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ABSTRACT 

Learning and Self-Confidence in Contests 

by Daniel Krähmer * 

The paper studies a repeated contest when contestants are uncertain about 
their true abilities. A favourable belief about one's own ability (confidence) 
stimulates effort and increases the likelihood of success. Success, in turn, 
reinforces favourable beliefs. We consider a specific example in which this 
reinforcement mechanism implies that, with positive probability, players fail to 
learn their true abilities, and one player may eventually win the contest forever. 
As a consequence, persistent inequality arises, and the worse player may 
eventually prevail. Furthermore, confidence is self-serving in that it increases a 
player's utility and the likelihood to be the long-run winner. 
 
Keywords: Contest, self-confidence, belief reinforcement, incomplete learning, 

 dynamic programming 

JEL Classification: C37, C61, D44, D83 

ZUSAMMENFASSUNG 

Lernen und Selbstvertrauen in Wettkämpfen 

Das Papier betrachtet einen wiederholten Wettkampf, in dem die Wettkämpfer 
ihre wahren Fähigkeiten nicht kennen. Wettkämpfer mit einer hohen Einschät-
zung ihrer eigenen Fähigkeiten (Selbstvertrauen) zeigen eine höhere Einsatz-
bereitschaft und haben damit bessere Erfolgsaussichten. Umgekehrt verstärken 
Erfolge das Selbstvertrauen. Wir betrachten ein einfaches Beispiel, in dem 
dieser sich selbst verstärkende Effekt dazu führt, dass die Spieler mit positiver 
Wahrscheinlichkeit über ihre wahren Fähigkeiten im Ungewissen bleiben, und 
dass ein Spieler schließlich für immer als Sieger aus dem Wettkampf hervor-
geht. Als Folge ergeben sich dauerhafte Ungleichheiten, wobei es der tatsäch-
lich unfähigere Spieler sein kann, der langfristig überlegen ist. Darüber hinaus 
zeigt sich, dass Selbstvertrauen sowohl den Nutzen eines Spielers als auch die 
Erfolgswahrscheinlichkeit, der schließlich überlegene Spieler zu sein, erhöht. 
 

                                                 
*  I would like to thank Helmut Bester, Jürgen Bierbaum, Paul Heidhues, Kai Konrad, and 

Roland Strausz for helpful comments and discussions. 
 
 

 



1 Introduction

Consider a contest in which the probability of success is determined by a player�s ability, effort,

and luck. If ability and effort are complements, highly able players will exert more effort than

less able ones. When ability is unknown, then effort is chosen according to perceived rather

than to true ability: players who regard themselves as highly able will exert more effort than

more pessimistic ones. Higher effort increases the probability of success for an optimistic player,

and more successes, being indicative of high ability, will, in turn, reinforce an optimistic player�s

optimistic belief. At the same time as the winner becomes more optimistic, the loser becomes

more pessimistic. This suggests that in a contest with unknown abilities beliefs tend to diverge,

accompanied by long winning streaks for one player.

The paper illustrates this basic reinforcement mechanism by means of a simple example

and explores its consequences for the long run. We show that belief reinforcement implies

that, with positive probability, players fail to learn their true abilities in equilibrium, and that

persistent inequality will arise in the long run in the sense that one player will eventually win

the contest forever, whereas the other player will eventually be discouraged and reduce effort

to a minimum. This is true irrespective of objective abilities. Therefore, the objectively better

player may be discouraged, and at the same time, the objectively worse player may entertain

a mistakenly favourable self-belief.

Besides complementarity of ability and effort, the driving force of these results is that we

assume that the importance of ability declines if one player reduces effort. Only if both players

invest sufficient effort, ability makes the difference. This reßects a particular form of strategic

interaction in our contest: for example, if a player is the only one to apply for a job, he gets

the job with certainty, irrespective of his ability.

Declining importance of ability implies that the contest outcome becomes uninformative if a

player sufficiently reduces effort. At such a point, updating will stop, the optimistic player easily

wins, and inequality becomes persistent. That such a point may be reached, is a result of belief

reinforcement which will eventually drive beliefs sufficiently apart such that the discouraged

player will reduce effort to an uninformative minimum.

Beliefs in our model may be interpreted in two ways. On the one hand, initial beliefs,

i.e., priors, may represent the objective distribution from which nature draws actual ability.
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A player with a higher belief then not only regards himself to be better than a player with a

lower belief, but he is indeed objectively better (on average). On the other hand, beliefs may

be seen as a player�s internal, or subjective representation of the world which, in principle, may

initially be entirely disconnected from external, or objective reality.1 Seen as such, beliefs are a

characteristic of a player and may be interpreted as self-conÞdence. The material consequences

of (purely �mental�) self-conÞdence can then be studied by comparative statics with respect to

beliefs. However, it is important to note that comparative statics is only meaningful for a given

Þxed realization of intrinsic abilities, i.e., ex post.2

With this second interpretation, we can study the impact of (initial) self-conÞdence on a

player�s performance. As a consequence of complementarity, higher self-conÞdence increases the

probability to be the eventually prevailing player. In this sense, conÞdence is self-serving. Long

term success may not necessarily be the result of ability but rather of conÞdence in combination

with an initial streak of good luck.

The latter is consistent with evidence from social psychology suggesting that positive illu-

sions promote motivation and persistence and thereby increase the likelihood to succeed in a

given task (Taylor/Brown (1988), Colvin/Block (1994)). Conversely, there is evidence that in-

dividuals with low self-esteem exert less effort as a result of not expecting to succeed, triggering

the self-fulÞlling prophecy described above (Brockner (1984)).

As for contests, in a recent economic experiment Gneezy et al. (2001) Þnd that women�s

absolute performance tends to be worse than men�s in mixed- but not in single-gender tour-

naments. They also Þnd that men are typically more conÞdent than women. In line with our

results, they argue that the difference in the two treatments might be due to a conÞdence effect.

That conÞdence is self-serving in contests, is also consistent with anecdotal statements of top

athletes that suggest that what makes the difference in top competition is not primarily ability

but rather mental strength.

In a very stylized way, our model may also be relevant for other domains, particularly

labour markets. Labour market success�getting accepted to a good university, getting a job,
1See Van den Steen (2002) for an elaboration of that view.
2To study the material consequences as objectively expected ex ante, one has to evaluate each possible ability

scenario by some given objective distribution which is known only to some ideal outside observer but completely

unknown to the players of the game. In what follows, all results are such that they hold for every possible ability

scenario. Therefore, we do not need to distinguish between subjective and objective distribution.
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or getting promoted�is often determined by relative performance, i.e., contests.

For example, our results are in line with research that suggests that long-term unemployment

might, to a large extent, be the result of discouragement and loss of self-esteem and not only

of missing intrinsic ability (Darity/Goldsmith (1996), Dunifon/Duncan (1998)).

Our model may also contribute to the discussion on intergenerational mobility in labour mar-

kets. Seen as an intergenerational model, it predicts a strong correlation between the labour

market success of parents and of their children. This is consistent with substantial empirical

evidence that parental earnings are a reliable predictor for childrens� earnings (see Solon (1999)

for a review). Yet, what appears to be puzzling is that the labour market success of success-

ful parents� children cannot be accounted for by their superior education, or the inheritance

of wealth, or cognitive ability (Bowles et al. (2001). Our model suggests that conÞdence, or

self-esteem transmitted to children by parental upbringing may possibly be one of the missing

elements in explaining the intergenerational stability of labour market outcomes.

Literature

Several studies look at the impact of beliefs on economic performance, but their focus is mostly

different from ours. Our notion of conÞdence is similar to the one in Benabou/Tirole (2002a,

2002b), who examine the incentives to manipulate information concerning the self. For instance,

by delegating tasks, a principal may foster an agent�s conÞdence and thereby stimulate effort.

There is evidence that overconÞdence and optimism is prominent among CEOs and entrepre-

neurs which may give rise to distorted investment decisions (see Malmendier/Tate (2002) for an

empirical paper, and Manove/Padilla (1999), de Meza/Southey (1996) for theoretical papers).

ConÞdence-dependent performance may also explain attribution biases and judgement errors

(Compte/Postlewaite (2001)).

As for learning, two recent studies show how misperceptions in form of overconÞdence and

optimism may survive in the long run. Heifetz/Spiegel (2000) consider a class of stage games

that includes contests, but in contrast to us, they consider an evolutionary dynamics and

formalize optimism as biased perceptions of the game rather than as beliefs. Optimism may

also survive in a perfect competition environment (Manove (2000)).

Our no-learning result bears some similarity to no-learning results in bandit problems (Roth-
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schild (1974), Berry/Fristedt (1985)).3 In fact, in our model, a player�s problem can be viewed

as a two-armed bandit problem where an arm�s payoff characteristic depends directly on which

arm the other player chooses. We are not aware of any paper that has considered a bandit

problem of that type.4

Finally, in the contest literature, only few papers consider players who do not know their own

abilities. One example is Rosen (1986) who studies the optimal design of prizes in an elimination

tournament. In an elimination tournament however, the reinforcement mechanism we study

does not obtain because after each period winners are matched with similarily conÞdent winners.

The paper is organized as follows. Section 2 presents the model. Section 3 illustrates the

basic belief reinforcement mechanism. Section 4 analyses an inÞnite horizon model. To pro-

vide intuition, section 4.1 considers the case with myopic players. Section 4.2 deals with the

dynamcally optimizing players. Section 5 concludes.

2 The Model

Time t = 0, 1, 2, ..., t is discrete and may be Þnite or inÞnite. In each period, there are two

players, i = 1, 2, who engage in a contest. The winner prize is normalized to 1 and the loser

prize to 0. The winning probability in period t is determined by players� types (ability) and

efforts spent.

Players� types are unknown, also to players themselves. Let αi be player i�s type, where

αi ∈ {αL,αH} ,αL < αH , and denote by γti player i�s belief in period t to be of type αH .

We assume that there is no asymmetric information, that is, beliefs are common knowledge.

γi is referred to as player i�s conÞdence. Let γ = (γ1, γ2), and deÞne ∆γ = γ1 − γ2, and
∆α = αH − αL.
Efforts ei are in some (ordered) set D, and the cost of spending effort e is c (e). D and c

are speciÞed in the sections below.

The true winning probability for player i in a given period for given efforts and given types is

denoted by pi (ei, e−i;α), and pi is increasing in ei and αi and decreasing in e−i and α−i. Since
3For an interesting interpretation of a bandit problem as a self-conÞdence model see Bar-Isaac (2000).
4In the literature on multi-armed bandit games, an arm�s payoff depends on what other players do

(Bolton/Harris (1999), Keller/Rady (2002)). But in these approaches, a player�s payoff is not affected directly

by other players� choices but by the possibility to observe their payoffs.
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true abilities are unknown, players have to form expectations about their winning chances.

Denote by π (e1, e2; γ) player 1�s expected winning probability for efforts e1 and e2, given belief

γ.

Players are assumed to be Bayesian rational and to discount future proÞts by a common

discount factor δ ∈ [0, 1).

3 Belief Reinforcement in the Short Run

The purpose of this section is to illustrate the basic reinforcement mechanism when efforts

and abilities are complements. We use a simple linear model with continuous effort levels and

quadratic costs. That is,

pi (ei, e−i;α) =
1

2
+ αiei − α−ie−i, (1)

c (e) =
1

2
e2. (2)

To guarantee that pi is a probability, we restrict e to the interval D = [0, 1/ (2αH)].

The model is a score difference model where player i�s score is given by αiei plus some noise

term with the noise difference uniformly distributed.

Consider Þrst the one-shot contest (t = 1). For given e−i, the Þrst order condition for player

i yields the best reply

e∗i = αi, (3)

where αi = γi∆α + αL is the expected ability of player i. Since the best response does not

depend on the rival�s effort ei, (3) also describes the equilibrium. Thus, in scenario (α1,α2) the

objective winning probability for player 1 in equilibrium is

p∗1 =
1

2
+ α1α1 − α2α2 (4)

= γ1∆α · α1 − γ2∆α · α2 + αL (α1 − α2) + 1
2
. (5)

This implies the following result.

Proposition 1 For t = 1 it holds:

p∗i is increasing in own conÞdence γi and decreasing in the rival�s conÞdence γ−i.
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The proposition is a direct consequence of complementarity. It says that conÞdence increases

a player�s winning chance. In this sense, conÞdence is self-serving. Higher conÞdence increases

the expected marginal return to effort. This increases the effort chosen which, in turn, raises

the objective winning chance.

A further question is whether differences in abilities can be compensated by conÞdence.

That is, whether the objectively worse player can have a higher objective winning chance if the

former is sufficiently more conÞdent than his rival. It turns out that in a two-type environment,

this can never be the case. To see this, suppose player 1 is of type αL and has the highest

possible conÞdence α1 = αH while player 2 is of type αH and has the lowest possible conÞdence

α2 = αL. Then player 1�s objective winning chance is 1/2 + αLαH − αHαL = 1/2 which is

also the objective winning chance of player 2. Thus, differences in conÞdence cannot offset

differences in abilities.

Note however that this is no longer true in an environment with three types. If there is

a third, intermediate, type αM with αL < αM < αH , then in state (αL,αM) with conÞdence

(α1,α2) = (αH ,αL) the winning chance of player 1 is 1/2 + αLαH − αMαL, and that of player
2 is 1/2 + αMαL − αLαH . Hence, player 1 is more likely to win.
Suppose next that there are two time periods (t = 2). One may think of two legs in a sports

tournament or of two halfs in a match. Consider a symmetric situation with initially equally

conÞdent players, that is, γ1 = γ2. Due to symmetry, there is a symmetric perfect Bayesian

Nash equilibrium in which both players choose the same effort in period 1. This equilibrium

has the following two properties.

Proposition 2 For t = 2 and γ1 = γ2 it holds:

(i) For all scenarios (α1,α2), the likelihood of winning in period 2 increases after a Þrst period

success and decreases after a Þrst period failure.

(ii) If both players are equally able objectively, that is, α1 = α2, then one player winning twice

is more likely than each player winning once.

The proposition results fromBayesian updating together with complementarity. By Bayesian

updating, winning in period 1 is indicative of being highly able and raises conÞdence. By com-

plementarity, this increases effort and thus the likelihood of winning in period 2.5 This is stated
5The effort choice in period 1 has therefore two beneÞts. Besides the current winning probability, it affects
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in (i). (ii) says that uneven outcomes, or inequalities are likely to obtain in the short run. With

α1 = α2 and equal efforts in period 1, each player�s chance of winning in period 1 is 1/2. Due

to updating, the Þrst period winner increases effort and the loser decreases effort in period 2,

raising the winner�s likelihood to also win in period 2 above 1/2. The total probability of two

consecutive successes for a player is therefore larger than 1/2.

While these results illustrate the logic of our basic belief reinforcement mechanism for the

short run, the next section explores its consequencesfor the long run.

4 Long-Run Implications and Learning

We now consider an inÞnite horizon model (t = ∞). For this, we assume that efforts are
discrete, that is, a player can either spend effort (e = 1) or not (e = 0). The cost of spending

effort is c > 0.

The winning probabilities in a given period are as follows. If exactly one player spends

effort, this player will win with probability 1, irrespective of abilities. If both players spend the

same effort ei = e−i, then the winning probability for player 1, conditional on types, is6

p (e1, e2;α) =
1

2
+ α1e1 − α2e2, (6)

and for player 2 it is 1− p (e1, e2;α) .
In summary, the matrix of winning probabilities of player 1 is

e2 = 1 e2 = 0

e1 = 1
1
2
+ αi − α−i 1

e1 = 0 0 1
2
.

(7)

Embodied in this contest success function are thus two crucial assumptions: Þrst, as above,

ability and effort are complements. Second, if one player does not exert effort, then the contest

outcome is independent of abilities. In other words, only if both players invest effort, ability

makes the difference. This is the most extreme form of a contest in which the importance of

the future winning chance via its inßuence on conÞdence. Period 1 effort is thus larger than period 2 effort. As

for contest design, if the designer wants to induce even effort across periods, the simple repeated contest may

thus be suboptimal.
6We shall now write plain p for p1.
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ability declines with declining effort of one player. This property reßects a speciÞc form of

strategic interaction in our contest. For example, if a player is the only one to apply for a job,

he gets the job with certainty, irrespective of his ability.

The expected winning probability of player 1 for efforts e1 and e2, given belief γ, is thus

π (e1, e2; γ) =



0 if (e1, e2) = (0, 1)

1/2 if (e1, e2) = (0, 0)

1/2 +∆γ∆α if (e1, e2) = (1, 1)

1 if (e1, e2) = (1, 0) .

(8)

We make the following parameter restrictions:

0 < 1/2− (αH − αL) < c < 1/2. (9)

The Þrst inequality says that p is indeed a probability. The second inequality says that if beliefs

are sufficiently different (∆γ close to +1 or −1), then, given the rival player chooses high effort,
the current payoff for the pessimistic player from exerting effort is negative. The third inequality

says that, given the rival player exerts no effort, the current payoff from choosing effort is higher

than from not choosing effort.

4.1 Myopic Players

To build intuition, we shall Þrst consider a sequence of one-shot contests played by myopic play-

ers (δ = 0). For this, we Þrst solve for the Bayesian Nash equilibrium of the one-shot contest.

The one-shot game

Best Response

Let e2 = 0. Since c < 1/2, it is optimal to choose e1 = 1, irrespective of beliefs. Let e2 = 1,

then e1 = 1 is a best response for player 1 if, and only if,

1

2
+∆γ∆α− c ≥ 0. (10)

Hence, spending effort e1 = 1 is a best response against e2 = 1 if, and only if, γ1 ≥ (c− 1/2) /∆α+
γ2. Let θ = (1/2− c) /∆α, and let r1 (γ2) = −θ+γ2. Then, player 1 exerts effort against e2 = 1
if, and only if, his belief γ1 exceeds the threshold r1 (γ2). By (9), θ ∈ (0, 1).

8



Because of symmetry, the best response of player 2 looks alike.

Equilibrium

We have the following equilibria in pure strategies:

� If ∆γ ≤ −θ, then e1 = 0, e2 = 1 is the unique equilibrium.

� If ∆γ ≥ θ, then e1 = 1, e2 = 0 is the unique equilibrium.

� If ∆γ ∈ (−θ, θ), then e1 = 1, e2 = 1 is the unique equilibrium.

Hence, if the difference in beliefs ∆γ is sufficiently large, one player is discouraged and the

other player wins with certainty.7 A typical equilibrium looks as follows.

Evolution

Consider now a sequence of one-shot games which are linked only by Bayesian updating but

not by intertemporal utility maximization. That is, players in period t play a Bayesian Nash

equilibrium of the one-shot contest given beliefs γti . According to the outcome of the contest,

beliefs are updated and transmitted to players in period t + 1. Hence, the model can be

interpreted as an intergenerational game in which the successor generation inherits the updated

beliefs of the predecessor generation.

Denote by ∆γt the difference between player 1�s and player 2�s beliefs in period t. Notice

that once |∆γt| ≥ θ, the more conÞdent player will win with certainty in period t. Accordingly,
winning is not informative about players� abilities, and beliefs stay the same. That is, |∆γt| ≥ θ
implies ∆γt+1 = ∆γt.

Let T be the Þrst period in which one player ceases to spend effort, that is,

T = min {t : |∆γt| ≥ θ}. It follows from the previous paragraph that∆γt = ∆γs for all t, s ≥ T .
Accordingly, in T one player is discouraged and stops exerting effort forever. This implies the

following result.

Proposition 3 For all scenarios (α1,α2), with positive probability, one player will be discour-

aged, that is,

Pr [T <∞| (α1,α2)] > 0. (11)

7As in the previous section, player i�s equilibrium winning chance increases in γi. Because efforts are now

discrete however, it does not increase smoothly but jumps at the threshold r1 (γ2).
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Proof : Since θ < 1, it requires an at most Þnite number of consecutive successes of one

player such that Bayesian updating leads to |∆γt| ≥ θ. But this event obtains with positive

probability in all scenarios (α1,α2), that is, Pr [T <∞| (α1,α2)] > 0. ¤

As mentioned in the introduction, conÞdence, or self-esteem, passed on to children in the

course of their upbringing may play an important role in determining labour market success

and help explain the strong correlation between parents� and childrens� earnings. To be sure,

our model is, of course, too simple and stylized to provide a deÞnite explanation. For instance,

in reality, parents� and childrens� abilities are certainly not perfectly correlated which weakens

the conÞdence effect. Nevertheless, our model may point into a direction of future research,

exactly because it generates inequality without appealing to factors like education, wealth, or

neighbourhood effects.

4.2 Farsighted Players

Consider now two inÞnitely lived players who, in each period, engage in the contest described

above. The main difference to myopic players is that exerting effort yields now not only a

return for the current period but, depending on what the rival player does, may also generate

information that can be used in the future. In other words, by exerting effort a player can

experiment.

As common in repeated games, there may be many equilibria. To rule out equilibria with

implicit agreements between the players, we restrict attention to Markov strategies and look

for a Markov Perfect Bayesian equilibrium (MPBE). Because of symmetry, it is sufficient to

state most of the deÞnitions and results in terms of player 1.

Strategies

A Markov strategy depends only on the payoff relevant information in date t but not on the

entire history up to t. In our setup, the only payoff relevant information in date t is players�

beliefs in t. To deÞne a Markov strategy properly, denote by σ (and ϕ respectively) the event

that player 1 wins (loses) the contest in a given period. Let

Ht =
©¡
e11, e

1
2,ω

1, ..., et1, e
t
2,ω

t
¢ | esi ∈ {0, 1} ,ωs ∈ {σ,ϕ} , 1 ≤ s ≤ tª (12)
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be the set of all possible histories up to t, and let H = ∪Ht be the set of all possible histories.8

DeÞnition 1 1) A (pure) strategy ηi = (ηti)t=0,1,... for player i is a sequence of mappings where

each ηti maps histories into actions, that is,

ηti : Ht → {0, 1} . (13)

The set of all strategies for player i is denoted by Σi.

2) A (stationary) Markov strategy ηi for player i maps beliefs into actions, that is,

ηi : [0, 1]
2 → {0, 1} . (14)

Notice that we require a Markov strategy to be stationary, that is, to be the same for all

periods t. Denote by γt the state in t, and let Γ = [0, 1]2 be the set of all possible states.

Because players are Bayesian rational, beliefs are derived by Bayes rule. Let γ σ = (γ σ1 , γ
ϕ
2 ) be

the updated beliefs upon player 1 winning and player 2 losing. That is, for (e1, e2),

γ σ1 (e1, e2; γ) =
Pr [σ |αH ] γ1
Pr [σ]

(15)

=
[p (e1, e2; (αH ,αH)) γ2 + p (e1, e2; (αH ,αL)) (1− γ2)] γ1

π (e1, e2; γ)
. (16)

DeÞne γ ϕ likewise. Notice, by deÞnition of our contest success function, the belief is not up-

dated if one player chooses 0 effort because in this case the contest outcome does not depend

on abilities and is therefore not informative.

Utility

Before deÞning a player�s expected utility, we need Þrst to deÞne the appropriate probability

measure.9

A Markov strategy η2 of player 2 gives rise to a law of motion that can be controlled by

player 1. The resulting transition probabilities govern the evolution of states accordingly. More

formally, for e1 ∈ {0, 1},

q (γ0 | e1, η2 (γ) , γ) =


π (e1, η2 (γ) ; γ) if γ0 = γσ

1− π (e1, η2 (γ) ; γ) if γ0 = γϕ

(17)

8Note, H0 = {∅}.
9Our construction of the probability space is somewhat sloppy. We neglect measurability issues and the

proper deÞnition of σ-algebras.
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deÞnes a transition kernel from current states γ into next period states γ0. q (γ0 | e1, η2 (γ) , γ)
may be viewed as the (expected) conditional probability that the next period state is γ0, condi-

tional on the current state being γ, when player 2 plays η2, and player 1 plays e1 in the current

period.

Suppose that player 1 plays a strategy η1 ∈ Σ1, and let the initial state be γ0. Then the
probability of a Þnite sequence ωt = (ω1, ...,ωt) ,ωs ∈ {σ,ϕ} of successes and failures for player
1 is given by

P t
£
ωt ; η1, η2, γ

0
¤
=

tY
s=1

q
¡
γs | ηs−11 (hs−1) , η2

¡
γs−1

¢
, γs−1

¢
, (18)

where hs is the (unique) history induced by ωt, η1, η2, and γs is the (unique) belief induced by hs.

It is well known that the measures P t thus deÞned constitute a consistent family of probability

measures. Hence, by Kolmogorov�s consistency theorem, there is a unique probability measure

P [· ; η1, η2, γ0] on the set of inÞnite sequences ω = (ω1, ...,ωt, ...) ,ωt ∈ {σ,ϕ} such that P and
P t coincide on the Þnite sequences of length t. That is, for all Þnite sequences ωt it holds

P
£
ωt ; η1, η2, γ

0
¤
= P t

£
ωt ; η1, η2, γ

0
¤
. (19)

With this we can deÞne a player�s expected utility. Player 1�s expected current payoff from

playing e1 at a given state is π (e1, η2 (γ) ; γ) − ce1. Player 1�s expected utility from strategy

η1 ∈ Σ1 against a Markov strategy η2 at initial state γ is thus given by

U1 (η1, η2; γ) =

Z ∞X
t=0

δt
£
π
¡
ηt1 (ht) , η2

¡
γt
¢
; γt
¢− cηt1 (ht)¤ dP (ω ; η1, η2, γ) , (20)

where the integration is over all inÞnite sequences ω, and ht and γt are the (unique) histories

and beliefs induced by ω, η1, η2, γ.

Best Response

Player 1�s best response η∗1 against a Markov η2 is thus given as a solution to the maximization

problem

sup
η1∈Σ1

U1 (η1, η2; γ) . (MP)

We derive the best response by dynamic programming. The Bellman equation for problem

12



(MP) is

V1 (γ) = max
e1∈{0,1}

{π (e1, η2 (γ) ; γ)− ce1 + (BE)

+δ [π (e1, η2 (γ) ; γ)V1 (γ
σ) + (1− π (e1, η2 (γ) ; γ))V1 (γ ϕ)]} .

It is well known that a solution V1 to (BE) coincides with supU1. Furthermore, if a solution to

(BE) exists, then the maximizer in (BE) at state γ coincides with the best response in (MP)

at state γ. In particular, the best response is (stationary) Markov (see Blackwell (1965)).

Hence, to establish existence of a Markov best response, it remains to show that (BE)

has a solution V1. We do this in the usual way by showing that V1 is the limit of iterated

applications of a contraction mapping. To deÞne the contraction, let S be the space of all

continuous functions on Γ equipped with the supremums norm. Let ψ ∈ S, and deÞne the
operator F : S → S by

Fψ (γ) = max
e1∈{0,1}

{π (e1, η2 (γ))− ce1+ (21)

+ δ [π (e1, η2 (γ))ψ (γ
σ) + (1− π (e1, η2 (γ)))ψ (γ ϕ)] .}

Hence, V1 is the solution to the Þxed point problem FV = V .10 We Þrst show that F is a

contraction.

Proposition 4 F is a contraction.

The proof, which is in the appendix, shows that Blackwell�s sufficiency conditions are sat-

isÞed. Because F is a contraction, a Þxed point exists and is continuous.

Proposition 5 For all η2, V1 exists and is continuous.

Proof : Existence: Since F is a contraction, it follows by Banach�s Þxed-point theorem that

the Þxed-point problem FV = V has a unique solution. This establishes existence of V1.

Continuity: It is well known that V1 is the limit of iterated applications of F on an arbitrary

starting point ψ ∈ S. Notice that Fψ ∈ S since all function on the right hand side of (21) are
continuous. Thus, all elements of the sequence (F nψ)n=1,2,... are in S. Since S is complete, the
10Note that both F and the corresponding Þxed point V1 depend on a speciÞc Markov strategy η2. Provided

it does not cause confusion, we shall suppress this dependency.
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limit of this sequence is a member of S, thus continuous. ¤

Threshold Strategies

The previous considerations show that a best response against a Markov strategy exists and

is again Markov. This could be used to establish the existence of a MPBE by an abstract

existence theorem (see Maskin/Tirole (2001)). However, it would not tell much about how the

equilibrium looks like, and how the system evolves over time in this equilibrium. Therefore, we

shall further restrict the strategy space so as to derive a more speciÞc equilibrium. The case

with myopic players suggests to look for an equilibrium in threshold strategies. A threshold

strategy is a strategy where a player chooses high effort only when his own belief is sufficiently

large and his rival�s belief is sufficiently small. More formally:

DeÞnition 2 A Markov strategy ηi is called threshold strategy if there is an increasing function

r : [0, 1]→ [−1, 1] such that

η1 (γi, γ−i) = 1⇐⇒ γi > r
¡
γ+−i
¢
, (22)

where r (γ+) = limγ0¸γ r (γ0) is the right-hand limit.

Notice that the right-hand limit exists because r (γ0) is decreasing for γ0 ¸ γ and bounded
from below.

If player i plays a threshold strategy, then, for Þxed γ−i, he chooses high effort only if γi

is (strictly) above the threshold r
¡
γ+−i
¢
. Equivalently, for Þxed γi player i chooses high effort

only if γ−i falls below the threshold given by r−1 (γ−i).11

The threshold need not be continuous. We shall construct an equilibrium in threshold

strategies as the limit of some sequence of threshold strategies. For this we need that the

limit of this sequence is again a threshold strategy. If we require a threshold strategy to be

continuous, we would need the sequence to converge uniformly. As it turns out however, this

is too strong a requirement.

Notice also that, by deÞnition, every threshold strategy is Markov.

It will be convenient to work with an equivalent notion where the threshold r is the 0-level

set of some function ψ : Γ→ R that increases if γ moves to the south-east.
11If r is not strictly increasing or discountinuous, r−1 is to be understood as the generalized inverse deÞned

by r−1 (γi) = inf {γ−i| r (γ−i) ≥ γi}.
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DeÞnition 3 ψ : Γ→ R is called increasing towards the south-east, or SE-increasing, if

(i) for all γ2 it holds: γ1 ≥ eγ1 ⇒ ψ (γ1, γ2) ≥ ψ (eγ1, γ2),
(ii) for all γ1 it holds: γ2 ≥ eγ2 ⇒ ψ (γ1, γ2) ≤ ψ (γ1, eγ2).
Proposition 6 A strategy ηi is a threshold strategy if, and only if, there is a continuous SE-

increasing function ψ ∈ S such that

ηi (γ1, γ2) =


1 if ψ (γi, γ−i) > 0

0 if ψ (γi, γ−i) ≤ 0.
(23)

The proof is in the appendix. A threshold strategy divides the state space Γ into two

connected sets: one in which effort is chosen, and one in which no effort is chosen. We call the

latter no-effort set.

DeÞnition 4 Let ηi be a threshold strategy. DeÞne by

N (ηi) = {(γ1, γ2) | ηi (γ1, γ2) = 0} (24)

the set of states where player i chooses no effort under ηi.12

The no-effort set measures how aggressive a strategy is. The smaller a player�s no-effort set,

the more aggressive this player.

With these deÞnitions, there are four equivalent ways of describing a threshold strategy:

η, r,ψ, N . In the sequel, we shall use the notion which is most convenient for the problem at

hand.

Equilibrium

Our aim is to show that there is a MPBE in threshold strategies. For this, we proceed as

follows. We Þrst show that a best response against a threshold strategy is again a threshold

strategy. Then we show that best responses against threshold strategies have some monotonicity

properties, and that the best response correspondence is continuous. Monotonicity says that a

player responds to more aggressive strategies with more defensive strategies. We then consider

the sequence of mutual best responses which is induced when one player starts with the most
12If no cause for confusion, we shall omit the argument and write Ni instead of N (ηi).
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aggressive strategy η ≡ 1. Monotonicity will imply that this sequence is monotone and therefore
converges. By construction, and by continuity of the best response correspondence, the limit

will then be an equilibrium in threshold strategies.

Our Þrst result is that the value function against a threshold strategy is SE-increasing.

Because it is continuous, it induces a threshold strategy. It turns out that this threshold

strategy is a best response. We have the following proposition.

Proposition 7 Let η2 be a threshold strategy. Then it holds:

(i) V1 is SE-increasing.

(ii) The threshold strategy induced by V1 is a best response for player 1 against η2, that is,

η∗1 (γ) =


1 if V1 (γ) > 0

0 if V1 (γ) = 0.

(25)

The intuition is as follows. Because player 2 plays a threshold strategy, player 2 does not

exert effort, if γ2 is small and γ1 is large. Player 1 should then exert effort, because this

guarantees him a success at relatively small cost. Indeed, since updating stops if player 2

ceases to spend effort, player 1 obtains the highest possible value (1− c) / (1− δ) in this case.
As soon as player 2 starts to exert effort, player 1�s utility from exerting effort consists of the

current value π − c and the future value from learning. As γ1 tends to 0, and γ2 tends to 1,

the current value monotonically declines and becomes eventually negative, and the future value

monotonically declines to 0. Hence, there is threshold beyond which utility becomes negative.

Thus, beyond this threshold, player 1 optimally stops exerting effort, and his value is V1 = 0.

To show that an equilibrium in threshold strategies exists, we shall consider a particular

sequence of mutual best responses. To show that the sequence converges, we need the following

monotonicity result.

Proposition 8 Let η2, eη2 be threshold strategies. Then it holds:
(i) η1 = BR1 (η2) =⇒ N (η1) ∩N (η2) = ∅.
(ii) η2 ≥ eη2 =⇒ BR1 (η2) ≤ BR1 (eη2).13
13η ≥ eη if, and only if, η (γ) ≥ eη (γ) for all γ ∈ Γ. Equivalently: η ≥ eη if, and only if, N (η) ⊆ N (eη).
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Here, BRi denotes player i�s best response correspondence on the set of threshold strategies

of player −i. Property (i) says that, whenever player 2 chooses no effort, player 1 optimally
exerts effort. This follows by the same argument as in the previous paragraph.

Property (ii) says that a player responds to more aggressive strategies by more defensive

ones. Intuitively, the logic is as follows. Suppose, player 2 exerts effort. If player 1 exerts

effort, the process continues, and there are essentially two events: in the favourable event, the

process reaches player 2�s no-effort set in Þnite time from which on player 1 will win forever.

In the unfavourable event, player 2�s no-effort set is not reached in Þnite time in which case

player 1 gets less than what he would, had player 2�s no-effort set been reached. Now, player

2 becoming less aggressive means that his no-effort set becomes larger. But this makes the

favourable event more likely which raises player 1�s utility from exerting effort and thereby the

incentives to exert effort.

We now come to convergence. We shall use the notion of pointwise (statewise) convergence.

A sequence of threshold strategies (ηn)n converges pointwisely to a strategy η if the sequence

(ηn (γ))n converges to η (γ) for all γ ∈ Γ. This implies that the corresponding sequence of
thresholds (rn) converges pointwisely. Accordingly, there is a function r : [0, 1] → [0, 1] such

that

rn (γ) →
n→∞

r (γ) for all γ ∈ [0, 1] . (26)

It is easily seen that r is increasing. Thus, r gives rise to a threshold strategy eη. But it is
straighforward to show that η coincides with eη. Thus, η is a threshold strategy, and the set of
threshold strategies is complete with respect to pointwise convergence.

We now deÞne the following sequence η = (ηn1 , η
n
2 )n=1,2,... of mutual best responses by

η12 ≡ 1, (27)

ηn1 = BR1 (η
n
2 ) for n = 1, 2, ..., (28)

ηn2 = BR2
¡
ηn−11

¢
for n = 2, 3, ... . (29)

The sequence thus deÞned is monotone and converges:

Proposition 9 The sequence η is increasing in the Þrst, and decreasing in the second argument,

that is,
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(i) ηn1 ≥ ηn+11 for n = 1, 2, ...

(ii) ηn2 ≤ ηn+12 for n = 1, 2, ...

Moreover, η converges to a limit of threshold strategies (η∗1, η
∗
2).

Results (i) and (ii), which follow by induction, are a consequence of Proposition 8. As a

bounded, monotone sequence, η converges, and the limit is a pair of threshold strategies because

the space of threshold strategies is complete. A proof is in the appendix.

To show that the limit (η∗1, η
∗
2) is an equilibrium, we need that BR is continuous. This is

shown in the next proposition. The proof, which is technical, is in the appendix.

Proposition 10 Let
¡
ηn−i
¢
n
be a sequence of threshold strategies with ηn−i →

n→∞
η−i. Then

BRi
¡
ηn−i
¢ →
n→∞

BRi (η−i) . (30)

We are now in the position to state that an equilibrium in threshold strategies exists.

Theorem 1 (η∗1, η
∗
2) is a MPBE, and it holds:

(i) There is a ρ > 0 such that

{γ ∈ Γ | kγ − (1, 0)k < ρ} ⊂ N∗
2 , (31)

{γ ∈ Γ | kγ − (0, 1)k < ρ} ⊂ N∗
1 . (32)

(ii) N∗
1 ∩N∗

2 = ∅.

That (η∗1, η
∗
2) is an equilibrium, follows by construction of η as a sequence of mutual best

responses and by continuity of BR. Properties (i) and (ii) are general properties of any equi-

librium in threshold strategies. Property (i), which is a consequence of continuity of V1, says

that player i�s no-effort contains a small neighbourhood around the �worst� state where γi = 0

and γ−i = 1. Effectively, this implies that a player�s no-effort set is reached in Þnite time if

this player loses sufficiently often. Property (ii) says that at least one player exerts effort in

equilibrium. This is direct consequence of Proposition 8 (i). A typical equilibrium may thus

look as follows.14

14We have not looked at whether the equilibrium is unique or symmetric, because this is not needed to make

our main point.
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Learning

We can now state our main result that players will fail to learn their true abilities. Let

T (ω) = min
©
t ≥ 0 | γt (ω) ∈ N∗

1 ∪N∗
2

ª
(33)

be the Þrst period in which one player ceases to spend effort. If this period is reached, the

process stops and no information is generated any more. Also, by Theorem 1 (ii), one player

will win and the other player will lose forever from that point on. Intuitively, N∗
1 ∪N∗

2 will be

reached in Þnite time, because it contains small neighbourhoods around the most discrepant

beliefs. For, one player will experience a very long sequence of consecutive successes, thus,

beliefs increasingly diverge, and the other player�s no-effort set is reached. More precisely, we

have the following result.

Theorem 2 For all scenarios (α1,α2), learning will be incomplete, and with positive probability

one player will be discouraged in the long run, that is,

P [T <∞ | η∗1, η∗2; (α1,α2)] > 0. (34)

Proof : The proof is essentially the same as in Proposition 1. Due to Bayesian updating, it

requires a Þnite number of consecutive successes for one player for the state to move arbitrarily

closely to either (1, 0) or (0, 1). Therefore, because of property (i) of Theorem 1, it takes a

Þnite number of successes of player i for the state to reach N∗
−i. But conditional on (α1,α2),

sequences are independent. Therefore, with positive probability in all scenarios (α1,α2), one

player will have a sufficiently long sequence of successes such that the other player�s no effort

set is reached. In this case, because of property (ii) of Theorem 1, the more conÞdent player

exerts effort whereas the other player resigns. ¤
As a consequence, persistent inequality arises in the long run. One player may eventually

win the contest forever and become rich whereas the other player will be discouraged and stay

poor. In particular, for example in scenario (αH ,αL), where player 1 is the better and player 2

the worse player, player 2 has a positive chance to be the long term winner. In this sense, the

�wrong� player may be prevailing in the long run.

To see the difference between a contest and a single decision maker problem, consider two

individuals who, independently from each other, have to perform an inÞnite sequence of tasks

with success probability αe at cost ce. It is known from the literature on bandit problems that
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in this case both individuals may eventually stop exerting effort. This is because both players

may fail and thus be discouraged at the same time. In contrast, in a contest one player getting

less conÞdent implies that the other player gets more conÞdent.

In our speciÞc contest, there is an additional element of strategic interaction in that a

player�s winning chance does not depend on ability if the other player exerts no effort. In a

Markov equilibrium, this implies that the belief process stops if one player stops exerting effort.

If, instead, a player�s winning chance did always depend on ability, then even a highly conÞ-

dent and highly able player would at some point experience a long streak of failures and lose

conÞdence. At the same time, the other player would be encouraged. We therefore conjecture

that at least in the �medium term� we would observe swings between long winning sequences

of either player. Whether and under what conditions this would lead to learning or to cyclical

behaviour in the long run, is an open question.

ConÞdence

We consider now the impact of conÞdence on the likelihood to be the long-run winner. For this,

deÞne by

Ti (ω) = min
©
t ≥ 0 | γt (ω) ∈ N∗

i

ª
(35)

the Þrst entry time into N∗
i . The following result says that the more conÞdent a player and the

less conÞdent his rival, the higher the likelihood to reach the rival�s no-effort set.

Theorem 3 For all scenarios (α1,α2), the likelihood to reach the rival player�s no effort set in

Þnite time is increasing in own and decreasing in the rival�s conÞdence, that is,

P [T−i < Ti | η∗1, η∗2; (α1,α2)] is increasing in γi and decreasing in γ−i. (36)

Proof : The proof is straightforward. The higher γi, and the smaller γ−i, the closer the

state is at N∗
−i. Therefore, less successes are required to move into N

∗
−i. ¤

Furthermore, because Vi is SE-increasing, player i�s expected utility is increasing in γi and

decreasing in γ−i. In this sense, conÞdence is self-serving. Admittedly, given complementarity,

this result is not too surprising. Nevertheless, it illustrates that perception might be an impor-

tant factor in contests, and that long term success may not necessarily be the result of ability

but rather of conÞdence in combination with an initial streak of good luck.
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5 Conclusion

The paper discusses the role of conÞdence in a repeated contest when players do not know

their intrinsic abilities. The basic idea is that complementarity of ability and effort gives rise to

a belief reinforcment effect which encourages conÞdent players and discourages less conÞdent

players. In our example, this implis that players may fail to learn their true abilities in the long

run, and one player may eventually win forever. As a consequence, persistent inequality arises,

and the actually worse player may be the long run winner. Furthermore, conÞdence is self-

serving in that it increases a player�s utility and the likelihood to be the eventually prevailing

player.

The speciÞc form of our contest somewhat limits the generality of our results. However,

as already discussed in the previous section, some qualitative characteristics of the belief rein-

forcement mechanism can be expected to carry over to more general contests.

More importantly, we have neglected the fact that high conÞdence often leads to excessive

risk taking, countervailing the self-serving effect of conÞdence (see Baumeister (1998) for ev-

idence and Benabou/Tirole (2002a, 2002b) for a model). Recent contest literature suggests

that at least in some contests risk taking may be beneÞcial (Hvide (2000), Kräkel (2002)). To

what extent this would strengthen the self-serving effect of conÞdence is a question for future

research.

Finally, we have also set aside the possibility that players may accumulate wealth over time.

This should lead to an even more pronounced reinforcement effect, as the wealthier player can

invest more resources in the contest, thus, increasing his chance to succeed, and, in turn, to

become even wealthier.

Appendix

Proof of Proposition 4: We use Blackwell�s sufficiency condition, i.e., we have to show:

(i) For all ψ,φ ∈ S with ψ ≥ φ on Γ, it holds that Fψ ≥ Fφ on Γ.
(ii) For all ψ ∈ S and ξ > 0, there is a β ∈ (0, 1) such that F (ψ + ξ) ≤ Fψ + βξ.

Ad (i): Let ψ,φ ∈ S with ψ ≥ φ on Γ. Let
³
eψ1 , e

φ
1

´
∈ {0, 1} be the maximizers of Fψ and Fφ,

respectively. There are four possible cases:
³
eψ1 , e

φ
1

´
= (0, 0) ,

³
eψ1 , e

φ
1

´
= (1, 1) ,

³
eψ1 , e

φ
1

´
=
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(1, 0) ,
³
eψ1 , e

φ
1

´
= (0, 1). For eψ1 = eφ1 the claim follows immediately. If

³
eψ1 , e

φ
1

´
= (1, 0),

then15

Fψ = π (1, η2)− c+ δ [π (1, η2)ψ σ + (1− π (1, η2))ψ ϕ] (37)

≥ π (0, η2) + δ [π (0, η2)ψ σ + (1− π (0, η2))ψ ϕ] (38)

≥ π (0, η2) + δ [π (0, η2)φσ + (1− π (0, η2))φϕ] (39)

= Fφ. (40)

The Þrst inequality follows by deÞnition of the maximum, and the second inequality follows by

the assumption that ψ ≥ φ. The case
³
eψ1 , e

φ
1

´
= (0, 1) is shown in the same way.

Ad (ii): Let ψ ∈ S and ξ > 0, and let β = δ. Then

F (ψ + ξ) = max
e1∈{0,1}

{π (e1, η2)− ce1 + δ [π (e1, η2)ψ σ + (1− π (e1, η2))ψ ϕ] + (41)

+ δ [π (e1, η2) ξ + (1− π (e1, η2)) ξ] (42)

= Fψ + βξ. (43)

This shows that F is a contraction. ¤

Proof of Proposition 6: Let ψ be given. DeÞne r (γ−i) = sup {r ∈ [0, 1] |ψ (r, γ−i) ≤ 0}.
Since ψ is SE-increasing, r is increasing. Since ψ is continuous, the supremum is assumed and

ψ
¡
r
¡
γ+−i
¢
, γ−i

¢ ≤ 0. Therefore, if γi > r ¡γ+−i¢, then ψ ¡r ¡γ+−i¢ , γ−i¢ > 0, hence η (γi, γ−i) = 1.
For the converse, let r be given. W.l.o.g., let r be not constantly equal to 1 or 0 (in

this case, deÞne ψ constantly equal to 1 or −1). DeÞne ψ (γi, γ−i) = 0 for γi ≤ r
¡
γ+−i
¢
,

and deÞne ψ (1, 0) = 1. For all other (γi, γ−i) deÞne ψ as follows. Connect each point in©
(γi, γ−i) | γi ∈

£
r
¡
γ−−i
¢
, r
¡
γ+−i
¢¤ª

and the point ψ (1, 0) by a straight line and let ψ be the

resulting function. (r
¡
γ−−i
¢
is the left-hand limit.) ψ is obviously continuous, and since r is in-

creasing, ψ is SE-increasing. Finally, by construction, ψ (γi, γ−i) > 0 if, and only if, γi > r
¡
γ+−i
¢
.

¤

Proof of Proposition 7: To show (i), we need some preliminary results. It is convenient

to work with the following deÞnition. Let η2 be a threshold strategy. Denote by S+,c the set of

all functions in S that are SE-increasing and constant on N2.
15In what follows, we shall occasionally suppress the argument γ and write ψσ instead of ψ (γσ ) etc.
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Notice that S+,c is complete.16 The following proposition states that F maps S+,c in S+,c.

Proposition 11 Let η2 be a threshold strategy, and let ψ ∈ S+,c. Then Fψ ∈ S+,c.

Since F preserves S+,c, all elements of a sequence (Fnψ)n=1,2,... with ψ ∈ S+,c are in S+,c.
Since S+,c is complete, the limit V1 of such a sequence is a member of S+,c with respect to the

supremum norm, in particular, it is SE-increasing. This shows (i).

Proof of Proposition 11: We show Þrst that Fψ is SE-increasing. Let γ1 ≥ eγ1. We

have to show that Fψ (γ1, γ2) ≥ Fψ (eγ1, γ2) for all γ2. Let e1, �e1 ∈ {0, 1} be the maximizers of
Fψ (γ1, γ2) and Fψ (eγ1, γ2), respectively. Suppose Þrst�case I)�that e1 = 1 and �e1 = 1. Then

Fψ (γ1, γ2) = π (1, η2 (γ))− c+ δ [π (1, η2 (γ))ψ (γ σ) + (1− π (1, η2 (γ)))ψ (γ ϕ)] , (44)

and

Fψ (eγ1, γ2) = π (1, η2 (eγ))− c+ δ [π (1, η2 (eγ))ψ (eγ σ) + (1− π (1, η2 (eγ)))ψ (eγ ϕ)] . (45)

Since η2 is a threshold strategy, η2 (γ1, γ2) ≤ η2 (eγ1, γ2). Hence, there are three possible cases:
A): η2 (γ1, γ2) = η2 (eγ1, γ2) = 1, B): η2 (γ1, γ2) = η2 (eγ1, γ2) = 0, and C): η2 (γ1, γ2) = 0 and

η2 (eγ1, γ2) = 1. Consider Þrst case A). In this case,
π (1, η2 (γ)) = 1/2 + (γ1 − γ2)∆α ≥ 1/2 + (eγ1 − γ2)∆α = π (1, η2 (eγ)) . (46)

Furthermore, monotonicity of Bayes� rule implies that γ σ1 ≥ eγ σ1 and γ ϕ1 ≤ eγ ϕ1 , thus, because
ψ is SE-increasing, ψ (γ σ) ≥ ψ (eγ σ) and ψ (γ ϕ) ≥ ψ (eγ ϕ). This implies that Fψ (γ1, γ2) ≥
Fψ (eγ1, γ2).
Consider next case B): η2 (γ1, γ2) = η2 (eγ1, γ2) = 0. Then, because beliefs are not updated

if no effort is chosen,

Fψ (γ1, γ2) = 1− c + δψ (γ) , (47)

and

Fψ (eγ1, γ2) = 1− c + δψ (eγ) . (48)

Hence, since ψ is SE-increasing, Fψ (γ1, γ2) ≥ Fψ (eγ1, γ2).
16This is because the SE-increasing concept involves only weak inequalities.
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Consider Þnally case C): η2 (γ1, γ2) = 0 and η2 (eγ1, γ2) = 1. Then
Fψ (γ1, γ2) = 1− c + δψ (γ) , (49)

and

Fψ (eγ1, γ2) = π (1, η2 (eγ))− c+ δ [π (1, η2 (eγ))ψ (eγ σ) + (1− π (1, η2 (eγ)))ψ (eγ ϕ)] . (50)

Notice Þrst that 1 ≥ π (1, η2 (eγ)). Moreover, ψ (γ) ≥ ψ (eγ ϕ), because ψ is SE-increasing.

Furthermore, ψ is SE-increasing and constant on N2. Hence, ψ is maximal on N2. But, by

assumption η2 (γ1, γ2) = 0, thus (γ1, γ2) ∈ N2. Hence, ψ (γ) ≥ ψ (eγ σ). All three arguments
together imply that Tψ (γ1, γ2) ≥ Tψ (eγ1, γ2).
This shows the claim for case I). Cases II): e1 = 0, �e1 = 0, III): e1 = 1, �e1 = 0, and IV):

e1 = 0, �e1 = 1 follow analogously.

Likewise, it follows that Fψ (γ1, eγ2) ≥ Fψ (γ1, γ2) for γ2 ≥ eγ2 and for all γ1. This shows
that Fψ is SE-increasing.

It remains to show that Fψ is constant on N2. Let γ ∈ N2. Hence, whatever player 1
chooses, there will be no updating, since player 2 chooses e2 = 0. Therefore, e1 = 0 yields

1/2 + δψ (γ), and e1 = 1 yields 1− c + δψ (γ). Since, by assumption, 1− c > 1/2, e1 = 1 is a
maximizer of Fψ (γ). Thus,

Fψ (γ) = 1− c+ δψ (γ) for all γ ∈ N2. (51)

Since, by assumption, ψ is constant on N2, it follows that Fψ is constant on N2. ¤

It remains to show part (ii) of Proposition 7. For this, let η2 be given. Consider a best

response of player 1 against η2. It may be that in some states player 1 is indifferent between

e1 = 1 and e1 = 0. To break ties we assume that in these cases player 1 chooses e1 = 0. The

best response gets thus single-valued. Let η1 be such a statewise single-valued best response

against η2. We show

(a) If η1 (γ) = 0, then V1 (γ) = 0

(b) If η1 (γ) = 1, then V1 (γ) > 0.

In other words: η1 (γ) = 1 if, and only if, V1 (γ) > 0.

Ad (a): Let η1 (γ) = 0. Suppose, η2 (γ) = 0. Compare player 1�s value of playing e1 = 1 and

of playing e1 = 0, conditional on optimal continuation. Since η2 (γ) = 0, there is no learning
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and the future value δV1 (γ) is the same for both e1 = 1 and e1 = 0. The current value of e1 = 1

is 1− c, whereas the current value of e1 = 0 is 1/2 < 1− c. Thus η1 (γ) = 1, a contradiction.
Therefore, η2 (γ) = 1. In this case, since η1 (γ) = 0, there is again no updating, and player 1�s

value is given by

V1 (γ) = 0 + δV1 (γ) . (52)

This implies that V1 (γ) = 0.

Ad (b): Let η1 (γ) = 1. Suppose, η2 (γ) = 0. Then, player 1 wins with certainty and again

there is no updating. Player 1�s value is thus given by

V1 (γ) = 1− c+ δV1 (γ) . (53)

Hence V1 (γ) = (1− c) / (1− δ) > 0.
Suppose, η2 (γ) = 1. We have seen under (a) that the value from e1 = 0 against η2 (γ) = 1,

conditional on optimal continuation, is equal to 0. Our tie-breaking rule implies that player

1 strictly prefers e1 = 1 to e1 = 0, if η1 (γ) = 1. Thus, if η1 (γ) = 1, it must be that V1 (γ) > 0. ¤

Proof of Proposition 8: Ad (i): Suppose, there is a state in which player 1 chooses e1 = 0

against e2 = 0. Then he gets 0. Yet, if player 1 deviates and chooses e1 = 1 instead, he gets

(1− c) / (1− δ) > 0. This implies the claim.
Ad (ii): Let η2 ≥ eη2. Denote by η1, eη1 the corresponding best responses, and by V1, eV1 the cor-
responding value functions of player 1. By Proposition 7, η1 (γ) = 1 if, and only if, V1 (γ) > 0.

Hence, it is enough to show that

eV1 (γ) ≥ V1 (γ) for all γ ∈ Γ. (54)

We shall show that η1 gives a higher utility against eη2, than η1 gives against η2. That is,
U1 (η1, eη2) ≥ U1 (η1, η2) . (55)

By deÞnition of a best response, this implies, eV1 ≥ U1 (η1, eη2) ≥ U1 (η1, η2) = V1.
To show (55), let γ0 = γ ∈ Γ, and let ω be an inÞnite sequence ω = (ω1, ...,ωt, ...) ,ωt ∈ {σ,ϕ}
of successes and failures of player 1. Let (γt)t=1,2,... be the unique sequence of beliefs induced

by ω under strategies η1, η2, and initial state γ0. Likewise, let (eγt)t=1,2,... the beliefs induced
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under η1, eη2, and initial state γ0. We divide now N (eη2) into several sets. DeÞne
A = N (η1) ∩N (eη2) , (56)

B = N (eη2) \N (η2) , (57)

C = N (eη2) \ (A ∪B) . (58)

The following picture illustrates these sets.

Notice that C is well deÞned because, by assumption, η2 ≥ eη2.
Clearly, N (eη2) = A ∪ B ∪ C. Hence, if player 2 plays eη2, once the state has reached A, or

B, or C, the process stops, and players receive a constant per period payoff from then on. In

particular, suppose, (η1, eη2) is played. Then, if the state reaches A, both players exert no effort
from then on, and player 1 gets per period payoff 1/2. If the state reaches B or C, then e1 = 1

and e2 = 0, and player 1 obtains per period payoff (1− c) from then on. Suppose instead,

(η1, η2) is played. Then player 1 receives the same as under (η1, eη2) when the state reaches
B. But, he receives less than under (η1, eη2) when the state reaches A or C, because under η2,
player 2 chooses effort ee2 = 1 on C.
This argument suggests that (η1, η2) is better for player 1 than (η1, eη2). To make it more

precise, we write the overall utility of player 1 in terms of Þrst entry times in these sets. DeÞne

for j = A,C

Tj (ω) = min
©
t ≥ 0 | γt (ω) ∈ jª . (59)

Furthermore, deÞne by

{TA < TC} = {ω |TA (ω) <∞, TA (ω) < TC (ω)} (60)

the event that the state reaches A in Þnite time and that A is reached before B.17 DeÞne
17Again, we neglect measurability issues. If we had deÞned the probability space properly, it would however

be easy to show that Tj is a stopping time and that {TA < TB} is measurable.
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likewise {TC < TA}. Then, with ηti = ηi (γt), the utility of player 1 is

U1 (η1, η2) =

Z ∞X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢− cηt1¤ dP (ω ; η1, η2, γ) (61)

=

Z
{TA<TC}

∞X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢− cηt1¤ dP (ω ; η1, η2, γ) (62)

+

Z
{TC<TA}

∞X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢− cηt1¤ dP (ω ; η1, η2, γ) (63)

+

Z
{TA=TC=∞}

∞X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢− cηt1¤ dP (ω ; η1, η2, γ) (64)

We can split the sum in (62) into dates before and after A is reached, that is, the integral in

(62) is equal toZ
{TA<TC}

TA−1X
t=1

δt
£
π
¡
ηt1, η

t
2; γ

t
¢− cηt1¤+ δTA(ω)V1 ¡γTA(ω)¢ dP (ω ; η1, η2, γ) . (65)

For (63) we obtain the corresponding expression. Now notice that the two proÞles (η1, η2) and

(η1, eη2) coincide as long as A or C is not reached. Hence, before A or C is reached both the

transition probabilities and the current payoff are the same under (η1, η2) and under (η1, eη2).
Therefore, Z

{TA<TC}

TA−1X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢− cηt1¤ dP (ω ; η1, η2, γ) (66)

+

Z
{TC<TA}

TC−1X
t=0

δt
£
π
¡
ηt1, η

t
2; γ

t
¢− cηt1¤ dP (ω ; η1, η2, γ) (67)

=

Z
{TA<TC}

TA−1X
t=0

δt
£
π
¡
ηt1, eηt2; γt¢− cηt1¤ dP (ω ; η1, eη2, γ) (68)

+

Z
{TC<TA}

TC−1X
t=0

δt
£
π
¡
ηt1, eηt2; γt¢− cηt1¤ dP (ω ; η1, eη2, γ) . (69)

By the same argument, since (η1, η2) and (η1, eη2) coincide on the set {TA = TC =∞}, the
integral in (64) is the same under (η1, η2) and (η1, eη2).
Furthermore, when A is reached, player 1 stops exerting effort while player 2 does not under

(η1, η2), thus

V1
¡
γTA(ω)

¢
= 0. (70)

However, when A is reached under (η1, eη2), both players stop exerting effort, thus
U1 (η1, eη2) ¡γTA(ω)¢ = 1

2 (1− δ) . (71)
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When C is reached under (η1, eη2), then only player 2 stops exerting effort, thus
U1 (η1, eη2) ¡γTC(ω)¢ = 1− c

1− δ ≥ V1
¡
γTC(ω)

¢
, (72)

where the inequality holds because V1 is bounded by (1− c) / (1− δ). Hence, we can estimate
U1 (η1, η2) againstZ

{TA<TC}

TA−1X
t=0

δt
£
π
¡
ηt1, eηt2; γt¢− cηt1¤+ δTA(ω)U1 (η1, eη2) ¡γTA(ω)¢ dP (ω ; η1, eη2, γ) (73)

+

Z
{TC<TA}

TC−1X
t=0

δt
£
π
¡
ηt1, eηt2; γt¢− cηt1¤+ δTC(ω)U1 (η1, eη2) ¡γTC(ω)¢ dP (ω ; η1, eη2, γ) (74)

+

Z
{TA=TC=∞}

∞X
t=0

δt
£
π
¡
ηt1, eηt2; γt¢− cηt1¤ dP (ω ; η1, eη2, γ) . (75)

But this sum is just equal to U1 (η1, eη2). Thus, (55) is shown. ¤
Proof of Proposition 9: Ad (i) and (ii): The proof is by induction. Let n = 1. Clearly

η12 ≡ 1 ≥ η22, hence (ii). Thus, by Proposition 8 (ii), η
1
1 = BR1 (η

1
2) ≤ BR1 (η

2
2) = η21, hence

(i). Let (i) and (ii) hold for i = 1, ..., n. Then, by (ii) and Proposition 8 (ii), ηn1 = BR1 (η
n
2 ) ≤

BR1
¡
ηn+12

¢
= ηn+11 , thus, (i) holds for n + 1. Likewise, ηn+12 = BR2

¡
ηn−11

¢ ≥ BR2 (ηn1 ) = ηn2 ,
thus, (ii) holds for n+ 1.

Convergence: Let rni be the threshold from DeÞnition 2 associated with ηni . By the remark

above, it is enough to show that the sequence (rni )n converges pointwisely. Consider player 1.

ηn1 ≤ ηn+11 on Γ translates into rn1 ≥ rn+11 on [0, 1]. Thus, for all γ2, the sequence (rn1 (γ2))n is

decreasing and bounded from below, hence, convergent. But, again by the remark above, the

limit is a threshold strategy. ¤

Proof of Proposition 10: We only show thatBR1 is left-continuous, that is limηn2·η2 BRi (η
n
2 ) =

BRi (η2). Right-continuity can be shown in the same way. Notice Þrst that convergence of a

sequence (ηn)n of threshold strategies is implied by pointwise convergence of the corresponding

SE-increasing functions (ψn)n. If (ψ
n)n converges pointwisely to a continuous function ψ, then

ψ is SE-increasing, and the corresponding sequence (ηn)n of threshold strategies converges to

the threshold strategy induced by ψ.

Let V n1 and V1 be the value functions associated with the best responses η
n
1 and η1 against

ηn2 and η2. By the remark above and by Proposition 7, it is enough to show that V
n
1 converges
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statewisely to V1. Since, by assumption, ηn2 ≤ ηn+12 ≤ η2, it follows from the proof of Proposition
8 that V n1 ≥ V n+11 ≥ V1. Thus, since V n1 is bounded from below, the (statewise) limit exists

and limn V n1 ≥ V1. We shall show that

U1 (η
n
1 , η

n
2 )− U1 (ηn1 , η2)→ 0. (76)

Thus, since limU1 (ηn1 , η
n
2 ) exists, it exists limU1 (η

n
1 , η2), and the two limits coincide. This

implies that limV n1 = limU1 (η
n
1 , η

n
2 ) = limU1 (η

n
1 , η2) ≤ U1 (η1, η2) = V1, where the inequality

holds because η1 is a best response against η2. Because we also have that limV n1 ≥ V1, it follows
that limV n1 = V1.

To show (76), let ε > 0. Let τ ∈ N be such that

δτ
1− c
1− δ < ε. (77)

DeÞne by

Γτ =
©
γ ∈ Γ | there is an ω such that γt (ω) = γ for t = 0, ..., τª (78)

the set of all possible states up to time τ . Because there are only two events, success or failure,

in each period, Γτ contains at most 2τ + 1 <∞ elements. Therefore, it exists

ξτ = min
γ∈Γτ \N(η2)

dist (γ, N (η2)) , (79)

where dist (γ, N (η2)) is the smallest (Euclidean) distance between γ and the closure of N (η2).

In particular, ξτ > 0.18

Let rn2 and r2 be the thresholds associated with η
n
2 and η2. DeÞne for each γ ∈ Γ the number

nτ,γ such that

rn2 (γ1)− r2 (γ1) < ξτ /2 for all n > nτ,γ . (80)

Because Γτ is Þnite, it exists

nτ = max
γ∈Γτ

nτ,γ, (81)

and it follows by construction that

¡
N
¡
ηn

τ

2

¢ \N (η2)¢ ∩ Γτ = ∅. (82)
18If Γτ ⊂ N (η2), then Γτ \N (η2) = ∅, and ξτ = 0. In this case, γ0 ∈ N (η2). Therefore, V1

¡
γ0
¢
=

(1− c) / (1− δ), and it follows directly that V1 ≥ V n1 .
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DeÞne An = N (ηn2 ) \N (η2), and let

TAn (ω) =
©
t ≥ 0 | γt (ω) ∈ Anª (83)

be the Þrst entry time into An. Notice, that An ⊆ N ¡ηnτ2 ¢ \N (η2) for all n > nτ . This implies
that

P [TAn ≤ τ ] = 0 for all n > nτ (84)

since, by construction, no state can reach N
¡
ηn

τ

2

¢ \N (η2) before time τ . As an illustration,
consider the following picture.

We shall now write U1 in terms of the Þrst entry time. Let n > nτ , and deÞne ηn,t = ηn (γt),

then

U1 (η
n
1 , η

n
2 ) =

Z
{TAn<∞}

TAn−1X
t=0

δt
£
π
¡
ηn,t1 , η

n,t
2

¢− cηn,t1 ¤ (85)

+ δTAnU1 (η
n
1 , η

n
2 )
¡
γTAn

¢
dP (ω; ηn1 , η

n
2 , γ) (86)

+

Z
{TAn=∞}

∞X
t=0

δt
£
π
¡
ηn,t1 , η

n,t
2

¢− cηn,t1 ¤ dP (ω; ηn1 , ηn2 , γ) . (87)

Now, because of Proposition 8 (i), the proÞles (ηn1 , η
n
2 ) and (η

n
1 , η2) coincide on {TAn =∞} and

as long as An is not reached. Hence, they give rise to the same transition probabilities and

payoffs on {TAn =∞} and as long as An is not reached. Therefore, the second integral and the
sum in the Þrst integral coincide under (ηn1 , η

n
2 ) and (η

n
1 , η2). Accordingly

U1 (η
n
1 , η

n
2 )− U1 (η1, ηn2 ) (88)

=

Z
{TAn<∞}

δTAnU1 (η
n
1 , η

n
2 )
¡
γTAn

¢
dP (ω; ηn1 , η

n
2 , γ) (89)

−
Z
{TAn<∞}

δTAnU1 (η1, η
n
2 )
¡
γTAn

¢
dP (ω; η1, η

n
2 , γ) (90)

Moreover, the process stops under (ηn1 , η
n
2 ) when A

n is reached since player 2 then stops exerting

effort. Player 1 either exerts effort, if γTAn ∈ N (ηn1 ) ∩ An. Or, if γTAn /∈ N (ηn1 ) ∩ An, he does
not exert effort. In either case he obtains utility

U1 (η
n
1 , η

n
2 )
¡
γTAn

¢ ≤ 1− c
1− δ . (91)
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Furthermore, by deÞnition of a best response, U1 (η1, ηn2 ) ≤ U1 (ηn1 , ηn2 ). Hence,

|U1 (ηn1 , ηn2 )− U1 (η1, ηn2 )| = U1 (ηn1 , ηn2 )− U1 (η1, ηn2 ) (92)

≤
Z
{TAn<∞}

δTAn
1− c
1− δ dP (ω; η

n
1 , η

n
2 , γ)− 0 (93)

≤ P [TAn ≤ τ ] 1− c
1− δ (94)

+

Z
{τ<TAn<∞}

δTAn
1− c
1− δ dP

≤ 0 + δτ 1− c
1− δ (95)

< ε. (96)

This shows the claim. ¤

Proof of Theorem 1: Equilibrium: By Propositions 9 and 10 it follows that η∗1 = lim η
n
1 =

limBR1 (η
n
2 ) = BR1 (lim η

n
2 ) = BR1 (η

∗
2). Likewise, η

∗
2 = BR2 (η

∗
1). Thus, (η

∗
1, η

∗
2) is an equilib-

rium.

Ad (i): To prove the claim, we show that player 1�s utility from choosing e1 = 1 against η∗2 in

state (0, 1) is strictly negative. Then, continuity of U1 implies that there is a neighbourhood

around (0, 1) such that e1 = 1 gives strictly negative utility in this neighbourhood. Therefore,

in this neighbourhood V1 = 0, and η∗1 = 0.

Notice Þrst that in state γ = (0, 1), the state is not updated any more. Thus, it is op-

timal for player 2 to choose e2 = 1, irrespective of what player 1 does. Indeed, if player 1

chooses e1 = 0, then player 2 gets (1− c) / (1− δ) from choosing e2 = 1, and from choosing

e2 = 0 he gets 1/ (2 (1− δ)) < (1− c) / (1− δ). If player 1 chooses e1 = 1, then player

2 gets (1/2 +∆α− c) / (1− δ) from choosing e2 = 1, and from choosing e2 = 0 he gets

0 < (1/2 +∆α− c) / (1− δ). Hence, η∗2 (0, 1) = 1. Likewise, η∗1 (1, 0) = 1.
Suppose now that player 1 chooses e1 = 1 against η∗2 in state (0, 1). Then player 1 gets

(1/2 +∆α− c) / (1− δ) < 0. But this is what we wanted to show.
Ad (ii): This is an immediate consequence of Proposition 8 (ii). ¤

31



6 References

Bar-Isaac, H. (2000): �Good Advisers Survive Despite Bad Luck�Self-ConÞdence in a Model

of a Privately Informed and Strategic One-Armed Bandit,� Mimeo, LSE.

Baumeister, R. (1998): �The Self,� in The Handbook of Social Psychology, edited by D.

Gilber, S. Fiske, and G. Lindsey, Boston, McGraw-Hill.

Benabou, R., J. Tirole (2002a):�Intrinsic and Extrinsic Motivation,� Mimeo, Princeton Uni-

versity, http://www.princeton.edu/~rbenabou/.

Benabou, R., J. Tirole (2002b): �Self-ConÞdence and Personal Motivation,� Quarterly Journal

of Economics, 117, 871 - 915.

Berry, D. A., B. Fristedt (1985): Bandit Problems. New York, Chapman and Hall.

Blackwell, D. (1965): �Discounted Dynamic Programming,� Annals of Mathematical Statis-

tics, 36, 226-235.

Bolton, P., C. Harris (1999): �Strategic Experimentation,� Econometrica, 67, 349-374.

Bowles, S., H. Gintis, M. Osbourne (2001): �The Determinants of Earnings: A Behavioral

Approach,� Journal of Economic Literature, 39, 1137-1176.

Brockner, J. (1984): �Low Self-Esteem and Behavioral Plasticity,� Review of Personality and

Social Psychology (Vol. 4), edited by L. Wheeler, Beverly-Hills, CA, Sage.

Colvin, C. R., Block, J. (1994): �Do Positive Illusions Foster Mental Health? An Examination

of the Taylor and Brown Formulation,� Psychological Bulletin, 116, 3-20.

Compte, O., A. Postlewaite (2001): �ConÞdence Enhanced Performance,� Mimeo, University

of Pennsylvania.

Darity, W., A.H. Goldsmith (1996): �Social Psychology, Unemployment andMacroeconomics,�

Journal of Economic Perspectives, 10, 121-140.

De Meza, D., C. Southey (1996): �The Borrower�s Curse: Optimism, Finance and Entrepre-

neurship,� Economic Journal, 106, 375-386.

32



Dunifon, R., G. Duncan (1998): �Long-Run Effects of Motivation on Labor-Market Success,�

Social Psychology Quarterly, 61, 33-48.

Gneezy, U., M. Niederle, A. Rustichini (2001): �Performance in Competitive Environments:

Gender Differences,� Mimeo, www.cepr.org/meets/wkcn/6/683/Papers/rustichini1.pdf

Heifetz, A., Y. Spiegel (2000): �On the Evolutionary Emergence of Optimism,� Mimeo, Tel

Aviv University.

Hvide, H.K. (2000): �Tournament Rewards and Risk Taking,� Mimeo, Norwegian School of

Economics and Business.

Keller, G. S. Rady (2002): �Strategic Experimentation: The Case of Poisson Bandits,� CESifo

Working Paper No. 737.

Kräkel, M. (2002): �Risk Taking in Asymmetric Tournaments,� Mimeo, University of Bonn.

Malmendier, U, G. Tate (2002): �CEO OverconÞdence and Corporate Investment,� Mimeo,

Harvard University.

Manove, M. (2000): �Entrepreneurs, Optimism, and the Competitive Edge,� Mimeo, Boston

University.

Manove, M., J. Padilla (1999): �Banking (conservatively) with Optimists,� RAND Journal of

Economics, 30, 324-350.

Maskin, E. J. Tirole (2001): �Markov Perfect Equilibrium 1. Observable Actions,� Journal of

Economic Theory, 100, 191-219.

Rothschild, M. (1974): �A Two-Armed Bandit Theory of Market Pricing�, Journal of Eco-

nomic Theory, 9, 185-202.

Rosen, S. (1986): �Prizes and Incentives in Elimination Tournaments,� American Economic

Review, 76, 701-715.

Solon, G. (1999): �Intergenerational Mobility in the Labor Market,� in The Handbook of Labor

Economics, Vol. 3a, edited by Ashenfelter, O., D. Card, Amsterdam, North-Holland.

33



Taylor, S.E., Brown, J.D. (1988): �Illusion andWell-Being: A Social Psychological Perspective

on Mental Health,� Psychological Bulletin, 103, 193 - 210.

Van den Steen, E. (2002): �Skill or Luck. Biases of Rational Agents,� Mimeo, MIT.

34


	Learning and Self-Confidence in Contests
	
	
	
	
	JEL Classification: C37, C61, D44, D83





	Lernen und Selbstvertrauen in Wettkämpfen
	anh-03-10.pdf
	Essays on Herd Behavior and Strategic Delegation
	Wettbewerb in Netzproduktmärkten


