5% of eBay’s market cap.

There are several possible reasons for our firm value estimate to be lower than the actual market
value. First, our model may still be missing elements (e.g., option value) that need to be captured
in future research. Second, we used 37% allocation based on domestic market revenue for auctions
in 2006. At that time, international markets and non-auction revenues were growing faster for our
sponsoring firm, which is not reflected in this allocation. Finally, it is also possible that market
was overvaluing this firm. As of March 2009, market cap of this firm (like most others) has come
down significantly, and our estimates account for almost 3/4th of its current market cap.
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5 Conclusions

Customer profitability is a central consideration to many firms. Though research in this area is
burgeoning, little work to date addresses the issue of customer valuation in the context of direct
and indirect network effects in a dynamic setting. This limitation is palpable because network
effects exist in many contexts including sellers and buyers for auction houses, job seekers and job
providers on job sites, real estate listings and buyers on listing services, and so forth. In such
contexts, typically one set of customers (e.g., buyers in an auction or job-seekers on a job site) do
not pay any direct revenue to the firm. It is difficult to assess the CLV of these "free" customers
using traditional CLV models. In addition, extant methods of valuing customers do not consider
the role that customer acquisitions play in affecting marketing expenditures. This can also influence
CLV, especially in the presence of network effects, as firms can reduce their marketing expenses as
a network grows and the reduction in costs further amplifies customer value.

We address these problems by offering a new approach to assess customer and firm value that
is predicated upon the incremental profits to the firm over an infinite horizon as a result of adding
another buyer or seller to the firm’s portfolio of customers. To do this, we begin by developing a
diffusion-type model of the growth in the firm’s buyer and seller populations over time. We then
use this system of growth equations, coupled with margin data and marketing expenditures, to
determine firm profits over time. Using the parameter estimates from this model, it is possible
to compute the Lagrange multipliers arising from the constraints that the seller and buyer growth
models place on a firms’ infinite horizon profits. The Lagrange multiplier for buyers or sellers is a
natural measure of the marginal impact of an additional buyer or seller on a firm’s net discounted
sum of future profits, and hence provides the CLV of each type of customer.

Using data for an online auction house, we find strong evidence of network effects. Further,
network effect of buyers on seller is significantly larger than the effect of seller on buyers. Our results
show that each type of customer, including the "free" buyer, provides the firm with hundreds of
dollars of value over the lifetime of the customer. Further, the value of a customer is increasing
over time as the network builds. We also find that price and advertising elasticities reduce over
time. As the network effects become stronger, marketing plays less of a role in attracting buyers
and sellers thereby reducing the need to advertise. Our model provides an estimate of firm value
that is significantly better than the ones provided by previous models.

Given the nascent state of customer valuation research in the context of network effects, there
are many potential areas for future research. First, as richer data become available in more contexts,
our analysis can be generalized. Second, our model can also be extended to multi-sided markets.
For example, YouTube is a three-sided market with viewers, content providers and advertisers.
Similarly, social networks are multi-sided markets where some users provide direct value to the
firm through their purchases while others provide indirect value through their influence on the
network. Third, our analysis is developed in the context of a monopoly. While we believe this to
be a reasonable characterization in our case because the auction house we consider is dominant in
its market, there are many contexts where this is not the case. Fourth, our growth equations are
predicated upon a diffusion framework. Though these provide a reasonable approximation to the
optimal evolution of these states, richer structural characterizations might yield additional insights
such as the role of customer heterogeneity in the growth of networks. Finally, we did not allow
market potential of buyers and sellers to change over time. As Internet penetration increases, the
potential market size may also change. In sum, we hope this initial foray into customer valuation
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in the context of network effects leads to further research and additional insights that will be useful
to firms who are concerned with managing their customer portfolio in a networked economy.

20



References

[1] Bijmolt, Tammo H.A., Harald J. Van Heerde, and Rik G.M. Pieters (2004), "New
Empirical Generalizations on the Determinants of Price Elasticity," Journal of Marketing Re-
search, 42 (May), 141-156.

[2] Chamberlain, Gary S. (1987), "Asymptotic Efficiency in Estimation with Conditional Mo-
ment Restrictions," Journal of Econometrics, 34, 305-334.

[3] Chintagunta, Pradeep and Naufel Vilcassim (1992), "An Empirical Investigation of
Advertising Strategies in a Dynamic Duopoly," Management Science, 38 (9), 1230—1244.

[4] Chintagunta, Pradeep and Vithala Rao (1996), "Pricing Strategies in a Dynamic
Duopoly: A Differential Game Model," Management Science, 42 (11), 1501—1514.

[5] Chintagunta, Pradeep, Tulin Erdem, Peter Rossi and Michel Wedel (2006),
"Structural Modeling in Marketing: Review and Assessment," Marketing Science, 25 (6),
604-616.

[6] Desiraju, Ramarao, Harikesh Nair and Pradeep Chintagunta (2004), "Diffusion of
New Pharmaceutical Drugs in Developing and Developed Nations," International Journal of
Research in Marketing, 21, 341-357.

[7] Dockner, Engelbert and Steffen Jorgensen (1988), "Optimal Pricing Strategies for
New Products in Dynamic Oligopolies," Marketing Science, 7 (4), 315-334.

[8] Feichtinger, Gustav, Richard Hartl and Suresh Sethi (1994), "Dynamic Optimal
Control Models in Advertising: Recent Developments," Management Science, 40 (2), 195-226.

[9] Gupta, Sachin, Dipak Jain and Mohanbir sawhney (1999), "Modeling the Evolution of
Markets with Indirect Network Externalities: An Application to Digital Television,"Marketing
Science, 18 (3), 396-416.

[10] Gupta, Sunil and Donald R. Lehmann (2003), "Customers as Assets," Journal of Inter-
active Marketing, 17, 1(Winter), 9-24.

[11] Gupta, Sunil and Donald R. Lehmann (2005), Managing Customers as Investments:
The Strategic Value of Customers in the Long Run, Wharton School Publishing, Upper Saddle
River, New Jersey.

[12] Gupta, Sunil, Donald R. Lehmann and Jennifer Ames Stuart (2004), "Valuing Cus-
tomers," Journal of Marketing Research, 41, 1, 7-18.

[13] Gupta, Sunil and Valarie Zeithaml (2006), "Customer Metrics and Their Impact on
Financial Performance," Marketing Science, forthcoming.

[14] Hansen, Lars Peter (1982), "Large Sample Properties of Generalized Method of Moments
Estimators," Econometrica, 50, 4. (July), 1029-1054.

21



[15] Hogan, John, Katherine Lemon and Barak Libai (2003), "What is the True Value of a
Lost Customer?" Journal of Service Research, 5, 3, February, 196-208.

[16] Horsky, Dan and Leonard S. Simon (1983), "Advertising and the Diffusion of New Prod-
ucts," Marketing Science, 2, 1(Winter), 1-17.

[17] Horsky, Dan and Karl Mate (1988), "Dynamic Advertising Strategies of Competing
Durable Good Producers," Marketing Science, 7, 4(Fall), 356-367.

[18] Jain, Dipak C. and Ram C. Rao (1990), "Effect of Price on the Demand for Durables:
Modeling, Estimation, and Findings," Journal of Business Economics and Statistics, 8(2),
163-170.

[19] Kadiyali, Vrinda, Pradeep Chintagunta, and Nafuel Vilcassim (2000),
"Manufacturer-Retailer Channel Interactions and Implications for Channel Power: An Em-
pirical Investigation of Pricing in a Local Market," Marketing Science, 19, 2 (Spring), 127-148.

[20] Kalish, Shlomo (1985), "A New Product Adoption Model with Price, Advertising and Un-
certainty," Management Science, 31, 12, 1569—1585.

[21] Kamakura, Wagner A, Carl F. Mela, Asim Ansari, Anand Bodapati, Pete Fader,
Raghuram Iyengar, Prasad Naik Scott Neslin, Baohong Sun, Peter Verhoef,
Michel Wedel, and Ron Wilcox (2005), "Choice Models and Customer Relationship
Management," Marketing Letters, 16, 3/4, 279-291.

[22] Kamakura, Wagner A. and Siva Balasubramanian (1988), "Long-Term View of the
Diffusion of Durables: A Study of the Role of Price and Adoption Influence Processes via Tests
of Nested Models," International Journal of Research in Marketing, 5, 1-13.

[23] Katz, M. and C. Shapiro (1985), "Network Externalities, Competition, and Compatibility",
American Economic Review, 75, 3, 424-440.

[24] Katz, M. and C. Shapiro (1986), "Technology Adoption in the Presence of Network Exter-
nalities," Journal of Political Economy, 94, 22-41.

[25] Kim, Oliver, Steve Lim and Robert Lusch (2008), "Marketing and Shareholdr Value:
Sales Capitalization and its Estimation," MSI Working Paper Series, 08-003, 73-90.

[26] Kim, W., J. Lee and T. Kim (2005), "Demand Forecasting for Multigenerational Products
Combining Discrete Choice and Dynamics of Diffusion Under Technological Trajectories,"
Technological Forecasting and Social Change, 72, 825-849.

[27] Kumar, V. and Trichy Krishnan (2002), "Multinational Diffusion Models: An Alternative
Framework," Marketing Science, 21, 3(Summer), 318-330.

[28] Kumar, V., J. Andrew Petersen, and Robert P. Leone (2007), "How Valuable is Word
of Mouth?" Harvard Business Review, 85, 10(October), 139—146.

[29] Kumar, V.and Dinsesh Shah (2009), "Expanding the Role of Marketing: From Customer
Equity to Market Capitalization" Journal of Marketing, forthcoming.

22



[30] Libai, Barak, Eitan Muller and Renana Peres (2008), "The Effect of Customer Attri-
tion on Service Growth and Equity," Journal of Marketing Research, forthcoming.

[31] Lilian, Gary, Ambar Rao and S. Kalish (1981), "Bayesian Estimation and Control of
a Detailing Effort in a Repeat Purchase Diffusion Enviornment," Management Science, 27, 5,
493-506.

[32] Lodish, Leonard M., Magid Abraham, Stuart Kalmenson, Jeanne Livelsberger,
Beth Lubetkin, Bruce Richardson, and Mary Ellen Stevens (1995), "How T.V.
Advertising Works: A Meta-Analysis of 389 Real World Split Cable T.V. Advertising Experi-
ments," Journal of Marketing Research, 32, 2(May), 125—139.

[33] Neil, G., M. Kende and R. Rob (2000), "The Dynamics of Technological Adoption in
Hardware/Software Systems: The Case of Compact Disc Players," The RAND Journal of
Economics, 31 (1), 43-61.

[34] Newey, Whitney K. and Daniel. McFadden (1994), "Large Sample Estimation and
Hypothesis Testing," in Handbook of Econometrics, vol. iv, ed. by R. F. Engle and D. L.
McFadden, pp. 2111-2245, Amsterdam: Elsevier.

[35] Newey, Whitney K. and Kenneth D. West (1987), "A Simple, Positive Semi-Definite,
Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, 55,
3(May), 703-708.

[36] Reinartz, Werner and V. Kumar (2003), "The Impact of Customer Relationship Char-
acteristics on Profitable Lifetime Duration," Journal of Marketing, 67, 1(January), 77-99.

[37] Reinartz, Werner, Jacquelyn Thomas and V. Kumar (2005), "Balancing Acquisition
and Retention Resources to Maximize Customer Profitability," Journal of Marketing, 69, 1
(January), 63-79.

[38] Rochet, J.-C. and J. Tirole (2006). Two-sided Markets: A Progress Report, Rand Journal
of Economics, forthcoming.

[39] Roson, Roberto (2005), "Two-Sided Markets: A Tentative Survey," The Review of Network
Economics, 4, 2 (June), 142 - 160.

[40] Rust, Roland, Katherine Lemon and Valarie Zeithaml (2004), "Return on Marketing:
Using Customer Equity to Focus Marketing Strategy," Journal of Marketing, 68, 1(January),
109-126.

[41] Rutz, Oliver and Randolph E. Bucklin (2007), "A Model of Individual Keyword Per-
formance in Paid Search Ad," Working Paper, Yale School of Management.

[42] Ryan, Stephen and Catherine Tucker (2007), "Heterogeneity and the Dynamics of Tech-
nology Adoption," working paper, MIT.

[43] Shiryaev, A.N. (1991), Probability, 2nd Edition. Springer Verlag, New York.

23



[44] Simon, Hermann and Karl-Heinz Sebastian (1987), "Diffusion and Advertising: The
German Telephone Campaign," Management Science, 33, 4, 451-466.

[45] Tellis, Gerard. J. (1988), “The Price Elasticity of Selective Demand: A Meta-analysis of
Econometric Models of Sales,” Journal of Marketing Research, 25, 331-341.

[46] Thompson, Gerald and Jinn-Tsair Teng (1984), "Optimal Pricing and Advertising Poli-
cies for New Product Oligopoly Models," Marketing Science, 3, 2(Spring), 148-168.

[47] Van den Bulte, Christophe and Gary Lilien (1997), "Bias and Systematic Change in the
Parameter Estimates of Macro-Level Diffusion Models," Marketing Science, 16 (4), 338-353.

[48] Venkatesan, Rajkumar and V. Kumar (2004),“A Customer Lifetime Value Framework
for Customer Selection and Resource Allocation Strategy,” Journal of Marketing, 68, 4(No-
vember), 106-125.

[49] Viner, Jacob. (1931), “Cost Curves and Supply Curves,” Zeitschrift für Nationalökonomie,
3, 1, 23—46.

[50] Wilbur, Kenneth C.(2008), "A Two-Sided, Empirical Model of Television Advertising and
Viewing Markets," Marketing Science, 27, 3 (May-June), 356-378.

[51] Yao, Song and Carl F. Mela (2008), "Online Auction Demand," Marketing Science, 27,
5 (September), 861-885.

24



Appendix

A1 The Euler Equation

To solve the dynamic problem indicated by (3) we begin by defining the optimal value function:

for an arbitrary initial point
¡
NS
0 ,N

B
0 , e0, ε0

¢
this function is given by:

V
¡
NS
0 , N

B
0 , e0, ε0

¢
= max
{pt,At}

E0

" ∞X
t=0

δtG
¡
NB
t , N

S
t , pt, At

¢#
. (A-1)

Then, the Jacobi-Bellman condition states that the solution satisfies the following recursion for

each period t ≥ 0, 13

V
¡
NB
t ,N

S
t , et, εt

¢
= max

pt,At

©
G
¡
NB
t ,N

S
t , pt, At

¢
+ δEt

£
V
¡
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t+1, N

B
t+1, et+1, εt+1

¢¤ª
. (A-2)

Incorporating the state equations into (A-2) and setting V
¡
NB
t ,N

S
t , et, εt

¢ ≡ Vt;G
¡
NB
t , N

S
t , pt, At

¢ ≡
Gt; g

B
¡
At,N

B
t ,N

S
t , et

¢ ≡ gBt ; and gS
¡
pt, At, N

B
t , N

S
t , εt

¢ ≡ gSt leads to

Vt = max
pt,At

{Gt + δEt [Vt+1]} . (A-3)

Therefore, the first order conditions associated to the right hand side optimization problem are

satisfied, which are (in matrix notation),

0 =

µ∂Gt
∂pt
∂Gt
∂At

¶
+ δ

Ã
∂gSt
∂pt

0
∂gSt
∂At

∂gBt
∂At

!
×
µEt

h
∂Vt+1
∂NS
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i
Et

h
∂Vt+1
∂NB

t+1

i¶
13Though pt and At appear in gB and gS in the right hand side of A-2, these variables are concentrated out of the

value function because the optimal levels of pt and At depend only on the parameters in NB , NS , e and ε. Hence,
these are sufficient variables to characterize V and pt and At do not appear on the right hand side.
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leading to
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where we have used that
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Using the envelope theorem (Viner, 1931), it can be proved that
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Substituting Et
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i
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from (A-4) into (A-5),

µ ∂Vt
∂NB

t

∂Vt
∂NS

t

¶
=

µ ∂Gt

∂NB
t

∂Gt

∂NS
t

¶
−
⎛⎝ ∂gBt

∂NB
t

∂gSt
∂NB

t
∂gBt
∂NS

t

∂gSt
∂NS

t

⎞⎠×
⎛⎜⎜⎜⎜⎝

∂Gt
∂pt

∂gSt
∂pt

∂Gt
∂At
∂gBt
∂At

−
∂Gt
∂pt
∂gSt
∂pt

∂gSt
∂At
∂gBt
∂At

⎞⎟⎟⎟⎟⎠ (A-6)

updating the resulting condition and combining it with the first order conditions (A-4) yields the

system,
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This expression is the Euler equations system. Note that the left hand side can be introduced

in the conditional expectation with a sign change.

Computing the partial derivatives, we obtain the expression (8).
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A2 GMM Estimation

Equations (10), (11) and (12) yield a set of moment conditions. To simplify the notation, we express

these moment equations as E [m (Xt,Ω)] = 0, where Ω denotes the set of all parameters, and Xt

the random variables. If this system of equations is just identified then one can use the method of
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moments. When the system is overidentified as a result of adding more instrument conditions, then

Hansen’s (1982) generalized method of moments or GMM is used. In this approach we estimate

the parameter vector by minimizing the sum of squares of the differences between the population

moments and the sample moments, using the variance of the moments as a metric. Specifically,

GMM estimates Ω by minimizing

QW (Ω) =

Ã
1

T

TX
t=1

m (Xt,Ω)

!0
W−1

Ã
1

T

TX
t=1

m (Xt,Ω)

!
, (A-11)

where W is a positive definite weight matrix. While the researcher cannot make the moment

conditions exactly equal to zero, s/he can choose parameters such that (A-11) is close to zero. The

choice of W accounts for covariation in the moment conditions and the variance of the estimate bΩ
depends on this chosen matrix (Hamilton 1994). It is always possible to choose W = I. However,

this will, in general, lead to inefficient estimates. The optimal W weights the moment conditions

such that those conditions with a high degree of variance get weighted less, thus affecting the

minimization routine less. The estimate bΩ with minimum variance is obtained for the limit variance
covariance matrix,

WΩ0 = lim
T→∞

T · E
⎡⎣Ã 1

T

TX
t=1

m (Xt,Ω0)

!Ã
1

T

TX
t=1

m (Xt,Ω0)

!0⎤⎦ (A-12)

=
∞X

t=−∞
E
£
m (X0,Ω0)m (Xt,Ω0)

0¤ ,
i.e., WΩ0 is 2π times the spectral density matrix for {m (Xt, θ0)} at frequency zero. This matrix
depends on Ω0, and therefore the optimal GMM is unfeasible.

A feasible estimation is typically achieved using a two-step process. In the initial step, indicated

(0), a positive definite matrix W (0) matrix is chosen (e.g., W (0) = I, the identity matrix), leading

to a consistent initial set of parameter estimates bΩ(0). In the second step, we take the estimate bΩ(0)
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and estimate the variance-covariance estimator WΩ0 using the Bartlett spectral density estimator,

cWΩ0 = C0 +
ΞX

ξ=1

µ
1− ξ

Ξ

¶¡
Cξ +C 0ξ

¢
, (A-13)

Cξ = T−1
T−ξX
t=1

m
³
Xt, bΩ(0)´m³Xt+ξ, bΩ(0)´0 = C0−ξ,

as suggested by Newey and West (1987). A moderate number of lags Ξ < T − 1 is considered;
and Ξ increases slowly with the sample size, so that T/Ξ → ∞. This new weight matrix is then
used to solve the problem (A-11), and the resulting estimation bΩ(1) is an asymptotically efficient
estimator of the true parameters. One can iterate over the weighting matrix M times (it does not

affect the asymptotic distribution, but the accuracy for small samples usually increases), but the

process converges sufficiently fast (e.g., in our context Ξ = 12, and M < 5).

It has also been shown that, for the optimal weight,
√
T
³bΩ−Ω´ is asymptotically distributed

N
³
0,
¡
Γ0W−1

Ω Γ
¢−1´

with Γ = E
£

∂
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¤
,which can be estimated by Γ = T−1

PT
t=1

∂
∂Ω0m (Xt,Ω0) .

In addition, T · QcW
³bΩ´ is asymptotically distributed χ2r−k, where r is the number of equations

and k the number of parameters, and this can be used to test the overidentifying restrictions (see,

e.g., Hansen 1982, Chamberlain 1987 and Newey and McFadden 1994) to test the appropriateness

of the instruments. This statistic forms the basis of the J−test used in section 4.1.

A3 Lagrange Multipliers

We begin by characterising the solution to company problem via the Lagrange functional (5). The

value function V
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(A-14)
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therefore, since pt, At affects NS
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The same argument can be used for partial derivatives with respect to NB
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s , As. Then, the

Lagrange first order conditions for each time t are,
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We will focus on first two equations,
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implying that
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Using (A-6), and computing the partial derivatives, we obtain the expression (14),
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A4 Forecasting method

We first note that the Euler equations (8), by factoring through the expectations operator, can be

expressed as

µ NS
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Using a more compact notation, we re-write the system of Euler and state equations as

Φ (Et [l (Nt+1, t+1, ut+1)] , Nt, t, ut) = 0, (A-23)

Nt+1 = g (Nt, t, ut) ,

where Nt = (NB
t , N

S
t ) are the states, t = (εt, et) are the growth shocks and ut = (pt, At) are the
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control variables, and l (N, , u) is defined by
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The Euler equation embeds the conditional expectation Et [l (Nt+1, t+1, ut+1)] . Though this

expectation is a time-invariant function E [ t,Nt] = Et [l (Nt+1, t+1, ut+1)] of the state variables, it

is not possible to derive formulas for this expectation analytically. However, the available sample

can be used to approximate the regression function E [ ,N ] nonparametrically. In our application,
we use a Nadaraya-Watson estimator with Gaussian kernel (for an introduction see e.g., Härdle,

1990).

The non-parametric estimator facilitates the use of simulated scenarios for computing the Euler

recursion. From an initial point ( t, Nt) , and a forecast predicated upon that initial point obtained

from the kernel regression estimator, E [ t, Nt], we can compute the control variables, ut, by solving

Φ (E [ t, Nt] ,Nt, t, ut) = 0. Conditioned on ( t,Nt) and E [ t,Nt] , our model leads to a closed

expression for ut, namely

pt = δE1 ( t,Nt) θ
¡
MS −NS

t

¢ ¡
NS
t S
¢−1

(A-25)

At =
¡
δE2 ( t, Nt)−Ht

¢
φ
¡
MB −NB

t

¢
.

where E1 ( t, Nt) = Et

£
l1 (Nt+1, t+1, ut+1)

¤
, and E2 ( t,Nt) = Et

£
l2 (Nt+1, t+1, ut+1)

¤
(and E ( t,Nt) =

{E1 ( t,Nt) ,E2 ( t,Nt)}0). With estimates for the control variables (price and advertising) ut, we
generate the state variables Nt+1 = g (Nt, t, ut) by simulating the shocks t via bootstrap methods.

The procedure is applied recursively, computing the solution path for a realization of the stochas-

tic process { t} starting at zero, or at any other time τ and state (Nτ , τ ). We can use a Monte

Carlo simulation to compute the solution for a large sample of realizations { t}, and then study
the probability distribution of the optimal solution. We can plot the expected path for the states

and the controls and associated confidence intervals.

Summarizing the foregoing discussion, we use the following steps to forecast price, advertising,

and sales L periods after t = 1, ..., T :
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1. Compute E ( t, Nt) using the observed historical data and the demand equation residuals

(bt, Nt, ut) with t = 2, ..., T .

2. Specify a Markovian model bt = bΠbt−1 + bat. In particular, we consider a seasonal VAR(1)
model; estimating the model using data for t = 2 + 12, .., T.

3. Set initial values (bT ,NT , uT ) , and consider their empirical distribution function of the cen-

tered residuals {bat}Tt=14, that we denote by F.
4. Loop over j = 1, ..., J, where J denotes the number of bootstrap samples (in our case J =

5000). For each j,

(a) generate a Boostrap sample
³
aj1, ..., a

j
L

´
as i.i.d. realizations from F,

(b) compute j
T+l = bc + bΠ j

T+l−1 + ajl for l = 1, ...L (where l indexes the number of steps

ahead in the forecast), starting from j
T = bT ,

(c) for each j and for each l = 1, ..., L compute the following recursion:

i. given
³

j
T+l, N

j
T+l

´
, compute the controls ujT+l fromΦ

³
E
³

j
T+l,N

j
T+l

´
,N j

T+l, u
j
T+l

´
=

0,

ii. generate N j
T+l+1 = g

³
N j
T+l, u

j
T+l

´
+ j

T+l.

Thus equipped, one can plot the paths for
n
N j
T+l

on
ujT+l

o
,
n

j
T+l

o
over l = 1, .., L, for J

different scenarios
n

j
T+l

o
, or plot the median and other quantiles. In particular we consider

J = 3, 000 draws.
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