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ABSTRACT 

Contests with Rank-Order Spillovers    

by Michael R. Baye, Dan Kovenock and Casper G. de Vries * 

This paper presents a unified framework for characterizing symmetric 
equilibrium in simultaneous move, two-player, rank-order contests with 
complete information, in which each player’s strategy generates direct or 
indirect affine “spillover” effects that depend on the rank-order of her decision 
variable. These effects arise in natural interpretations of a number of important 
economic environments, as well as in classic contests adapted to recent 
experimental and behavioral models where individuals exhibit inequality 
aversion or regret. We provide the closed-form solution for the symmetric Nash 
equilibria of this class of games, and show how it can be used to directly solve 
for equilibrium behavior in auctions, pricing games, tournaments, R&D races, 
models of litigation, and a host of other contests. 
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ZUSAMMENFASSUNG 

Contests with Rank-Order Spillovers    

Dieser Artikel entwickelt einen einheitlichen Rahmen zur Charakterisierung des 
symmetrischen Gleichgewichts eines Wettkampfes unter vollständiger Informa-
tion, in dem zwei Spieler gleichzeitig ihren Einsatz wählen und die Strategie ei-
nes Spielers direkte oder indirekte Auswirkung auf den Gegenspieler hat. Diese 
Externalität hängt entscheidend von der Rangfolge der Entscheidungsvariablen 
ab. Solche Effekte finden sich in einer Vielzahl wichtiger ökonomischer Pro-
blemstellungen. Auch typische Wettkämpfe können in diesem Rahmen analy-
siert werden, wenn sie im Sinne jüngster experimenteller und verhaltensorien-
tierter Modelle angepasst werden und angenommen wird, dass Individuen eine 
Abneigung gegen Ungleichheit haben oder Bedauern empfinden, falls sie einen 
unnötig hohen Einsatz gewählt haben. Wir geben das symmetrische Nash-
Gleichgewicht für diese Klasse von Spielen an und zeigen, wie es direkt ange-
wendet werden kann, um das gleichgewichtige Verhalten in Auktionen, Preis-
setzungsspielen, Wettkämpfen, Wettbewerb um Forschung und Entwicklung, 
Modellen für Rechtsstreitigkeiten und einer Reihe weiterer Wettkämpfe zu 
analysieren. 



1 Introduction

This paper presents a unified framework for analyzing equilibrium in simultaneous-move,

two-player, rank-order contests with complete information, in which each player’s strategy

generates direct or indirect affine “spillover” effects that depend on the rank-order of her

decision variable. We show that these effects arise in natural interpretations of a number of

important economic environments, including contests adapted to recent experimental and

behavioral models where individuals exhibit inequality aversion or regret. We provide a

characterization of symmetric equilibria (both pure and mixed), closed-form expressions for

these equilibria, and show how our results may be used to directly solve for equilibrium

behavior in auctions, pricing games, tournaments, R&D races, models of litigation, and a

host of other games.

Rank-order contests are ubiquitous. These take the form of environments in which play-

ers choose nonnegative bids (which may be interpreted as a proposed payment, effort, or

the commitment of other scarce resources that are nonrefundable) whose rank-order dis-

continuously influences the probability of winning some prize. Classic examples include

homogeneous product Bertrand competition (see Bertrand 1883), in which the lowest price

firm “wins” the profit from selling to demand at that price, as well as first and second-price

auctions (see Vickrey 1961), where the player who submits the highest bid wins the item and

pays either his own bid (in the first-price auction) or the bid of the second-highest bidder

(in the second-price auction).

Winners and losers alike forfeit payments in many rank-order contests. In a first-price

all-pay auction, for instance, each player submits a nonrefundable bid and only the higher

bidder receives a prize. The war-of-attrition (see Maynard Smith 1974) is a second-price

all-pay auction: The high bidder wins the prize and pays the amount bid by the second-

highest bidder. These forms of competition have been widely used to model activities as

diverse as patent and R&D races, lobbying and rent-seeking activities, litigation, advertising

and political campaigns, tournaments as incentive devices in labor markets, competition for

college admissions, sports competitions, urban architecture, and territorial contests among

organisms.1

1 Applications in these areas include work by Dasgupta (1986), Kaplan, Luski and Wettstein (2003),

Hillman and Riley (1989), Baye, Kovenock and de Vries (1993), Che and Gale (1998), Baye, Kovenock and

de Vries (2005), Sahuguet and Persico (2006), Konrad (2004), Fu (2006), Groh, Moldovanu, Sela and Sunde
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The principal motivation of this article is that spillovers are often important in rank-order

contests; in many economic environments, one player’s decision affects the other player’s

payoff, and the nature of this effect may depend on the rank-order of the players’ choices.

This is perhaps most obvious in second-price auctions where the high bidder pays the second

highest bid, but spillovers also arise in a variety of economic contexts. For instance, an

extensive literature starting with D’Aspremont and Jacquemin (1988) has examined the

effects of positive spillovers in R&D competition that can arise when one player’s R&D

effort provides information that benefits its rival. Although D’Aspremont and Jacquemin

(1988) does not involve rank-order effects, a growing literature, starting from an original

observation by Dasgupta (1986), models the R&D process as a rank-order tournament (see

also Che and Gale 2003; Zhou 2006). The results examined in this article apply to the

positive spillovers arising in this context.

Rank-order spillovers also arise in models of litigation. Baye, Kovenock and de Vries

(2005), for instance, examine equilibrium in a litigation game with incomplete information

in which legal expenditures increase the quality of the case presented and where the “best

case” wins.2 This turns the litigation process into a rank order contest in which the litigation

incentives in legal systems, such as the American, British, Continental and “Quayle” systems,

may be examined. Although the American system, where litigants pay their own legal costs,

involves no spillovers, other fee-shifting rules, such as the British and Continental rules,

which require that losers compensate winners for a portion of their legal costs, and the

Quayle system, in which the loser reimburses the winner up to the amount actually spent

by the loser, involve spillovers. Under the British and Continental rules there is a negative

indirect spillover effect of the winner’s expenditure on the loser. In the continuation we call

this a second-order negative spillover effect. In the case of the Quayle system, there is a

positive indirect spillover of the loser’s expenditure on the winner. We call this a first-order

positive spillover effect.

(forthcoming), Helsley and Strange (2008), and Kura (1999).
2Our analysis is also related to a number of papers that have examined other incomplete information

environments. Recent contributions include the analysis of crossholdings and financial externalities (Das-

gupta and Tsui 2004; Ettinger 2003; Maasland and Onderstal 2007), k-double auctions (Kittsteiner 2003);

and charity auctions (Engers and McManus 2004; Goeree et al. 2005). Our paper is also related to the

literature on auctions with externalities dependent on the identity of the winner and not the bids per se (see,

for instance, Jehiel et al. 1996).
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Our taxonomy of spillover effects may also be used to construct and analyze variants

and extensions of the auction and contest literatures noted above. For instance, the classic

partnership dissolution problem may be viewed as the auction of a business in which two

partners simultaneously submit bids and the partner with the higher bid pays his bid to the

partner with the lower bid in return for ownership of the business. In this case, the payment

of the winning partner is a second-order positive spillover effect on the loser. Similarly, both

the first-price and second-price all-pay auctions, often used to model economic and biological

contests, may be extended to include environments in which effort expended imposes both

a rank-order contingent direct effect on the player expending the effort and a rank order

spillover effect on the player’s rival. For instance, if two organisms are engaged in a territorial

fight, the effort of the winner may exact both a cost to the winner (a first-order negative

direct effect) and a cost to the loser (a second-order negative spillover effect). The loser’s

effort may have a second-order negative direct effect on the loser’s payoff and a first-order

negative spillover effect on the winner.

An important class of economic environments where rank-order dependent spillovers arise

naturally is the analysis of auctions adapted to recent experimental and behavioral models

of individual choice. In Section 3 we show that our characterization may be used to examine

behavioral models that include: (i) tournaments in which individuals exhibit inequality

aversion in the spirit of Fehr-Schmidt (1999), (ii) first-price and all-pay auctions where players

experience regret similar to that in the models of Engelbrecht-Wiggans (1989), Engelbrecht-

Wiggans and Katok (2007), and Filiz-Ozbay and Ozbay (2007), and (iii) an all-pay auction

in which players maximize relative fitness according to the finite agent Evolutionary Stable

Strategies (ESS) equilibrium of Schaffer (1988).3

Section 3 also shows that many pricing games have rank-order dependent spillovers that

may be analyzed within our framework. For instance, in a variant of the classic Bertrand

model due to Varian (1980), two sellers simultaneously set a price and sell to three inelastic

segments of demand with common choke price, r. One of these inelastic segments consists of

price-sensitive consumers who are aware of both prices in the market and who purchase from

the lower-price seller, while the other two segments are attached to different firms and are

each aware of only the price of that firm to which they are attached (as long as that price

3See also Hehenkamp, Leininger, and Possajennikov (2004) who, to the best of our knowledge, were the

first to apply the ESS equilibrium concept in a (Tullock) contest.
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is at or below the choke price). Baye, Kovenock and de Vries (1992) have shown that this

game has a structure similar to that of a first-price all-pay auction in which the bid is the

difference between the choke price and a firm’s price. In this context, the bid corresponds to

the opportunity cost of the lost revenue from the seller’s own uninformed segment that results

from reducing price in order to attempt to capture the “prize” consisting of the demand of

the informed price-sensitive consumer segment.

Spillovers also arise naturally in the context of the Varian model when one examines

popular price matching policies (see Lin 1988; Png and Hirshleifer 1987; Baye and Kovenock

1994). If a high-price seller institutes a price-matching policy, it will sell at its own price

to consumers informed only of that price, but sell at its rival’s price to a proportion of

the informed customers who are willing to bear the cost of visiting the high-price seller

and taking it up on its offer to match the better price. In this case, the rival’s low price

generates a spillover effect on the high-price seller’s payoff, but not vice-versa. Section 3 also

includes additional applications of our results, including a “reference pricing” version of the

Varian model that includes “relative bargain” seekers whose demand from the low-price firm

depends on the ratio of the high price to the low price. With reference pricing, a rival’s high

price generates a spillover effect on the low-price seller’s payoff, but not vice-versa.

All of these models have the property that they are special cases of the linear parameter-

ized class of rank-order contests whose symmetric equilibria we characterize in this paper.

In Section 2 we formally introduce this class of models and provide a general closed-form

solution for the symmetric equilibria of the class. We characterize the symmetric equilib-

rium strategies as functions of “contest parameters,” which when varied change the “rules”

of the contest. In Section 3, we show how this characterization may be used to directly ob-

tain closed-form solutions for symmetric equilibrium strategies in these and other economic

environments. In Section 4 we conclude. The proofs are collected in the Appendix.

2 Model and Results

We study the symmetric Nash equilibria of the class of two-player games of complete infor-

mation in which each player i ∈ {1, 2} chooses an action (or bid) xi from the strategy space
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A = [0,∞), and where payoffs are

ui(xi, xj) =

⎧⎪⎪⎨⎪⎪⎩
W (xi, xj) ≡ v − βxi − δxj if xi > xj

L (xi, xj) ≡ −γ − αxi − θxj if xi < xj

T (xi, xj) ≡ 1
2
W (xi, xj) +

1
2
L (xi, xj) if xi = xj

(1)

We assume that V ≡ v+γ > 0.4 We also assume that at least one of the contest parameters

β, δ, α, or θ is nonzero.5 In the sequel, we let Γ denote an arbitrary game within this class.

The δ and θ parameters capture the externalities (negative or positive) that contestants

may inflict on each other. We use the terms “first-order positive (negative) spillover effects”

when δ < (>) 0, and “second-order positive (negative) spillover effects” when θ < (>) 0.

This captures the fact that when xi is the higher bid (the first in rank-order), the spillover

effect of player j’s bid, j 6= i, on player i’s payoff is linear with coefficient −δ. If δ > 0,

this effect is negative and if δ < 0 this effect is positive. Likewise, when player i’s bid is the

lower bid (second in the rank-order), the spillover effect of player j’s bid, j 6= i, is linear with

coefficient −θ. If θ > 0, this effect is negative and if θ < 0 this effect is positive. For similar
reasons, we refer to β and α as the first- and second-order direct effects. If player i’s bid

(xi) is the higher bid, or first, in the rank-order, the direct effect of player i’s bid on player

i’s payoff is linear with coefficient −β. If β > 0, the first-order direct effect of an increase in

player i’s bid is negative; this effect is positive if β < 0. Similar interpretations apply to the

second-order direct effect, α.

Notice that, were the strategy space bounded and one is merely interested in establishing

existence of a symmetric equilibrium, one could readily analyze this class of games using

the Dasgupta and Maskin (1986) framework. For games of incomplete information, Lizzeri

and Persico (2000) examine existence and uniqueness of bidding strategies in auctions where

W (xi, xj) and L (xi, xj) need not be linear, while Baye, Kovenock and de Vries (2005)

provide closed-form expressions for equilibrium strategies in the linear case. In what follows,

we provide closed-form solutions for symmetric pure- and mixed-strategy equilibria for the

case of complete information, and allow for parameter configurations not accounted for in

the Lizzeri-Persico and Baye-Kovenock-deVries analyses.6

4In particular, note that V > 0 implies W (0, 0) > L (0, 0) .
5The case where β = δ = α = θ = 0 corresponds to the game of “pick the greatest nonnegative real

number,” which does not have an equilibrium when the strategy space is unbounded.
6Complete information analogues of the Lizzeri-Persico axioms (labelled A1-A8) would require α ≥ 0 (A5,
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2.1 Symmetric Pure Strategy Nash Equilibria

We first provide the conditions under which there exists a symmetric pure strategy equilib-

rium, x∗, such that each player earns the equilibrium payoff U∗ < ∞. To this end, define
η ≡ α + θ − β − δ, so that η measures the change in the payoff per unit of expenditure at

x∗ derived solely from changes in the direct and spillover effects (and not from winning V )

that result from the switch from being a loser to being a winner at x∗.

Proposition 1 Γ has a symmetric pure strategy Nash equilibrium if and only if the following

three conditions jointly hold: (i) β ≥ 0, (ii) α ≤ 0 and (iii) η < 0. Furthermore, there is but
one such equilibrium and it is given by

x∗ = −V
η
≡ v + γ

β + δ − α− θ
(2)

These conditions have intuitive interpretations: β ≥ 0 means that, conditional on win-
ning, a player’s utility is nonincreasing in his own bid, and α ≤ 0 means that, conditional
on losing, a player’s utility is nondecreasing in his own bid. The condition η < 0 roughly

means that in addition, the net spillover effect (θ − δ) is “small” relative to the net direct

effect (α− β).

Examples of applications of Proposition 1 to games of complete information include the

first-price auction ( γ = 0, β = 1, δ = α = θ = 0) where x∗ = v and the second-price auction

( γ = 0, δ = 1, β = α = θ = 0) where x∗ = v. Proposition 1 also implies that games such as

the standard first-price all-pay auction (β = α = 1, δ = θ = 0) and the second-price all-pay

auction (also called the war of attrition, where δ = α = 1, β = θ = 0) do not have symmetric

pure-strategy equilibria. Since it is known that these special cases of Γ do have symmetric

mixed-strategy equilibria, we next provide a characterization of all such equilibria to Γ.

2.2 Symmetric Mixed-Strategy Equilibria

In the analysis that follows, a cumulative distribution function, F , is said to be a symmetric

mixed-strategy equilibrium of Γ (with associated equilibrium payoff EU∗) if, for each player

i , for every xi in the support of F , and for all x0i ∈ [0,∞) :

Ui (x
0
i, F ) ≡

Z ∞

0

ui(x
0
i, xj)dF (xj) ≤

Z ∞

0

ui(xi, xj)dF (xj) ≡ Ui (xi, F ) = EU∗ ∈ (−∞,∞)

A7), β > 0 (A7), δ ≥ 0 (A7), and θ = 0 (A7). Baye, Kovenock, and de Vries assume, in their incomplete

information framework, that (β, α) > 0, δ = (1− α), and θ = (1− β).
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Note that the existence of such an equilibrium requires that, for each xi ∈ [0,∞), ui(xi, xj)
be integrable with respect to the probability measure that induces F (xj); that is, conditional

expected utility exists and is finite.7 This formulation of symmetric mixed-strategy equilibria

permits us to deal with technical issues that can arise in games with unbounded strategy

spaces and payoffs.8

It follows that if F is a symmetric mixed-strategy equilibrium with density f(x) on some

subset (m,u) of the support of F (so that there are no mass points in this interval), the

expected payoff to a player that bids w ∈ (m,u) against the rival’s mixed-strategy F is given

by

EU(w) =

Z w

0

W (w, x)dF (x) +

Z ∞

w

L(w, x)dF (x)

Since F is a symmetric mixed-strategy equilibrium by hypothesis, EU(w) = EU∗ on w ∈
(m,u). Hence,

dEU(w)

dw
= [V + ηw] f(w)− α+ (α− β)F (w) = 0 (3)

on (m,u). The solution to this differential equation is given by

F (w) =
α

α− β

(
1−

∙
V + ηm

V + ηw

¸α−β
η

)
+ C

∙
V + ηm

V + ηw

¸α−β
η

, (4)

where m ≥ 0 and 0 ≤ C ≤ 1.
Notice that this derivation of the functional form for a symmetric equilibrium mixed-

strategy is only heuristic, as it ignores mass points, the possibility of profitable deviations

outside of (m,u) , and furthermore, may not represent a well-defined distribution function

for some parameter configurations. Our next proposition addresses these issues formally and

characterizes the nondegenerate symmetric mixed-strategy equilibria to Γ.

Proposition 2 Γ has a nondegenerate symmetric mixed-strategy equilibrium if and only if

one of the following three sets of conditions holds: (i) β > 0 and α > 0; (ii) β = 0, α > 0

and either ηθ = 0 or η < α; or (iii) β = 0, α < 0 and either α < η < 0 or η < θ = 0.

7See, for instance, Chung (1974, p. 40) for a formal definition of integrability.
8The fact that F satisfies the above definition of an equilibrium does not imply that ui (xi, xj) is integrable

with respect to the the joint probability measure induced by F because E [ui (xi, xj)] may not exist. Note

that if E [ui (xi, xj)] exists, it equals EU∗; if it does not exist, F is nonetheless an equilibrium in the sense

that any given xi drawn from F and assigned to player i is a best response to F–provided player i knows

this realization, but not the realization assigned to his rival.
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In cases (i) and (ii), the equilibrium is unique within the class of symmetric equilibria (pure

or mixed). In case (iii) there exists a continuum of nondegenerate symmetric mixed-strategy

equilibria, as well as a unique symmetric pure strategy equilibrium (given in Proposition 1).

The nondegenerate symmetric mixed-strategy equilibria are atomless and described by the

distribution function F ∗ (w) on [m∗, u∗), where

F ∗ (w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α
α−β

µ
1−

³
V+ηm∗

V+ηw

´α−β
η

¶
if η 6= 0;α 6= β

α
θ−δ ln

³
V+(θ−δ)w

V

´
if η 6= 0;α = β

α
α−β

¡
1− exp

¡
−α−β

V
w
¢¢

if η = 0;α 6= β

α
V
w if η = 0;α = β

, (5)

m∗ =

⎧⎨⎩ 0 if α > 0

m0 ∈
³
−V

η
,∞
´
if α < 0

, and (6)

u∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−V
η

if α > 0;β = 0; η < 0

V
η

h
(α/β)

η
α−β − 1

i
if α > 0;β > 0;α 6= β; η 6= 0

V
η
[exp (η/α)− 1] if α = β > 0; η 6= 0

V
α−β ln

α
β

if α > 0;β > 0;α 6= β; η = 0

V/α if α > 0;β > 0;α = β; η = 0

∞ if otherwise

Furthermore, the corresponding equilibrium payoffs are given by

EU∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θv+δγ
θ−δ + β θ

η(θ−δ)

∙
1−

³
α
β

´ η
α−β
¸
V if η 6= 0;α 6= β; θ 6= δ;β 6= 0

−γ + θV
η
− θV

η
α
η
ln α

β
if η 6= 0;α 6= β; θ = δ;β 6= 0

θv+δγ
θ−δ + αδ

θ−δm
∗ if η 6= 0;α 6= β; θ 6= 0;β = 0

−γ − αm∗ if η 6= 0;α 6= β; θ = 0;β = 0
θv+δγ
θ−δ + β θ

(θ−δ)2

h
1− exp

³
θ−δ
β

´i
V if η 6= 0;α = β

θv+δγ
θ−δ + β θ

(θ−δ)2

h
ln
³
α
β

´i
V if η = 0;α 6= β;β 6= 0

θv+δγ
θ−δ if η = 0;α 6= β;β = 0

−γ − θ
2α
V if η = 0;α = β

(7)

Notice that all of the terms in equations (5), (6) and (7) are well-defined, since conditions

(i) through (iii), which guarantee the existence of a nondegenerate symmetric mixed-strategy

equilibrium, imply: (a) α 6= 0; (b) if α < 0, then η < 0 and β = 0; (c) if α = β, then α > 0
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and β > 0; (d) if α = β and η 6= 0, then θ 6= δ; (e) if α 6= β and η = 0, then θ 6= δ; and (f) if

β 6= 0 then α > 0 and β > 0.

The Appendix constructively derives all of the possible symmetric equilibria and the

resulting payoffs in a series of lemmata, and also indicates when an equilibrium does not

exist. The analysis in the Appendix implies that one may also obtain closed-form expressions

for the equilibrium strategies by taking limits of equation (4). For instance, the functional

form for the equilibrium distribution function in Proposition 2 when η 6= 0 and α = β obtains

by taking the limit of equation (4) as α− β tends to zero.

Propositions 1 and 2, which characterize the parameter ranges where symmetric pure

and nondegenerate mixed-strategy equilibria arise, together facilitate a complete partition

of the parameter space into ranges of qualitatively different symmetric Nash equilibrium

correspondences. We summarize this in

Proposition 3 The symmetric equilibria to Γ are characterized as follows:

(a) The unique symmetric equilibrium is in pure strategies if and only if one of the

following three conditions holds: (i) β > 0, α ≤ 0, and η < 0; (ii) β = 0, α = 0, and η < 0;

or (iii) β = 0, η ≤ α < 0, and θ 6= 0.
(b) The unique symmetric equilibrium is in nondegenerate mixed strategies if and only

one of the following two conditions holds: (i) β > 0 and α > 0; or (ii) β = 0, α > 0 and

either ηθ = 0 or η < α.

(c) There is a unique symmetric pure strategy equilibrium and a continuum of nondegen-

erate symmetric mixed-strategy equilibria if and only if β = 0, α < 0 and either α < η < 0

or η < θ = 0.

Furthermore, if none of the conditions in (a) through (c) hold, Γ does not have a sym-

metric equilibrium (either pure or mixed).

It is important to emphasize that we have focused solely on symmetric equilibria. Asym-

metric equilibria are known to exist, for instance, in the symmetric two player war of attrition

(α = δ = 1, β = θ = 0) and sad loser auction (α = 1, β = θ = δ = 0). We also note that,

were there a common finite upper bound on the strategy space for the players (such that the

strategy space is compact), existence of a symmetric equilibrium is guaranteed by Lemma 7

of Dasgupta-Maskin (1986).9

9As a referee noted, extending our analysis to include a common finite upper bound on the strategy space
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Before proceeding, we offer several observations about the four functional forms for the

symmetric equilibrium mixed-strategies that can arise under different parameter configura-

tions. First, note that the lower bound of the support, m∗, of every symmetric equilibrium

mixed-strategy to Γ is zero when α > 0, but an arbitrary positive number m∗ ∈ (−V/η,∞)
when α < 0 (this accounts for the continuum of symmetric mixed-strategy equilibria that

arise in this case). Second, notice that the equilibrium mixed-strategies take on different

functional forms (including the uniform distribution, exponential distribution, as well as

more exotic forms) depending on which of four regions (denoted R1-R4) the parameters lie:

R1: η 6= 0 and α 6= β. In this case, any of the conditions (i), (ii), or (iii) in Proposition 2

may apply. This is, in a sense, the most general form of an all pay auction in which

direct effects are asymmetric and spillovers may be either symmetric or asymmetric.

When both α and β are positive, Proposition 2 implies that the support of the dis-

tribution is bounded. When β = 0, the support of the symmetric equilibrium mixed

strategies is unbounded unless η < 0; the unbounded distribution is known as a Burr

distribution with a Pareto type upper tail such that not all moments exist. Notice

that part (ii) of Proposition 2 includes the case where β = 0, α > 0, and θ = 0.

The Riley and Samuelson (1980) sad loser auction in which only the loser pays his bid

(β = δ = θ = 0 and α = 1) is a special case of this configuration. The case where

β = 0, α > 0 and α > η 6= 0 may be viewed as a sad loser auction with spillovers

(δ > θ ). Finally, note that when α < β = 0 and either α < η < 0 or η < θ = 0, there

is a continuum of symmetric mixed-strategy equilibria which stem from the continuum

of lower bounds for the support that arise when α < 0. The Baye-Morgan (1999)

folk-theorem for one-shot, homogeneous product Bertrand games, which entails both a

continuum of symmetric equilibrium strategies and equilibrium payoffs, is an example

of an economic environment that may be viewed as a Γ with parameters in R1.

R2: η 6= 0 and α = β. In this case, conditions (i) through (iii) in Proposition 2 imply that

only condition (i) is satisfied, and therefore α = β > 0 and θ 6= δ. In this case the

asymmetric spillovers impact both the equilibrium payoffs and the symmetric mixed

strategies (which take on a logarithmic form). To the best of our knowledge, contests

would permit one to analyze games (such as the Traveler’s Dilemma; see Basu 1994) that have payoffs as in

equation (1) but are not covered in our framework because of the strategy space restriction.
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or auctions with parameters in R2 have not here-to-for been examined in the literature.

Games with parameters in R2 may be interpreted as a generalized first-price all-pay

auction with asymmetric spillovers.

R3: η = 0 and α 6= β. In this case, conditions (i) through (iii) in Proposition 2 imply

that either (i) or (ii) applies, and therefore α > 0, β ≥ 0 and θ 6= δ. In this case the

asymmetric spillovers impact the symmetric equilibrium payoffs but not the equilibrium

mixed-strategies (which take the form of a truncated exponential distribution). The

standard war of attrition (α = δ = 1, β = θ = 0) is a special case of a Γ with

parameters in R3. Notice that when β > 0, the symmetric mixed-strategy has a

bounded upper support, whereas it is unbounded when β = 0 (and hence the symmetric

mixed-strategies are a nontruncated exponential distribution).

R4: η = 0 and α = β. In this case, conditions (i) through (iii) in Proposition 2 imply that

only condition (i) can be satisfied, and therefore α = β > 0 and θ = δ. The standard

all-pay auction (α = β = 1 and θ = δ = 0) is a special case of this configuration. More

generally, this configuration is a modified first-price all-pay auction in which θ = δ 6= 0
is a “nuisance parameter” that does not influence the symmetric equilibrium mixed-

strategy (which is a uniform distribution) but does impact the players’ equilibrium

expected payoffs. Notice that a game with parameters in R4 is the limit of games with

parameters in R2 as the spillovers become symmetric.

3 Applications

We now are in a position to show how our characterization of symmetric equilibria may be

used to obtain closed-form expressions for equilibrium strategies in economic environments

that include auctions, contests, and pricing games. In so doing, we also show that our

results may be used to generalize existing models to allow for spillover effects, and to exam-

ine the implications of alternative behavioral and evolutionary assumptions on equilibrium.

Throughout this section, we suppress ties, which we assume are broken with the flip of a fair

coin.
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3.1 Auctions and Contests with Spillovers

In addition to standard auctions and contests (such as first- and second-price auctions,

the war of attrition, and the all-pay auction), our framework may be used to characterize

symmetric equilibria in more exotic economic applications.

Partnership Dissolution (The Self-Auction). Two partners wish to dissolve a part-

nership each values at v > 0. They simultaneously submit bids; the high bidder wins the

asset and pays his bid to the other partner. Here, the payoffs are given by

ui (xi, xj) =

⎧⎨⎩ v − xi if xi > xj

xj if xi < xj

and thus the game may be viewed as a Γ with V = v, β = −θ = 1, α = δ = 0, and η = −2.
It follows from Proposition 1 that the only symmetric pure-strategy equilibrium is x∗ = v/2.

Furthermore, Proposition 3 reveals that the self-auction does not have a nondegenerate

symmetric mixed-strategy equilibrium.

An Innovation Contest with Spillovers. One may also use our results to extend Das-

gupta’s (1986) all-pay auction formulation of an R&D race by allowing each firm’s expen-

diture on R&D to induce an informational spillover that benefits the rival. In particular,

suppose the winner receives a greater benefit per unit of expenditure from the loser’s ex-

penditure than the loser receives from the winner’s expenditure. The corresponding payoffs

are

ui (xi, xj) =

⎧⎨⎩ v − xi − δxj if xi > xj

−xi − θxj if xi < xj

This game may be viewed as a Γ in which V = v > 0, α = β = 1, and δ < θ < 0. Since

α− β = 0 and η > 0, Propositions 2 and 3 imply that the unique symmetric equilibrium is

in nondegenerate mixed strategies (with parameters in R2) and is given by

F ∗ (x) =
1

θ − δ
ln

µ
1 +

θ − δ

v
x

¶
on

∙
0,

v

θ − δ

µ
exp

µ
θ − δ

α

¶
− 1
¶¸

Territorial Contests with Injuries. Next, consider a generalization of an all-pay auction

formulation of a territorial contest in which the outcome of the battle depends on the intensity

of effort put forth by the two players in the fight, where each player values the territory in

13



dispute at v > 0. Suppose the cost to a player per unit of intensity of effort is unity

(α = β = 1), and each unit of effort a player expends in the battle imposes a cost on its

rival (through injury), so that δ, θ > 0. If the cost to the loser per unit of intensity of effort

of the winner is greater than the cost to the winner per unit of intensity of effort of the loser

(θ > δ > 0), then α− β = 0 and η = θ − δ > 0. In this case, Proposition 2 reveals that the

symmetric equilibrium of this game is identical to that in the above innovation contest with

spillovers.

If, on the other hand, the efforts of the winner and loser entail symmetric injury (θ = δ >

0), Proposition 2 implies that the symmetric equilibrium mixed-strategy (with parameters

in R4) is given by

F ∗ (x) = x/v on [0, v] ,

which corresponds to the all-pay auction. However, expected payoffs are not zero (as they

are in the standard all-pay auction). Notice that, as a result of spillovers, both of these

variants differ from the classic war of attrition (β = θ = 0 and α = δ = 1), which lies in the

region of R3 that entails an equilibrium distribution that is an exponential distribution.

Litigation Contests with Fee Shifting. Our framework may also be used to characterize

symmetric equilibria for the complete information analogues of the Baye et al. (2005) model

of litigation contests under incomplete information. In this application, players are litigants

who compete by choosing (quality normalized) expenditures on legal services, with the player

spending the higher amount winning the case valued at v > 0. The fee shifting rules examined

by Baye et al. may be examined under complete information using the tools developed in

Section 2.

For instance, under the Continental rule, the loser pays his own legal expenditure and, ad-

ditionally, reimburses the winner a fraction (1−β) ∈ (0, 1) of the winner’s legal expenditures.
Thus, the Continental rule is a Γ with V = v, 0 < β < α = 1, and δ = 0 < θ = (1−β). Since
α > 0, β > 0, α−β > 0, and η = 2(1−β) > 0, Proposition 2 implies that the corresponding

equilibrium (with parameters in R1) is

F ∗(x) =
1

1− β

Ã
1−

µ
v

v + 2(1− β)x

¶1
2

!
on

∙
0,

v

2 (1− β)

µ
1

β2
− 1
¶¸

and the equilibrium payoff is EU∗ = −v (1− β) / (2β) < 0.
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In contrast, under the Quayle rule, where the loser reimburses the winner up to the

amount actually spent by the loser, V = v, α = 2, β = 1, δ = −1 and θ = 0. Since α > 0,

β > 0, α − β > 0 and η = 2 > 0, Proposition 2 implies that the corresponding equilibrium

(with parameters in R1) is

F ∗(x) = 2

"
1−

µ
v

v + 2x

¶ 1
2

#
on

∙
0,
3

2
v

¸
and the equilibrium payoff is EU∗ = 0. Furthermore, Proposition 1 reveals that symmetric

pure-strategy equilibria do not arise in these litigation environments.

3.2 Price Competition

We mentioned earlier that our framework readily includes standard models of price competi-

tion under complete information that take the form of first- and second-price auctions (which

have a unique symmetric equilibrium in pure strategies) as well variants that have symmetric

mixed-strategy equilibria. We next show that our framework also subsumes several models

of price competition in the industrial organization literature.

Bertrand Competition. Our framework may be used to identify all symmetric equilibria

in winner-take-all homogeneous product Bertrand games, including the unique symmetric

pure-strategy equilibrium (marginal cost pricing) and the continuum of positive-profit mixed

strategy equilibria identified by Baye and Morgan (1999). To see this, suppose two price-

setting firms produce a homogeneous product at a constant marginal cost, c > 0, and the

firm offering the lowest price captures the entire market demand, which is given by D (p) = 1

for p ∈ [0,∞). Thus, the profits of firm i are given by

πi (pi, pj) =

⎧⎨⎩ 0 if pi > pj

pi − c if pi < pj

Letting xi ≡ pi, this is a Γ with V = c, α = −1 , β = θ = δ = 0, and η = −1. By
Proposition 1 , x∗ ≡ p∗ = −V/η = c is the unique symmetric pure strategy Nash equilibrium

(and each firm earns zero profits). By Proposition 2, there is also a continuum of symmetric

positive profit equilibria in nondegenerate mixed strategies (with parameters in R1): For

every m ∈ (c,∞),
F ∗ (p) = 1−

µ
m− c

p− c

¶
on [m,∞)
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is a symmetric nondegenerate mixed-strategy equilibrium with corresponding equilibrium

payoffs of EU∗ = m ∈ (c,∞).

The Varian/Rosenthal Model. The price setting models of Varian (1980) and Rosenthal

(1980) may be analyzed in our framework as follows. Here, two price-setting firms each

service a fixed number, L > 0, of loyal (or uninformed) consumers who have unit demand up

to a choke price , r > 0. Additionally, there are S > 0 price sensitive “shoppers” (or informed

consumers) who always purchase from the firm charging the lowest price–provided it does

not exceed r. Each firm produces at zero cost to earn a payoff of

πi (pi, pj) =

⎧⎨⎩ (S + L) pi if pi < pj

Lpi if pi > pj

where, for simplicity we have suppressed the fact that a firm’s profits are zero if it prices

above r.

To see that this model is a special case of our framework, define xi ≡ r − pi ≥ 0 so that
the above payoffs are equivalent to those in a game in which

ui (xi, xj) =

⎧⎨⎩ (S + L) r − (S + L)xi if xi > xj

rL− Lxi if xi < xj

Thus, the Varian/Rosenthal models may be interpreted as a Γ with v = (S + L) r, γ = −rL,
V = rS > 0, β = (S + L) > 0, δ = θ = 0, α = L > 0, and η = −S < 0.10 Hence, by

Proposition 2, the equilibrium (expressed in terms of the discount from the monopoly price,

or x ≡ r − p) is associated with parameters in R1 and is given by

F ∗ (x) =
L

S

µ
r

r − x
− 1
¶
on

∙
0,

rS

S + L

¸
To write this expression in terms of the equilibrium distribution of prices, G∗ (p), use the

fact that x ≡ r− p and note that G∗ (p) = Pr (P ≤ p) = 1−Pr (x < r − p) = 1−F ∗ (r − p),

so that

G∗ (p) = 1− L

S

µ
r − p

p

¶
on

∙
r

L

S + L
, r

¸
10Application of our Propositions also requires the strategy space in the transformed game to be [0,∞).

Notice that xi ∈ [0,∞) implies pi ∈ (−∞, r]. It is immediate that negative prices are strictly dominated.

Hence, expanding the strategy space in the original game to include negative prices does not change the

equilibrium set.
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PriceMatching Guarantees. Onemay also use our results to extend the Varian/Rosenthal

models to allow for price matching policies, as in Png and Hirshleifer (1987) and Baye and

Kovenock (1994). To see this, extend the Varian/Rosenthal models by assuming that the

two firms not only list prices, but also promise to match a better price by the rival. Here,

one interprets S as informed consumers who are aware of the firms’ prices, L as uninformed

consumers who are unaware of the firms’ prices, and one assumes that only a proportion

µ < 1/2 of the informed customers are willing to bear the cost of visiting a firm charging

the highest price to take it up on its offer to match a better price. Consequently, the firms’

payoffs are

πi (pi, pj) =

⎧⎨⎩ (L+ (1− µ)S) pi if pi < pj

Lpi + µSpj if pi > pj

As before, let xi = r − pi, so that the payoffs may be rewritten as

ui (xi, xj) =

⎧⎨⎩ r ((1− µ)S + L)− ((1− µ)S + L)xi if xi > xj

r (L+ µS)− Lxi − µSxj if xi < xj

Note that V = (1− 2µ)Sr > 0, β = (1− µ)S + L > 0, α = L > 0, θ = Sµ > 0, and δ = 0.

In this case, α − β = − (1− µ)S < 0 and η = − (1− 2µ)S < 0, and the parameters lie in

R1. Proposition 2 implies

F ∗ (x) =
L

(1− µ)S

Ãµ
r

r − x

¶ (1−µ)
(1−2µ)

− 1
!
on

"
0, r

Ã
1−

µ
L

((1− µ)S + L)

¶ (1−2µ)
(1−µ)

!#

As before, one may easily re-write this distribution of discounts from the monopoly price

purely in terms of the prices.

3.3 Behavioral and Evolutionary Extensions

The results in Section 2 may also be used to extend existing models to account for behavioral

or evolutionary considerations that impact the payoffs in standard games. We discuss these

applications next.

Reference Pricing. Onemay use our results to analyze an extension of the Varian/Rosenthal

models to account for reference pricing. To see this, suppose that in addition to shoppers

and loyal consumers, there also exists a measure of “relative bargain seekers.” As above,
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all consumer segments have a common choke price, r > 0. Relative bargain seekers, like

shoppers, always purchase from the firm offering the lowest price. But unlike shoppers, the

demand of relative bargain seekers depends on how low the best price is in comparison to the

next best price: The lower the “best” price relative to that of the higher price, the greater

their demand for the low-priced good. To capture this behavior, assume that when firm i

charges the lowest price, its demand from relative bargain seekers is Di ≡ λpj/pi while firm

j’s demand from these consumers is zero. When λ > 0, this captures the behavioral phe-

nomenon where the demand by one segment of consumers depends, in part, on their frame

of reference.

With this extension, the payoffs are.

πi (pi, pj) =

⎧⎨⎩
³
S + L+ λ

pj
pi

´
pi if pi < pj

Lpi if pi > pj

As before, let xi ≡ r − pi, so that these payoffs are equivalent to

ui (xi, xj) =

⎧⎨⎩ r (S + L+ λ)− xi (S + L)− λxj if xi > xj

rL− Lxi if xi < xj

If λ ≤ L, this extension may be viewed as a Γ with V = r (S + λ) > 0, α = L > 0,

β = S + L > 0, θ = 0, δ = λ, α− β = −S < 0 and η = − (S + λ) < 0.11 These parameters

lie in R1, and Proposition 2 implies

F ∗ (x) =
L

S

Ãµ
r

r − x

¶ S
S+λ

− 1
!
on

"
0, r

Ã
1−

µ
L

S + L

¶ (S+λ)
S

!#
,

or in terms of price,

G∗ (p) = 1− L

S

Ãµ
r

p

¶ S
S+λ

− 1
!
on

"
r

µ
L

S + L

¶ (S+λ)
S

, r

#
This distribution converges to that in the Varian/Rosenthal model as λ tends to zero.

Interestingly, when there are only loyal customers and relative bargain seekers (S = 0),

then η = −λ < 0 and α − β = 0. In this case the parameters lie in R2, and Proposition 2

implies

F ∗ (x) =
L

λ
ln

r

r − x
on

∙
0,

µ
1− exp

µ
−λ

L

¶¶
r

¸
11Notice that xi ∈ [0,∞) implies pi ∈ (−∞, r]. If λ ≤ L , it is immediate that negative prices are strictly

dominated. Hence, expanding the strategy space in the original game to include negative prices does not

change the equilibrium set.
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Effort Inequality Aversion in a Job Tournament. Next, consider an environment

where two workers compete in a job tournament but exhibit a specialized form of inequality

aversion such that they receive disutility from inequality of effort. We model inequality

aversion with a utility function similar to that in Fehr-Schmidt (1999), except that our focus

is on effort inequality rather than income inequality.

In particular, suppose that the worker exerting the greater effort (xi) receives a bonus

valued at µ > 0 and that payoffs are

ui (xi, xj) =

⎧⎨⎩ µ− xi − b (xi − xj) if xi > xj

−xi − a (xj − xi) if xi < xj

where 0 < a < 1 and 0 < b. This captures behavior where the winner experiences disutility

for having “slaughtered” the loser, and the loser derived disutility from having been beaten

badly. In this case, utilities may be written as

ui (x1, x2) =

⎧⎨⎩ µ− (1 + b)xi + bxj if xi > xj

− (1− a)xi − axj if xi < xj

This behavioral environment may thus be viewed as a Γ in which V = v = µ > 0, γ = 0,

α = 1− a > 0, θ = a, β = 1+ b > 0 and δ = −b < 0. Note that α− β = − (a+ b) < 0 and

η = 0.

Since α = 1 − a > 0, it is immediate from Proposition 1 that there does not exist a

symmetric pure strategy equilibrium. However, Propositions 2 and 3 imply that a unique

nondegenerate symmetric mixed strategy equilibrium (with parameters in R3) exists. The

corresponding distribution of effort is

F ∗ (x) =
1− a

a+ b

µ
exp

µ
a+ b

µ
x

¶
− 1
¶
on

∙
0,

µ

a+ b
ln

µ
1 + b

1− a

¶¸
and each player earns an expected equilibrium payoff of

EU∗ =
a

a+ b

∙
1 +

1 + b

a+ b
ln

µ
1− a

1 + b

¶¸
µ

It is interesting to note that if a ∈ (0, 1) but b ∈ (−1, 0) (so that the winner enjoys
“slaughtering” the loser), the equilibrium strategies and payoffs have exactly the same form

when b 6= −a. But when b = −a (so that α − β = 0 and η = 0), the parameters lie in R4

and the equilibrium distribution effort is identical to that in the all-pay auction:

F ∗ (x) =
1− a

µ
x on

∙
0,

µ

1− a

¸
19



However, unlike the all-pay auction,

EU∗ = − a

2 (1− a)
µ.

Loss Aversion in a Job Tournament. Two workers compete in a job tournament and

the worker exerting the greater effort (xi) receives a bonus valued at µ > 0. Thus, their

income is

yi =

⎧⎨⎩ µ− xi if xi > xj

−xi if xi < xj

Suppose the workers’ utility (over income) exhibits “loss aversion” in that ui = yi if player i

wins, and ui = λyi if player i loses, where λ > 1. In this case, utility (as a function of effort)

is

ui (xi, xj) =

⎧⎨⎩ µ− xi if xi > xj

−λxi if xi < xj

and this scenario may be analyzed as a Γ with v = µ, γ = 0, V = µ > 0, α = λ > 0,

β = 1 > 0, θ = δ = 0, and η = α− β = λ− 1 > 0. Hence, Propositions 2 and 3 imply that
the unique nondegenerate symmetric mixed-strategy equilibrium (with parameters in R1) is

given by

F ∗ (x) =
λx

µ+ (λ− 1)x on [0, µ]

Regret in Auctions. A growing literature has examined regret in auctions; see Engelbrecht-

Wiggans (1989), Engelbrecht-Wiggans and Katok (2007), and Filiz-Ozbay and Ozbay (2007)

and the references cited therein. To illustrate how our framework may be used to examine

the implications of this behavioral assumption in complete information environments, con-

sider a first-price auction where each player i ∈ {1, 2} values the item at v, but there is

winner regret such that the payoffs are

ui(x1, x2) =

⎧⎨⎩ v − xi − µ (xi − xj) if xi > xj

0 if xi < xj

Here, xi is player i’s bid and v > 0 is the value of the item; winner regret (µ > 0) refers to the

fact that the high bidder derives disutility from leaving money on the table (the difference
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between the winning and losing bid). The payoffs may be rewritten as

ui(x1, x2) =

⎧⎨⎩ v − (µ+ 1)xi + µxj if xi > xj

0 if xi < xj

which is a rank-order contest, Γ, with a positive first-order spillover effects. In particular,

V = v, α = θ = 0, β = (1 + µ) > 0, δ = −µ, and η = −1, so Proposition 1 implies that a
symmetric pure strategy Nash equilibrium exists and is given by x∗ = v. Furthermore, by

Proposition 3, there are no symmetric mixed-strategy equilibria.

In a first-price auction with loser regret, payoffs are

ui(x1, x2) =

⎧⎨⎩ v − xi if xi > xj

−ρ (v − xj) if xi < xj

where ρ > 0. Preferences with loser regret thus transform the standard auction into a rank-

order contest with a positive second-order spillover effect, and one can use the results in

Section 2 to conclude that the unique symmetric equilibrium (pure or mixed) is x∗ = v.

The results of Section 2 may also be used to extend these behavioral models to include

combined winner and loser regret in a first-price auction. In this case, both first and second

order spillover effects arise, as the payoffs are

ui(x1, x2) =

⎧⎨⎩ v − (µ+ 1)xi + µxj if xi > xj

−ρ (v − xj) if xi < xj

One can readily establish that the unique symmetric equilibrium is in pure strategies and is

given by x∗ = v.

Furthermore, our results may be utilized to examine the implications of combined winner-

loser regret in other auction environments. For instance, in an all-pay auction with winner-

loser regret, payoffs are

ui(x1, x2) =

⎧⎨⎩ v − (µ+ 1)xi + µxj if xi > xj

−vρ− (ρ+ 1)xi + ρxj if xi < xj

This may be viewed as a Γ in which V = (1 + ρ) v, α = (1 + ρ) > 0, β = (1 + µ) > 0,

θ = −ρ, δ = −µ, and η = 0. When ρ 6= µ, Propositions 2 and 3 imply that the unique

symmetric equilibrium (with parameters in R3) is

F ∗(x) =

µ
1 + ρ

ρ− µ

¶µ
1− exp

µ
−ρ− µ

1 + ρ

x

v

¶¶
on

∙
0,
1− δ

δ − µ
ln

µ
1 + ρ

1 + µ

¶¸
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and each player earns an expected payoff of

EU∗ = vρ+ ρ (1 + ρ) v
(1 + µ) ln 1+µ

1+ρ
+ ρ− µ

(ρ− µ)2

However, if ρ = µ, so that α = β, one obtains the standard all-pay auction form (with para-

meters in R4): F ∗ (x) = x/v. In this case, total expected effort is the same with symmetric

winner-loser regret as in the standard all-pay auction, but EU∗ = −ρv/2.

ESS in the All-Pay Auction. Finally, one may utilize our results to construct equilibrium

strategies in certain evolutionary environments. To see this, consider a two player all-pay

auction and note that the (finite agent) ESS equilibrium of Schaffer (1988) requires that each

player maximizes the difference in payoffs. Thus

ui(x1, x2) =

⎧⎨⎩ v − xi − (−xj) if xi > xj

−xi − (v − xj) if xi < xj

Hence, this may be viewed as a Γ where payoffs are

ui(x1, x2) =

⎧⎨⎩ v − xi + xj if xi > xj

−v − xi + xj if xi < xj

and V = 2v > 0, β = α = −θ = −δ = 1, and consequently, α−β = 0 and η = 0. Notice that
these parameters lie in R4. One may therefore apply the results in Section 2 to conclude that

the unique symmetric Nash equilibrium to a game with these payoffs (which corresponds to

the ESS equilibrium of a game with the original formulation of payoffs) is

F ∗(x) =
x

2v
on [0, 2v]

Among other things, this implies that there is overdissipation of rents in the ESS equilibrium.

This is similar to the findings of Hehenkamp et al. (2004) for the case of a Tullock contest.

4 Conclusion

This paper has characterized symmetric equilibria (pure and mixed) in a parameterized class

of two player complete information contests with rank-order spillovers. We derived explicit

closed form solutions for the complete set of symmetric equilibrium strategies for this class
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of games, and showed that these strategies take on only a small number of functional forms

that depend on the parameters in a systematic and easily verified way. We concluded by

using this framework to formulate and solve several new contests. Not only are a plethora

of existing models of auctions, contests, and price competition covered as special cases, but

our results permit one to extend these models to allow for a broader array of preferences,

spillover effects, and equilibrium concepts. The logarithmic equilibrium distribution that

arises in the all-pay auction with asymmetric spillovers, for example, appears to be novel

to the literature. We believe that Propositions 1 through 3 will provide positive spillovers

for future applied work on auctions, contests, and pricing strategies, as well as behavioral

economics and evolutionary game theory.
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Appendix

This Appendix provides the proofs of Propositions 1 through 3. Recall the definitions of

W , L, and T are given in equation (1) .

A1. Proof of Proposition 1
The following lemma is useful in proving Proposition 1.

Lemma 1 x ∈ [0,∞) is a symmetric pure strategy Nash equilibrium of Γ if and only if the

following two conditions hold:

T (x, x) ≥ W (y, x) for all y ≥ x (8)

T (x, x) ≥ L (y, x) for all 0 ≤ y ≤ x

Proof. Recall that x1 = x2 = x is a symmetric pure strategy Nash equilibrium if and

only if ui (x, x) ≥ ui (y, x) for all y ∈ [0,∞). Note that ui (y, x) = L (y, x) for y < x and

ui (y, x) =W (y, x) for y > x. Additionally, since

ui (x, x) = T (x, x) =
1

2
W (x, x) +

1

2
L (x, x)

the conditions in (8) imply

ui (x, x) = T (x, x) =W (x, x) = L (x, x)

(⇐= ) By hypothesis, x ∈ [0,∞) satisfies

T (x, x) ≥ W (y, x) for all y ≥ x

T (x, x) ≥ L (y, x) for all y ≤ x

Hence, if player i plays the pure strategy xi = x when player j plays xj = x, she earns a

payoff of U∗ = T (x, x) = W (x, x) = L (x, x) . The conditions in (8) imply that player i

cannot gain by deviating from x, given that xj = x.

( =⇒ ) If (x, x) is a symmetric pure strategy Nash equilibrium, player i earns a payoff of

T (x, x) in this equilibrium. By way of contradiction, suppose there exists a y ∈ [0,∞) such
that y > x with T (x, x) < W (y, x). Then player i could increase his payoff to W (y, x) >

T (x, x) by deviating from xi = x to xi = y, a contradiction. Similarly, if there existed a

y ∈ [0,∞) such that y < x with T (x, x) < L (y, x), player i could increase his payoff to

L (y, x) > T (x, x) by deviating from xi = x to xi = y, a contradiction.
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We conclude that the conditions in (8) are necessary and sufficient for the existence of

a symmetric pure strategy Nash equilibrium. Note that the proof of Lemma 1 does not

rely on the linear structure for W and L in equation (1), and hence applies to more general

formulations for payoffs.

We are now in a position to prove Proposition 1. We do so by exploiting the linear

structure in equation (1) and applying Lemma 1.

Proof of Proposition 1. (=⇒) By way of contradiction, suppose x ∈ [0,∞) is a
symmetric pure strategy Nash equilibrium so that player i earns his equilibrium payoff

of U∗ = T (x, x) = W (x, x) = L (x, x) at (x, x). If condition (i) in Proposition 1 did

not hold, then player i could deviate to earn W (x+ ε, x) > U∗ = W (x, x), since β <

0 implies W (xi, x) is increasing in xi, a contradiction. If condition (iii) did not hold,

then V + ηx = W (x, x) − L (x, x) > 0, which contradicts the conditions in (8) . Finally,

since V > 0, condition (iii) implies x > 0. Thus, if condition (ii) did not hold, then

x > 0 and α > 0, in which case player i could deviate to earn a payoff of L (x− ε, x) >

L (x, x) = W (x, x) = U∗, since α > 0 implies L (xi, x) is decreasing in xi, a contradiction.

(⇐=) Suppose conditions (i) through (iii) hold. It is immediate that condition (iii) im-
plies that x∗ = −V/η is well-defined and V + ηx∗ = W (x∗, x∗) − L (x∗, x∗) = 0. Hence,

W (x∗, x∗) = L (x∗, x∗) = T (x∗, x∗). Next, note that there is no incentive to deviate from x∗,

since (i) implies T (x∗, x∗) ≥ W (y, x∗) for all y ≥ x∗, and (ii) implies T (x∗, x∗) ≥ L (y, x∗)

for all y ≤ x∗. By the Lemma 1, this implies that x∗ is a symmetric pure strategy Nash

equilibrium. Uniqueness follows from Lemma 1 and the fact that x∗ = −V/η is the unique
solution to W (x, x)− L (x, x) = 0.

A2. Proof of Proposition 2
Our second proposition is proved through a sequence of lemmas. We first demonstrate

that if an atom exists at some point (x, x) in a nondegenerate symmetric mixed-strategy

equilibrium of Γ, then (x, x) constitutes a symmetric pure strategy equilibrium as well.

We then apply Proposition 1 to show that this can occur only over a restricted range of

the parameter space and that any such atom is unique. Consequently, if the symmetric

equilibrium is in nondegenerate mixed strategies, there must exist an absolutely continuous

part of the mixed-strategy, and furthermore, it must satisfy the differential equation in

equation (3). Given the linearity of differential equation (3), it readily follows that its solution

over the interval (m,u) is unique (as it satisfies a Lipschitz condition). Lemma 4 provides an

28



endpoint restriction on the lower bound of the distribution. We then examine (by exhaustion)

a partition of the parameter space to show (i) when the differential equation can be solved in

a manner consistent with the corresponding restrictions on mass points and endpoints, (ii)

which solutions indeed define equilibria in the sense that there is no incentive for a player to

unilaterally deviate from his strategy, and (iii) whether the differential equation, mass point

and endpoint restrictions are inconsistent, thereby implying nonexistence of a nondegenerate

symmetric mixed-strategy. We also derive the corresponding equilibrium payoffs.

Lemma 2 If there is an atom at some point x ∈ [0,∞) in a nondegenerate symmetric
mixed-strategy equilibrium of Γ, then (x, x) is also a symmetric pure strategy equilibrium of

Γ. Furthermore, there is no atom at x = 0.

Proof. If there is an atom of size qx ∈ (0, 1) at some point x, it must be the case

that qx [W (x+ ε, x)− T (x, x)] ≤ 0 (there is no incentive to raise the bid above x) and,

if in addition x > 0, qx [L (x− ε, x)− T (x, x)] ≤ 0 for small ε > 0 (there is no incen-

tive to lower the bid below x). Furthermore, there can be no atom at x = 0, since

q0 [W (0 + ε, 0)− T (0, 0)] ≤ 0 implies W (0, 0) − T (0, 0) ≤ 0 by the continuity of W,

contradicting W (0, 0) − T (0, 0) = V/2 > 0. For x > 0, since qx > 0 by hypothesis,

[W (x+ ε, x)− T (x, x)] ≤ 0 and [L (x− ε, x)− T (x, x)] ≤ 0. This implies T (x, x) =

W (x, x) = L (x, x), and furthermore, given the linearity of W and L,

T (x, x) ≥ W (y, x) for all y ≥ x

T (x, x) ≥ L (y, x) for all y ≤ x

These are exactly the conditions (8) for a pure strategy solution from Theorem 1 and hence

(x, x) must also be a pure strategy equilibrium point.

Lemma 3 Suppose a symmetric equilibrium strategy of Γ has an atom of size qx ∈ (0, 1]
at x. Then β ≥ 0, α ≤ 0 and η < 0. Furthermore the atom is unique and located at

x = −V/η > 0.

Proof. Follows immediately from Lemma 2 and Proposition 1.

Importantly, Lemma 3 implies that if a nondegenerate symmetric mixed-strategy equi-

librium exists, any atom (if one exists) associated with the strategy is necessarily unique
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(and given by x = −V/η). Consequently, the remaining absolutely continuous part is char-
acterized by differential equation (3). We will use this fact to establish when nondegenerate

symmetric mixed-strategy equilibria exist, their functional forms and the corresponding equi-

librium payoffs. We also identify parameter configurations for which the set of nondegenerate

symmetric mixed-strategy equilibria is empty. We also use this lemma to establish:

Lemma 4 Suppose α > 0. Then in any nondegenerate symmetric mixed-strategy equilibrium

of Γ, the lower bound of the support is m = 0.

Proof. The proof proceeds by way of contradiction. Suppose the lower bound of the support

of the equilibrium mixed-strategy is m > 0 and let qm be the size of an atom (possibly zero)

at m. Then a player who bids m earns his equilibrium payoff of

U∗ = qmT (m,m) + (1− qm) (−γ − αm− θEF [x|x > m])

=
qm
2
V − γ +

qm
2
αm− αm− qm

2
(θ + β + δ)m− (1− qm) θEF [x|x > m]

Deviating by bidding zero yields a payoff of

U∗∗ = −γ − θqmm− θ (1− qm)EF [x|x > m]

The difference in payoffs is thus

U∗∗ − U∗ =
qm
2
{−V + (−θ − α+ β + δ)m}+ αm = αm > 0

since qm > 0 implies −V = ηm by Lemma 3. Therefore it pays to deviate by bidding zero,

a contradiction.

We are now in a position to consider, case by case, the parameter configurations identified

in Proposition 2. We do this through a sequence of lemmas that are collected according to

the four parameter regions (R1 through R4) defining the different forms for the equilibrium

mixed strategies in equation (5), and which establish existence, uniqueness, or nonexistence

of equilibrium for parameter configurations within each case. We begin with

Case 1: α− β 6= 0; η 6= 0

Lemma 5 Suppose β = 0, α > 0 and η 6= 0. Then there exists a symmetric equilibrium
if and only if either θ = 0 or η < α. Furthermore, this equilibrium is unique and in

nondegenerate mixed strategies as characterized in Proposition 2.
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Proof. Since α > 0, Proposition 1 implies any symmetric equilibrium must be in nondegen-

erate mixed-strategies, and by Lemma 3, there are no atoms. By Lemma 4, m = 0. Hence,

if a symmetric equilibrium exists, it necessarily has the form in equation (4) with C = 0:

F (x) = 1−
µ

V

V + ηx

¶α/η

(9)

This is a well-defined distribution function; when η > 0, the upper bound of its support is

u = ∞; when η < 0, it is u = −V/η < ∞. Since β = 0, a player cannot gain by choosing
an action w > u. Thus, for an equilibrium to exist, it is sufficient to show that EU∗ < ∞
and a player’s expected payoff against a rival who uses F is constant for any action in the

support of F.

The expected payoff when a player chooses xi = w against such a strategy is

EU (w) =

Z w

0

(v − δx) dF (x) +

Z u

w

(−γ − αw − θx) dF (x)

or, since this also holds at w = 0,

EU (0) =

Z u

0

(−γ − θx) dF (x)

= −γ −
Z u

0

θxdF (x)

Evidently, when θ = 0, EU (0) = −γ, so EU (w) = −γ for all w ∈ Support (F ) , and F is

the unique symmetric equilibrium. Thus, suppose θ 6= 0.
Consider first the case where η > 0. In this case u = ∞ and the distribution in (9) has

a Pareto type “fat tail” and
R u
0
xdF (x) is unbounded when α/η − 1 ≤ 0 (or equivalently,

δ ≤ θ 6= 0). Thus, when β = 0, θ 6= 0 and 0 < α ≤ η, we conclude that EU (0) is unbounded

and hence there does not exist a symmetric equilibrium. But if α/η−1 > 0 (or equivalently,
δ > θ 6= 0), the relevant integral is finite and the expected payoff is

EU∗ = −γ − θ

Z ∞

0

xα

µ
V

V + ηx

¶α/η
1

V + ηx
dx =

θv + δγ

θ − δ
(10)

Since for all w ∈ [0,∞), EU (w) = EU∗, in this case it follows that F is the unique symmetric

equilibrium.

Finally, if η < 0, then u = −V/η and simple integration reveals

EU (0) = (θv + δγ) / (θ − δ) = EU (w)

for all w ∈ [0, u], and hence F is the unique symmetric equilibrium.
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Lemma 6 Suppose β = 0, α < 0 and η > 0. Then there does not exist a symmetric

mixed-strategy equilibrium.

Proof. Since α < 0 and η > 0, Lemma 3 implies that F contains no atoms. Hence, C = 0

in equation (4) , and thus

F (w) = 1−
µ
V + ηw

V + ηm

¶−α/η
But note that, since −α/η > 0 and η > 0,

µ
V + ηw

V + ηm

¶−α/η
> 1

for all w > m, which implies F (w) ≤ 0, a contradiction.

Lemma 7 Suppose β = 0, α < 0 and either α < η < 0 or η < θ = 0. Then there exists a

continuum of nondegenerate symmetric mixed-strategy equilibria, all of which are identified

in Proposition 2. Furthermore, if β = 0, α < 0, η ≤ α and θ 6= 0, there does not exist a

nondegenerate symmetric mixed-strategy equilibrium.

Proof. By Proposition 1, a unique symmetric pure-strategy equilibrium exists at x∗ = −V/η.
By Lemma 3, in any nondegenerate symmetric mixed-strategy equilibrium, there is at most

a single mass point, and this atom is located at −V/η. Let q ∈ [0, 1) denote the size of any
such mass point. By way of contradiction, suppose that the lower bound of the absolutely

continuous part of F is m > −V/η (that is, F contains a gap). Then the expected payoff to

a player that bids −V/η against F is

EU

µ
V

−η

¶
= qT

µ
V

−η ,
V

−η

¶
+ (1− q)

µ
−γ − α

µ
V

−η

¶
− 1

1− q

Z ∞

m

θxdF (x)

¶
=

q

2

∙
v − γ + (δ + α+ θ)

V

η

¸
+(1− q)

µ
−γ + α

V

η
− 1

1− q

Z ∞

m

θxdF (x)

¶
A player that bids m > −V/η against F earns an expected payoff of

EU(m) = q

µ
v + δ

V

η

¶
+ (1− q)

µ
−γ − αm− 1

1− q

Z ∞

m

θxdF (x)

¶
Recall that V = v + γ and that, under the conditions stated, η = α + θ − δ. ProvidedR∞
m

xdF (x) exists or θ = 0, straightforward algebra reveals

EU(m)−EU

µ
V

−η

¶
= −α (1− q)

µ
m− V

−η

¶
> 0
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which is a contradiction: there can be no atom below the lower bound of the absolutely

continuous part of a symmetric mixed-strategy equilibrium.

We next show that under the conditions stated, m > −V/η (which implies there are
no mass points) and that there exists a continuum of symmetric equilibria of the form in

Proposition 2. To see this, note that for α < 0 and η < 0, equation (3) requires that

m > −V/η in order for F (w) to be a well-defined (and nondegenerate) distribution function
on an open interval above m. It follows that, when β = 0, α < 0 and η < 0, the only

candidate for a nondegenerate symmetric mixed-strategy equilibrium is

F (w) = 1−
µ
V + ηm

V + ηw

¶α/η

(11)

on [m,∞),where m ∈ (−V/η,∞) is arbitrary. The expected payoff when a player chooses
xi = w against F is

EU (w) =

Z w

m

(v − δx) dF (x) +

Z ∞

w

(−γ − αw − θx) dF (x)

If α/η ≤ 1,
R∞
m

xdF (x) is unbounded due to the fat (Pareto type) tail of the distribution. In

this case, when θ 6= 0, EU (w) is unbounded and hence a nondegenerate symmetric mixed-
strategy equilibrium does not exist. But if θ = 0, the expected payoff to a player that bids

w = m is EU (m) = −γ − αm, and hence for all w ∈ [m,∞), EU (w) = EU (m). Since

α < 0, EU (w) < EU (m) <∞ for w < m, and hence it does not pay to deviate by choosing

an action below m.

When α/η > 1 (which implies θ > δ ) it follows that for all w ∈ [m,∞),

EU (w) = EU (m) = −γ − αm− θ

Z ∞

m

xα

µ
V + ηm

V + ηx

¶α/η
1

V + ηx
dx

=
θv + δγ

θ − δ
+

αδm

θ − δ

Again, since α < 0, EU (w) < EU (m) < ∞ for w < m, it does not pay to deviate by

choosing an action below m.

Lemma 8 Suppose β < 0, α 6= β, α 6= 0, and η 6= 0. Then there does not exist a symmetric
equilibrium.

Proof. Since β < 0, Proposition 1 implies there does not exist a symmetric pure strategy

equilibrium, and by Lemma 3, there are no mass points in a nondegenerate symmetric
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mixed-strategy equilibrium. Since F (m) = 0, C = 0 in equation (4) ; hence, if a symmetric

mixed-strategy exists, it must be of the form

F (w) =
α

α− β

Ã
1−

µ
V + ηm

V + ηw

¶α−β
η

!
(12)

We claim the distribution is unbounded. To see this, suppose to the contrary that u < ∞.

Since F has no atoms, a player that bids u is certain to win and earn an equilibrium payoff

of EU (u) = v − βu − δEF [x]. But, since β < 0, a player who deviates by bidding u0 > u

earns an expected payoff of EU (u0) = v − βu0 − δEF [x] > EU (u) , a contradiction.

If (α− β) /η > 0, equation (12) implies

lim
w→∞

F (w) =
α

α− β
6= 1

If (α− β) /η < 0, then

lim
w→∞

F (w) = ±∞

Hence, regardless of the sign of (α− β) /η, F is not a well-defined distribution function,

a contradiction. Thus there does not exist a symmetric mixed-strategy equilibrium in this

case.

Lemma 9 Suppose β > 0, α < 0, η 6= 0. Then there does not exist a nondegenerate sym-
metric mixed-strategy equilibrium.

Proof. If η > 0, then there are no mass points by Lemma 3. A symmetric equilibrium, if

one exists, must therefore satisfy equation (4) with C = 0:

F (w) =
α

α− β

"
1−

µ
V + ηm

V + ηw

¶α−β
η

#
for w ∈ (m,u)

Since (α− β) /η < 0 and ηw > ηm ≥ 0 for w > m, the term in square brackets is negative.

This and the fact that α/ (α− β) > 0 implies F (w) < 0, which contradicts the assumption

that F is a well-defined distribution function.

If η < 0, Lemma 3 implies that an equilibrium mixed-strategy may have a mass point at

w = −V/η (hence C ≥ 0). Hence, equation (4) implies

F (w) =
α

α− β
+

µ
C − α

α− β

¶ ∙
V + ηm

V + ηw

¸α−β
η

for w ∈ (m,u) (13)
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If the distribution is unbounded, limw→∞ F (w) = α/ (α− β) < 1, a contradiction. Thus,

suppose u <∞.
Suppose first that the equilibrium distribution contains no mass point. Then the differ-

ential equation in equation (3) holds at u, and since F (u) = 1, we have

[V + ηu] f(u)− α+ (α− β) = 0

Now, f (u) ≥ 0, α < 0, β > 0 and η < 0 implies u < −V/η. Hence, the derivative of equation
(13) is

F 0 (w) = α (V + ηm)
α−β
η (V + ηw)−

α−β+η
η < 0

since V + ηw > 0 for all w ∈ [m,u] , a contradiction.

Finally, suppose there is a mass point. We first show the mass point must be located at

or below m. By way of contradiction, suppose there is a mass point at −V/η > m. In this

case, the differential equation (3) holds at m, and F (m) = 0. Hence,

[V + ηm] f(m)− α = 0

Since f (m) ≥ 0, α < 0, and 0 ≤ m < −V/η, this is a contradiction.
Since the mass point must be at −V/η and m ≥ −V/η, the derivative of equation (4) is

(for w > m)

F 0 (w) =

µ
α

α− β
− C

¶
(α− β)

µ
V + ηm

V + ηw

¶α−β
η 1

V + ηw

Since F 0 (w) > 0 for some w > m,

sgn (F 0 (w)) = sgn

µ
α

α− β
− C

¶
> 0 (14)

in order for F to be a well-defined distribution. Since the differential equation holds at

w = u, setting F (u) = 1 implies

β

α
=

∙
1− α− β

α
C

¸µ
V + ηm

V + ηu

¶α−β
η

The LHS is strictly negative by assumption, while the RHS is strictly positive by equation

(14) and the fact that m,u > −V/η–a contradiction.
Hence, there does not exist a nondegenerate mixed-strategy equilibrium.
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Lemma 10 Suppose β > 0, α > 0, α 6= β, and η 6= 0. Then there exists a unique symmetric
equilibrium and it is in nondegenerate mixed-strategies as identified in Proposition 2.

Proof. Since α > 0, Lemma 3 implies there are no mass points, and Lemma 4 implies

m = 0. Hence equation (4) implies

F (w) =
α

α− β

"
1−

µ
V

V + ηw

¶α−β
η

#
(15)

It is straightforward to show that, for all β > 0, α > 0, α 6= β,and η 6= 0, this a well-defined
distribution function on [0, u∗] , where

u∗ =
V

η

Ãµ
α

β

¶ η
α−β

− 1
!

> 0

Suppose first that θ 6= δ (or equivalently, η 6= α − β). The expected payoff to a player

that bids w = 0 against a rival that employs F is

EU∗ = EU (w = 0) = −γ − θ

Z u∗

0

xdF (x)

=
θv + δγ

θ − δ
+ β

θ

η (θ − δ)

"
1−

µ
α

β

¶ η
α−β
#
V

Hence, EU (w) = EU∗ for all w ∈ [0, u∗] , and it does not pay to deviate to a w > u∗ since

β > 0.

When θ = δ (or equivalently, η = α−β), the expected payoff to a player that bids w = 0

against a rival that employs F is

EU (w = 0) = −γ − θ

Z u∗

0

xdF (x)

= −γ + θV

η
− θαV

η2
ln

α

β

As above, since β > 0, a player cannot gain by deviating to a w > u∗. We conclude that F

is the unique symmetric equilibrium in this case.

Lemma 11 Suppose α − β 6= 0, α = 0 and η 6= 0. Then there does not exist a symmetric
equilibrium in nondegenerate mixed strategies.

Proof. Under the conditions stated, the solution to differential equation (3) is
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F (w) = K

∙
V + ηw

V + ηm

¸β
η

(16)

for some K 6= 0. By hypothesis, β 6= 0. Suppose first that β < 0. Then there is no mass

point by Lemma 3, and hence F (u) = 1 implies

u =
K− 1

β
ηV +K− 1

β
ηηm− V

η

But since β < 0, this is a contradiction, since a player could improve his payoff by bidding

above u.

Suppose next that β > 0. If η > 0 then once again there is no mass point by Lemma 3.

Hence, F (w) = 0 implies w = −V/η. But since −V/η < 0, this is a contradiction.
Finally, suppose β > 0 and η < 0. Then

f (w) = K (V + ηw)
β−η
η (V + ηm)−

β
η β

= β
F (w)

V + ηw

and hence w < −V/η. By Lemma 3, any mass point must be above the upper bound of the
absolutely continuous part of F. Setting F (w) = 0 in equation (16) implies the lower bound

of the distribution must be −V/η. But this is a contradiction, since by Lemma 3, the mass
point must be located at this point.

Case 2: α = β; η 6= 0

Lemma 12 Suppose α = β > 0 and η 6= 0. Then there exists a unique symmetric equilib-
rium and it is in nondegenerate mixed strategies as identified in Proposition 2.

Proof. Note first that the conditions of the Lemma imply θ 6= δ. Since α > 0, Lemma 3

implies there are no mass points. Moreover, by Lemma 4, α > 0 implies m = 0. Hence the

differential equation in (3) implies

f (w) =
α

V + ηw
(17)

which together with F (m) = 0, implies that the unique F is

F (x) =

Z x

0

α

V + ηw
dw =

α

θ − δ
ln

µ
V + (θ − δ)x

V

¶
(18)
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on [0, V
θ−δ
¡
exp

¡
θ−δ
α

¢
− 1
¢
], where we have used the fact η = θ − δ under the conditions

stated. The expected payoff of a player that bids w = 0 is

EU (0) =

Z u

0

(−γ − θx)
α

V + ηx
dx

=
θv + δγ

θ − δ
+

αθ

(θ − δ)2

³
1− e

θ−δ
α

´
V

and hence EU (w) = EU (0) for all w ∈
£
0, V

θ−δ
¡
exp

¡
θ−δ
α

¢
− 1
¢¤
. Since β > 0, a player

cannot gain by bidding above the upper bound of the support.

Lemma 13 Suppose α = β < 0 and η 6= 0. Then there does not exist a symmetric mixed-
strategy equilibrium.

Proof. Lemma 3 implies there are no mass points, and hence equation (17) implies that, if

an equilibrium exists, it must have the form

F (x) =

Z x

m

α

V + ηw
dw

=
α

θ − δ
ln

µ
V + (θ − δ)x

V + (θ − δ)m

¶
where we have used the fact that η = θ − δ under the conditions stated. Since F (u) = 1

implies u <∞, the support of F is bounded. But then F cannot be part of a Nash equilibrium

since a player can increase his expected payoff by bidding above u, as β < 0.

Lemma 14 Suppose α = β = 0 and η 6= 0. Then there does not exist a symmetric mixed-
strategy equilibrium.

Proof. Under the conditions stated, differential equation (3) implies

(V + ηw) f(w) = 0

which contradicts the hypothesis that there is a nondegenerate mixed-strategy.

Case 3: α− β 6= 0; η = 0

Lemma 15 Suppose η = 0, α− β 6= 0, and α < 0. Then there does not exist a symmetric

equilibrium.
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Proof. First, note that since η = 0, there can be no mass point by Lemma 3. Under the

conditions stated, differential equation (3) implies

V f(w)− α+ (α− β)F (w) = 0

and hence the unique solution is

F (x) =
α

α− β

∙
1− exp

µ
β − α

V
(x−m)

¶¸
(19)

with density

f(x) =
α

V
exp

µ
β − α

V
(x−m)

¶
If α < 0, this is not a valid density and hence an equilibrium does not exist.

Lemma 16 Suppose η = 0, α− β 6= 0, and α > 0. Then if a symmetric equilibrium exists,

m = 0 and the distribution function is of the form in equation (19) with m = 0.

Proof. First, note that since η = 0, there can be no mass point by Lemma 3. Moreover, the

solution to the differential equation takes on the form in equation (19). Since α > 0, Lemma

4 implies m = 0.

Lemma 17 Suppose η = 0, α − β 6= 0, α > 0 and β < 0. Then there does not exist a

symmetric mixed-strategy equilibrium.

Proof. By Lemma 16, under this parameter configuration F (x) ≤ α/ (α− β) < 1 for all

x ≥ 0. Hence, F is not a valid distribution function.

Lemma 18 Suppose η = 0, α− β 6= 0, α > 0 and β = 0. Then there exists a unique sym-

metric equilibrium and it is in nondegenerate mixed strategies as characterized in Proposition

2.

Proof. First, note that since η = 0, there can be no mass point by Lemma 3. Using Lemma

16 and setting β = 0, yields

F (x) = 1− exp
³
−α

V
x
´
on [0,∞)
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Since this is an exponential distribution, with mean V/α, the expected payoff to a player

that bids w = 0 against F is

EU (0) = −γ − θ

Z ∞

0

xdF (x)

= −γ − θ
V

α

and hence, EU (w) = EU (0) for all w ∈ [0,∞). Thus, player cannot profitably deviate.

Lemma 19 Suppose η = 0, α− β 6= 0, α > 0 and β > 0. Then there exists a unique sym-

metric equilibrium and it is in nondegenerate mixed strategies as characterized in Proposition

2.

Proof. First, note that since η = 0, there can be no mass point by Lemma 3. By Lemma

16, the distribution must have the form in equation (19) with m = 0. Since β > 0, this is a

well-defined distribution function on
h
0, V

α−β ln
α
β

i
regardless of the sign of α− β. A player

that bids w = 0 against F earns an expected payoff of

EU (0) = −γ − θ

Z v+γ
α−β ln

α
β

0

w
α

v + γ
e−

α−β
v+γ

wdw

=
θv + δγ

θ − δ
+ β

θ

(θ − δ)2

∙
ln

µ
α

β

¶¸
V (20)

where we have used the fact that η = 0 implies α− β = δ − θ. Since β > 0, a player cannot

gain by bidding above the upper bound of the support of F .

Lemma 20 Suppose η = 0, α− β 6= 0, and α = 0. Then there does not exist a symmetric

equilibrium.

Proof. Under the conditions stated, differential equation (3) implies

V f(w)− βF (w) = 0

If β < 0, we have a contradiction, so suppose β > 0. The unique solution to this differential

equation is

F (w) = exp

µ
β

V
w −Q

¶
Since η = 0, Lemma 3 implies there are no mass points. This contradicts the fact that

F (w) > 0 for all w ∈ [0,∞). Thus, if α = 0 and η = 0, there does not exist a nondegenerate
symmetric mixed-strategy equilibrium when β > 0 or β < 0.
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Case 4: α− β = 0; η = 0

Lemma 21 Suppose η = 0 and α = β < 0. Then there does not exist a symmetric equilib-

rium.

Proof. First, note that since η = 0, there can be no mass point by Lemma 3. Under the

conditions stated, differential equation (3) implies

V f(w)− α = 0

or

f (w) =
α

V

But since α < 0, this is not a well-defined density, a contradiction.

Lemma 22 Suppose η = 0 and α = β > 0. Then there exists a unique symmetric equilibrium

and it is in nondegenerate mixed-strategies as characterized in Proposition 2.

Proof. First, note that since η = 0, there can be no mass point by Lemma 3. Under the

conditions stated, differential equation (3) implies

V f(w)− α = 0

or

f (w) =
α

V

Furthermore, since α > 0, Lemma 4 implies that m = 0. Hence, the unique solution to the

differential equation is

F (x) =

Z x

0

α

V
dw =

α

V
x on

∙
0,
V

α

¸
The expected payoff to a player that bids w = 0 against F is

EU (0) = −γ − θ
V

2α

and hence, EU (w) = EU (0) for all w ∈
£
0, V

α

¤
. Since β > 0, it does not pay to bid above the

upper bound of the support, as doing so increases costs but not the probability of winning.
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Lemma 23 Suppose η = 0, α = β = 0, and θ = δ 6= 0. Then there does not exist a

symmetric equilibrium.

Proof. First, note that since η = 0, there can be no mass point by Lemma 3. Under the

conditions stated, differential equation (3) implies

V f(w) = 0

or f (w) = 0 for all w. This is a contradiction.

Taken together, the above lemmas exhaustively describe all mixed-strategy equilibria

(and nonexistence) as summarized in Proposition 2.

A3. Proof of Proposition 3
Follows directly from refining the partitions of the parameter space derived in Proposi-

tions 1 and 2.
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