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Abstract

An axiomatic approach is used to develop a one-parameter family of mea-
sures of divergence between distributions. These measures can be used to
perform goodness-of-fit tests with good statistical properties. Asymptotic
theory shows that the test statistics have well-defined limiting distributions
which are however analytically intractable. A parametric bootstrap proce-
dure is proposed for implementation of the tests. The procedure is shown to
work very well in a set of simulation experiments, and to compare favourably
with other commonly used goodness-of-fit tests. By varying the parameter
of the statistic, one can obtain information on how the distribution that gen-
erated a sample diverges from the target family of distributions when the
true distribution does not belong to that family. An empirical application
analyses a UK income data set.

Keywords: Goodness of fit, axiomatic approach, measures of divergence,
parametric bootstrap

JEL codes: D63, C10
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1 Introduction

In this paper, we propose a one-parameter family of statistics that can be
used to test whether an IID sample was drawn from a member of a parametric
family of distributions. In this sense, the statistics can be used for a goodness-
of-fit test. By varying the parameter of the family, denoted by α, a range of
statistics is obtained and, when the null hypothesis that the observed data
were indeed generated by a member of the family of distributions is false, the
different statistics can provide valuable information about the nature of the
divergence between the unknown true data-generating process (DGP) and
the target family.

We do not seek just to add to the collection of convenient goodness-of-fit
statistics based on the empirical distribution function (EDF) of the sample.
Our approach here is to motivate the goodness-of-fit criterion in the same
sort of way as is commonly done with other measurement problems in eco-
nomics and econometrics.1 The role of axiomatisation is central. We invoke
a relatively small number of axioms to capture the idea of divergence of one
distribution from another using an informational structure that is common
in studies of income mobility. From this divergence concept one immedi-
ately obtains a class of goodness-of-fit measures that inherit the principles
embodied in the axioms. As it happens, the measures in this class also have
a natural and attractive interpretation.

In order to be used for testing purposes, the goodness-of-fit statistics
should have a distribution under the null that is known or can be simulated.
Asymptotic theory shows that the null distribution of the members of the
family of statistics is independent of the parameter α, although that is cer-
tainly not true in finite samples. We show that the asymptotic distribution
(as the sample size tends to infinity) exists, although it is not analytically
tractable. However, its existence serves as an asymptotic justification for the
use of a parametric bootstrap procedure for inference.

In addition to a set of simulation experiments designed to uncover the
size and power properties of bootstrap tests based on our proposed family
of statistics, we analyse a UK data set on households with below-average
incomes, and show that we can derive a stronger conclusion by use of our
tests than with most commonly used goodness-of-fit tests.

The paper is organised as follows. Section 2 sets out the formal frame-
work and establishes a series of results that characterise the required class
of measures. Section 3 derives the distribution of the members of this new

1 As examples of the axiomatic method see Sen (1976a) on national income, Sen (1976b)
on poverty and Ebert (1988) on inequality.
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class. Section 4 examines the performance of the goodness-of-fit criteria in
practice, and section 5 concludes.

2 Axiomatic foundation

Our approach is to characterise a measure of aggregate discrepancy between
two empirical income distributions and then to apply the discrepancy mea-
sure as a goodness-of-fit criterion.

2.1 Representation of the problem

We adopt a structure that is often applied in the income-mobility literature.
Let there be an ordered set of n income classes; each class i is associated
with income level xi where xi < xi+1, i = 1, 2, ..., n − 1. Let pi ≥ 0 be the
size of class i, i = 1, 2, ..., n which could be an integer in the case of finite
populations or a real number in the case of a continuum of persons. We will
work with the associated cumulative mass ui =

∑i
j=1 pj, i = 1, 2, ..., n. The

set of distributions is given by U :=
{
u| u ∈ Rn+, u1 ≤ u2 ≤ ... ≤ un

}
. The

aggregate discrepancy measurement problem can be characterised as the re-
lationship between two cumulative-mass vectors u,v ∈ U ; an alternative
equivalent approach is to work with z : = (z1, z2, ..., zn), where each zi is the
ordered pair (ui, vi), i = 1, ..., n and belongs to a set Z, which we will take
to be a connected subset of R+ × R+. The problem focuses on the discrep-
ancies between the u-values and the v-values. To capture this we introduce
a discrepancy function d : Z → R such that d (zi) is strictly increasing in
|ui − vi|. Write the vector of discrepancies as

d (z) := (d (z1) , ..., d (zn)) .

The problem can then be approached in two steps.

1. We represent the problem as one of characterising a weak ordering2 �
on

Zn := Z × Z × ...× Z︸ ︷︷ ︸
n

.

where, for any z, z′ ∈ Zn the statement “z � z′” should be read as “the
pairs in z constitute at least as good a fit according to � as the pairs in

2 This implies that it has the minimal properties of completeness, reflexivity and tran-
sitivity.
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z′.” From � we may derive the antisymmetric part � and symmetric
part ∼ of the ordering.3

2. We use the function representing � to generate an aggregate discrep-
ancy index.

In the first stage of step 1 we introduce some properties for �, many of
which correspond to those used in choice theory and in welfare economics.

2.2 Basic structure

Axiom 1 (Continuity) � is continuous on Zn.

Axiom 2 (Monotonicity) If z, z′ ∈ Zn differ only in their ith component
then d (ui, vi) < d (u′i, v

′
i)⇐⇒ z � z′.

For any z ∈ Zn denote by z (ζ, i) the member of Zn formed by replacing
the ith component of z by ζ ∈ Z.

Axiom 3 (Independence) For z, z′ ∈ Zn such that: z ∼ z′ and zi = z′i for
some i then z (ζ, i) ∼ z′ (ζ, i) for all ζ ∈ [zi−1, zi+1]∩

[
z′i−1, z

′
i+1

]
.

If z and z′ are equivalent in terms of overall discrepancy and the fit in
class i is the same in the two cases then a local variation in component i
simultaneously in z and z′ has no overall effect.

Axiom 4 (Perfect local fit) Let z, z′ ∈ Zn be such that, for some i and j,
ui = vi, uj = vj, u

′
i = ui + δ, v′i = vi + δ, u′j = uj − δ, v′j = vj − δ and, for

all k 6= i, j, u′k = uk, v′k = vk. Then z ∼ z′.

The principle states that if there is a perfect fit in two classes then moving
u-mass and v-mass simultaneously from one class to the other has no effect
on the overall discrepancy.

Theorem 1 Given Axioms 1 to 4 (a) � is representable by the continuous
function given by

n∑
i=1

φi (zi) ,∀z ∈ Zn (1)

where, for each i, φi : Z → R is a continuous function that is strictly de-
creasing in |ui − vi| and (b)

φi (u, u) = ai + biu. (2)

3 For any z, z′ ∈ Zn “z � z′” means “[z � z′] & [z′ � z]”; “z ∼ z′” means
“[z � z′] & [z′ � z]”.
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Proof. Axioms 1 to 4 imply that � can be represented by a continuous
function Φ : Zn → R that is increasing in |ui − vi|, i = 1, ..., n. Using Axiom
3 part (a) of the result follows from Theorem 5.3 of Fishburn (1970). Now
take z′ and z in as specified in Axiom 4. Using (1) it is clear that z ∼ z′ if
and only if

φi (ui + δ, ui + δ)− φi (ui, ui)− φj (uj + δ, uj + δ) + φj (uj + δ, uj + δ) = 0

which can only be true if

φi (ui + δ, ui + δ)− φi (ui, ui) = f (δ)

for arbitrary ui and δ. This is a standard Pexider equation and its solution
implies (2).

Corollary 1 Since � is an ordering it is also representable by

φ

(
n∑
i=1

φi (zi)

)
(3)

where φi is defined as in (1), (2) and φ : R → R, continuous and strictly
monotonic increasing.

This additive structure means that we can proceed to evaluate the ag-
gregate discrepancy problem one income class at a time. The following ax-
iom imposes a very weak structural requirement, namely that the ordering
remains unchanged by some uniform scale change to both u-values and v-
values simultaneously. As Theorem 2 shows it is enough to induce a rather
specific structure on the function representing �.

Axiom 5 (Population scale irrelevance) For any z, z′ ∈ Zn such that
z ∼ z′, tz ∼ tz′for all t > 0.

Theorem 2 Given Axioms 1 to 5 � is representable by

φ

(
n∑
i=1

uihi

(
ui
vi

))
(4)

where hi is a real-valued function.

5
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Proof. Using the function Φ introduced in the proof of Theorem 1,
Axiom 5 implies

Φ (z) = Φ (z′)

Φ (tz) = Φ (tz′)

and so, since this has to be true for arbitrary z, z′ we have

Φ (tz)

Φ (z)
=

Φ (tz′)

Φ (z′)
= ψ (t)

where ψ is a continuous function R → R. Hence, using the φi given in (1),
we have for all z:

φi (tzi) = ψ (t)φi (zi) i = 1, ..., n.

or, equivalently

φi (tui, tvi) = ψ (t)φi (ui, vi) , i = 1, ..., n. (5)

So, in view of Aczél and Dhombres (1989), page 346 there must exist c ∈ R
and a function hi : R+ → R such that

φi (ui, vi) = ucihi

(
ui
vi

)
. (6)

From (2) and (6) it is clear that

φi (ui, ui) = ucihi (1) = ai + biui, (7)

which implies c = 1 for non-trivial cases. Putting (6) with c = 1 into (3)
gives the result.

The function hi in Theorem 2 is arbitrary and it is useful to impose more
structure. This is done in Section 2.3.

2.3 Mass discrepancy and goodness-of-fit

We now focus on the way in which one compares the (u, v) discrepancies in
different parts of the distribution. The form of (4) suggests that discrepancy
should be characterised terms of proportional differences:

d (zi) = max

(
ui
vi
,
vi
ui

)
.

This is the form for d that we will assume from this point onwards. We also
introduce:

6
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Axiom 6 (Discrepancy scale irrelevance) Suppose there are z0, z
′
0 ∈ Zn

such that z0∼ z′0. Then for all t > 0 and z, z′ such that d (z) = td (z0) and
d (z′) = td (z′0): z ∼ z′.

The principle states this. Suppose we have two distributional fits z0 and
z′0 that are regarded as equivalent under �. Then scale up (or down) all the
mass discrepancies in z0 and z′0 by the same factor t. The resulting pair of
distributional fits z and z′ will also be equivalent.4

Theorem 3 Given Axioms 1 to 6 � is representable by

Φ (z) = φ

(
n∑
i=1

uαi v
1−α
i

)
(8)

where α 6= 1 is a constant.5

Proof. Take the special case where, in distribution z′0 the discrepancy
takes the same value r in all n classes. If (ui, vi) represents a typical compo-
nent in z0 then z0∼ z′0 implies

r = ψ

(
n∑
i=1

uihi

(
ui
vi

))
(9)

where ψ is the solution in r to

n∑
i=1

uihi

(
ui
vi

)
=

n∑
i=1

uihi (r) . (10)

In (10) we can take the ui as fixed weights. Using Axiom 6 in (9) requires

tr = ψ

(
n∑
i=1

uihi

(
t
ui
vi

))
, for all t > 0. (11)

Using (10) we have

n∑
i=1

uihi

(
tψ

(
n∑
i=1

uihi

(
ui
vi

)))
=

n∑
i=1

uihi

(
t
ui
vi

)
(12)

4 Also note that Axiom 6 can be stated equivalently by requiring that, for a given
z0, z

′
0 ∈ Zn such that z0∼ z′0, either (a) any z and z′ found by rescaling the u-components

will be equivalent or (b) any z and z′ found by rescaling the v-components will be equiv-
alent.

5 The following proof draws on Ebert (1988).
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Define variables qi and functions ψi, i = 1, ..., n such that

qi := uihi

(
ui
vi

)
, (13)

ui
vi

= ψi (qi) . (14)

From (12) - (14) we obtain

n∑
i=1

uihi

(
tψ

(
n∑
i=1

qi

))
=

n∑
i=1

uihi (tψi (qi)) . (15)

Also define n+ 1 functions θi:

θ0 (q, t) :=
n∑
i=1

uihi (tψ (q)) , (16)

θi (q, t) := uihi (tψi (q)) , i = 1, ..., n. (17)

From (15) - (17) we obtain

θ0

(
n∑
i=1

qi, t

)
=

n∑
i=1

θi (qi, t) ,

which implies (Aczél 1966, p. 142)

θi (q, t) = bi (t) +B (t) q, i = 0, 1, ..., n

where

b0 (t) =
n∑
i=1

bi (t) .

Therefore:

hi

(
t
ui
vi

)
=
bi (t)

ui
+B (t)hi

(
ui
vi

)
, i = 1, ..., n, (18)

the solution to which is

hi (v) =

{
βiv

α−1 + γi, α 6= 1,
βi log v + γi α = 1,

(19)

where βi > 0 is an arbitrary positive number – see Eichhorn (1978), Theorem
2.7.3. Substituting for hi (·) from (19) into (2) for the case where βi is the
same for all i gives the result.
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2.4 Aggregate discrepancy index

Theorem 3 provides some of the essential structure of an aggregate discrep-
ancy index. To make further progress consider the behaviour of the index
over the subset of Z consisting of all distributions with given total mass:

Z (ū, v̄) :=

{
z ∈Z|

n∑
i=1

zi = (ū, v̄)

}
.

Clearly, for all z ∈Z (ū, v̄) the discrepancy index must take the form

Φ (z) = φ̄

(
n∑
i=1

uαi v
1−α
i ; ū, v̄

)
, (20)

where ū, v̄ are parameters of the function φ̄ that is the counterpart of φ in
(8). It is reasonable to require that Φ (z) should take the value zero when
z represents a “perfect fit,” so that there is no discrepancy between the u-
distribution and the v-distribution; but there is a slight ambiguity about
what the meaning of this requirement is.

A narrow interpretation of zero discrepancy is that vi = ui, i = 1, .., n, in
which case the form (20) requires that

φ̄

(
n∑
i=1

ui; ū, ū

)
= 0, (21)

in other words we have the restriction φ̄ (ū; ū, ū) = 0. However, this re-
striction does not actually impose much additional structure. By contrast,
suppose we take a broader interpretation of zero discrepancy, namely that if
the v-distribution is obtained rescaling each component in the u-distribution
by a factor k > 0 then there is no discrepancy; in other words suppose we
say that the total mass is not relevant in the evaluation of discrepancy only
the relative frequencies in each class. This interpretation requires that, if
vi = kui, i = 1, .., n (where k = v̄/ū) then, from (20), we have

φ̄

(
k1−α

n∑
i=1

ui; ū, v̄

)
= 0 (22)

which implies
φ̄
(
ūαv̄1−α; ū, v̄

)
= 0. (23)

This can only be true for all α if φ in (8) and φ̄ in (20) can be written in the
form

ψ

(
n∑
i=1

[
ui
µu

]α [
vi
µv

]1−α)
, (24)

9

ha
ls

hs
-0

06
39

07
5,

 v
er

si
on

 1
 - 

8 
N

ov
 2

01
1



where µu := n−1
∑n

i=1 ui and µv := n−1
∑n

i=1 vi.

A suitable cardinalisation of (24) gives the aggregate discrepancy measure

Gα :=
1

α(α− 1)

n∑
i=1

[[
ui
µu

]α [
vi
µv

]1−α
− 1

]
, α ∈ R, α 6= 0, 1 (25)

where we have the following limiting forms for the cases α = 0 and α = 1,
respectively

G0 = −
n∑
i=1

vi
µv

log

(
ui
µu

/
vi
µv

)
, (26)

G1 =
n∑
i=1

ui
µu

log

(
ui
µu

/
vi
µv

)
. (27)

Expressions (25)-(27) constitute a family of aggregate discrepancy measures
where an individual family member is characterised by choice of α: a high
positive α produces an index that is particularly sensitive to discrepancies
where u exceeds v and a negative α yields an index that is sensitive discrep-
ancies where v exceeds u.6

2.5 Goodness of fit

Our approach to the goodness-of-fit problem is to use the index constructed
in section 2.4 to quantify the aggregate discrepancy between an empirical

6 There is a natural extension to the case where one is dealing with a continuous
distribution on support Y ⊆ R. Expressions (25) - (27) become, respectively:

1

α(α− 1)

[∫
Y

[
Fu (y)

µu

]α [
Fv (y)

µv

]1−α
dy − 1

]
,

−
∫
Y

Fv (y)

µv
log

[
Fu (y)

µu

/
Fv (y)

µv

]
dy, and∫

Y

Fu (y)

µu
log

[
Fu (y)

µu

/
Fv (y)

µv

]
dy.

Clearly there is a family resemblance to the Kullback and Leibler (1951) measure of relative
entropy or divergence measure of f2 from f1∫

Y

f1 log

(
f2
f1

)
dy

but with densities f replaced by cumulative distributions F .

10
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distribution and a model. Given a set of observations {x1, x2, ..., xn} the
empirical distribution function (EDF) is

F̂ (x) =
1

n

n∑
i=1

ι
(
x(i) ≤ x

)
,

where x(i) denotes the ith smallest observation and ι is an indicator function
such that ι (S) = 1 if statement S is true and ι (S) = 0 otherwise. Denote
the proposed model distribution by F (·; θ), where θ is a set of parameters
and let

ui = F
(
x(i); θ

)
, i = 1, .., n

vi = F̂
(
x(i)
)

=
i

n
, i = 1, .., n;

then ui is a set of non-decreasing population proportions generated by the
model from the n ordered observations. As before write µu for the mean
value of the u; observe that

µv =
1

n

n∑
i=1

vi =
n∑
i=1

i

n2
=
n+ 1

2n
.

Using (25)-(27) we then find that we have a family of goodness-of-fit statistics

Gα

(
F, F̂

)
=

1

α(α− 1)

n∑
i=1

[[
ui
µu

]α [
2i

n+ 1

]1−α
− 1

]
, (28)

where α ∈ R \ {0, 1} is a parameter.7

3 Inference

If the parametric family F (·, θ) is replaced by a single distribution F , then the
ui become just F (x(i)), and therefore have the same distribution as the order
statistics of a sample of size n drawn from the uniform U(0,1) distribution.
The statistic Gα(F, F̂ ) in (28) is random only through the ui, and so, for
given α and n, it has a fixed distribution, independent of F . Further, as
n → ∞, the distribution converges to a limiting distribution that does not
depend on α.

7 In the cases α = 0 and α = 1 we have, respectively, that G0

(
F, F̂

)
=

−
∑n
i=1

2i
n+1 log

(
[n+1]ui

2iµu

)
and G1

(
F, F̂

)
=
∑n
i=1

ui

µu
log
(

[n+1]ui

2iµu

)
.

11
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To see this, we make use of a result concerning the empirical quantile
process; see van der Vaart and Wellner (1996), example 3.9.24. Let F be
a distribution function with continuous positive derivative f defined on a
compact support. Let F̂n be the empirical distribution function of an IID
sample drawn from F , and let Q(p) = F−1(p) and Q̂n(p) = F̂−1n (p), p ∈ [0, 1],
be the corresponding quantile functions. Since F̂ is a discrete distribution,
Q̂n(p) is just the order statistic indexed by dnpe of the sample. Here dxe
denotes the smallest integer not less than x. Then

√
n
(
Q̂n(p)−Q(p)

)
 −

B ◦ F
(
Q(p)

)
f
(
Q(p)

) , (29)

where the notation means that the left-hand side, considered as a stochas-
tic process defined on [0, 1], converges weakly to the distribution of the right-
hand size, where f is the density of distribution F , and where B(p) is a
standard Brownian bridge, that is, a Gaussian process with covariance func-
tion

cov
(
B(t), B(s)

)
= min(s, t)− st.

The U(0,1) distribution certainly has compact support [0, 1], and its den-
sity is constant and equal to 1 on that interval. The result (29) in this case
reduces to √

n
(
udnpe − p

)
 B(p). (30)

We will be chiefly interested in the arguments ti defined as i/(n + 1),
i = 1, . . . , n. Then we see that

√
n(ui − ti) B(ti). (31)

This result expresses the asymptotic joint distribution of the uniform order
statistics. Note that E(ui) = ti.

Write ui = ti+zi, where E(zi) = 0. From (30), we see that the variance of
n1/2zi is ti(1− ti) plus a term that vanishes as n→∞8. Thus zi = Op(n

−1/2)

as n→∞. We express the statistic Gα(F, F̂ ), under the null hypothesis that
the ui do indeed have the joint distribution of the uniform order statistics,
replacing ui by ti + zi and discarding terms that tend to 0 as n → ∞. We
see that

Gα(F, F̂ ) =
1

α(α− 1)

1

µαu(1/2)1−α

n∑
i=1

[
ti

(
1 +

zi
ti

)α
− µαu(1/2)1−α

]
. (32)

8 In fact, the true variance of zi is ti(1− ti)/(n+ 2).
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Now, by Taylor’s theorem,

ti

(
1 +

zi
ti

)α
= ti + αzi +

α(α− 1)

2

z2i
ti

+
α(α− 1)(α− 2)

6

(θizi)
3

t2i
, (33)

where 0 ≤ θi ≤ 1, i = 1, . . . , n, and so

n∑
i=1

ti

(
1 +

zi
ti

)α
=
n

2
+ nαz̄ +

α(α− 1)

2

n∑
i=1

z2i
ti

+ op(1), (34)

where z̄ is the mean of the zi, since it can be shown that the sum over i of
the last term on the right-hand side of (33) if op(1). Here, we have made use
of the fact that

∑n
i=1 ti = (n+ 1)−1

∑n
i=1 i = n/2. By definition,

µu = n−1
n∑
i=1

ui =
1

2
+ n−1

n∑
i=1

zi =
1

2
+ z̄.

It follows that

µαu(1/2)1−α =
1

2
(1 + 2z̄)α.

Using Taylor’s theorem once more, we see that

µαu(1/2)1−α =
1

2

(
1 + 2αz̄ + 2α(α− 1)z̄2 +

4α(α− 1)(α− 2)

3
(θµz̄)3

)
, (35)

with 0 ≤ θµ ≤ 1. Now z̄ is the estimation error made by estimating 1/2
by µu, and so it is Op(n

−1/2). The last term above is thus of order n−3/2 in
probability. Putting together equations (34) and (35) gives

n∑
i=1

[
ti

(
1 +

zi
ti

)α
− µαu

(1

2

)−α]
=
α(α− 1)

2

[ n∑
i=1

z2i
ti
− 2nz̄2

]
+ op(1),

and so from (32) we arrive at the result

Gα(F, F̂ ) =
n∑
i=1

z2i
ti
− 2nz̄2 + op(1). (36)

It is striking that the leading-order term in (36) does not depend on α.
For finite n, Gα does of course depend on α. Simulation shows that, for n
even as small as 10, the distributions of Gα and of the leading term in (36)
are very close indeed for α = 2, but that, for n even as large as 10,000,
the distributions are noticeably different for values of α far enough removed
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from 2. The reason for this phenomenon is of course the factor of α − 2 in
the remainder terms in (33) and (35).

If the limiting asymptotic distribution of Gα exists, it is the same as that
of the approximation in (36), and, if the latter exists, it is the distribution of
the limiting random variable obtained by replacing zi by n−1/2B(ti) (see (31))
and then letting n tend to infinity. For z̄ first, we have

n1/2z̄ = n−1/2
n∑
i=1

zi =d n
−1

n∑
i=1

B(ti) 
∫ 1

0

B(t) dt. (37)

Above, the symbol =d signifies equality in distribution, and the last step
follows on noting that the second last expression is a Riemann sum that
approximates the integral.

Similarly, we see that

n∑
i=1

z2i /ti =d n
−1

n∑
i=1

B2(ti)

ti
 
∫ 1

0

B2(t)

t
dt. (38)

From (37) and (38), we see that the limiting distribution of Gα is that of∫ 1

0

B2(t)

t
dt− 2

(∫ 1

0

B(t) dt
)2
. (39)

The denominator of t in the first integral may lead one to suppose that
the integral may diverge with positive probability. However, notice that the
expectation of the integral is∫ 1

0

1

t
EB2(t) dt =

∫ 1

0

(1− t) dt =
1

2
.

A longer calculation shows that the second moment of the integral is also
finite, so that the integral is finite in mean square, and so also in probability.
We conclude that the limiting distribution of Gα exists, is independent of α,
and is equal to the distribution of (39).

We now turn to the more interesting case in which F does depend on a
vector θ of parameters. The quantities ui are now given by ui = F (x(i), θ̂),

where θ̂ is assumed to be a root-n consistent estimator of θ. If θ is the true
parameter vector, then we can write x(i) = Q(vi, θ), where Q(·, θ) is the quan-
tile function inverse to the cumulative distribution function (CDF) F (·, θ),
and the vi have the distribution of the uniform order statistics. Then we
have ui = F (Q(vi, θ), θ̂), and

µu = n−1
n∑
i=1

F
(
Q(vi, θ), θ̂

)
.
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The statistic (28) becomes

Gα =
1

α(α− 1)

1

µαu(1/2)1−α

n∑
i=1

[
F
(
Q(vi, θ), θ̂

)α
t1−αi − µαu(1/2)1−α

]
.

Let p(x, θ) be the gradient of F with respect to θ, and define g(v, θ) to be
p
(
Q(v, θ), θ

)
. As before, we let zi = vi − ti. Then a short Taylor expansion

gives the approximation

F
(
Q(vi, θ), θ̂

)
= ti + zi + g>(ti, θ))s(θ) +Op(n

−1),

where s(θ) = θ̂ − θ is the estimation error, and is of order n−1/2. To leading
order asymptotically, a calculation exactly like that leading to (36) gives

Gα =
n∑
i=1

(
zi + g>(ti, θ)s(θ)

)2
ti

− 2
(
n−1/2

n∑
i=1

(
zi + g>(ti, θ)s(θ)

))2
+ op(1).

(40)
This asymptotic expression depends explicitly on θ, and also on the esti-
mator θ̂ that is used. In order to show that there does exist a limiting
distribution for (40), we suppose that there exists a (vector) function h(x, θ)
such that

n1/2(θ̂ − θ) = n1/2s(θ) = n−1/2
n∑
i=1

h(xi, θ) + op(1), (41)

where Eθh(x, θ) = 0. The function h exists straightforwardly for most com-
monly used estimators, including maximum likelihood and least squares. Our
sample is supposed to be IID, and so in (41) we can sum over the order statis-
tics x(i). Then a short Taylor expansion gives

n1/2s(θ) = n−1/2
n∑
n=1

h
(
Q(vi, θ), θ

)
+ op(1)

= n−1/2
n∑
i−1

h
(
Q(ti + zi, θ), θ

)
+ op(1)

= n−1/2
n∑
i=1

[
h
(
Q(ti, θ), θ

)
+
h′
(
Q(ti, θ), θ

)
f
(
Q(ti, θ), θ

) zi]+ op(1), (42)

where f(x, θ) is the density that corresponds to F (x, θ) and h′ is the deriva-
tive of h with respect to its first argument. The integration over the whole
real line means in fact integration over the support of the distribution F .
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Now, again by use of an argument based on a Riemann sum, we see that

n−1
n∑
i=1

h
(
Q(ti, θ), θ

)
=

∫ 1

0

h
(
Q(t, θ), θ

)
dt+O(n−1)

=

∫ ∞
−∞

h(x, θ) dF (x, θ) +O(n−1) = O(n−1),

because Eθh(x, θ) = 0. Thus the first term in the sum in (42) is O(n−1/2)
and can be ignored for the asymptotic distribution. For the second term, we
replace zi as before by n−1/2B(ti) to get

n1/2s(θ) 
∫ 1

0

h′
(
Q(t, θ), θ

)
f
(
Q(t, θ), θ

)B(t) dt =

∫ ∞
−∞

h′(x, θ)B
(
F (x, θ)

)
dx, (43)

where for the last step we make the change of variables x = Q(t, θ), and note
that dF (x, θ) = f(x, θ) dx.

Next consider the sum

n−1/2
n∑
i=1

(
zi + g>(ti, θ)s(θ)

)
that appears in (40). By the definition of g, g(ti, θ) = p

(
Q(ti, θ), θ

)
. Hence,

with error of order n−1, we have

n−1
n∑
i=1

g(ti, θ) = n−1
n∑
i=1

p
(
Q(ti, θ), θ

)
=

∫ 1

0

p
(
Q(t, θ), θ

)
dt =

∫ ∞
−∞

p(x, θ) dF (x, θ) ≡ P (θ).

Using (43), we have

n−1/2
n∑
i=1

g>(ti, θ)s(θ) P>(θ)

∫ ∞
−∞

h′(x, θ)B
(
F (x, θ)

)
dx,

and so

n−1/2
n∑
i=1

(
zi+g

>(ti, θ)s(θ)
)
 
∫ 1

0

B(t) dt+P>(θ)

∫ ∞
−∞

h′(x, θ)B
(
F (x, θ)

)
dx.

(44)
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Finally, we consider the first sum in (40). By arguments similar to those
used above, we see that

n∑
i=1

(
zi + g>(ti, θ)s(θ)

)2
ti

 
∫ 1

0

1

t

[
B(t) + p>

(
Q(t, θ), θ

)
× (45)∫ ∞

−∞
h′(x, θ)B

(
F (x, θ)

)
dx
]2

dt.

So as to be sure that the integral converges with probability 1, we have to
show that the non-random integrals∫ 1

0

p
(
Q(t, θ), θ

)
t

dt and

∫ 1

0

p2
(
Q(t, θ), θ

)
t

dt

are finite. Observe that∫ 1

0

p
(
Q(t, θ), θ

)
t

dt =

∫ ∞
−∞

p(x, θ)

F (x, θ)
dF (x, θ) =

∫ ∞
−∞

Dθ logF (x, θ) dF (x, θ),

where Dθ is the operator that takes the gradient of its operand with respect
to θ. Similarly,∫ 1

0

p2
(
Q(t, θ), θ

)
t

dt =

∫ ∞
−∞

(
Dθ logF (x, θ)

)2
F (x, θ) dF (x, θ),

Clearly, it is enough to require that Dθ log(F (x, θ) should be bounded for
all x in the support of F (·, θ). It is worthy of note that this condition is not
satisfied if varying θ causes the support of the distribution to change.

Under the condition just stated, the results (45) and (44) establish the
existence of the limiting distribution of Gα. In general, this distribution de-
pends on the parameter vector θ, and so, in general, Gα is not asymptotically
pivotal with respect to the parametric family represented by the distributions
F (·, θ). However, if the family can be interpreted as a location-scale family,
then it is not difficult to check that, if θ̂ is the maximum-likelihood estimator,
the random quantity g>(ti, θ)s(θ) does not in fact depend on θ. In addition,
it turns out that the lognormal family also has this property. It would be
interesting to see how common the property is, since, when it holds, the
bootstrap benefits from an asymptotic refinement. But, even when it does
not, the existence of the asymptotic distribution provides an asymptotic jus-
tification for the bootstrap.

It may be useful to give the details here of the bootstrap procedure used in
the following section in order to perform goodness-of-fit tests, in the context
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both of simulations and of an application with real data. It is a paramet-
ric bootstrap procedure; see for instance Horowitz (1997) or Davidson and
MacKinnon (2006). Estimates θ of the parameters of the family F (·, θ) are
first obtained, after which the statistic of interest τ̂ is computed, whether
it is (28) for a chosen value of α or one of the other statistics studied in
the next section. Bootstrap samples of the same size as the original data
sample are drawn from the estimated distribution F (·, θ̂). Note that this is
not a resampling procedure. For each of a suitable number B of bootstrap
samples, parameter estimates θ∗j , j = 1, . . . , B, are obtained using the same
estimation procedure as with the original data, and the bootstrap statistic τ ∗j
computed, also exactly as with the original data, but with F (·, θ∗j) as the tar-
get distribution. Then a bootstrap P value is obtained as the proportion of
the τ ∗j that are more extreme than τ̂ , that is, greater than τ̂ for statistics like
(28) which reject for large values. For well-known reasons – see Davison and
Hinkley (1997) or Davidson and MacKinnon (2000) – the number B should
be chosen so that (B + 1)/100 is an integer. In the sequel, we set B = 999
unless otherwise stated. This computation of the P value can be used to test
the fit of any parametric family of distributions.

4 Simulations and Application

We now turn to the way the new class of goodness-of-fit statistics performs
in practice. In this section, we first study the finite sample properties of our
Gα test statistic and those of several standard measures: in particular we
examine the comparative performance of the Anderson and Darling (1952)
statistic (AD), the Cramér-von-Mises statistic given by

CVM =

∫ ∞
−∞

[
F̂ (x)− F (x, θ̂)

]2
dF (x, θ̂),

the Kolmogorov-Smirnov statistic

KS = sup
x
|F̂ (x)− F (x, θ̂)|,

and the Pearson chi-square (P) goodness-of-fit statistic

P =
m∑
i=1

(Oi − Ei)2 /Ei,

where Oi is the observed percentage in the ith histogram interval, Ei is the
expected percentage in the ith histogram interval and m is the number of
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histogram intervals.9 Then, we provide an application using a UK data set
on income distribution.

4.1 Tests for Normality

Consider the application of the Gα statistic to the problem of providing a
test for normality. It is clear from expression (28) that different members of
the Gα family will be sensitive to different types of divergence of the EDF
of the sample data from the model F . We take as an example two cases in
which the data come from a Beta distribution, and we attempt to test the
hypothesis that the data are normally distributed.
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Figure 1: Different types of divergence of the data distribution from the
model

Figure 1 represents the cumulative distribution functions and the density
functions of two Beta distributions with their corresponding normal distribu-
tions (with equal mean and standard deviation). The parameters of the Beta
distributions have been chosen to display divergence from the normal distri-
bution in opposite directions. It is clear from Figure 1 that the Beta(5,2)

9 We use the standard tests as implemented with R, the number of intervals m is due
to Moore (1986). Note that G, AD, CVM and KS statistics are based on the empirical
distribution function (EDF) and the P statistic is based on the density function.
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distribution is skewed to the left and Beta(2,5) is skewed to the right, while
the normal distribution is of course unskewed. As can be deduced from (28),
in the first case the Gα statistic decreases as α increases, whereas in the
second case it increases with α.

α -2 -1 0 0.5 1 2 5 10

B(5,2) 2.29 2.03 1.85 1.79 1.73 1.64 1.47 1.35
B(2,5) 3.70 4.02 4.6 5.15 6.01 11.09 1.37e4 3.34e11
t(4) 61.35 6.83 4.17 3.99 3.94 4.02 4.74 7.30

Table 1: Normality tests with Gα based on 1000 observations drawn from
Beta and t distributions

These observations are confirmed by the results of Table 1, which shows
normality tests with Gα based on single samples of 1000 observations each
drawn from the Beta(5,2) and from the Beta(2,5) distributions. Additional
results are provided in the table with data generated by Student’s t dis-
tribution with four degrees of freedom, denoted t(4). The t distribution is
symmetric, and differs from the normal on account of kurtosis rather than
skewness. The results in Table 1 for t(4) show that Gα does not increase or
decrease globally with α. However, as this example shows, the sensitivity to
α provides information on the sort of divergence of the data distribution from
normality. It is thus important to compare the finite-sample performance of
Gα with that of other standard goodness-of-fit tests.

Table 2 presents simulation results on the size and power of normality
tests using Student’s t and Gamma (Γ) distributions with several degrees of
freedom, df = 2, 4, 6, . . . , 20. The t and Γ distributions provide two realistic
examples that exhibit different types of departure from normality but tend
to be closer to the normal as df increases. The values given in Table 2 are
the percentages of rejections of the null H0 : x ∼ Normal at 5% nominal level
when the true distribution of x is F0, based on samples of 100 observations.
Rejections are based on bootstrap P values for all tests, not just those that
use Gα. When F0 is the standard normal distribution (first line), the results
measure the Type I error of the tests, by giving the percentage of rejections
of H0 when it is true. For nominal level of 5%, we see that the Type I error is
small. When F0 is not the normal distribution (other lines of the Table), the
results show the power of the tests. The higher a value in the table, the better
is the test at detecting departures from normality. As expected, results show
that the power of all statistics considered increases as df decreases and the
distribution is further from the normal distribution.
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Standard tests Gα test with α =

F0 AD CVM KS P -2 -1 0 0.5 1 2 5

N(0,1) 5.3 5.2 5.4 5.4 4.6 4.6 4.7 5.0 5.1 5.2 5.4

t(20) 7.7 7.3 6.6 5.8 11.7 10.4 7.3 6.6 6.7 6.5 6.2
t(18) 8.9 8.3 6.6 5.5 12.4 11.5 8.0 7.4 7.4 7.5 6.9
t(16) 9.9 8.9 7.1 6.3 13.5 12.9 9.4 8.6 8.6 8.7 8.0
t(14) 9.8 8.8 7.5 6.0 15.0 13.8 9.4 8.7 8.5 9.0 8.2
t(12) 13.5 12.0 8.9 6.5 17.8 17.8 12.7 11.8 11.7 11.9 11.0
t(10) 15.2 12.8 10.3 6.7 21.8 21.3 15.2 13.5 13.4 13.6 12.4
t(8) 22.3 19.0 13.4 8.2 26.5 26.5 20.7 19.1 19.0 19.4 17.7
t(6) 37.5 33.0 24.1 13.6 34.4 37.3 33.4 32.2 31.9 32.7 29.8
t(4) 64.3 59.9 48.5 28.6 49.6 59.9 59.4 58.5 58.7 59.5 56.6
t(2) 98.0 97.6 95.2 87.6 87.3 96.4 97.0 97.1 97.2 97.3 96.9

Γ(20) 25.2 21.9 17.8 10.2 0.1 4.5 13.8 16.1 18.4 23.2 36.3
Γ(18) 28.3 25.1 20.9 10.7 0.1 5.8 16.4 19.3 22.0 27.2 40.0
Γ(16) 30.9 27.2 21.9 12.0 0.1 7.1 18.9 22.0 24.5 29.5 42.6
Γ(14) 34.5 30.3 24.4 11.8 0.1 8.7 21.2 25.1 28.1 34.5 49.3
Γ(12) 41.3 36.6 28.5 14.5 0.1 10.7 26.4 30.3 34.0 40.6 56.2
Γ(10) 48.9 42.4 34.0 17.1 0.1 14.2 32.3 36.5 41.1 48.5 64.4
Γ(8) 58.1 51.7 41.6 22.0 0.1 19.9 41.7 47.1 51.6 59.7 74.8
Γ(6) 72.7 65.4 52.3 31.0 0.5 31.4 57.5 63.0 67.7 75.5 87.8
Γ(4) 88.5 82.1 68.8 49.7 2.0 55.7 79.6 84.0 87.0 92.1 97.5
Γ(2) 99.8 99.3 95.4 95.3 22.5 96.5 99.4 99.7 99.8 99.9 100

Table 2: Normality tests: percentage of rejections of H0 : x ∼ Normal,
when the true distribution of x is F0. Sample size = 100, 5000 replications,
999 bootstraps.

Among the standard goodness-of-fit tests, Table 2 shows that the AD
statistic is better at detecting most departures from the normal distribution
(italic values). The CVM statistic is close, but KS and P have poorer power.
Similar results are found in Stephens (1986). Indeed, the Pearson chi-square
test is usually not recommended as a goodness-of-fit test, on account of its
inferior power properties.

Among the Gα goodness-of-fit tests, Table 2 shows that the detection of
greatest departure from the normal distribution is sensitive to the choice of α.
We can see that, in most cases, the most powerful Gα test performs better
than the most powerful standard test (bold vs.italic values). In addition, it is
clear that Gα increases with α when the data are generated from the Gamma
distribution. This is due to the fact that the Gamma distribution is skewed
to the right.
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4.2 Tests for other distributions

Table 3 presents simulation results on the power of tests for the lognormal
distribution.10 The values given in the table are the percentages of rejections
of the null H0 : x ∼ lognormal at level 5% when the true distribution of x is
the Singh-Maddala distribution – see Singh and Maddala (1976) – of which
the CDF is

FSM(x) = 1− 1

(1 + axb)c

with parameters a = 100, b = 2.8, and c = 1.7. We can see that the most
powerful Gα test (α = 1) performs better than the most powerful standard
test (bold vs.italic values). The least powerful Gα test (α = 5) performs
similarly to the KS test.

Standard tests Gα test with α =

nobs AD CVM KS P -2 -1 0 0.5 1 2 5

50 20.4 18.2 14.5 9.4 32.2 33.7 25.7 21.3 19.3 17.4 12.4
100 33.7 30.2 23.1 11.4 46.0 49.0 37.8 33.3 31.0 28.2 18.1
200 56.2 51.5 40.6 17.4 65.7 70.3 59.3 55.5 53.1 50.1 36.1
300 73.9 69.4 56.9 24.6 81.0 84.3 76.4 73.0 71.0 68.1 55.4
400 84.3 80.2 68.5 31.8 89.0 91.5 85.7 83.5 82.2 79.9 69.2
500 90.6 87.7 77.7 38.7 93.8 95.0 91.5 90.0 89.1 87.5 79.5

Table 3: Lognormality tests: percentage of rejections of H0 : x ∼ lognormal,
when the true distribution of x is Singh-Maddala(100,2.8,1.7). 5000 replica-
tions, 499 bootstraps.

Table 4 presents simulation results on the power of tests for the Singh-
Maddala distribution. The values given in the table are the percentage of
rejections of the null H0 : x ∼ SM at 5% when the true distribution of x
is lognormal. We can see that the most powerful Gα test (α = 5) performs
better than the most powerful standard test (bold vs. italic values).

Note that the two experiments concern the divergence between Singh-
Maddala and lognormal distributions, but in opposite directions. For this
reason the Gα tests are sensitive to α in opposite directions.

10 Results under the null are close to the nominal level of 5%. For n = 50, we obtain re-
jection rates, for AD, CVM, KS, Pearson and G with α = −2,−1, 0, 0.5, 1, 2, 5 respectively,
of 5.02, 4.78, 4.76, 4.86, 5.3, 5.06, 4.88, 4.6, 4.72, 5.18.
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Standard tests Gα test with α =

nobs AD CVM KS P -2 -1 0 0.5 1 2 5

500 53.6 43.3 32.3 16.7 11.3 37.3 47.7 50.2 53.0 57.4 73.5
600 65.8 52.6 37.4 20.1 18.6 51.3 60.1 62.4 64.5 68.4 83.3
700 75.7 61.8 43.7 22.8 24.9 61.4 71.5 73.3 74.4 77.9 87.4
800 82.3 69.3 53.1 27.6 37.9 72.5 79.3 80.6 82.6 85.8 93.6
900 87.7 75.9 54.8 30.6 45.8 77.5 82.9 83.9 85.6 88.5 93.7
1000 91.2 80.9 62.8 34.2 55.7 82.6 86.9 88.1 89.4 92.4 96.4

Table 4: Singh-Maddala tests: percentage of rejections of H0 : x ∼ SM, when
the true distribution of x is lognormal(0,1). 1000 replications, 199 bootstraps.

4.3 Application

Finally, as a practical example, we take the problem of modelling income
distribution using the UK Households Below Average Incomes 2004-5 (2006).
The application uses the “before housing costs” income concept, deflated
and equivalised using the OECD equivalence scale, for the cohort of ages
21-45, couples with and without children, excluding households with self-
employed individuals. The variable used in the dataset is oe bhc. We exclude
households with self-employed individuals as reported incomes are known to
be misrepresented. The empirical distribution F̂ consists of 3858 observations
and has mean and standard deviation (398.28, 253.75).

We test the goodness-of-fit of a Singh-Maddala distribution, with 999 boot-
strap samples used to compute the bootstrap P values. Table 5 presents the
results with standard goodness-of-fit tests, Table 6 presents the results with
Gα tests. If we use standard goodness-of-fit statistics, we would not reject the
Singh-Maddala distribution in most cases. Conversely, if we useGα goodness-
of-fit statistics, we would reject the Singh-Maddala distribution in most cases.
Our previous simulation study shows Gα and AD have better finite sample
properties. This leads us to conclude that the Singh-Maddala distribution is
not a good fit, contrary to the conclusion from standard goodness-of-fit tests
only.

test AD CVM KS P

statistic 0.569 0.047 0.009 54.4
p-value 0.033 0.308 0.323 0.344

Table 5: Standard goodness-of-fit tests: bootstrap P values, H0 : x ∼ SM.
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α -2 -1 0 0.5 1 2 5

statistic 164 1.36 0.441 0.404 0.390 0.382 0.398
p-value 0.003 0.002 0.003 0.006 0.007 0.010 0.013

Table 6: Gα goodness-of-fit tests: bootstrap P values, H0 : x ∼ SM.

5 Concluding Remarks

The family of goodness-of-fit tests presented in this paper has been seen to
have excellent size and power properties as compared with other, commonly
used, goodness-of-fit tests. It has the further advantage that the profile of
the Gα statistic as a function of α can provide valuable information about
the nature of the departure from the target family of distributions, when
that family is wrongly specified.

We have advocated the use of the parametric bootstrap for tests based
on Gα. The distributions of the limiting random variables (39) and (34) exist,
as shown, but cannot be conveniently used without a simulation experiment
that is at least as complicated as that involved in a bootstrapping procedure.
In addition, there is no reason to suppose that the asymptotic distributions
are as good an approximation to the finite-sample distribution under the
null as the bootstrap distribution. We rely on the mere existence of the
limiting distribution in order to justify use of the bootstrap. The same
reasoning applies, of course, to the conventional goodness-of-fit tests studied
in Section 4. They too give more reliable inference in conjunction with the
parametric bootstrap.

Of course, the Gα statistics for different values of α are correlated, and
so it is not immediately obvious how to conduct a simple, powerful, test
that works in all cases. It is clearly interesting to compute Gα for various
values of α, and so a solution to the problem would be to use as test statistic
the maximum value of Gα over some appropriate range of α. The simulation
results in the previous section indicate that a range of α from -2 to 5 should be
enough to provide ample power. It would probably be inadvisable to consider
values of α outside this range, given that it is for α = 2 that the finite-sample
distribution is best approximated by the limiting asymptotic distribution.
That said, the maximum of Gα has the same limiting distribution as Gα

for any fixed α, because there is only one limit distribution for all α. Thus
bootstrapping the maximum over the chosen range is asymptotically justified,
and seems likely to give a powerful test, to the extent that our simulation
results can be generalised.
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