
econstor www.econstor.eu

Der Open-Access-Publikationsserver der ZBW – Leibniz-Informationszentrum Wirtschaft
The Open Access Publication Server of the ZBW – Leibniz Information Centre for Economics

Nutzungsbedingungen:
Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche,
räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts
beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen
der unter
→  http://www.econstor.eu/dspace/Nutzungsbedingungen
nachzulesenden vollständigen Nutzungsbedingungen zu
vervielfältigen, mit denen die Nutzerin/der Nutzer sich durch die
erste Nutzung einverstanden erklärt.

Terms of use:
The ZBW grants you, the user, the non-exclusive right to use
the selected work free of charge, territorially unrestricted and
within the time limit of the term of the property rights according
to the terms specified at
→  http://www.econstor.eu/dspace/Nutzungsbedingungen
By the first use of the selected work the user agrees and
declares to comply with these terms of use.

zbw Leibniz-Informationszentrum Wirtschaft
Leibniz Information Centre for Economics

Oomen, Roel C. A.

Working Paper

Modelling realized variance when
returns are serially correlatedModelling
realized variance when returns are
serially correlatedDiscussion papers // WZB, Wissenschaftszentrum Berlin für Sozialforschung,
Forschungsschwerpunkt Markt und Politische Ökonomie, Abteilung Marktprozesse und
Steuerung, No. SP II 2004-11
Provided in cooperation with:
Wissenschaftszentrum Berlin für Sozialforschung (WZB)

Suggested citation: Oomen, Roel C. A. (2004) : Modelling realized variance when returns are
serially correlated, Discussion papers // WZB, Wissenschaftszentrum Berlin für Sozialforschung,
Forschungsschwerpunkt Markt und Politische Ökonomie, Abteilung Marktprozesse und
Steuerung, No. SP II 2004-11, http://hdl.handle.net/10419/51076

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6643249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 WISSENSCHAFTSZENTRUM BERLIN 
 FÜR SOZIALFORSCHUNG 
 
 SOCIAL SCIENCE RESEARCH 
 CENTER BERLIN 
 

ISSN Nr. 0722 – 6748 
 

Roel C. A. Oomen * 
     
    

Modelling Realized Variance when Returns are  
Serially Correlated 

*  Warwick Business School, University of Warwick 
     
     

SP II 2004 – 11 

May 2004 
 

 
Research Area 
Markets and Political Economy 

Research Unit 
Market Processes and Governance 

Forschungsschwerpunkt 
Markt und politische Ökonomie 

Abteilung 
Marktprozesse und Steuerung 

 



 

Zitierweise/Citation: 
 
Roel C. A. Oomen, Modelling Realized Variance when 
Returns are Serially Correlated, Discussion Paper  
SP II 2004 – 11, Wissenschaftszentrum Berlin, 2004. 
 
Wissenschaftszentrum Berlin für Sozialforschung gGmbH, 
Reichpietschufer 50, 10785 Berlin, Germany, Tel. (030) 2 54 91 – 0 
Internet:  www.wz-berlin.de  

ii 



 

ABSTRACT 

Modelling Realized Variance when Returns are Serially Correlated 

by Roel C. A. Oomen* 

This article examines the impact of serial correlation in high frequency returns 
on the realized variance measure. In particular, it is shown that the realized 
variance measure yields a biased estimate of the conditional return variance 
when returns are serially correlated. Using 10 years of FTSE-100 minute by 
minute data we demonstrate that a careful choice of sampling frequency is 
crucial in avoiding substantial biases. Moreover, we find that the autocovariance 
structure (magnitude and rate of decay) of FTSE-100 returns at different 
sampling frequencies is consistent with that of an ARMA process under 
temporal aggregation. A simple autocovariance function based method is 
proposed for choosing the “optimal” sampling frequency, that is, the highest 
available frequency at which the serial correlation of returns has a negligible 
impact on the realized variance measure. We find that the logarithmic realized 
variance series of the FTSE-100 index, constructed using an optimal sampling 
frequency of 25 minutes, can be modelled as an ARFIMA process. Exogenous 
variables such as lagged returns and contemporaneous trading volume appear 
to be highly significant regressors and are able to explain a large portion of the 
variation in daily realized variance. 
 
Keywords: High frequency data, realized return variance, market microstructure, 

 temporal aggregation, long memory, bootstrap 

                                                 
*  The paper has greatly benefitted from discussions with Abhay Abhyankar, Frank Diebold, 

Marcelo Fernandes, George Jiang, Mark Lauer, Bent Sørensen, Juan Toro and Ilias Tsiakas. 
I am particularly grateful to Søren Johansen for many detailed comments and suggestions.  
I thank Logical Information Machines, Inc. who kindly provided the data needed for the 
analysis. The research was supported by the Netherlands Organization for Scientific 
Research (NWO) under reference number SIR124010 and R46447. 
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ZUSAMMENFASSUNG 

Modellierung realisierter Varianz bei autokorrelierten Erträgen 

Dieser Artikel untersucht die Auswirkungen von autokorrelierten Erträgen auf 
das Maß der realisierten Varianz bei hochfrequenten Daten über die Erträge. Es 
wird gezeigt, dass die realisierte Varianz ein verzerrter Schätzer für die 
bedingte Varianz der Erträge bei Vorliegen von Autokorrelation ist. Unter Ver-
wendung eines zehnjährigen Datensatzes von Minutendaten des FTSE-100 
wird dargestellt, dass eine sorgfältige Auswahl der Stichprobenfrequenz unab-
dingbar zur Vermeidung von Verzerrungen ist. Eine einfache Methode zur 
Bestimmung der optimalen Stichprobenfrequenz, basierend auf der Auto-
kovarianzfunktion, wird vorgeschlagen. Diese ergibt sich als die höchste 
Frequenz, bei der die vorhandene Autokorrelation noch einen vernach-
lässigbaren Einfluss auf das Maß der realisierten Varianz hat. Für den 
betrachteten Datensatz ergibt sich eine optimale Frequenz von 25 Minuten. 
Unter Verwendung dieser Frequenz können die logarithmierten Erträge des 
FTSE-100 als ARFIMA Prozess modelliert werden. 
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1 Introduction

A crucial element in the theory and practice of derivative pricing, asset allocation and financial risk

management is the modelling of asset return variance. The Stochastic Volatility and the Autoregressive

Conditional Heteroskedasticity class of models have become widely established and successful ap-

proaches to the modelling of the return variance process in both the theoretical and the empirical litera-

ture (see for example Bollerslev, Engle, and Nelson (1994) and Ghysels, Harvey, and Renault (1996)).

Despite the enormous amount of research on return variance modelling carried out over the past two

decades, complemented with overwhelming empirical evidence on the presence of heteroskedastic ef-

fects in virtually all financial time series, the variety of competing variance models highlights the dis-

agreement on what the correct model specification should be. An alternative route to identifying the

dynamics of the return variance process is to utilize the information contained in option prices. Yet,

also here, several studies have documented a severe degree of model misspecification even for the more

general option pricing formulas that incorporate stochastic volatility, interest rates and jumps (see for

example Bakshi, Cao, and Chen (1997)). It is therefore not surprising that a growing number of re-

searchers have turned their attention to the use of high frequency data which, under certain conditions,

allow for an essentially non-parametric or model-free approach to the measurement of return variance.

The objective of this paper is twofold. First, explore the extent to which the now widely available intra-

day data on financial asset prices can be used to improve and facilitate the estimation and modelling

of return variance. Special attention is given to the impact that market microstructure-induced serial

correlations, present in returns sampled at high frequency, have on the resulting variance estimates.

Second, analyze and model the time series of estimated (daily) return variance. Here the focus is on

identifying a suitable model plus a set of exogenous variables that is able to characterize and explain

variation in the return variance.

The idea of inferring the unobserved return variance from high frequency data is not new. In fact, it

can be traced back to Merton (1980) who notes that the variance of a time-invariant Gaussian diffusion

process (over a fixed time-interval) can be estimated arbitrarily accurately as the sum of squared realiza-

tions, provided that the data are available at a sufficiently high sampling frequency. Empirical studies

making use of this insight include French, Schwert, and Stambaugh (1987), who estimate monthly re-

turn variance as the sum of squared daily returns and Andersen and Bollerslev (1998), Hsieh (1991),

and Taylor and Xu (1997) who estimate daily return variance as the sum of squared intra-day returns.

More recent studies that apply and develop this idea further include Andersen, Bollerslev, Diebold,

and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2001, 2003), Areal and Taylor (2002),

Barndorff-Nielsen and Shephard (2002, 2003), Blair, Poon, and Taylor (2001), Maheu and McCurdy

(2002), and Martens (2002).
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One of the main attractions that has been put forward of estimating return variance by the sum

of squared intra-period returns, a measure commonly referred to as “realized variance” (or “realized

volatility” being the square root of realized variance), is that this approach does not require the spec-

ification of a potentially misspecified parametric model. In addition, when constructing the realized

variance measure there is no need to take the widely documented and pronounced intra-day variance

pattern of the return process into account. This feature contrasts sharply with parametric variance mod-

els which generally require the explicit modelling of intra-day regularities in return variance (see for

example Engle (2000)). Finally, calculating realized variance is straightforward and can be expected

to yield accurate variance estimates as it relies on large amounts of intra-day data. The theoretical

justification for using the realized variance measure has been provided in a series of recent papers

by Andersen, Bollerslev, Diebold, and Labys (2001, 2003, ABDL hereafter). In particular, ABDL

have shown that when the return process follows a special semi-martingale, the Quadratic Variation

(QV) process is the dominant determinant of the conditional return variance. By definition, QV can

be approximated by the sum of squared returns at high sampling frequency, or in other words realized

variance. Moreover, under certain restrictions on the conditional mean of the process, QV is the single

determinant of the conditional return variance, thereby underlining the importance of the realized vari-

ance measure. In related work, Barndorff-Nielsen and Shephard (2003) derive the limiting distribution

of realized power variation, that is the sum of absolute powers of increments (i.e. returns) of a pro-

cess, for a wide class of SV models. It is important to note that, in contrast to conventional asymptotic

theory, here, the limit distribution results rely on the concept of “in-fill” or “continuous-record” asymp-

totics, i.e. letting the number of observations tends to infinity while keeping the time interval fixed. In

the context of (realized) variance estimation, this translates into cutting up, say, the daily return into a

sequence of intra-day returns sampled at an increasingly high frequency (see for example Foster and

Nelson (1996)).

The recently derived consistency and asymptotic normality of the realized variance measure greatly

contribute to a better understanding of its properties and, in addition, provide a formal justification for

its use in high frequency data based variance measurement. However, a major concern that has largely

been ignored in the literature so far, is that in practice the applicability of these asymptotic results is

severely limited for two reasons. First, the amount of data available over a fixed time interval is bounded

by the number of transactions recorded. Second, the presence of market microstructure effects in high

frequency data potentially invalidate the asymptotic results.

This paper studies the properties of the realized variance in the presence of market microstructure-

induced serial correlation. In particular, we show that the realized variance measure is a biased esti-

mator of the conditional return variance when returns are serially correlated. The return dependence

at high sampling frequencies is analyzed using a decade of minute by minute FTSE-100 index returns.
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We find that the autocovariance structure (magnitude and rate of decay) of returns at different sampling

frequencies is consistent with that of an ARMA process under temporal aggregation. Based on this

finding, an autocovariance based method is proposed to determine the “optimal” sampling frequency

of returns, that is, the highest available frequency at which the market microstructure-induced serial

correlations have a negligible impact on the realized variance measure1.

Following the methodology outlined above, we find that the optimal sampling frequency for the

FTSE-100 data set lies around 25 minutes. We construct a time series of daily realized variance,

confirm several styled facts reported in earlier studies, and find that the logarithmic realized variance

series can be modelled well using an ARFIMA specification. Exogenous variables such as lagged

returns and contemporaneous trading volume appear to be highly significant regressors, explaining a

large portion of the variation in daily realized variance. While the regression coefficients of lagged

returns indicate the presence of Black’s leverage effect, there is no indication of reduced persistence in

the return variance process upon inclusion of contemporaneous trading volume. This latter finding is

in sharp contrast with the study by Lamoureux and Lastrapes (1990).

The remainder of this paper is organized as follows. Section 2 investigates the impact of serial

correlation in returns on the realized variance measure. Here, results on temporal aggregation of an

ARMA process are used to characterize the bias of the realized variance measure at different sampling

frequencies. Section 3 reports the empirical findings based on the FTSE-100 data set while Section 4

concludes.

2 Realized Variance

The notion of realized variance, as introduced by ABDL, is typically discussed in a continuous time

framework where logarithmic prices are characterized by a semi-martingale. More restrictive speci-

fications have been considered by Barndorff-Nielsen and Shephard (2002, 2003). In this setting, the

quadratic variation (QV) of the return process can be consistently estimated as the sum of squared

intra-period returns. It is this measure that is commonly referred to as realized variance. Importantly,

ABDL show that QV is the crucial determinant of the conditional return (co-) variance thereby estab-

lishing the relevance of the realized variance measure. In particular, when the conditional mean of the

return process is deterministic or a function of variables contained in the information set, the QV is

in fact equal to the conditional return variance which can thus be estimated consistently as the sum

of squared returns. Notice that this case precludes randomintra-period evolution of the instantaneous
1Independent work by Andersen, Bollerslev, Diebold, and Labys (2000b), Corsi, Zumbach, Müller, and Dacorogna (2001) have

proposed a similar approach to determine the optimal sampling frequency. Other related studies include Aı̈t-Sahalia and Mykland (2003),

Andreou and Ghysels (2001), Bai, Russell, and Tiao (2001).

3



mean. However, it is argued by ABDL that such effects are likely to be trivial in magnitude and that

the QV therefore remains the dominant determinant of the conditional return variance.

Below we analyze the impact of serial correlation in returns on the realized variance measure. As

opposed to ABDL and Barndorff-Nielsen and Shephard (2002, 2003), a simple discrete time model for

returns is used for the sole reason that it is sufficient to illustrate the main ideas. In what follows, the

period of interest is set to one day.

Let St,j (j = 1, . . . , N) denote thejth intra day−t logarithmic price of securityS. At sampling

frequencyf , assuming equi-time spaced2 observations,Nf = N
f

intra-day returns can be constructed

asRf,t,i = St,if − St,(i−1)f , for i = 1, . . . , Nf andSt,0 = St−1,N . By the additive property of returns, it

follows that the day−t return is given by:

Rt =

Nf∑
i=1

Rt,f,i.

We assume that the (excess) return follows amartingale difference sequenceand that its conditional

distribution, i.e.Rt,f,i|Ft,f,(i−1) whereFt,f,j denotes the information set available up to thejth period

of dayt, is symmetric. The need for this symmetry assumption will become clear later on. While this

specification allows for deterministic and stochastic fluctuations in the return variance, it also implies

that returns are necessarily uncorrelated. LetV1 ≡ R2
t , i.e. the squared day−t return, andV2 ≡∑Nf

i=1 R2
t,f,i , i.e. the sum of squaredintra-day−t returns sampled at frequencyf . In the current context,

V2 is referred to as the realized variance measure. Since returns are serially uncorrelated at any given

frequencyf , it follows that:

V [Rt|Ft] = E
[
R2

t |Ft

]
= E




Nf∑
i=1

R2
t,f,i|Ft


 , (1)

whereFt denotes the information set available prior to the start of dayt. Realized variance, like squared

daily return, is therefore anunbiased estimator of the conditional return variance. However, it turns out

that the variance ofV2 is strictly smaller than the variance ofV1 and is therefore the preferred estimator.

To see this, it is sufficient to show thatE [V 2
2 |Ft] < E [V 2

1 |Ft]:

E
[
V 2

1 |Ft

]
= E

[∑
i

∑
j

∑

k

∑
m

Rt,f,iRt,f,jRt,f,kRt,f,m|Ft

]
= E

[∑
i

R4
t,f,i + 3

∑
i

∑

j 6=i

R2
t,f,iR

2
t,f,j|Ft

]
,

because the cross product of returns is zero except when (i)i = j = k = m, (ii) i = j 6= k = m, (iii)

i = k 6= j = m, (iv) i = m 6= j = k. Notice thatE
[
Rt,f,iR

3
t,f,j|Ft

]
= 0 for i > j by the martingale

2This can straightforwardly be generalized to irregularly time spaced returns.
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difference assumption andE
[
Rt,f,iR

3
t,f,j|Ft

]
= 0 for i < j by symmetry of the conditional distribution

of returns. On the other hand

E
[
V 2

2 |Ft

]
= E

[∑
i

R4
t,f,i +

∑
i

∑

j 6=i

R2
t,f,iR

2
t,f,j|Ft

]
,

from which it directly follows that

V [V2|Ft] < V [V1|Ft] .

The conditional return variance over a fixed period can thus be estimated arbitrarily accurate by sum-

ming up squared intra-period returns sampled at increasingly high frequency. While this result does

not depend on the choice of period (i.e. one day), it does crucially rely on the property that returns

are serially uncorrelated at any sampling frequency. The additional symmetry assumption rules out

any feedback effects from returns into the conditional third moment of returns but allows for skewness

in the unconditional return distribution. Other than that, weak conditions are imposed on the return

process. As mentioned above, the specification of the return dynamics is sufficiently general so as to

allow for deterministic and stochastic fluctuations in the return variance and, as a result, encompasses

a wide class of variance models.

2.1 Realized Variance in Practice

The results above suggest that straightforward use of high frequency returns can reduce the measure-

ment error in the return variance estimates provided that the return series is a martingale difference se-

quence (with a symmetric conditional return distribution). This section focuses on the implementation

and potential pitfalls that may be encountered in practice. In particular, minute by minute FTSE-100

index level data3 are used to investigate whether the method of calculating the daily realized variance

measure will yield satisfactory results. The additive property of returns allows us to decompose the

squared daily return as:

R2
t =




Nf∑
i=1

Rf,t,i




2

=

Nf∑
i=1

R2
f,t,i + 2

Nf−1∑
i=1

Nf∑
j=i+1

Rf,t,iRf,t,j. (2)

It is clear that when the returns are serially uncorrelated at sampling frequencyf , the second term on

the right hand side of expression(2) is zero in expectation and the realized variance measure constitutes

an unbiased estimator of the conditional return variance. However, when returns are serially correlated
3I thankLogical Information Machines, Inc.who kindly provided the data needed for the analysis. The data set contains minute by

minute data on the FTSE-100 index level, starting May 1, 1990 and ending January 11, 2000. For each day, the data is available from

8:35 until 16:10 (except for the period from July 17, 1998 until September 17, 1999 during which the data is available from 9:00 until

16:10). The total number of observations exceeds one million.
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the cross product of returns may not vanish in expectation which, in turn, introduces a bias into the

realized variance measure. In particular, when returns are positively (negatively) correlated4, the sum

of squared intra-day returns willunder-estimate(over-estimate) daily conditional return variance as the

cross multiplication of returns will be positive (negative) in expectation.

At first sight, the practical relevance of this finding seems to be challenged by the efficient markets

hypothesis which claims that the presence of significant serial correlation in returns, if any, is unlikely

to persist for extended periods of time. It is important to note, however, that the efficient markets

hypothesis concernseconomicand not statistical significance of serial correlation. Therefore, due to the

presence of market microstructure5 effects and transaction costs, a certain degree of serial correlation

in returns does not necessarily conflict with market efficiency.

In the market microstructure literature, a prominent hypothesis that is able to rationalize serial cor-

relation in stock index returns is non-synchronous trading. The basic idea is that when individual

securities in an index do not trade simultaneously, the contemporaneous correlation among returns in-

duces serial correlation in the index returns. Intuitively, when the index components non-synchronously

incorporate shocks to a common factor that is driving their price, this will result in a sequence of cor-

related price changes at the aggregate or index price level. As discussed by Lo and MacKinlay (1990),

non-synchronous trading induces positive serial correlation in the index returns. On the other hand, the

Roll (1984) bid/ask bounce hypothesis often applies to single asset returns which are typically found

to exhibit negative serial correlation. Here the argument is as follows: when at a given point in time

no new information arrives in a (dealer) market, the stock price is expected to bounce between the bid

and the ask price whenever a trade occurs. Although this phenomenon may not be apparent at a daily

or weekly frequency, it is likely to have a discernible impact on returns sampled at high (intra-day)

frequency. Finally, transaction costs and feedback trading, in addition to non-synchronous trading and

the bid-ask bounce, may also induce serial correlation in returns. For an empirical investigation of

these issues see for example Säfvenblad (2000). Although this paper does not aim to analyze the vari-

ous market microstructure effects in specific, we do want to highlight the presence of such effects and

study their impact on the realized variance measure.

Several studies have encountered the impact of serial correlation in returns on the estimates of

return variance. For example, French and Roll (1986) find that stock return variance is much lower

when estimated using hourly instead of daily data, indicating the presence of positive serial correlation

in their data set. Recognizing the presence of serial correlation, French, Schwert, and Stambaugh
4When returns exhibit both positive and negative serial correlation, the effect is not clear. The realized variance measure may be

biased or unbiased depending on the relative magnitudes of the return autocovariance at different orders.
5For an in depth discussion of the relation between market microstructure and price dynamics see for instance Campbell, Lo, and

MacKinlay (1997), Lequeux (1999), Madhavan (2000), O’Hara (1995), Wood (2000) and references therein.
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(1987) estimate monthly return variance as the sum of squared daily returnsplus twice the sum of the

products of adjacent returns. Froot and Perold (1995) also find significant positive serial correlation in

15 minute returns on S&P500 cash index from 1983-1989 and show that the annualized return variance

estimates based on weekly data are significantly higher (about 20%) than the variance estimates based

on 15-minute data. More recently, Andersen, Bollerslev, Diebold, and Labys (2000b) document the

dependence of the realized variance measure on return serial correlation.

These findings offer an early recognition of the central idea of this paper: the results derived in the

previous section, and the consistency and asymptotic results derived in ABDL and Barndorff-Nielsen

and Shephard (2003), are not applicable to return data that exhibit a substantial degree of serial depen-

dence. In particular, the conditional mean specification used in these studies does typically not allow

for the random intra-day evolution of the conditional mean6. It is commonly argued that this flexibility

is not required at low, say daily or weekly, frequencies. However, when moving to higher intra-day

sampling frequencies, the characteristics of the data may change dramatically due to the presence of

market microstructure which in turn, leads to substantial dependence in the conditional mean of the

return process.

Because market microstructure effects are present in virtually all financial return series, the issue

outlined above is central to the discussion of high frequency data based variance measurement. This

is emphasized in the empirical analysis which is based on minute by minute returns on the FTSE-

100 stock market index. Specifically, the 10 year average (1990-2000) of the two terms on the right

hand side of expression(2) is computed for sampling frequencies between 1 and 45 minutes and the

results are displayed in Figure 1. The implicit assumption we make here is that the return process is

weakly stationary7 so that the averaging (over time) is justified and the estimates can be interpreted as

(co)variance estimates.

It is clear that for FTSE-100 data the first term, the realized variance measure, increases with a

decrease in sampling frequency while the second term, the summation of cross multiplied returns,

decreases. The positivity of the second term indicates that the FTSE-100 returns are positively cor-

related, introducing adownward biasinto the realized variance measure, while its decreasing pattern

demonstrates that this dependence, and consequently the bias, diminishes when sampling is done less

frequently. This term, which measures the bias that is introduced by the serial dependence of returns,

is referred to as the “autocovariance bias factor” in the remainder of this paper. Figure 1 illustrates

that an ad hoc choice of sampling frequency can lead to a substantial (downward) bias in the realized

variance measure. In fact, at the highest available sampling frequency of 1 minute, the bias in the
6An exception is the general model covered by Theorem 1 in Andersen, Bollerslev, Diebold, and Labys (2003) from which it is also

clear that the realized variance measure yields a biased estimate of the conditional return variance.
7For the bootstrap analysis of Section 2.2 we need to impose strict stationarity and weak dependence on the return process.
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FIGURE 1: REALIZED VARIANCE VERSUSSAMPLING FREQUENCY
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   Range 

Notes: The 1990-2000 average daily FTSE-100 realized variance (i.e.T−1 ∑T
t=1

∑Nf

i=1 R2
f,t,i) and autocovariance bias factor (i.e.

2T−1 ∑T
t=1

∑Nf−1

i=1

∑Nf

j=i+1 Rf,t,iRf,t,j) for sampling frequencies between1 and45 minutes.

variance estimate is more than 35%! To stress the economic significance of this finding, we notice

that in a Black Scholes world, a mere 10% under-estimation of the return variance leads to a 14.5%

underpricing of a 3 month,15% out of the money option. Also the option’s delta is 8.2% lower than

its true value. Indeed, Figlewski (1998) finds that an accurate return variance estimate is of single most

importance when hedging derivatives. When the return variance is stochastic, Jiang and Oomen (2002)

also find that for the hedging of derivatives accurate estimation of thelevel of return variance is far

more important than accurate estimation of the dynamic parameters of the variance process. Pricing

and hedging options aside, it is easy to think of a number of other situations where accurate return

variance estimates are of crucial importance. Risk managers often derive Value at Risk figures from the

estimated return variance of a position. Also, in a multivariate setting, the covariance matrix of returns

is the primary input for portfolio choice and asset allocation.

The above discussion naturally leads to the important question at which frequency the data should

be sampled. Figure 1 plays a central role in answering this question by providing a graphical depiction

of the trade-off one faces when constructing the realized variance measure: an increase in the sampling

frequency yields a greater amount of data, thereby attaining higher levels of efficiency (in theory), while

at the same time a decrease in the sampling frequency mitigates the biases due to market microstructure

effects surfacing at the highest sampling frequencies. A balance must be struck between these oppos-
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ing effects and it is argued here that an autocovariance based method, such as the autocovariance bias

factor of Figure 1, can be used to determinethe “optimal” sampling frequency as the highest available

sampling frequency for which the autocovariance bias term is negligible8. Clearly, deciding whether

the bias term is “negligible”, and whether the sampling frequency is therefore “optimal”, may prove a

difficult issue for at least two reasons. First, even though it may be possible to bootstrap confidence

bounds around the autocovariance bias factor in order to determine the frequency at which the bias is

statistically indistinguishable from zero (see Table 1 for some related results), for many applications

economic significance, as opposed to statistical significance, may be the relevant metric with which

to measure “negligibility”. The optimal sampling frequency may therefore very well depend on the

particular application at hand. Second, when aggregating returns, a reduction in bias should generally

be weighed against the loss in efficiency. In practice, however, both the loss or gain in bias and ef-

ficiency will often be difficult to quantify which, in turn, complicates the choice of optimal sampling

frequency. It should be noted that for a general SV model, Barndorff-Nielsen and Shephard (2003)

have shown that the realized variance measure converges to integrated variance at rate
√

N whereN is

the number of intra-period observations. Also, Oomen (2003) has derived an explicit characterization

of the bias term as a function of the sampling frequency when the price process follows a compound

Poisson process with correlated innovations. While the results in these studies may yield some valuable

insights into the bias-efficiency trade-off, it is important to keep in mind that they are derived under po-

tentially restrictive parametric specifications for the price process. As such, they should be interpreted

cautiously when applied to high frequency data which, as we show below, are often contaminated by

market microstructure effects. Without further going into this, it seems reasonable to expect that for the

FTSE-100 data the optimal sampling frequency lies somewhere between 25 and 35 minutes, i.e. the

range indicated in Figure 1.

2.2 Serial Correlation, Time Aggregation & Sampling Frequency

We now take a closer look at the autocovariance bias term and show how its shape is intimately related

to the dynamic properties of intra-day returns at different sampling frequencies.

Table 1 reports some standard descriptive statistics for the FTSE-100 return data. Because it is

well known that financial returns, and in particular high frequency returns, are not independently and

identically distributed we bootstrap the confidence bounds around the statistics instead of deriving

them from the well known asymptotic distributions that are valid under the iid null hypothesis. For the

return volatility and the skewness and kurtosis coefficients we use the stationary bootstrap of Politis and

Romano (1994) who show that this procedure is valid for strictly stationary, weakly dependent data. Let
8Independent work by Andersen, Bollerslev, Diebold, and Labys (2000b), Corsi, Zumbach, Müller, and Dacorogna (2001) have

proposed a similar approach to determine the optimal sampling frequency.
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x = (x1, . . . , xN) denote the original data set (i.e. time series of returns at a given sampling frequency)

and letXi,k ≡ (xi, . . . , xi+k−1) wherei = 1, . . . , N , k = 1, 2, . . ., andxj = xj mod N for j > N .

A bootstrap sample is constructed asx∗ = (Xi1,k1 , . . . , Xib,kb
) where

∑b
j=1 kj = N , i has a discrete

uniform distribution on{1, . . . , N}, andk has a geometric distribution, i.e.P (k = m) = p (1− p)m−1

for m = 1, 2, . . .. Based on this re-sampled time series, we then compute the relevant test statistics.

By simulating a large numberB of bootstrap samples we can approximate the true distribution of

the test statistics by the empirical distribution of theB values of the associated statistics. The idea

behind sampling blocks instead of single entries is that, when the block length is sufficiently large, the

dependence structure of the original series will be preserved in the re-sampled series to a certain extent.

Evidently, the correspondence between the distribution of the original and the re-sampled series will

be closer the weaker the dependence and the longer the block length. To choosep, or equivalently

the expected block lengthE [k] = 1/p, we have experimented with a number of different values but

find, in line with several other studies (Horowitz, Lobato, Nankervis, and Savin 2002, Romano and

Thombs 1996), that the results are rather insensitive to the choice ofp. The results reported in Table 1

are based onp = 1/15 (i.e. E [k] = 15 ) andB = 5, 000.

The confidence intervals for the correlation coefficients and the critical value the Box-Ljung test

statistic are obtained by the “blocks-of-blocks” bootstrap. Instead of sampling a1 × k block, as is

done in the stationary bootstrap, we now sample anh × k block Xi,k,h =
(
xh

i , . . . , x
h
i+k−1

)
where

xh
i = (xi, . . . , xi+h−1)

′ andh − 1 matches the maximum order of correlation coefficient to be com-

puted. Analogous to the procedure described above, anh × N bootstrap sample is constructed as

x∗ = (Xi1,k1,h, . . . , Xib,kb,h) from which thekth order correlation coefficients can be computed as

ρ̂k =

∑N
i=1

(
x∗1,i − x∗1,.

) (
x∗k+1,i − x∗k+1,.

)
[∑N

i=1

(
x∗1,i − x∗1,.

)2 ∑N
i=1

(
x∗k+1,i − x∗k+1,.

)2
]1/2

wherex∗i,. = N−1
∑N

j=1 x∗i,j. Because the null-hypothesis for the Box-Ljung statistic is uncorrelat-

edness, we first pre-whitened the data using an AR(15)9 and implement the bootstrap procedure on

the residuals. As above, the geometric parameter and the number of bootstrap replications are set as

p = 1/15 andB = 5, 000. For more details on how to approximate the sampling distribution of the

correlation coefficients and the Box-Ljung statistics using the (blocks-of-blocks) bootstrap see for ex-

ample Davison and Hinkley (1997), Horowitz, Lobato, Nankervis, and Savin (2002) and Romano and

Thombs (1996).

Based on the above bootstrap procedures we construct 95% confidence bounds for the descriptive
9We note that the choice of AR-order is relatively ad hoc, and could arguably be lowered with a decrease in sampling frequency.

However, with the amount of data we work with here, it can be expected that the efficiency loss associated with the potentially redundant

AR-terms is minimal. Hence, for simplicity, we keep the AR-order fixed across the different sampling frequencies.
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TABLE 1: DESCRIPTIVESTATISTICS OF FTSE-100 RETURNS.

Frequency No. Obs. Volatility Skewness Kurtosis BL[15]

1 Min 1,046,862 11.5
(10.9;12.2)

1.61∗
(−14.9;17.0)

3305∗
(1209;5333)

26874∗
(312.4)

5 Min 209,372 13.2
(12.6;14.0)

−0.43∗
(−6.82;5.18)

508.3∗
(177.5;886.2)

4844.2∗
(223.6)

10 Min 104,686 14.2
(13.4;15.1)

−1.89∗
(−8.50;3.04)

344.8∗
(78.5;697.2)

1206.9∗
(138.0)

30 Min 34,895 15.1
(14.2;16.4)

−1.11∗
(−4.61;1.51)

115.2∗
(27.1;234.8)

221.1∗
(181.6)

60 Min 17,447 15.6
(14.3;17.3)

−0.32∗
(−2.71;1.86)

84.3∗
(14.3;161.5)

117.2∗
(146.2)

1 Day 2,407 15.2
(14.0;16.6)

0.05
(−0.21;0.32)

5.43∗
(4.37;6.56)

44.34∗
(37.3)

ρ1 ρ2 ρ3 ρ4 ρ5 ρ10 ρ15

1 Min 10.4∗
(9.06;11.7)

7.39∗
(6.22;8.55)

6.09∗
(5.08;7.12)

5.13∗
(3.89;6.68)

2.75∗
(1.77;3.68)

0.59∗
(−0.43;1.34)

0.95∗
(0.32;1.69)

5 Min 14.6∗
(12.4;16.7)

3.35∗
(1.92;4.75)

1.85∗
(0.70;3.05)

0.78∗
(−0.29;2.00)

0.96∗
(0.15;1.81)

−0.10
(−1.23;1.32)

−0.60∗
(−1.57;0.35)

10 Min 10.2∗
(8.40;12.1)

2.35∗
(0.94;3.83)

1.06∗
(0.11;2.07)

0.04
(−1.45;1.65)

−0.55
(−0.20;0.12)

0.17
(−0.71;1.13)

−0.68∗
(−2.72;0.82)

30 Min 6.39∗
(4.25;8.68)

−0.60
(−2.48;1.24)

1.28∗
(−0.58;3.19)

−0.88
(−2.21;0.50)

−0.10
(−3.57;2.58)

2.02∗
(−0.10;4.46)

−1.83∗
(−6.35;2.00)

60 Min 3.28∗
(0.12;6.41)

−0.79
(−4.59;2.58)

3.66∗
(1.16;6.04)

−0.00
(−2.40;2.41)

2.84∗
(−0.14;6.26)

−1.55∗
(−3.03;0.07)

−0.26
(−3.27;2.64)

1 Day 7.56∗
(3.64;11.2)

−3.62
(−8.45;1.64)

−3.70
(−8.76;1.63)

−0.46
(−5.69;4.73)

−2.44
(−8.20;3.20)

3.33
(−2.26;8.73)

1.84
(−3.23;6.75)

Notes: The upper panel reports theannualizedreturn volatility in percentage points (“Volatility”), the skewness coefficient (“Skewness”),

kurtosis coefficient (“Kurtosis”), and the Box-Ljung test statistic on the first 15 autocorrelations (“BL[15]”) for FTSE-100 returns sampled

at frequencies between 1 minute and 1 day over the period 1990-2000. The lower panel reports the serial correlation coefficients in

percentage points (ρk denotes thekth order correlation coefficient). Bootstrapped 95% confidence bounds (and critical values for the

Box-Ljung test) are reported in parentheses below. An asterisk indicates significance at 95% confidence level under the null hypothesis

that returns are iid distributed;
√

TSkewness
a→ N (0, 6),

√
TKurtosis

a→ N (0, 24),
√

Tρk
a→ N (0, 1), and BL[K]

a→ X 2
K .

statistics under the null that returns are weakly dependent and report them in parentheses in Table 1.

The statistics that are significant are printed in bold. For comparison purposes, an asterisk indicates

95% significance under the alternative null hypothesis that returns are independently and identically

distributed. For this case, it is well known that the square root of the sample size times thekth order

serial correlation, skewness, and kurtosis coefficients of returns are asymptotically distributed as normal

with variance 1, 6, and 24 respectively. The Box-Ljung statistic on the firstK autocorrelations, BL[K],

is asymptotically distributed as chi-square withK degrees of freedom. Turning to the results in Table

1, we find that there is substantial excess kurtosis and serial correlation in high frequency returns.

At the minute frequency, most of the serial correlation coefficients up to order 15 are significant and
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FIGURE 2: CORRELOGRAM OF1 MINUTE AND 5 MINUTE FTSE-100 RETURNS

Notes: Correlogram of 1 minute (left panel) and 5 minute (right panel) FTSE-100 index returns for the period 1990-2000

the kurtosis coefficient indicates the presence of an extremely fat tailed marginal return distribution.

However, aggregation of returns brings the distribution of returns closer to normal and reduces both

the order and magnitude of the serial correlation (see also Figure 2). At the daily frequency, the excess

kurtosis has come down from around 3000 to about 2.5, and the serial correlation coefficients of order

higher than one are all insignificantly different from zero. Consistent with the autocovariance bias term

above (Figure 1), we also see that the (annualized) return volatility increases with a decrease of the

sampling frequency. Interestingly, the 95% confidence bounds for frequencies lower than 30 minutes

(i.e. 1, 5, and 10 minutes) do not include the point estimate of the annualized return variance based on

daily data. This suggests that the autocovariance bias term at these frequencies is statistically different

from zero which, in turn, corroborates our choice of “optimal” sampling frequency range on statistical

grounds.

It is also clear from Table 1 that the bootstrapped confidence bounds deviate substantially from

their iid-asymptotic counterparts. As a result, a number of statistics that are significant under the

(invalid) iid null hypothesis, turn out to be insignificant based on the bootstrapped confidence bounds

which allows for weak dependence in the return data. For example, while the skewness of intra-daily

returns is significant under the iid hypothesis, none of the skewness coefficients are significant under

the alternative null-hypothesis. Also, the maximum order of the significant correlation coefficients is

generally lower for the bootstrapped critical values than for the iid-asymptotic values. For example, at

frequencies between 5 and 30 minutes,ρ15 is found significant under the iid-hypothesis but insignificant

under the alternative hypothesis. These findings emphasize the inadequacy of the “iid-” asymptotic

distributions for this data and illustrate the value of the bootstrap method.

Turning to the specification of the return process, we notice that the overwhelming significance of
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the serial correlation coefficients reported in Table 1 and Figure 2 suggests that the characteristics of

intra-day returns are not consistent with those of a martingale difference sequence. Instead, modelling

intra-day returns as an ARMA10 process is a natural and, as it turns out, successful approach for it is

well suited to account for the serial dependence of returns at various sampling frequencies. From a

market microstructure point of view, the AR part will arguably be able to capture any autocorrelation

induced by non-synchronous trading while the MA part will account for potential negative first order

autocorrelation induced by the bid-ask bounce. Further, the decreasing order and magnitude of serial

correlation with the sampling frequency is, as it turns out, a consequence of temporal aggregation of

the return process.

Suppose that returns at the highest sampling frequency,R1 (thet subscript is momentarily dropped

for notational convenience), can be described as an ARMA(p,q) process:

α (L) R1,i = β (L) ε1,i,

whereα (L) andβ (L) are lag polynomials of lengthsp andq respectively. As before, we also assume

that the return process is weakly stationary which justifies expression 4 and the analysis below. Con-

sider the case where all the reciprocals of the roots ofα (L) = 0, denoted byθ1, ..., θp, lie inside the unit

circle. The model through which the returns at an arbitrary sampling (or aggregation) frequency can be

represented is derived using the results of Wei (1981) on temporal aggregation11. In particular, ifR1

follows an ARMA(p,q) process, the returns sampled at frequencyf , denoted byRf , can be represented

by an ARMA(p,r) process:

p∏
j=1

(
1− θf

j Lf
)

Rf,i =

p∏
j=1

1− θf
j Lf

1− θjL

1− Lf

1− L
β (L) εf,i,

wherer equals the integer part ofp + q−p
f

andεf,i =
∑f−1

j=0 ε1,fi−j. Due to the invertibility of the AR

polynomial, the above model can be rewritten in MA(∞) form with parameters{ψj}∞j=0 andψ0 = 1.

Let ϕf
h denote thehth autocovariance of the temporally aggregated returns at frequencyf :

ϕf
h = E [Rf,iRf,i−h] ∝

∞∑
j=0







j∑

i=max(0,j−f+1)

ψi







j+fh∑

i=j+1+f(h−1)

ψi





 . (3)

It can be shown that theψj coefficients decay exponentially fast in terms ofj and, as a result, the

autocovariances disappear under temporal aggregation. To see this, let|ψj| < wδj for |δ| < 1 andw

10More generally, one could specify an ARFIMA model for returns, thereby allowing for a hyperbolic decay of serial correlation.

However, market microstructure and efficiency considerations aside, casual inspection of Table 1 and Figure 2 suggests that an ARMA

process is sufficiently flexible to capture the dynamics of the returns process at high frequency.
11Temporal aggregation for ARMA models is discussed in Brewer (1973), Tiao (1972), Wei (1981), Weiss (1984) and the VARFIMA

in Marcellino (1999).
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some positive constant and notice that:

ϕf
h ∝

∞∑
j=0




j∑
i=0

wδi

j+fh∑

i=j+f(h−1)

wδi


 <

w2

(1− δ)3 δf(h−1),

from which it can be seen that the autocovariances of order higher than two disappear when either the

sampling frequency,f , or the displacement,h, increases. While it does not follow from the above that

the first order autocovariance term also disappears, Wei (1981) has shown that the limit model of an

ARMA(p,q) process under temporal aggregation is indeed an ARMA(0,0) or equivalently white noise.

It is important to emphasize that these theoretical properties of the ARMA process appear very much

in accordance with the empirical properties of the return process as reported in Table 1. In particular,

at high sampling frequencies the ARMA model can account for the observed serial dependence while

at lower sampling frequencies these dependencies die off as a consequence of temporal aggregation of

the return process. In addition, as the ARMA(p,q) model converges to an ARMA(0,0) under temporal

aggregation, the model specification for returns at high frequency does not necessarily conflict with a

model for returns at low frequency.

Relating the above aggregation results to the discussion of the previous section, we note that the

expression for the autocovariance function of the ARMA process can be used to check the consistency

of the model with the properties of the data by comparing the temporal aggregation implied decay of the

autocovariance bias term with the empirically observed one. To this end, we estimate various ARMA

models using the minute by minute returns on the FTSE-100 index and find that an ARMA(6,0) model

yields satisfactory results12. Although the residuals are highly heteroskedastic, the OLS parameter

estimates remain consistent (Amemiya 1985). Moreover, the efficiency loss due to the non-normality

of the errors is unimportant given the large amount of data. Based on thesingleset of ARMA(6,0)

parameters associated with the 1-minute data, the autocovariances for the estimated return process at

various sampling frequencies can bededucedusing expression(3). It is noted that:

E




Nf−1∑
i=1

Nf∑
j=i+1

Rf,t,iRf,t,j


 =

Nf−1∑

h=1

(Nf − h) ϕf
h. (4)

Hence, the “aggregation implied” autocovariance estimates can be used to calculate the “aggregation

implied” autocovariance bias term as in expression(4). In particular, a single set of ARMA(6,0) pa-

rameters for the 1-minute data are used to imply the autocovariance bias factor at sampling frequencies

between 1 and 45 minutes. Figure 3 demonstrates that the empirical and theoretically implied curves

are remarkably close.
12Some of the higher order AR terms could arguably be replaced by low order MA terms. However, the AR specification has the

advantage that inference is straightforward from a numerical point of view, as opposed to an MA specification. Since the AR and MA

specification are largely equivalent preference is given here to the AR specification.
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FIGURE 3: THE “A UTOCOVARIANCE BIAS FACTOR”
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Term 2: Autocovariance Bias Factor 

Notes: The empirical autocovariance bias factor (solid line, see also Figure 1) and the superimposed aggregation implied autocovariance

bias factor (dotted line, see also expressions (3) and (4)) for sampling frequencies between 1 and 45 minutes.

The above results illustrate that the ARMA model is a good description of the return data at different

sampling frequencies. In fact, the decay of the (market microstructure-induced) serial dependencies in

high frequency returns is consistent with the decay of an ARMA process under temporal aggregation.

Also, it can be shown, based on expression 4, that the autocovariance bias term decays at an hyperbolic

rate under temporal aggregation (i.e.
∑Nf−1

h=1 (Nf − h) ϕf
h < N2

f2 ). Finally, we notice that it is possible

to trace out the entire autocovariance bias factor curve, and hence determine the optimal frequency,

using solely asingleset of ARMA parameters.

In summary, we have shown that the conditional return variance can be estimated consistently by the

realized variance measure, provided that the intra-day returns are serially uncorrelated. When the intra-

day returns are serially correlated, realized variance will either overestimate (with negative correlation)

or underestimate (with positive correlation) the conditional return variance. Correcting for the bias

term by adding up the cross products of intra-day returns, they are known after all, is not desirable

as this is equivalent to using the squared daily return to estimate daily realized variance. Here we

suggest that when the available high frequency return data are serially correlated, one approach13 is to

aggregate the returns down to a frequency at which the correlation has disappeared, thereby avoiding
13An alternative approach would be to utilize all of the observations by explicitly modelling the high-frequency market microstructure.

However, as noted by Andersen, Bollerslev, Diebold, and Ebens (2001), that approach is much more complicated and subject to numerous

pitfalls of its own.
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(potentially) large biases in the realized variance measure. Plotting the sum of squared intra-day returns

or the autocovariance bias factor versus the sampling frequency, as is done in Figure 1 proves a very

helpful and easily implementable strategy to determine the frequency at which the correlation has died

off. Further analysis suggests that the decay of the autocovariance bias factor is consistent with an

ARMA process under temporal aggregation. This finding provides an alternative, yet closely related,

parametric approach to determining the optimal sampling frequency.

3 Modelling Realized Variance

A number of studies14 have analyzed high frequency data for a variety of financial securities. Regarding

the properties of the realized variance measure, several studies find that (i) the marginal distribution of

realized variance is distinctly non-normal and extremely right skewed, whereas the marginal distribu-

tion of logarithmic realized variance is close to Gaussian, (ii) logarithmic realized variance displays a

high degree of (positive) serial correlation which dies out very slowly (iii) logarithmic realized variance

does not seem to have a unit root, but there is clear evidence of fractional integration15, roughly of order

0.40 and (iv) daily returns standardized by realized volatility16, i.e. the square root of realized variance,

are close to Gaussian.

Based on the analysis in Sections 2.1 and 2.2, which indicates that the daily conditional return

variance of the FTSE-100 can be estimated unbiasedly as the sum of squared intra-day returns sampled

at a frequency of25 minutes, a time series of (logarithmic) realized variance is constructed and is

displayed in the left panel of Figure 4. Table 2 reports some descriptive statistics of the time series of

realized variance and returns.

We find that our results are very much in line with the findings described above. In particular,

the unconditional distribution of the realized variance appears significantly skewed and exhibits severe

kurtosis, while the unconditional distribution of logarithmic realized variance is much less skewed

and displays significantly reduced kurtosis (Table 2). Furthermore, the correlogram for the realized

variance measure decays only very slowly but the Augmented Dickey Fuller test strongly rejects the

null hypothesis of a unit root (Table 2 and right panel of Figure 4). This finding indicates that the

(logarithmic) realized variance series may exhibit long memory, a feature that will be discussed below.
14See for example Andersen, Bollerslev, Diebold, and Labys (2000b, 2000b), Blair, Poon, and Taylor (2001), Dacorogna, Gençay,

Müller, Olsen, and Pictet (2001), Froot and Perold (1995), Goodhart and O’Hara (1997), Hsieh (1991), Lequeux (1999), Stoll and

Whaley (1990), Zhou (1996).
15See for example Baillie (1996), Baillie, Bollerslev, and Mikkelsen (1996), Breidt, Crato, and de Lima (1998), Comte and Renault

(1998), Henry and Payne (1998), Liu (2000), Lo (1991).
16In a multivariate setting it is found that the distribution of correlations between realized variance is close to normal with positive

mean, and that the autocorrelations of realized correlation decays extremely slow.
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TABLE 2: DESCRIPTIVESTATISTICS OF REALIZED VARIANCE AND RETURNS.

Mean Volatility Skewness Kurtosis ADF[5]

Realized Variance 8.5e-5 2.6e-4 21.21 596 −16.2

Log Realized Variance −9.98 0.962 0.558 4.11 −8.83

Daily Returns 4.6e-4 0.009 0.063 5.29 −21.8

Standardized Daily Return 0.091 1.091 0.036 2.23 −22.3

Notes: Descriptive statistics based on the FTSE-100 data set for the period 1990-2000. The augmented Dickey Fuller test (“ADF[5]”)

includes a constant and 5 lags and has a 5% (1%) critical value of -2.865 (-3.439).

FIGURE 4: LOGARITHMIC REALIZED VOLATILITY
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Notes: Time series (left panel) and correlogram (right panel) of FTSE-100 daily logarithmic realized variance constructed at a sampling

frequency of 25 minutes over the period 1990-2000. The superimposed dotted lines in the right panel represent the correlogram of a

fractional process for values ofd equal to 0.30, 0.40, and 0.45.

Finally, daily returns standardized by realized variance are close to normal (Table 2). This indicates

that the empirical findings obtained by Andersen, Bollerslev, Diebold, and Labys (2000a) on exchange

rate data can be extended to the FTSE-100 stock market index data.

3.1 Fractional Integration & Realized Variance

A time series,Xt is said to be fractionally integrated of orderd if after applying the difference operator

(1−L)d it follows a stationary ARMA(p,q) process wherep andq are finite nonnegative integers. This

concept has been developed by Granger (1980), Granger (1981), and Granger and Joyeux (1980). For
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values ofd between 0 and 0.5, the fractionally integrated process17 exhibits “long memory” which has

the property that the effect of a shock to the process is highly persistent but decays over time. This

is in contrast toI(1) processes, where a shock has infinite persistence, or at the other extremeI(0)

processes, where the effect of a shock decays exponentially fast. The ARFIMA(p,d,q) model can be

written as

α(L)(1− L)dXt = β(L)εt, (5)

whereα(L) andβ(L) are lag polynomials of orderp andq respectively. Ford < 1
2

andd 6= 0, it can be

shown that the decay of the correlogram ishyperbolic, i.e.

ϕh = corr(Xt, Xt−h) =
Γ(1− d)

Γ(d)

Γ(h + d)

Γ(h + 1− d)
∝

h large
h2d−1. (6)

Regarding the estimation ofd, Geweke and Porter-Hudak (1983, GPH hereafter) propose the use of

a log periodogram regression. In particular, for given{Xt}T
t=1, the fractional parameterd can be es-

timated as the slope coefficient in a linear regression ofI (λj) = 1
2πT

∣∣∣∑T
t=1 Xte

iλjt
∣∣∣
2

, the log peri-

odogram at harmonic frequencyλj = 2πj
T

, on a constant andln
[
4 sin2 (λj/2)

]
for j = 1, . . . , m ¿ T .

The “bandwidth” parameterm is required to increase at a slower rate than the sample sizeT and in

many applicationsm is set to equal to the square root of the sample sizeT . Robinson (1995a, 1995b)

derives an alternative estimator ford , which is shown to be asymptotically more efficient than the GPH

estimator, and is given by the value ofd that minimizes the following objective function:

Q (c, d) =
1

m

m∑
j=1

[
ln

(
cλ−2d

j

)
+

λ2d
j

c
I (λj)

]
,

wherec > 0 and−1
2

< d < 1
2
.

Turning to the FTSE-100 realized variance series, it is clear that long memory features are very

much present. The right panel of Figure 4 displays the correlogram of the log realized variance series

while the right panel of Figure 5 displays the correlogram of thefractionally differencedlog realized

variance series based on an ad hoc parameter value18 of d = 0.40. The serial correlations of the log real-

ized variance series decay at a hyperbolic rate and the resemblance between the sample correlogram and

the superimposed correlograms of a fractionally integrated process for various values ofd is remark-

able. In sharp contrast, the fractionally differenced series is virtually uncorrelated. A supplementary

diagnostic check for the presence of long memory is based on expression (6) above. In particular, when

the realized variance series exhibits long memory, its log autocorrelation function should yield a linear

relationship in terms of log displacement, i.e.ln ϕh ∝ (2d− 1) ln h. Figure 6 (left panel) indicates the
17The process is stationary with long memory for0 < d < 0.5 but stationary with intermediate memory for−0.5 < d < 0. For

d ≥ 0.5, the process is non-stationary.
18Various values between 0.35 and 0.45 have been used but the results appear robust to the specific choice ofd.
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FIGURE 5: FRACTIONALLY DIFFERENCEDLOGARITHMIC REALIZED VOLATILITY
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Notes: Time series (left panel) and correlogram (right panel) of FTSE-100fractionally differenceddaily logarithmic realized variance

constructed at a sampling frequency of 25 minutes over the period 1990-2000. The dotted lines in the right panel are the 95% confidence

bounds calculated as±2N−1/2 whereN denotes the number of observations.

required linear relationship betweenln ϕh andln h for values ofh up to 100. An OLS regression can

be used to determine the slope. Based on the entire sample (h = 250) the results suggest a value for

d of around0.37. Ignoring the last150 autocorrelations (h = 100) raisesd to about0.43. Finally, the

GPH and Robinson estimators, described above, are implemented. The bandwidth parameterm (con-

trolling the range of periodic frequencies used), is set equal to a range of values between19 25 and275.

The results of this estimation are summarized in Figure 6 (right panel) where the GPH and Robinson

estimates are plotted as a function ofm. For smallm, the two alternative estimates both fall into the

non-stationary region while for largem (above150) they are both below0.5. Although it is clear from

this that the value ford will be close to0.5, it is difficult to judge on the stationarity of the process as

the choice ofm is relatively arbitrary. In summary, all of the test results reported above suggest that

the FTSE-100 log realized variance series is fractionally integrated and appear roughly consistent with

Andersen, Bollerslev, Diebold, and Ebens (2001) who find that for their data setd is around0.40.

3.2 Empirical Results

Motivated by the preliminary tests discussed above, the focus of our modelling approach will center

around the ARFIMA specification. We consider the following model:

α(L)(1− L)d
[
ln σ̂2

25,t − π′Xt

]
= β(L)εt, (7)

19The sample size is 2445 and hence the range ofm is betweenT 0.40andT 0.70. This is in line with e.g. Bollerslev, Cai, and Song

(2000) which setm = T 0.50 or Dittmann and Granger (2002) which setm = T 0.8.
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FIGURE 6: TWO TESTS FORFRACTIONAL INTEGRATION
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Notes: Two tests for fractional integration. Linearity ofln ϕh versusln h (left panel) and the Geweke Porter-Hudak and Robinson

estimate ford as a function of the bandwidthm (right panel).

where σ̂2
25,t denotes the day−t realized variance measure constructed based on 25 minute intra-day

returns,α(L) is a lag polynomial of orderp, β(L) a lag polynomial of orderq, andεt is a residual error

term. Thek× 1 vectorXt allows for the inclusion of exogenous variables and deterministic terms such

as a constant and time trend. Here, we consider the following specification:

π′Xt = ω +
k∑

j=1

(
ζjRt−j + ζj |Rt−j|

)
+

m∑
j=0

λj ln V OLt−j +
n∑

j=0

δj (IRt−j − IRt−j−1) (8)

whereIRt andV OLt denote the day−t short term interest rate (1 month UK Interbank rate) and daily

trading volume respectively. The inclusion of lagged returns and lagged absolute returns mirrors the

EGARCH specification of Nelson (1991) and is, in part, motivated by the well documented Black’s

leverage effect or the asymmetric impact that lagged returns have on the return variance. In particular,

Black (1976) argues that one should expect negative returns to have a larger impact on future variance

than positive returns. In the above specification we can test whether such a leverage effect is present at

horizonh by testing whetherζh is significantly less than zero20.

Next, trading volume is includes because it is often argued that it is intimately related to the return

variance. A model which can rationalize such a relationship has been proposed by Clark (1973) where

prices follow a subordinated process with information flow (proxied by trading volume or number of
20Suppressing subscripts momentarily, defineR+ = R whenR > 0 andR+ = 0 whenR ≤ 0. Similarly, defineR− = −R

whenR ≤ 0 andR− = 0 whenR > 0. Hence,R = R+ − R− and |R| = R+ + R−. It is now straightforward to show that

ζR + ζ |R| = ζ+R+ + ζ−R− whereζ+ = ζ + ζ and ζ− = ζ − ζ. For the leverage effect to be present, it is required that

ζ− > ζ+ ⇔ ζ− − ζ+ > 0 ⇔ ζ < 0.
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trades) being the subordinator. A number a papers have addressed the relationship from an empirical

point of view (e.g. Karpoff (1987), Gallant, Rossi, and Tauchen (1992) and more recently Ané and

Geman (2000)) and invariably report positive correlation between return variance and trading volume.

In addition, an influential paper by Lamoureux and Lastrapes (1990) finds that thepersistenceof return

variance decreases (or even disappears) when trading volume is accounted for. Finally, the inclusion of

(changes in) the short term interest rate is motivated by Glosten, Jaganathan, and Runkle (1993) who

find that it has a significant positive effect on stock market volatility.

Before moving on to the estimation results, we point out that the above specification does not

allow us to study thecausalrelation between return volatility and trading volume. In particular, it

could well be that, in addition to trading volume causing return volatility, return volatility also has a

feedback effect onto subsequent trade activity. Whether such dynamics can be identified at a daily

frequency is questionable but are clearly of interest. The theoretical market microstructure has studied

such relationships extensively. However, the primary focus has been on the impact of trade duration on

the price process and results are mixed (see for example, Admati and Pfeiderer (1988), Diamond and

Verrecchia (1987), Easley and O’Hara (1992), and Glosten and Milgrom (1985)). Engle (2000) has

also focussed on the impact of trade durations on the price process. Using IBM high frequency data, he

finds that low trading activity leads to a reduction in future return volatility (supporting the implications

of the Easley and O’Hara (1992) model). A related study by Renault and Werker (2002) investigates

the instantaneouscausality relation between transaction durations and prices and finds that about two-

thirds of return volatility can be attributed to instantaneous durations - in other words - transaction

times cause transaction prices. Under the assumption that trade durations are inversely proportional to

trade volume, the model we have specified in (7) and (8) is directly in line with the above mentioned

work, although it should be kept in mind that we work with data at a daily frequency as opposed to

transaction level data. The feedback effect of return volatility on trade durations - or trade volume - is,

although of interest, not studied here.

Under the assumptions that (i) the roots ofα(L) are simple and lie outside the unit circle, (ii) the

residuals are i.i.d. Gaussian, and (iii)d < 1
2
, the ARFIMA model, specified by (7) and (8) above, can

be estimated21 using the maximum likelihood procedure of Sowell (1992). Alternatively, the model

could have been estimated using a two-step procedure in which the fractional parameter is estimated

in the first step (e.g. with the GPH or Robinson estimator), while the remaining ARMA coefficients

are estimated in the second step based on the fractionally differenced data using ordinary least squares.

However, as documented by Smith, Taylor, and Yadav (1997), such an approach may well lead to

inaccurate or biased ARMA coefficient estimates. The Sowell procedure, allowing for the simultaneous

estimation of the model parameters, is therefore preferred.
21We have used the ARFIMA package in PcGive version 10.0. See Doornik and Ooms (1999) and Doornik (2002) for documentation.
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TABLE 3: ARFIMA ESTIMATION RESULTS

Full Sample (1990-2000) Sub Sample (1990-1997)

Par ARFIMA + Returns + Volume + Interest ARFIMA + Returns + Volume + Interest

d 0.483
(22.6)

0.476
(16.6)

0.484
(24.0)

0.484
(23.8)

0.441
(8.74)

0.391
(6.73)

0.476
(16.5)

0.475
(16.2)

α1 0.356
(5.76)

0.337
(7.27)

0.337
(7.94)

0.335
(7.87)

0.437
(5.70)

0.325
(4.69)

0.321
(6.42)

0.318
(6.30)

β1 −0.602
(10.3)

−0.678
(15.2)

−0.695
(18.9)

−0.695
(18.8)

−0.635
(7.75)

−0.599
(6.99)

−0.680
(14.8)

−0.678
(14.5)

ζ1 - −3.377
(5.03)

−3.863
(5.99)

−3.999
(6.18)

- −2.362
(2.60)

−3.708
(4.25)

−3.958
(4.51)

ζ2 - −2.652
(3.96)

−3.086
(4.79)

−3.107
(4.81)

- −1.906
(2.10)

−2.834
(3.25)

−2.827
(3.22)

ζ3 - −1.439
(2.14)

−1.472
(2.28)

−1.449
(2.25)

- −2.448
(2.69)

−2.312
(2.65)

−2.290
(2.63)

ζ4 - −1.206
(1.79)

−1.498
(2.32)

−1.527
(2.37)

- −0.925
(1.02)

−1.393
(1.61)

−1.404
(1.62)

ζ1 - 30.36
(28.0)

27.01
(25.3)

27.15
(25.4)

- 37.22
(25.4)

32.73
(22.8)

32.99
(23.0)

ζ2 - 12.85
(11.7)

11.30
(10.5)

11.29
(10.5)

- 16.99
(11.5)

14.89
(10.3)

14.80
(10.2)

ζ3 - 6.468
(5.91)

5.817
(5.52)

5.729
(5.44)

- 6.288
(4.27)

5.812
(4.11)

5.610
(3.97)

ζ4 - 4.541
(4.19)

4.413
(4.24)

4.355
(4.19)

- 3.953
(2.70)

3.926
(2.81)

3.851
(2.76)

λ0 - - 0.338
(14.0)

0.335
(13.9)

- - 0.370
(13.1)

0.365
(12.9)

λ1 - - −0.007
(0.28)

−0.007
(0.30)

- - −0.011
(0.39)

−0.010
(0.37)

δ0 - - - −0.179
(2.29)

- - - −0.198
(2.41)

δ1 - - - 0.031
(0.39)

- - - 0.068
(0.83)

−LogL 977.3 607.7 504.5 501.6 710.5 414.0 328.8 325.4

AIC/T 0.805 0.509 0.426 0.425 0.795 0.475 0.382 0.381

No. Par 5 13 15 17 5 13 15 17

Skew 0.675 0.371 0.385 0.380 0.721 0.330 0.345 0.345

Kurt 5.680 4.291 4.184 4.144 5.850 3.924 3.785 3.734

PM[5] 3.888
(0.143)

2.822
(0.244)

1.945
(0.378)

2.095
(0.351)

5.391
(0.068)

4.906
(0.086)

4.365
(0.113)

4.516
(0.105)

ARCH[5] 4.443
(0.001)

4.143
(0.001)

2.662
(0.021)

2.028
(0.072)

3.402
(0.005)

5.389
(0.000)

4.718
(0.000)

3.406
(0.005)

Notes: ARFIMA(1,d,1) estimation results for the full sample (2 May 1990 - 11 January 2000; 2445 observations) and the sub sample

(2 May 1990 - 15 June 1997; 1803 observations). The full model specification is given by expressions (7) and (8). The table reports

all parameter estimates (exceptω) with absolute t-statistics in parenthesis below. The residual test statistics include skewness (“Skew”),

kurtosis (“Kurt”), and the Portmanteau (“PM[5]”,X 2
2 ) and ARCH (”ARCH[5]”, F (5, 1775) for sub-sample andF (5, 2419) for full

sample) statistics including 5 lags. p-values are reported in parenthesis below PM[5] and ARCH[5].
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We first estimate the model without any exogenous variables and then subsequently add returns,

volume, and the short rate. To address the concern that long memory may be induced by infrequent

structural breaks22, we re-estimate the model on various subsamples of the data set. Table 3, summa-

rizes the estimation results23 for two different samples andp = q = 1, k = 4, andm = n = 2. The

first sample is the full sample while the second sample covers the period May 1, 1990 until June 15,

1997. As the point estimates for the fractional parameter remain within a tight range (with one excep-

tion, all estimates are between0.44 and0.48) and turn out to be highly significant irrespective of the

sample period or the model specification, we argue that the realized variance series clearly exhibits a

long memory feature that is not caused by structural breaks. Based on thet-statistic24, however, we

cannot reject thatd > 0.5 at a95% confidence level, i.e. the realized variance series is potentially

non-stationary. Turning to the exogenous variables, we notice a dramatic increase in log likelihood -

accompanied by a substantial decrease in AIC criterion - upon inclusion of lagged (absolute) returns.

In particular, fork = 4, the number of parameters increases by8 to a total of13 while the log likelihood

increases by almost370! As a result, the AIC criterion drops from0.80 to 0.50. Further, the sign and

significance of theζ parameters suggest that Black’s leverage effect is present at horizons up to 3 or 4

days. This finding provides support for the GJR-GARCH (Glosten, Jaganathan, and Runkle 1993) and

EGARCH (Nelson 1991) specifications which explicitly account for this asymmetric effect that returns

have on future variance. Regarding trading volume, we find that contemporaneous values further im-

prove the fit of the model. Consistent with Clark’s model, we find that the sign ofλ0 is positive and

highly significant. However, in contrast to the findings of Lamoureux and Lastrapes, it appears that the

persistenceof the variance process (as measured byd) remains largely unchanged when trading volume

is conditioned upon. Finally, the estimate forδ0 suggests that an interest rate cut is accompanied by

higher volatility than an interest rate hike. It must be said, however, that this effect is marginally signif-

icant and that the associated likelihood increase minimal. As for trading volume, lagged changes in the

interest rate are found to have an insignificant impact. A similar pattern is observed for the sub-sample.
22See for example Diebold and Inoue (2001), Engle and Smith (1999), Granger (1999), and Granger and Hyung (1999). A simple

and representative model that can cause long memory is the stochastic break model, which takes the form:yt = ut + εt, where

ut = ut−1 + qt−1ηt, εt ∼ iidN (0, σ2
y), ηt ∼ iidN (0, σ2

u) andqt equals0 with probabilityp and1 with probability1 − p. Diebold

and Inoue (2001) note that in order to achieve a slowly declining autocorrelation function, whatever the model may be, the key idea is to

let p decrease with the sample size so that regardless of the sample size, realizations of the process tend to have just a few breaks.
23Based on the likelihood ratio test and the AIC criterion we find that an ARFIMA(1,d,1) model provides a parsimonious specification.

The choice ofk, m, andn is guided by the significance of the parameters.ζ4, ζ4, λ1, andδ1 are included for completeness.
24The validity of the t-statistics crucially relies on whether the residuals are IID Gaussian. The diagnostic tests reported in Table 3

indicate that even though the residuals appear uncorrelated some skewness, kurtosis and heteroskedasticity is present. Fortunately, these

effects diminish to some extent when lagged returns and trading volume are included and we will therefore work under the assumption

that the t-statistics - in particular for the full model - are reasonably accurate.
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4 Conclusion

Under certain assumptions on the return process, a number of recent papers have shown that realized

variance is a consistent and virtually measurement error-free estimator of the conditional return vari-

ance. In this paper we show that realized variance measure constitutes abiasedestimate of the return

variance when (excess) returns are serially correlated. 10 years of FTSE-100 minute by minute data

are used to illustrate that a careful choice of sampling frequency is crucial in avoiding a substantial

bias. The relation between the sampling frequency and the presence of serial correlation is analyzed

in detail and demonstrates that serial correlation in returns disappears under temporal aggregation at a

rate of decay that is consistent with that one of an ARMA process. An autocovariance function based

method is proposed for choosing the optimal sampling frequency, that is, the highest available sampling

frequency for which the autocovariance bias term is negligible. Many alternative approaches to deal

with this issue can be considered though. One route is to use all available data by explicitly modelling

the market microstructure effects. Another is to “correct” for the bias by dividing the biased realized

variance estimate by an appropriate constant (or any sort of function that achieves unbiasedness of the

estimator). A third approach, which we may explore in future research, is to use a Newey-West type

covariance estimator in order to take into account the serial correlation in the data. The advantage here

is that it is potentially more efficient than the aggregation approach outlined in this paper as it makes

use of all available data while the non-parametric nature of the estimator avoids the need to explicitly

model the market microstructure.

Regarding the FTSE-100 data set, we find that the realized variance series can be modelled as an

ARFIMA process. Exogenous variables such as lagged returns and contemporaneous trading volume

appear to be highly significant regressors and are able to explain a large portion of the variation in

realized variance. Also, statistical tests suggest that Black’s leverage effect is significant at three or four

days. Regarding contemporaneous trading volume we find that, despite its significance, the persistence

of the variance process remains largely unchanged.
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